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CLASSIFICATION OF DIFFEOMORPHISMS OF S4

INDUCED BY QUATERNIONIC RICCATI EQUATIONS
WITH PERIODIC COEFFICIENTS

Henryk Żołądek

Abstract. The monodromy maps for the quaternionic Riccati equations

with periodic coefficients ż = zp(t)z + q(t)z + zr(t) + s(t) in HP1 are

quternionic Möbius transformations. We prove that, like in the case of
automorphisms of CP1, the quaternionic homografies are divided into three

classes: hyperbolic, elliptic and parabolic.

1. Introduction

There exist many results about periodic solutions to differential equations of
the form ż = P (z, t) where P is a polynomial in z ∈ C with coefficients periodic
in t, of period T (see [2], [4]–[6], [8], [9] for example).

In the case degz P ≤ 2, i.e. the Riccati equation, we can associate with it
a linear second order equation ÿ + K(t)ẏ + L(t) = 0 such that z = M(t) · ẏ/y
and the periodic functions are determined by the coefficient functions in P .
It implies that the 2-parameter family {gts} of non-autonomous flow maps are
Möbius maps. In particular, the monodromy mapG = g2π0 takes the formG(z) =
(az + b)/(cz + d), where we can assume that ad− c = 1, i.e. G ∈ PSL(2,C).
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The dynamics of any complex Möbius map is well known. It is equivalent,
by an internal automorphism in the group PSL(2,C), to one of the three maps:

• the hyperbolic (or loxodromic) map z → λz, 0 6= λ ∈ C \ S1;
• the elliptic map z → eiαz, α ∈ R;
• the parabolic map z → z + 1.

In the parabolic case the corresponding differential equation in the Riemann
sphere CP1 ' S2 has only one periodic solution, of period T , which corresponds
to the fixed point z = ∞ of G. In the hyperbolic case there are two periodic
solutions corresponding to z = 0 and z = ∞. Also there are only two periodic
solutions in the elliptic case when α/(2π) is irrational; if α/(2π) = p/q, reduced
rational ratio with q > 0, then all other solutions are periodic with the period qT .

When one studies periodic solutions only in C = CP1 \∞ then one must ex-
clude the periodic solutions in CP1 which pass through the point z =∞. In this
way examples of Riccati equations without periodic solutions were constructed
in [2], [4]–[6], [8], [9].

Recently an interest arised in the study of periodic solutions of quaternionic
Riccati equations of the type

(1.1) ż = zp(t)z + q(t)z + zr(t) + s(t), z ∈ H,

where p, q, r, s are periodic functions in t ∈ R with values in the quaternionic
line H ' R4. In particular, J. Campos and J. Mawhin [1] proved existence of at
least one T -periodic solution in H for the equation ż = z2 + s(t) with not too
large M = sup |s(t)|. Recently P. Wilczyński [7] has given some conditions for
existence of at least two periodic solutions. Also quaternionic Riccati equations
appear in the Euler fluid dynamics (see [3]).

The aim of his paper is to generalize the classification of complex monodromy
maps associated with complex periodic Riccati equations to the quaternionic
case. We shall prove the following statements:

1. With equation (1.1) one can associate a linear system

(1.2)
(
ẏ1
ẏ2

)
=
(
A(t) B(t)
C(t) D(t)

)(
y1
y2

)
, y1,2 ∈ H,

with periodic quaternion-valued coefficients, such that any solution z(t) to equa-
tion (1.1) is of the form y1(t)y−22 (t) for a solution (y1(t), y2(t))

> to system (1.2).

2. The 2-parameter group of non-autonomous flow maps associated with
system (1.2) are of the form(

a(s, t) b(s, t)
c(s, t) d(s, t)

)(
y1
y2

)
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and the monodromy map G = gT0 for equation (1.1) takes the form of a quater-
nionic Möbius map

(1.3) G(z) = (az + b)(cz + d)−1,

where a = a(0, T ), b = b(0, T ), c = c(0, T ), d = d(0, T ).
3. Any Möbius automorphism of HP1 of the form (1.3) is equivalent, via a

conjugation in the group PGL(2,H), to one of the three (with a, d ∈ C):

z → azd−1, 1 = |a| < |d| (hyperbolic);
z → azd−1, |a| = |d| = 1 (elliptic);
z → (az + 1)a−1, |a| = 1 (parabolic).

4. In the hyperbolic case G has the fixed points z = 0 (attractor) and z =∞
(repeller) as the only periodic points.
5. Any elliptic map has two fixed points z = 0 and z = ∞ and the tori

{z = z1 + jz2 ∈ C+ jC: |z1| =const, |z2| = const} are invariant for G.
If Re an 6= Re dn for any positive integer n then then G does not have other

periodic points. If Re an = Re dn for some n then it has also a surface diffeo-
morphic to CP1 \ {0,∞} of periodic points of period n. If an = dm = 1 for some
m,n then the whole map is periodic with period p = LCM(m,n); if, additionally,
Re aq = Re dq for some smallest q < p then there is a surface ' CP1 \ {0,∞} of
periodic points of period q.
6. In the parabolic case the map G has only one periodic point corresponding

to z =∞.
We must underline that these results cannot be generalized to more general

autonomous quaternionic differential equations with quadratic right-hand side,
like ż = azbz + zczd+ ezf + gz + zh.
The paper is organized as follows. In Sections 2 and 3 we present some

preliminary general properties of Riccati equations and Möbius maps. The main
results are in Section 4. In Appendix we present some properties of quaternions
and quaternionic equations of degree ≤ 2.

2. Linear systems, Riccati equations and Möbius maps

The subject of this section is standard in the complex case, but in the quater-
nionic case the non-commutativity requires some care. Therefore we present all
details in the below proofs.
Consider the linear system (1.2), i.e.

(2.1) ẏ = Z(t)y, y ∈ H2.

The solutions y = ϕ(t; s, y0) = ϕ(t) which satisfy the initial condition ϕ(s; s, y0)
= y0 define the evolution maps y0 → f ts(y0) = ϕ(t; s, y0). Treated as maps
f ts:R8 → R8 they are linear, i.e. R-linear. But we can say more.
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Lemma 2.1. The maps f ts are left H-linear, i.e.

f ts(y) =
(
a(s, t) b(s, t)
c(s, t) d(s, t)

)
y.

Proof. It follows from the Picard sequence

ϕ0(t) = y0, ϕn(t) = y0 +
∫ t
s

Z(τ)ϕn−1(τ) dτ. �

The relation between systems (1.1) and (1.2) is given in the following

Lemma 2.2. The change z = y1y−12 leads to the following equation

ż = A(t)z +B(t)− zC(t)z − zD(t).

Proof. Use
d

dt
(y−12 ) = −y

−1
2 ẏ2y

−1
2

and (1.2). �

Lemma 2.3. The evolution maps for equation (1.1) are quaternionic frac-
tional linear:

gts(z) = (a(s, t)z + b(s, t)) · (c(s, t)z + d(s, t))−1.

Proof. We have

(αy1+βy2)·(γy1+δy2)−1 = [(αz+β)y2]·[(γz+δ)y2]−1 = (αz+β)·(γz+δ)−1. �

The map

F =
(
a b

c d

)
→ G = (az + b)(cz + d)−1

defines a homomorphism from the group GL(2,H), of invertible quaternionic ma-
trices, to the group PGL(2,H) = GL(2,H)/RI of automorphisms of the quater-
nionic projective space HP2.

Remark 2.1. Note the following non-standard formula

F−1 =
(

(a− bd−1c)−1 −(a− bd−1c)−1bd−1

−(d− ca−1b)−1ca−1 (d− ca−1b)−1

)
, ad 6= 0.

At this moment we have proved properties 1 and 2 from Introduction.
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3. Fixed points

The fixed points of a Möbius map, i.e. such that G(z) = z, play important
role in simplification of the map and further analysis of its dynamics.
Firstly note that when c = 0 the map is affine

(3.1) G(z) = azd−1 + bd−1.

Here the point z =∞ is fixed. Indeed, in the chart ζ = z−1 we have

ζ → (G(ζ−1))−1 = dζ(a+ cζ)−1.

In the case c 6= 0 we consider finite fixed points (when they exist).

Lemma 3.1. If z1 is a finite fixed point of G then in the chart ζ = (z−z1)−1

the map G takes the affine form (3.1). Moreover, if the affine map (3.1) has
a finite fixed point z2 then, in the chart ζ = z − z2 it takes the linear form

(3.2) ζ → aζd−1.

Proof. This proof is the same as in the complex case, e.g. with care in
multiplication of quaternions. �

We consider now the problem of existence of fixed points of G. We assume
that c 6= 0. Then we arrive to the following equation

(3.3) zcz − az + zd− b = 0.

The change z = c−1w and the left multiplication by c gives the equation

(3.4) w2 − cac−1w + wd− cb = 0.

Lemma 3.2. Equation (3.4) has at least one finite solution.

Proof. Let

(3.5) X(w) = w2 + αw + wβ + γ

be treated as a vector field on R4 (with α = −cac−1, β = d, γ = −cb).
We can define its index at infinity as the degree of the map

S3R 3 w →
X(w)
|X(w)|

∈ S31 ,

where S3r = {|w| = r} is a sphere of radius r and R is large. Of course, this
degree equals 2.
If the vector field X has only isolated singular points (where X(w) = 0)

then we apply the topological argument (like in the Fundamental Theorem of
Algebra).
The example w2+1 = 0 shows that the singular points may be non-isolated.
Anyway in the both cases there exists a singular point of X. �
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Let us examine the situations when the equationX(w) = 0 has a non-isolated
solution, which we assume at w = 0 (thus γ = 0). Of course, then |α|+ |β| 6= 0
and det(∂X/∂w)(0) = 0.
By Lemma 5.5 in Appendix we have β = −µαµ−1for some quaternion µ.
Note also that we can assume that Reα = Reβ = 0, because the correspond-

ing terms in (3.5) cancel themselves. Moreover, applying a conjugation we can
assume that α = iα1 ∈ iR (see Lemma 5.3 in Appendix). In this case we find
that

ker
∂X

∂w
(0) = Cµ−1.

If α = β = −µαµ−1 then a translation of w leads to an equation of the form
(w+α)2 = δ. So here the equation X(w) = 0 with γ = 0 defines a 2-dimensional
surface diffeomorphic to S2.
The following lemma is proved in Appendix.

Lemma 3.3. If α 6= β = −µαµ−1 and γ = 0 then the point w = 0 is the
unique singular point of X. It follows that the only possibility of X to have
non-isolated singular points is the case X = (w + α)2 + a, a > 0.

Remark 3.4. In the complex case the fixed points of the Mobius map G
correspond to the eigendirections of the corresponding linear operator F . In the
quaternionic case this can be not true.

Indeed, if
(
z
1

)
is an eigenvector of F , i.e. the equations az+b = λz, cz+d = λ

are satisfied, then we get the equation

cz2 + (d− a)z − b = 0

which is different than equation (3.3).

4. Classification

We can now present the promised classification of the quaternionic Möbius
maps with respect to conjugation in the group PGL(2,H). We use the form
(3.1).

Lemma 4.1. After applying the conjugations λ−1G(λz) and G(zµ)µ−1 and
rescaling (a, d)→ (aν, d/ν), ν ∈ R, in (3.1), we can assume the following

(4.1)
a = ã0 + iã1 ∈ C, |a| = 1, ã0 ≥ 0, ã1 ≥ 0;

d = d̃0 + id̃1 ∈ C, d̃1 ≥ 0.
Moreover, this choice is unique and cannot be simplified.

Proof. The above conjugations result in the changes a → λ−1aλ and d →
µ−1dµ, respectively. Moreover, it is clear that they are the only possible changes
in the class of affine transformations. Next we apply Lemmas 5.3, 5.4, 5.1 from
Appendix; (the conjugation a→ j−1aj = a allows to obtain Im a, Im d ≥ 0). �
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Theorem 4.2. Any Möbius quaternionic map is equivalent to a map of the
affine form (3.1) with the restrictions (4.1) and satisfying one of the following
conditions:

(H) |d| > 1, b = 0 (hyperbolic);
(E) |d| = 1, b = 0 (elliptic);
(P) a = d, b = 1 (parabolic).

Any two different maps from the above list are non-equivalent.

Proof. The types (H) and (E) correspond to the form (3.2), i.e. with fixed
points at z = 0 and z =∞. The other types correspond to situations with only
one fixed point at z =∞.
Therefore we should consider the fixed point equation

Lz := az − zd = −b.

It does not have solutions when b 6∈ ImL. Thus kerL 6= 0.
By Lemma 5.5 from Appendix we find that d = νaν−1, which is equivalent

to the conditions Re a = Re d and |a| = |d| (see Lemmas 5.3 and Lemma 5.4 in
Appendix), i.e. d = a.
If d = a = 1 then L = 0. Otherwise, dimR kerL = 2 in this case.
To find ImL we solve the equation Lz = w with z = z1+ jz2, w = w1+ jw2,

z1,2, w1,2 ∈ C. We arrive at the system

(a− d)z1 = w1, (a− d1)z2 = w2.

If d = a = 1 then any w 6= 0 is outside ImL. Then application of the
conjugation λ−1G(λz), λ = b, reduces b to b = 1 (type (P)).
If d = a 6= 1 then ImL = jC and any w = w1 + j0 ∈ C \ 0 is outside ImL.

Moreover, any v 6∈ ImL is of the form w1 + j0 + u, u ∈ kerL. Therefore we can
choose b = b1 + j0 ∈ C \ 0 (by a translation of z) and further application of the
conjugation λ−1G(λz) reduces it to b = 1 (type (P)). �

Before analysis of the dynamical properties of the Möbius maps we make
further simplifications and division of the set of elliptic and parabolic maps.
First, putting a = eiα and d = eiβ and z = z1 + jz2 (as before), the elliptic

and parabolic maps take the following forms:

(z1, z2) → (ei(α−β)z1, e−i(α+β)z2) (E)(4.2)

(z1, z2) → (z1 + 1, e−2iαz2) (P)(4.3)

Next, we divide the class (E) into the following subclasses:

(EI) Re an 6= Re dn for any integer n ≥ 1
(i.e. (α− β)/(2π) and (α+ β)/(2π) are irrational);
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(EII)n Re an = Re dn for some smallest integer n ≥ 1 but a is not a root
of 1;

(EIII)m,n an = dm = 1 for some minimal positive integers m and n.

Theorem 4.2. (a) Any map of type (H) has z = 0 and z = ∞ as the only
periodic points. The point z = ∞ is repelling and z = 0 is a global hyperbolic
attractor for the affine part of HP2.
(b) Any elliptic map has two fixed points z = 0 and z = ∞ and the tori

{|z1| = r1, |z2| = r2} are invariant.
If it is of type (EI) then it does not have other periodic points. If it is of type

(EII)n then it has also a surface diffeomorphic to CP1 \ {0,∞} (i.e. {z1 = 0} or
{z2 = 0}) of periodic points of period n.
If it is of type (EIII)m,n then the whole map is periodic with period p =

LCM(m,n). If, additionally, Re aq = Re dq for some smallest q < p then there
is a surface ' CP1 \ {0,∞} of periodic points of period q.
(c) Any parabolic map has z =∞ as the only periodic point.

Proof. The point (a) is obvious. The points (b) and (c) easily follow from
formulas (4.2) and (4.3). �

Remark 4.4. Using he above classification of the monodromy maps of Ric-
cati equations we can reprove the result of Campos and Mawhin [1]; moreover,
with explicit bound. Namely we shall show that if

MT < π/4, M2 = sup |s(t)|,

then the equation ż = z2 + s(t), z ∈ H and s(t) periodic with period T , has at
least one periodic solution of period T .

Indeed, this equation has at least one T -periodic solution in S4. So, if there
are no finite T -periodic solutions, then the point z =∞ is passed by a periodic
solution.

But in the chart ζ = z−1 we have ζ̇ = −1− ζs(t)ζ.
If ζ = ϕ(t), t0 ≤ t ≤ t0 + T is a solution such that ϕ(t0) =∞, then

(4.4) Re ϕ̇ < −1 +M2R2,

where R = supt0≤t≤t0+T r(t) and r(t) = |ϕ(t)|.
On the other hand, the inequality ṙ ≤ 1 +M2r2 gives MR ≤ tan(MT ). If

tan(MT ) < 1 then inequality (4.4) implies Re ϕ̇(t) < 0 for t0 ≤ t ≤ t0 + T . Of
course, this solution cannot be T -periodic.



Quaternionic Riccati Equations 213

5. Appendix. Quaternions and quaternionic equations

Recall that the quaternion algebra H is the algebra with unity and generated
by i, j, k with the relations i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i,
ki = −ik = j.
Any quaternion is of the form q = q0 + iq1 + jq2 + kq3, q0,1,2,3 ∈ R with the

real part Re q = q0 and the imaginary part Im q = iq1 + jq2 + kq3 and with the
conjugate q = q0 − iq1 − jq2 − kq3. Its norm equals |q| = (q20 + q21 + q22 + q23)1/2.
In this paper we often represent quaternions in the form z = z1 + jz2, z1,2 ∈ C.
Below we present some standard properties of quaternions.

Lemma 5.1. If z ∈ C then zj = zj.

Lemma 5.2. If ζ = iζ1 + jζ2 + kζ3 is imaginary then

eζ = cos |ζ|+ ζ
|ζ|
sin |ζ|

and |eζ | = 1. Any quaternion with norm 1, i.e. unitary quaternion, is of this
form.

Lemma 5.3. The group of quaternions with the norm 1, i.e. S3, is is iso-
morphic to the group SU(2) by the following correspondence

i→ iσz =
(
i 0
0 −i

)
, j → iσy =

(
0 −1
1 0

)
, k → −iσx =

(
0 −i
−i 0

)
.

This group acts on the space R3 = iR + jR + kR of imaginary quaternions by
conjugations,

q → Adz = zqz−1.

The latter action is related with the action of the rotation group SO(3) on R3,
when one identifies the group SU(2) with the spin group Spin(3) equipped with
the two-fold covering Spin(3) → SO(3). (The above Pauli matrices correspond
to the generators of rotations around the three coordinate axes.) In particular,
it follows that any imaginary quaternion is of the form

γeζie−ζ , γ > 0, Re ζ = 0.

Lemma 5.4. If Im q = 0 and ζ is arbitrary then eζqe−ζ = q.

Consider now quaternionic algebraic equations. We begin with the linear
case.

Lemma 5.5. Let a ∈ C \ R. Then the equation

az + zb = 0, z ∈ H,



214 H. Żołądek

has a nonzero solution if and only if b = −µ−1aµ for some µ ∈ H. In such case
any solution is of the form

z = ζµ, ζ ∈ C.

Proof. Let z0 6= 0 be some solution. Then we have b = −z−10 az0. Putting
z = ζz0 the equation reads as aζ = ζa. It is clear that it must be ζ2 = ζ3 = 0.�

Now we can prove Lemma 3.3. It can be reduced to the following statement:

• if b = −µ−1aµ 6= a then the equation

z2 + az + zb = 0

has unique solution z = 0.

Proof. Like in the proof of Lemma 3.2 we can assume that Re a = −Re b =
0. Next, using conjugation by means of unitary quaternions, i.e. rotations in the
space of imaginary quaternions (see Lemma 5.3), and rescaling we can reduce a
to i and b to αi+ βj, α2 + β2 = 1. So we have the equation

z2 + iz + z(αi+ βj) = 0, α 6= 1.

With z = z1 + jz2 this is equivalent to the following system

z21 − |z2|
2 + (1 + α)iz1 − βz2 = 0,(5.1)

2Re z1 · z2 − (1− α)iz2 + βz1 = 0.(5.2)

Assume firstly that α = −1. Then β =
√
1− α2 = 0 and it is easy to see

that we get z1 = z2 = 0.

Let β 6= 0. We put z1 = x+ iy. From equation (5.2) we get

z2 = −β
z1

2x− (1− α)i
.

Its substitution to equation (5.1) gives the following equation

x2−y2+2ixy−(1−α2) x2 + y2

4x2 + (1− α)2
+(1+α)(ix−y)−(1−α2) x+ iy

2x− (1− α)i
= 0.

The imaginary and real parts of the above equation give

y = − (1 + α)x
2

2x2 + 1− α
, x2 − y2 = 2y (1 + α)x

2

2x2 + 1− α
.

We see that x2 − y2 = −2y2, i.e. z1 = z2 = 0. �

We finish this appendix with the following
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Proposition 5.6. Any quadratic equation zaz+ bz+ zc+ d = 0, a 6= 0, has
either one solution or two solutions or a 2-sphere of solutions in H.

Proof. It is the same equation as the equation for fixed points of a Möbius
map without fixed point at infinity (see equation (3.3)). From the classification
Theorems 4.2 and 4.3 it follows that any Möbius map has either one fixed point
or two fixed points or a sphere of fixed points. �
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