ON NONSYMMETRIC THEOREMS FOR (H, G)-COINCIDENCES

Denise de Mattos - Edivaldo L. dos Santos

Abstract

Let X be a compact Hausdorff space, $\varphi: X \rightarrow S^{n}$ a continuous map into the n-sphere S^{n} that induces a nonzero homomorphism $\varphi^{*}: H^{n}\left(S^{n} ; \mathbb{Z}_{p}\right) \rightarrow H^{n}\left(X ; \mathbb{Z}_{p}\right), Y$ a k-dimensional CW-complex and $f: X \rightarrow$ Y a continuous map. Let G a finite group which acts freely on S^{n}. Suppose that $H \subset G$ is a normal cyclic subgroup of a prime order. In this paper, we define and we estimate the cohomological dimension of the set $A_{\varphi}(f, H, G)$ of (H, G)-coincidence points of f relative to φ.

1. Introduction

K. D. Joshi [10] has proved a nonsymmetric generalization of the BorsukUlam theorem [1], in which the n-sphere S^{n} is replaced by a certain compact subset X of the $(n+1)$-dimensional Euclidean space \mathbb{R}^{n+1}. In this context, a pair of points $x, y \in X$ are said to be antipodal if $y=-\lambda x$, for some $\lambda>0$. The Joshi's theorem shows that for every continuous map $f: X \rightarrow \mathbb{R}^{n}$ there exist antipodal points $x, y \in X$ such that $f(x)=f(y)$.
K. Borsuk has suggested to define antipodal points in an arbitrary space in the following way: $x_{1}, x_{2} \in X$ are said to be antipodal points relative to an

2000 Mathematics Subject Classification. Primary 55M20 55R91; Secondary 55R25.
Key words and phrases. Borsuk-Ulam theorem, \mathbb{Z}_{p}-index, (H, G)-coincidence, free actions.
The first author was supported in part by FAPESP of Brazil Grant numbers 06/03932-8 and 04/10229-6.

The second author was supported in part by FAPESP of Brazil Grant number 04/10229-6.
essential $\operatorname{map}^{1} \varphi: X \rightarrow S^{n}$ if $\varphi\left(x_{1}\right)=-\varphi\left(x_{2}\right)$. Using the Borsuk's suggestion, Spiez [11] has proved that if X is a compact Hausdorff space and if $\varphi: X \rightarrow S^{n}$ is an essential map, then for every continuous map $f: X \rightarrow \mathbb{R}^{k}$, the covering dimension of the set

$$
A_{\varphi}(f)=\{x \in X: \text { there exists } y \in X, \text { such that } \varphi(x)=-\varphi(y) \text { and } f(x)=f(y)\}
$$

is not less than $n-k$, obtaining thus a generalization of the Joshi's theorem.
M. Izydorek [7] has extended the proposition of Borsuk for a cyclic group G of order prime which acts freely on a n-dimensional sphere S^{n} and has proved the following generalization of the SpiePlr z's theorem: if X is a compact Hausdorff space and if $\varphi: X \rightarrow S^{n}$ is an essential map, then for every continuous map $f: X \rightarrow \mathbb{R}^{k}$, the covering dimension of the set

$$
\begin{aligned}
& A_{\varphi}(f)=\left\{x \in X: \text { there exists } x_{2}, \ldots, x_{p}\right. \text { such that } \\
& \left.\qquad \varphi(x)=g^{-1} \varphi\left(x_{2}\right)=\ldots=g^{1-p} \varphi\left(x_{p}\right) \text { and } f(x)=f\left(x_{2}\right)=\ldots=f\left(x_{p}\right)\right\}
\end{aligned}
$$

is not less than $n-(p-1) k$, where g is a fixed generator of G. Moreover, if \mathbb{R}^{k} is replace by a generalized k-dimensional manifold M^{k} over \mathbb{Z}_{p}, then an analogous theorem has been proved (see [7, Theorem 4]).

Gonçalves, Jaworowski and Pergher [3] have defined (H, G)-concidence for a continuous map f from a n-sphere S^{n} into a k-dimensional CW-complex Y, where G is a finite group which acts freely on S^{n} and have proved that if H is a nontrivial normal cyclic subgroup of a prime order, then

$$
\text { cohom. } \operatorname{dim} A(f, H, G) \geq n-|G| k
$$

where $A(f, H, G)$ is the set of (H, G)-coincidence points of f and cohom.dim denotes the cohomological dimension. The other papers closely related to [3] are [4]-[6], [8], [9] and [13].

The purpose of this paper is to define the set $A_{\varphi}(f, H, G)$ of (H, G)-coincidence points of a continuous map $f: X \rightarrow Y$ relative to an essential map $\varphi: X \rightarrow S^{n}$, where X is a compact Hausdorff space, Y is a topological space, G is a finite group which acts freely on the n-dimensional sphere S^{n} and H is a subgroup of G. Using this definition, under certain conditions, we estimate the cohomological dimension of the set $A_{\varphi}(f, H, G)$. Specifically, we will prove the following nonsymmetric version of the main theorem of [3]:

Theorem 1.1. Let X be a compact Hausdorff space, Y a k-dimensional CW-complex and $\varphi: X \rightarrow S^{n}$ an essential map. Given a finite group G which acts freely on S^{n} and H a normal cyclic subgroup of prime order, then for every

[^0]continuous map $f: X \rightarrow Y$ such that $f^{*}: H^{i}\left(Y ; \mathbb{Z}_{p}\right) \rightarrow H^{i}\left(X ; \mathbb{Z}_{p}\right)$ is trivial for $i \geq 1$, cohom. $\operatorname{dim} A_{\varphi}(f, H, G) \geq n-|G| k$.

For the proof of Theorem 1.1, it was fundamental to prove the following version of the main Theorem of [3],

Theorem 1.2. Let X be a paracompact Hausdorff space, Y a k-dimensional CW-complex, G a finite group which acts freely on X and $H \subset G$ a normal cyclic subgroup of prime order. Let $f: X \rightarrow Y$ be a continuous map such that $f^{*}: H^{i}\left(Y ; \mathbb{Z}_{p}\right) \rightarrow H^{i}\left(X ; \mathbb{Z}_{p}\right)$ is trivial, for $i \geq 1$. Suppose that the \mathbb{Z}_{p}-index of X is greater than or equal to n, then the \mathbb{Z}_{p}-index of the set $A(f, H, G)$ is greater than or equal to $n-|G| k$. Consequently, cohom. $\operatorname{dim} A(f, H, G) \geq n-|G| k$.

2. Preliminaries

Throughout this paper the symbols H_{*} and H^{*} will denote Čech homology and cohomology groups with coefficients in \mathbb{Z}_{p}, unless otherwise indicated. If G is a group which acts on a topological space X, we will denote by X^{*} the orbit space X / G.

We start by introducing some basic notions and definitions as follows.
2.1. (H, G)-coincidence. Suppose that X, Y are topological spaces, G is a group acting freely on X and $f: X \rightarrow Y$ is a map. If H is a subgroup of G, then H acts on the right on each orbit $G x$ of G as follows: if $y \in G x$ and $y=g x$, $g \in G$, then $h y=g h x$ (such action may depend on the choice of the reference point x). Following [4], [6], [9] the concept of G-coincidence is generalized as follows: a point $x \in X$ is said to be a (H, G)-coincidence point of f if f sends every orbit of the action of H on the G-orbit of x to a single point (see [5]). We will denote by $A(f, H, G)$ the set of all (H, G)-coincidence points of f. If H is the trivial subgroup, then every point of X is a (H, G)-coincidence. If $H=G$, this is the usual definition of coincidence. If $G=Z_{p}$ with p prime, then a nontrivial (H, G)-coincidence point is a G-coincidence point.
2.2. The space X_{φ} and the set $A_{\varphi}(f, H, G)$. Let us consider X a compact Hausdorff space and an essential map $\varphi: X \longrightarrow S^{n}$. Suppose G be a finite group of order r which acts freely on S^{n} and H be a subgroup of order p of G. Let $G=\left\{g_{1}, g_{2}, \ldots, g_{r}\right\}$ be a fixed enumeration of elements of G, where g_{1} is the identity of G. A nonempty space X_{φ} can be associated with the essential map $\varphi: X \rightarrow S^{n}$ as follows:

$$
\begin{aligned}
X_{\varphi} & =\left\{\left(x_{1}, \ldots, x_{r}\right) \in X^{r}: \varphi\left(x_{1}\right)=\left(g_{2}\right)^{-1} \varphi\left(x_{2}\right)=\ldots=\left(g_{r}\right)^{-1} \varphi\left(x_{r}\right)\right\} \\
& =\left\{\left(x_{1}, \ldots, x_{r}\right) \in X^{r}: g_{i} \varphi\left(x_{1}\right)=\varphi\left(x_{i}\right), i=1, \ldots, r\right\}
\end{aligned}
$$

where X^{r} denotes the r-fold cartesian product of X. The set X_{φ} is a closed subset of X^{r} and so it is compact. We define a G-action on X_{φ} as follows: for
each $g_{i} \in G$ and for each $\left(x_{1}, \ldots, x_{r}\right) \in X_{\varphi}$,

$$
\begin{equation*}
g_{i}\left(x_{1}, \ldots, x_{r}\right)=\left(x_{\sigma_{g_{i}}(1)}, \ldots, x_{\sigma_{g_{i}}(r)}\right), \tag{2.1}
\end{equation*}
$$

where the permutation $\sigma_{g_{i}}$ is defined by $\sigma_{g_{i}}(k)=j, g_{k} g_{i}=g_{j}$. We observe that if $x=\left(x_{1}, \ldots, x_{r}\right) \in X_{\varphi}$ then $x_{i} \neq x_{j}$, for any $i \neq j$ and therefore G acts freely on X_{φ}.

Now, let us consider a continuous map $f: X \rightarrow Y$, where Y is a topological space and $\widetilde{f}: X_{\varphi} \rightarrow Y$ given by $\widetilde{f}\left(x_{1}, \ldots, x_{r}\right)=f\left(x_{1}\right)$. Let $y=\left(x_{1}, \ldots, x_{r}\right) \in$ $A(\tilde{f}, H, G)$ and consider the orbit $G y=\left\{g_{1} y, g_{2} y, \ldots, g_{r} y\right\}$. Note that
(i) From (2.1), we have that for each i, the 1-th coordinate of $g_{i} y$ is x_{i}.
(ii) The action of H on $G y$ determines a partition of the orbit $G y$ in $s=(r / p)$ disjoint suborbits, and we can be rewrite

$$
G y=\left\{g_{1_{1}} y, \ldots, g_{1_{p}} y ; \ldots ; g_{j_{1}} y, \ldots, g_{j_{p}} y ; \ldots ; g_{s_{1}} y, \ldots, g_{s_{p}} y\right\}
$$

where $\{1, \ldots, r\} \leftrightarrow\left\{1_{1}, \ldots, 1_{p} ; \ldots ; j_{1}, \ldots, j_{p} ; \ldots ; s_{1}, \ldots, s_{p}\right\}$ is a bijection.
Since y is a (H, G)-coincidence point of \widetilde{f}, it follows from (i) and (ii) that,

$$
f\left(x_{1_{1}}\right)=\ldots=f\left(x_{1_{p}}\right) ; \ldots ; f\left(x_{j_{1}}\right)=\ldots=f\left(x_{j_{p}}\right) ; \ldots ; f\left(x_{s_{1}}\right)=\ldots=f\left(x_{s_{p}}\right)
$$

In these conditions, we have the following
Definition 2.1. The set $A_{\varphi}(f, H, G)$ of (H, G)-coincidence points of f relative to φ is defined by

$$
\begin{aligned}
A_{\varphi}(f, H, G) & =A(\widetilde{f}, H, G)=\left\{\left(x_{1}, \ldots, x_{r}\right) \in X^{r}:\right. \\
g_{i} \varphi\left(x_{1}\right) & \left.=\varphi\left(x_{i}\right), i=1, \ldots, r \text { and } f\left(x_{j_{1}}\right)=\ldots=f\left(x_{j_{p}}\right), j=1, \ldots, s\right\} .
\end{aligned}
$$

Remark 2.2. Let us observe that if $G=H=\mathbb{Z}_{p}$,

$$
\begin{aligned}
& A_{\varphi}(f, H, G)=A_{\varphi}(f)=\left\{\left(x_{1}, \ldots, x_{p}\right) \in X^{p}:\right. \\
& \left.\quad g_{i} \varphi\left(x_{1}\right)=\varphi\left(x_{i}\right), i=1, \ldots, p \text { and } f\left(x_{1}\right)=\ldots=f\left(x_{p}\right)\right\}
\end{aligned}
$$

2.3. The \mathbb{Z}_{p}-index. Suppose that the cyclic group $G=\mathbb{Z}_{p}$ of order prime p acts freely on a Hausdorff and paracompact space X. Then $X \rightarrow X^{*}$ is a principal \mathbb{Z}_{p}-bundle and one can take $h: X^{*} \rightarrow B \mathbb{Z}_{p}$ a classifying map for the G-bundle $X \rightarrow X^{*}$.

REMARK 2.3. It is well known that if \widehat{h} is another classifying map for the principal \mathbb{Z}_{p}-bundle $X \rightarrow X^{*}$, then there is a homotopy between h and \widehat{h}.

We will consider the following definition for the \mathbb{Z}_{p}-index of X (see [7]).

Definition 2.4. We say that the \mathbb{Z}_{p}-index of X is greater than or equal to k if the homomorphism $h^{*}: H^{k}\left(B \mathbb{Z}_{p}\right) \rightarrow H^{k}\left(X^{*}\right)$ is nontrivial. We say that the \mathbb{Z}_{p}-index of X is equal to k if it is greater than or equal to k and moreover $h^{*}: H^{i}\left(B \mathbb{Z}_{p}\right) \rightarrow H^{i}\left(X^{*}\right)$ is zero, for any $i \geq k+1$.

Remark 2.5. A model for $B \mathbb{Z}_{2}$ the classifying space for \mathbb{Z}_{2} is the infinite real projective space P^{∞}. Then $H^{*}\left(B \mathbb{Z}_{2}\right) \cong H^{*}\left(P^{\infty}\right)$ is isomorphic to $\mathbb{Z}_{2}[a]$, where $a \in H^{1}\left(P^{\infty}\right)$ is the generator. The generator of $H^{i}\left(B \mathbb{Z}_{2}\right)$ is a^{i} for any $i \geq 0$. If $p>2$ a model for $B \mathbb{Z}_{p}$ the classifying space for \mathbb{Z}_{p} is the infinite lens space $L_{p}^{\infty}=S^{\infty} / \mathbb{Z}_{p}$. Thus, $H^{i}\left(B \mathbb{Z}_{p}\right)=H^{i}\left(L_{p}^{\infty}\right) \cong \mathbb{Z}_{p}$ for any $i \geq 0$ and given any nonzero element $a \in H^{1}\left(L_{p}^{\infty}\right)$, one has that $b=\beta(a)$ is a nonzero element of $H^{2}\left(L_{p}^{\infty}\right)$, where $\beta: H^{1}\left(L_{p}^{\infty}\right) \rightarrow H^{2}\left(L_{p}^{\infty}\right)$ is the Bockstein homomorphism. More generally, a generator $\mu \in H^{i}\left(B \mathbb{Z}_{p}\right)$ is given by

$$
\mu= \begin{cases}a \smile b^{(i-1) / 2} & \text { if } i \text { is odd } \\ b^{i / 2} & \text { if } i \text { is even }\end{cases}
$$

2.4. The Smith special cohomology groups with coefficients in \mathbb{Z}_{p}.

In this work, we will be considering the definition of the Smith special cohomology groups with coefficients in \mathbb{Z}_{p} in the sense of [2]. Smith homology and cohomology were originally defined in [12] and in a series of subsequent papers. A systematic exposition of the Smith theory can be found in [2]. Let X be a topological space; given a finite group G of prime order p which acts freely on X, let g be a fixed generator of G and put

$$
\sigma=1+g+g^{2}+\ldots+g^{p-1} \quad \text { and } \quad \tau=1-g
$$

in the group ring $\mathbb{Z}_{p}(G)$. We have that $\sigma=\tau^{p-1}$. If $\rho=\tau^{i}$, we put $\bar{\rho}=\tau^{p-i}$, then $\tau=\bar{\sigma}$ and $\sigma=\bar{\tau}$. There exists an exact sequence with coefficients in $\mathbb{Z}_{p}[2$, p.125],

$$
\longrightarrow H_{\rho}^{n}(X) \xrightarrow{\rho^{*}} H^{n}(X) \xrightarrow{\mathcal{T}} H^{n}\left(X^{*}\right) \xrightarrow{\delta} H_{\rho}^{n+1}(X)^{\rho^{*}} \longrightarrow
$$

called Smith exact sequence, where $H_{\rho}^{*}(X)$ denotes the Smith special cohomology groups and \mathcal{T} is the transfer homomorphism.

Remark 2.6. The Smith cohomology groups are natural with respect to $\mathbb{Z}_{p^{-}}$ equivariant maps, that is, if $f: X \rightarrow Y$ is a \mathbb{Z}_{p}-equivariant map then f induces homomorphism $f_{\rho}{ }^{*}: H_{\rho}^{*}(Y) \rightarrow H_{\rho}^{*}(X)$ which commutes with the homomorphisms in the Smith sequence.

3. The \mathbb{Z}_{p}-index of X_{φ}

Let us consider the free G-space X_{φ} as defined in Section 2.2. If $H \subset G$ is a cyclic subgroup of prime order p, then X_{φ} is a free $H \cong \mathbb{Z}_{p}$-space. In these conditions, as in [7, Theorem 3], we have the following

Theorem 3.1. Let X be a compact Hausdorff space and $\varphi: X \longrightarrow S^{n}$ an essential map. Then, the \mathbb{Z}_{p}-index of X_{φ} is equal to n.

Proof. For $i=1, \ldots, r$, let us consider the maps $\varphi_{i}: X \rightarrow S^{n}$ given by $\varphi_{i}(x)=\left(g_{i}\right)^{-1} \varphi(x)$, where $g_{i} \in G$. Then, we can define the map

$$
\psi=\varphi_{1} \times \ldots \times \varphi_{r}: X^{r} \rightarrow\left[S^{n}\right]^{r}
$$

where $\left[S^{n}\right]^{r}$ denotes the r-fold cartesian product of r copies of S^{n}, such that $X_{\varphi}=\psi^{-1} \Delta\left[S^{n}\right]^{r}$, where $\Delta\left[S^{n}\right]^{r}$ is the diagonal in $\left[S^{n}\right]^{r}$. In these conditions, we prove the following

Lemma 3.2. The homomorphism $\psi^{*}: H^{*}\left(\left[S^{n}\right]^{r}\right) \rightarrow H^{*}\left(X^{r}\right)$ induced by $\psi: X^{r}$ $\rightarrow\left[S^{n}\right]^{r}$ is a monomorphism in each dimension.

Proof. Let m be an integer and for each $t=1, \ldots, r$ consider $H^{m}\left(\left[S^{n}\right]^{t}\right)$. If m is not divisible by n then $H^{m}\left(\left[S^{n}\right]^{t}\right)=0$ and the result follows. Suppose that m is divisible by n; one then has that there exists $\alpha=0,1, \ldots$, such that $m=\alpha n$. Let us consider the following commutative diagram

Applying the Künneth's formula, we have that the upper row of the above diagram is an isomorphism and the lower row is a monomorphism, for each $\alpha=0,1, \ldots$ and $t=1, \ldots, r$.

The proof will be done by induction on t. We assume inductively that for some $t=1, \ldots, r-1$ and for each $\alpha=0,1, \ldots$ the homomorphism $\left(\varphi_{1} \times\right.$ $\left.\ldots \times \varphi_{t}\right)^{*}: H^{\alpha n}\left(\left[S^{n}\right]^{t}\right) \rightarrow H^{\alpha n}\left(X^{t}\right)$ is a monomorphism and we will show that $\left(\varphi_{1} \times \ldots \times \varphi_{t}\right)^{*} \otimes \varphi_{t+1}^{*}$ is a monomorphism.

The result will follow from the commutativity of the diagram (3.1). By induction hypothesis it suffices to show that φ_{t+1}^{*} is a monomorphism. For this, observe that $\varphi_{i}^{*}=\varphi_{j}^{*}$, for any $1 \leq i, j \leq r$. If φ_{t+1}^{*} is not a monomorphism, then φ_{i}^{*} is not a monomorphism, for any $1 \leq i \leq t$, which completes the proof.

The next step is to use Lemma 3.2 to show that the homomorphism induced by $\left.\psi\right|_{X_{\varphi}}: X_{\varphi} \rightarrow \Delta\left[S^{n}\right]^{r}$ is a monomorphism. Let us consider the following commutative diagram

whose rows are exact. If γ is a generator of $H^{n}\left(S^{n}\right) \cong \mathbb{Z}_{p}$ let us denote by α_{i} the element $q_{i}^{*}(\gamma) \in H^{n}\left(\left[S^{n}\right]^{r}\right)$, where $q_{i}:\left[S^{n}\right]^{r} \rightarrow S^{n}$ is the natural projection on the i-th coordinate for $i=1,2, \ldots, r$. Let us observe that $q_{i} \circ i=q_{j} \circ i$ for any $1 \leq i, j \leq r$, where $i: \Delta\left[S^{n}\right]^{r} \hookrightarrow\left[S^{n}\right]^{r}$ is the natural inclusion. In this way, one has that

$$
\begin{equation*}
i^{*}\left(\alpha_{i}\right)=i^{*} \circ q_{i}^{*}(\gamma)=\left(q_{i} \circ i\right)^{*}(\gamma)=\left(q_{j} \circ i\right)^{*}(\gamma)=i^{*}\left(\alpha_{j}\right) \tag{3.3}
\end{equation*}
$$

Lemma 3.3. $\left(\left.\psi\right|_{X_{\varphi}}\right)^{*}: H^{n}\left(\Delta\left[S^{n}\right]^{r}\right) \rightarrow H^{n}\left(X_{\varphi}\right)$ is a monomorphism.
Proof. Since $\Delta\left[S^{n}\right]^{r}$ is homeomorphic to S^{n}, it follows from (3.3) that $i^{*}\left(\alpha_{i}\right)$ is a nonzero element in $H^{n}\left(\Delta\left[S^{n}\right]^{r}\right)$ for any $i=1, \ldots, r$. Thus, it suffices to show that $\left(\left.\psi\right|_{X_{\varphi}}\right)^{*}\left(i^{*}\left(\alpha_{1}\right)\right) \neq 0$. Let us assume that this does not happen. From the diagram (3.2) we have that

$$
k^{*} \circ \psi^{*}\left(\alpha_{1}\right)=\left(\left.\psi\right|_{X_{\varphi}}\right)^{*} \circ i^{*}\left(\alpha_{1}\right)=0,
$$

which implies that $\psi^{*}\left(\alpha_{1}\right) \in \operatorname{Ker}\left(k^{*}\right)=\operatorname{Im}\left(j^{*}\right)$ and there exists an element $U \in H^{n}\left(X^{r}, X_{\varphi}\right)$ such that

$$
\begin{equation*}
j^{*}(U)=\psi^{*}\left(\alpha_{1}\right) \neq 0 \tag{3.4}
\end{equation*}
$$

since by Lemma $3.2 \psi^{*}$ is a monomorphism and $\alpha_{1}=q_{1}^{*}(\gamma) \in H^{n}\left(\left[S^{n}\right]^{r}\right)$ is a nonzero element. Let us consider the following commutative diagram,

where the first and the second rows are exact, D is the Alexander-Spanier Duality which is an isomorphism and all others maps are induced by appropriate inclusions.

Let us denote by a_{1}, \ldots, a_{r} the elements of $H_{n}\left(\left[S^{n}\right]^{r}\right)$ which are conjugated to $\alpha_{1}, \ldots, \alpha_{r}$ in $H^{n}\left(\left[S^{n}\right]^{r}\right)$. More precisely,

$$
\left\langle\alpha_{j}, a_{i}\right\rangle= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

where the map $\langle\cdot, \cdot\rangle: H^{n}\left(\left[S^{n}\right]^{r}\right) \times H_{n}\left(\left[S^{n}\right]^{r}\right) \rightarrow \mathbb{Z}_{p}$ denotes the Kronecker product. Let us denote by $c \in H_{n}\left(\Delta\left[S^{n}\right]^{r}\right)$ the conjugated element to $i^{*}\left(\alpha_{1}\right)=$ $\ldots=i^{*}\left(\alpha_{r}\right)$ in $H^{n}\left(\Delta\left[S^{n}\right]^{r}\right)$. Then for any $j=1, \ldots, r$ one has $\left\langle i^{*}\left(\alpha_{j}\right), c\right\rangle=1$.

Furthermore, it follows from properties of the Kronecker product that for any $j=1, \ldots, r$

$$
\left\langle i^{*}\left(\alpha_{j}\right), c\right\rangle=\left\langle\alpha_{j}, i_{*}(c)\right\rangle=1
$$

which implies that

$$
\begin{equation*}
i_{*}(c)=\sum_{i=1}^{r} a_{i} . \tag{3.6}
\end{equation*}
$$

Let us consider for each $i=1, \ldots, r$ the elements

$$
\beta_{i}=\alpha_{1} \smile \ldots \smile \alpha_{i-1} \smile \widehat{\alpha}_{i} \smile \alpha_{i+1} \smile \ldots \smile \alpha_{r} \in H^{(n-1) r}\left(\left[S^{n}\right]^{r}\right)
$$

where the symbol $\widehat{\alpha}_{i}$ means that the element α_{i} is omitted.
To simplify notation, here we will also denote by $\left[S^{n}\right]^{r}$ the generator of $H_{n r}\left(\left[S^{n}\right]^{r}\right)$, which is called the fundamental class of $\left[S^{n}\right]^{r}$. We will show that

$$
D^{-1}\left(a_{i}\right)=(-1)^{i+1} \beta_{i}, \quad \text { that is, } \quad(-1)^{i+1} \beta_{i} \frown\left[S^{n}\right]^{r}=a_{i} .
$$

In fact, it follows from properties of the cup and cap products with respect to the Kronecker product and by definition of β_{i} that
(3.7) $\left\langle\alpha_{i},(-1)^{i+1} \beta_{i} \frown\left[S^{n}\right]^{r}\right\rangle=\left\langle\alpha_{i} \smile(-1)^{i+1} \beta_{i},\left[S^{n}\right]^{r}\right\rangle$

$$
\begin{aligned}
& =\left\langle(-1)^{i+1}(-1)^{n(n(i-1))} \alpha_{1} \smile \ldots \smile \alpha_{r},\left[S^{n}\right]^{r}\right\rangle \\
& =\left\langle\alpha_{1} \smile \ldots \smile \alpha_{r},\left[S^{n}\right]^{r}\right\rangle=1
\end{aligned}
$$

observing that $\alpha_{1} \smile \ldots \smile \alpha_{r}$ is the generator of $H^{n r}\left(\left[S^{n}\right]^{r}\right)$. Thus,

$$
D^{-1}\left(\sum_{i=1}^{r} a_{i}\right)=\sum_{i=1}^{r} D^{-1}\left(a_{i}\right)=\sum_{i=1}^{r}(-1)^{i+1} \beta_{i} .
$$

It follows from (3.6), (3.7) and from commutativity of diagram (3.5) that

$$
j_{1}^{*} \circ D^{-1}(c)=D^{-1} \circ i_{*}(c)=\sum_{i=1}^{r}(-1)^{i+1} \beta_{i},
$$

that is,

$$
\sum_{i=1}^{r}(-1)^{i+1} \beta_{i} \in \operatorname{Im}\left(j_{1}^{*}\right)
$$

Since the second row of diagram (3.5) is exact, one has that

$$
k_{1}^{*}\left(\sum_{i=1}^{r}(-1)^{i+1} \beta_{i}\right)=0 .
$$

By using again the commutativity of diagram (3.5)

$$
k^{*} \circ \psi^{*}\left(\sum_{i=1}^{r}(-1)^{i+1} \beta_{i}\right)=\psi^{*} \circ k_{1}^{*}\left(\sum_{i=1}^{r}(-1)^{i+1} \beta_{i}\right)=0,
$$

which implies that

$$
\psi^{*}\left(\sum_{i=1}^{r}(-1)^{i+1} \beta_{i}\right) \in \operatorname{Ker}\left(k^{*}\right)=\operatorname{Im}\left(j^{*}\right) .
$$

Thus, there exists an element $V \in H^{(r-1) n}\left(X^{r}, X^{r}-X_{\varphi}\right)$ such that

$$
\begin{equation*}
j^{*}(V)=\psi^{*}\left(\sum_{i=1}^{p}(-1)^{i+1} \beta_{i}\right) \neq 0 \tag{3.8}
\end{equation*}
$$

since ψ^{*} is a monomorphism. Using the naturality of the cup product in the following diagram

and observing that

$$
\sum_{i=2}^{r} \alpha_{1} \smile(-1)^{i+1} \beta_{i}=0
$$

one has that

$$
\begin{align*}
\psi^{*}\left(\alpha_{1}\right) \smile \psi^{*}\left(\sum_{i=1}^{r}(-1)^{i+1} \beta_{i}\right) & =\psi^{*}\left(\alpha_{1} \smile \sum_{i=1}^{r}(-1)^{i+1} \beta_{i}\right) \tag{3.9}\\
& =\psi^{*}\left(\alpha_{1} \smile \beta_{1}+\sum_{i=2}^{r} \alpha_{1} \smile(-1)^{i+1} \beta_{i}\right) \\
& =\psi^{*}\left(\alpha_{1} \smile \beta_{1}\right)=\psi^{*}\left(\alpha_{1} \smile \ldots \smile \alpha_{r}\right) \neq 0
\end{align*}
$$

since $\alpha_{1} \smile \ldots \smile \alpha_{r}$ is the generator of $H^{r n}\left(\left[S^{n}\right]^{r}\right)$ and ψ^{*} is a monomorphism.
On the other hand, from naturality of the cup product in the diagram

and from equations (3.4) and (3.8) we conclude that

$$
\begin{aligned}
\psi^{*}\left(\alpha_{1} \smile \ldots \smile \alpha_{r}\right) & =\psi^{*}\left(\alpha_{1}\right) \smile \psi^{*}\left(\sum_{i=1}^{p}(-1)^{i+1} \beta_{i}\right) \\
& =j^{*}(U) \smile j^{*}(V)=j^{*}(U \smile V)=j^{*}(0)=0
\end{aligned}
$$

which contradicts (3.9). This completes the proof.

Now, let us consider the map $\theta=\left.q_{1} \circ \psi\right|_{X_{\varphi}}: X_{\varphi} \rightarrow S^{n}$, where $q_{1}: \Delta\left[S^{n}\right]^{r} \rightarrow$ S^{n} is the natural projection on the 1-th coordinate, which is an homeomorphism. Since by Lemma 3.3, $\left(\left.\psi\right|_{X_{\varphi}}\right)^{*}$ is a monomorphism, one then has that $\theta^{*}: H^{n}\left(S^{n}\right) \rightarrow H^{n}\left(X_{\varphi}\right)$ is a monomorphism. Note that, if $\left(x_{1}, \ldots, x_{r}\right) \in X_{\varphi}$, we have that for each $i, g_{i} \theta\left(x_{1}, \ldots, x_{r}\right)=g_{i} \varphi\left(x_{1}\right)=\varphi\left(x_{i}\right)=\theta g_{i}\left(x_{1}, \ldots, x_{r}\right)$, thus θ is a G-equivariant map, and consequently, θ is a H-equivariant map, where $H \subset G$ is a cyclic subgroup of prime order. Thus, in particular for $\rho=\sigma$, we can consider the homomorphism induced by $\theta, \theta_{\sigma}^{*}: H_{\sigma}^{n}\left(S^{n}\right) \rightarrow H_{\sigma}^{n}\left(X_{\varphi}\right)$, where H_{σ}^{n} denotes the n-dimensional Smith special cohomology group with coefficients in \mathbb{Z}_{p} in the sense of Section 2.4.

By remarks in [2, Results following 5.2] whose dual holds in cohomology, $i^{*}: H^{n}\left(S^{n}\right) \rightarrow H_{\sigma}^{n}\left(S^{n}\right)$ is an isomorphism, and since $\theta^{*}: H^{n}\left(S^{n}\right) \rightarrow H^{n}\left(X_{\varphi}\right)$ is a monomorphism it follows that θ_{σ}^{*} is a monomorphism. To conclude that the $\mathbb{Z}_{p^{-}}$ index of X_{φ} is equal to n it suffices to verify that the map between the orbit spaces $\bar{\theta}: X_{\varphi} / H \rightarrow S^{n} / H$ induces a monomorphism in cohomology. From results in [2, (3.10), p. 125], we have that $H_{\sigma}^{n}\left(S^{n}\right) \cong H^{n}\left(S^{n} / H\right)$ and $H_{\sigma}^{n}\left(X_{\varphi}\right) \cong H^{n}\left(X_{\varphi} / H\right)$, and considering the commutative diagram

it follows that $\bar{\theta}^{*}: H^{n}\left(S^{n} / H\right) \rightarrow H^{n}\left(X_{\varphi} / H\right)$ is a monomorphism. Therefore, the \mathbb{Z}_{p}-index of X_{φ} is equal to n.

4. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.2. By following the similar steps of [3], we first prove Theorem 1.2 in the case that $G=H=Z_{p}$, where $p \geq 2$. We need to show that the \mathbb{Z}_{p}-index of the set $A_{f}=\left\{x \in X: f(x)=f(g x)=\ldots=f\left(g^{p-1} x\right)\right\}$ is greater than or equal to $n-p k$. For this, let us consider $F: X \rightarrow Y^{p}$ given by $F(x)=\left(f(x), f(g x), \ldots, f\left(g^{p-1} x\right)\right)$, where $Y^{p}=Y \times \ldots \times Y$ denotes the p-fold cartesian product of Y and g is a fixed generator of \mathbb{Z}_{p}. In these conditions, we prove the following

LEMMA 4.1. The homomorphism $F^{*}: H^{q}\left(Y^{p}\right) \rightarrow H^{q}(X)$ induced by the map $F: X \rightarrow Y^{p}$ is zero for any $q \geq 1$.

Proof. We have that $F=\left(f_{0} \times \ldots \times f_{p-1}\right) \circ d$, where $d: X \rightarrow X^{p}$ is the diagonal map and $f_{i}(x)=f\left(g^{i} x\right)$, for any $x \in X$ and $i=0, \ldots, p-1$. In this way, it suffices to show that $\left(f_{0} \times f_{1} \times \ldots \times f_{p-1}\right)^{*}: H^{q}\left(Y^{p}\right) \rightarrow H^{q}\left(X^{p}\right)$ is trivial
for any $q \geq 1$. Let us consider the following commutative diagram

Since Y is a CW-complex, applying the Künneth's formula we have that the upper row of diagram (4.1) is an isomorphism for any $q=1,2, \ldots$ and $t=$ $1, \ldots, p-1$.

The proof will be done by induction on t. Suppose inductively that $\left(f_{0} \times\right.$ $\left.\ldots \times f_{t}\right)^{*}: H^{i}\left(Y^{t}\right) \rightarrow H^{i}\left(X^{t}\right)$ is zero for some $t=1, \ldots, p-1$ and for each $i=$ $1,2, \ldots$ By hypothesis, f induces the zero homomorphism in each dimension; in particular f_{t+1}^{*} is zero and thus $\left(f_{0} \times \ldots \times f_{t}\right)^{*} \otimes f_{t+1}^{*}$ is trivial. It follows from commutativity of the diagram (4.1) that $\left(f_{0} \times \ldots \times f_{t+1}\right)^{*}$ is zero, which completes the proof.

We can define a \mathbb{Z}_{p}-action on Y^{p} as follows: for each $\left(y_{1}, \ldots, y_{p}\right) \in Y^{p}$ $g\left(y_{1}, \ldots, y_{p-1}, y_{p}\right)=\left(y_{p}, y_{1}, \ldots, y_{p-1}\right)$. Since p is a prime, this action is free on $Y^{p}-\Delta$, where Δ is the diagonal in Y^{p}. Let us observe that $A_{f}=F^{-1}(\Delta)$, thus F determines a \mathbb{Z}_{p}-equivariant map $F_{0}: X-A_{f} \rightarrow Y^{p}-\Delta$, which induces a map between the orbit spaces $\bar{F}_{0}:\left[X-A_{f}\right]^{*} \rightarrow\left[Y^{p}-\Delta\right]^{*}$. In these conditions, we prove that

Lemma 4.2. The map $\bar{F}_{0}^{*}: H^{p k}\left(\left[Y^{p}-\Delta\right]^{*}\right) \rightarrow H^{p k}\left(\left[X-A_{f}\right]^{*}\right)$ is zero.
Proof. Let us consider the map of pairs $\left(F, F_{0}\right):\left(X, X-A_{f}\right) \rightarrow(Y, Y-\Delta)$. One then has the following commutative diagram

where the homomorphisms i^{*} and j^{*} are induced by appropriate inclusions. Since $\operatorname{dim}\left(Y^{p}\right)$ is less than or equal to $p k$ we have that $H^{p k+1}\left(Y^{p}, Y^{p}-\Delta\right)$ is trivial and thus j^{*} is surjective. On the other hand $F_{0}:\left(X-A_{f}\right) \rightarrow\left(Y^{p}-\Delta\right)$ is
a \mathbb{Z}_{p}-equivariant map and it follows from Remark 2.6 that the diagram

between the Smith sequences of $X-A_{f}$ and $Y^{p}-\Delta$ is commutative and since $H_{\rho}^{p k+1}\left(Y^{p}-\Delta\right)$ is zero, \mathcal{T} is surjective.

Putting together these diagrams, one obtains a new commutative diagram

where the horizontal sequences are not necessarily exacts, but the composition $\mathcal{T} \circ j^{*}$ is surjective. Therefore, as F^{*} is zero by Lemma 4.1, it follows from commutativity of the diagram (4.2) that $\bar{F}_{0}{ }^{*}$ is zero.

Let $h: X^{*} \rightarrow B \mathbb{Z}_{p}$ be a classifying map for the principal \mathbb{Z}_{p}-bundle $X \rightarrow X^{*}$. Then the compositions $h \circ i_{1}: A_{f}^{*} \rightarrow B \mathbb{Z}_{p}$ and $h \circ i_{2}:\left[X-A_{f}\right]^{*} \rightarrow B \mathbb{Z}_{p}$ are classifying maps for the following principal \mathbb{Z}_{p}-bundles $A_{f} \rightarrow A_{f}^{*}$ and $X-A_{f} \rightarrow$ $\left[X-A_{f}\right]^{*}$ respectively, where the maps $i_{1}: A_{f}^{*} \rightarrow X^{*}$ and $i_{2}:\left[X-A_{f}\right]^{*} \rightarrow X^{*}$ are induced by the inclusions between the orbit spaces.

Let us consider $G: Y^{p}-\Delta \rightarrow B \mathbb{Z}_{p}$ a classifying map for the principal $\mathbb{Z}_{p^{-}}$ bundle $Y^{p}-\Delta \rightarrow\left[Y^{p}-\Delta\right]^{*}$. Since $F_{0}: X-A_{f} \rightarrow Y^{p}-\Delta$ is a \mathbb{Z}_{p}-equivariant map, one the has that

$$
G \circ \bar{F}_{0}:\left[X-A_{f}\right]^{*} \rightarrow B \mathbb{Z}_{p}
$$

also classifies the principal \mathbb{Z}_{p}-bundle $X-A_{f} \rightarrow\left[X-A_{f}\right]^{*}$. In this way,

$$
\begin{equation*}
i_{2}^{*} \circ h^{*}=\bar{F}_{0}^{*} \circ G^{*}: H^{*}\left(B \mathbb{Z}_{p}\right) \rightarrow H^{*}\left(\left[X-A_{f}\right]^{*}\right) \tag{4.3}
\end{equation*}
$$

To conclude that the \mathbb{Z}_{p}-index of A_{f} is greater than or equal to $n-p k$, it suffices to show that $i_{1}^{*} \circ h^{*}(\mu) \neq 0$, where μ is the generator of $H^{n-p k}\left(B \mathbb{Z}_{p}\right)$.

We first consider the case when k is odd. Let us observe that n must be necessarily odd, since $p>2$ is a prime. Then, $n-p k$ is even and it follows from Remark 2.5 that $\mu=b^{(n-p k) / 2} \in H^{n-p k}\left(B \mathbb{Z}_{p}\right)$. Suppose that $i_{1}^{*} \circ h^{*}(\mu)=0$. From continuity of the cohomology, there exists a neighbourhood V of A_{f} in X which is invariant by the action of \mathbb{Z}_{p} and such that $i_{1}^{*} \circ h^{*}(\mu)=0$ in $H^{n-p k}\left(V^{*}\right)$. From the exact cohomology sequence of the pair $\left(X^{*}, V^{*}\right)$ one has

$$
\begin{equation*}
h^{*}(\mu) \in \operatorname{Im}\left[H^{n-p k}\left(X^{*}, V^{*}\right) \rightarrow H^{n-p k}\left(X^{*}\right)\right] \tag{4.4}
\end{equation*}
$$

Since $p k$ is odd from Remark $2.5 \eta=a \smile b^{(p k-1) / 2}$ is a generator of $H^{p k}\left(B \mathbb{Z}_{p}\right)$. It follows from Lemma 4.2 and (4.3) that

$$
i_{2}^{*} \circ h^{*}(\eta)=\bar{F}_{0}^{*} \circ G^{*}(\eta)=0 \in H^{p k}\left(\left[X-A_{f}\right]^{*}\right)
$$

and from the exact cohomology sequence of the pair $\left(X^{*},\left[X-A_{f}\right]^{*}\right)$ one has

$$
\begin{equation*}
h^{*}(\eta) \in \operatorname{Im}\left[H^{p k}\left(X^{*},\left[X-A_{f}\right]^{*}\right) \rightarrow H^{p k}\left(X^{*}\right)\right] \tag{4.5}
\end{equation*}
$$

Thus from (4.4), (4.5) and by the naturality of the cup product we have

$$
h^{*}(\eta \smile \mu)=h^{*}(\eta) \smile h^{*}(\mu) \in \operatorname{Im}\left[H^{n}\left(X^{*},\left[X-A_{f}\right]^{*} \cup V^{*}\right) \rightarrow H^{n}\left(X^{*}\right)\right] .
$$

Let us note that the element

$$
\eta \smile \mu=a \smile b^{(p k-1) / 2} \smile b^{(n-p k) / 2}=a \smile b^{(n-1) / 2}
$$

is a generator of $H^{n}\left(B \mathbb{Z}_{p}\right)$. Furthermore,

$$
H^{n}\left(X^{*},\left[X-A_{f}\right]^{*} \cup V^{*}\right)=H^{n}\left(X^{*}, X^{*}\right)=0
$$

and then $h^{*}(\eta \smile \mu)=0 \in H^{n}\left(X^{*}\right)$, that is, $h^{*}: H^{n}\left(B \mathbb{Z}_{p}\right) \rightarrow H^{n}\left(X^{*}\right)$ is trivial which contradicts the hypothesis that the \mathbb{Z}_{p}-index of X is greater than or equal to n.

If k is even, then $n-p k$ is odd and $p k$ is even. In this case, the proof is analogous to the previous case, considering now the generators

$$
\mu=a \smile b^{(n-p k-1) / 2} \in H^{n-p k}\left(B \mathbb{Z}_{p}\right) \quad \text { and } \quad \eta=b^{(p k) / 2} \in H^{p k}\left(B \mathbb{Z}_{p}\right)
$$

Let us examine the case where $G=\mathbb{Z}_{2}$. Here, n can be any positive integer and the generator of $H^{n-2 k}\left(B \mathbb{Z}_{2}\right)$ is $\mu=a^{n-2 k}$. To show that the \mathbb{Z}_{2}-index of A_{f} is greater than or equal to $n-2 k$, it suffices to prove that $i_{1}^{*} \circ h^{*}(\mu) \neq 0$. Let us assume that $i_{1}^{*} \circ h^{*}(\mu)=0$. Then there exists a neighbourhood V of A_{f} in X which is invariant with respect to the action and such that $i_{1}^{*} \circ h^{*}(\mu)=0$ in $H^{n-2 k}\left(V^{*}\right)$. From exact cohomology sequence of the pair $\left(X^{*}, V^{*}\right)$ one has that

$$
\begin{equation*}
h^{*}(\mu) \in \operatorname{Im}\left[H^{n-2 k}\left(X^{*}, V^{*}\right) \rightarrow H^{n-2 k}\left(X^{*}\right)\right] . \tag{4.6}
\end{equation*}
$$

On the other hand, $\eta=a^{2 k}$ is the generator of $H^{2 k}\left(B \mathbb{Z}_{2}\right)$ and it follows from Lemma 4.2 and (4.3) that

$$
i_{2}^{*} \circ h^{*}(\eta)=\bar{F}_{0}^{*} \circ G^{*}(\eta)=0 \in H^{2 k}\left(\left[X-A_{f}\right]^{*}\right)
$$

Moreover, from exact cohomology sequence of $\left(X^{*},\left[X-A_{f}\right]^{*}\right)$ one has that

$$
\begin{equation*}
h^{*}(\eta) \in \operatorname{Im}\left[H^{2 k}\left(X^{*},\left[X-A_{f}\right]^{*}\right) \rightarrow H^{2 k}\left(X^{*}\right)\right] . \tag{4.7}
\end{equation*}
$$

Thus, from (4.6), (4.7) and by the naturality of the cup product we have

$$
h^{*}(\eta \smile \mu)=h^{*}(\eta) \smile h^{*}(\mu) \in \operatorname{Im}\left[H^{n}\left(X^{*},\left[X-A_{f}\right]^{*} \cup V^{*}\right) \rightarrow H^{n}\left(X^{*}\right)\right] .
$$

Let us observe that $\eta \smile \mu=a^{2 k} \smile a^{n-2 k}=a^{n}$ is the generator of $H^{n}\left(B \mathbb{Z}_{2}\right)$. Furthermore, $H^{n}\left(X^{*},\left[X-A_{f}\right]^{*} \cup V^{*}\right)=H^{n}\left(X^{*}, X^{*}\right)$ is trivial and then $h^{*}(\eta \smile$ $\mu)=0 \in H^{n}\left(X^{*}\right)$ which contradicts the hypothesis that the \mathbb{Z}_{2}-index of X is greater than or equal to n. This concludes the proof of Theorem 1.2 in the case $G=H=\mathbb{Z}_{p}$.

For the general case, suppose that G is a finite group which acts freely on X and let $H \subset G$ be a normal cyclic subgroup of prime order p. We denote by $s=|G| / p$, the number of the left cosets of G / H and let a_{1}, \ldots, a_{s} be a set of representatives of the cosets. We define the map $F: X \rightarrow Y^{s}$ by

$$
\begin{equation*}
F(x)=\left(f\left(a_{1} x\right), \ldots, f\left(a_{i} x\right), \ldots, f\left(a_{s} x\right)\right) \tag{4.8}
\end{equation*}
$$

We need to show that

$$
A(f, H, G)=A_{F}=\{x \in X: F(x)=F(h x), \text { for all } h \in H\}
$$

Let x be a point in the set $A(f, H, G)$, then f collapses each orbit determined by the action of H on $a_{i} x$ to a single point, for each $i=1, \ldots, s$. If $h \in H$

$$
F(h x)=\left(f\left(h a_{1} x\right), \ldots, f\left(h a_{i} x\right), \ldots, f\left(h a_{s} x\right)\right) .
$$

Since H is a normal subgroup of $G, h a_{i} x=a_{i} \widehat{h} x$. Furthermore, $a_{i} x$ and $a_{i} \widehat{h} x=$ $h a_{i} x$ belongs to the same H-orbit and $f\left(a_{i} x\right)=f\left(h a_{i} x\right)$, for each $i=1, \ldots, s$ which implies that $F(x)=F(h x)$. Therefore $x \in A_{F}$. The proof of the another inclusion is entirely analogous.

To conclude, let us observe that $H \cong \mathbb{Z}_{p}$ acts freely on X by restriction and by hypothesis the \mathbb{Z}_{p}-index of X is greater than or equal to n. By using Lemma 4.1 for the $\operatorname{map} F: X \rightarrow Y^{s}$ defined in (4.8) one has that $F^{*}: H^{q}\left(Y^{s}\right) \rightarrow H^{q}(X)$ is trivial for any $q \geq 1$. Since dimension of Y^{s} is $k s$ and Theorem 1.2 is true for $G=\mathbb{Z}_{p}$ we can conclude that the \mathbb{Z}_{p}-index of $A_{F}=A(f, H, G)$ is greater than or equal $n-p(k s)=n-p k(|G| / p)=n-|G| k$ and this completes the proof.

Proof of Theorem 1.1. Let $\widetilde{f}: X_{\varphi} \rightarrow Y$ given by $\widetilde{f}\left(x_{1}, \ldots, x_{r}\right)=f\left(x_{1}\right)$, that is $\tilde{f}=f \circ \pi_{1}$ where π_{1} is the natural projection on the 1-th coordinate. By hypothesis f induces the zero homomorphism in each dimension, then we have that $\widetilde{f}^{*}: H^{i}(Y) \rightarrow H^{i}\left(X_{\varphi}\right)$ is trivial for any $i \geq 1$. Moreover, the \mathbb{Z}_{p}-index of X_{φ} is equal to n by Theorem 3.1. In this way, X_{φ} and \tilde{f} satisfy the hypotheses of Theorem 1.2 which implies that the \mathbb{Z}_{p}-index of the set $A(\widetilde{f}, H, G)$ is greater than or equal to $n-|G| k$. By Definition $2.1 A_{\varphi}(f, H, G)=A(\widetilde{f}, H, G)$, and then cohom. $\operatorname{dim} A_{\varphi}(f, H, G) \geq n-|G| k$.

REmARK 4.3. In the particular case that $G=H=\mathbb{Z}_{p}$ with p prime, Volovikov in [13, Theorem 3.2] proved a version of Theorem 1.1.

Acknowledgements. The authors are grateful to the referee for the comments and suggestions concerning the presentation of this article, which led to this present version.

References

[1] K. Borsuk, Drei Sätze über die n-dimensionale Euklidische Sphäre, Fund. Math. 20 (1933), 177-190.
[2] G. E. Bredon, Introduction to Compact Transformation Groups, Pure Appl. Math., Academic Press, New York, 1972.
[3] D. L. Gonçalves, J. Jaworowski and P. L. Q. Pergher, Measuring the size of the coincidence set, Topology Appl. 125 (2002), 465-470.
[4] , G-coincidences for maps of homotopy spheres into CW-complexes, Proc. Amer. Math. Soc. 130 (2002), 3111-3115.
[5] D. L. Gonçalves, J. Jaworowski, P. L. Q. Pergher and A. Yu. Volovikov, Coincidences for maps of spaces with finite group actions, Topology Appl. 145 (2004), 61-68.
[6] D. L. Gonçalves and P. L. Q. Pergher, \mathbb{Z}_{p}-coincidence for maps of spheres into CW-complexes, Kobe J. Math. 15 (1998), 191-195.
[7] M. Izydorek, On the Borsuk-Ulam theorem for free \mathbb{Z}_{p}-action, Bull. Polish Acad. Sci. Math. 38 (1990), 15-21.
[8] M. Izydorek and J. Jaworowski, Antipodal coincidence for maps of spheres into complexes, Proc. Amer. Math. Soc. 123 (1995), 1947-1950.
[9] J. Jaworowski, Periodic coincidence for maps of spheres, Kobe J. Math. 17 2000, 21-26.
[10] K. D. Joshi, A non-symmetric generalization of the Borsuk-Ulam Theorem, Fund. Math. 80 (1973), 13-33.
[11] S. Spież, On generalizations of theorems of Borsuk-Ulam, Dyson and Livesay, Bull. L'Acadêmie Polonaise Sciences 4 (1978), 325-333.
[12] P. A. Smith, Transformations of finite period, Ann. of Math. 39 (1938), 127-164.
[13] A. Yu. Volovikov, Coincidence points of mappings of \mathbb{Z}_{p}^{n}-spaces, Izv. Ross. Akad. Nauk Ser. Mat. 69 (2005), 53-106; transl. in Izv. Math. 69 (2005), 913-962.

Denise de Mattos

Universidade de São Paulo-USP-ICMC
Departamento de Matemática
Caixa Postal 668
13560-970, São Carlos-SP, BRAZIL
E-mail address: deniseml@icmc.usp.br
Edivaldo Lopes dos Santos
Universidade Federal de São Carlos-UFSCAR
Departamento de Matemática
Caixa Postal 668
13560-970, São Carlos-SP, BRAZIL
E-mail address: edivaldo@dm.ufscar.br
TMNA: Volume $33-2009-\mathrm{N}^{\mathrm{o}} 1$

[^0]: ${ }^{(1)}$ A map $\varphi: X \rightarrow S^{n}$ is said to be an essential map if φ induces nonzero homomorphism $\varphi^{*}: H^{n}\left(S^{n} ; \mathbb{Z}_{p}\right) \rightarrow H^{n}\left(X ; \mathbb{Z}_{p}\right)$.

