Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 33, 2009, 105–119

ON NONSYMMETRIC THEOREMS FOR (H,G)-COINCIDENCES

Denise de Mattos — Edivaldo L. dos Santos

ABSTRACT. Let X be a compact Hausdorff space, $\varphi: X \to S^n$ a continuous map into the *n*-sphere S^n that induces a nonzero homomorphism $\varphi^*: H^n(S^n; \mathbb{Z}_p) \to H^n(X; \mathbb{Z}_p)$, Y a k-dimensional CW-complex and $f: X \to Y$ a continuous map. Let G a finite group which acts freely on S^n . Suppose that $H \subset G$ is a normal cyclic subgroup of a prime order. In this paper, we define and we estimate the cohomological dimension of the set $A_{\varphi}(f, H, G)$ of (H, G)-coincidence points of f relative to φ .

1. Introduction

K. D. Joshi [10] has proved a nonsymmetric generalization of the Borsuk– Ulam theorem [1], in which the *n*-sphere S^n is replaced by a certain compact subset X of the (n + 1)-dimensional Euclidean space \mathbb{R}^{n+1} . In this context, a pair of points $x, y \in X$ are said to be *antipodal* if $y = -\lambda x$, for some $\lambda > 0$. The Joshi's theorem shows that for every continuous map $f: X \to \mathbb{R}^n$ there exist antipodal points $x, y \in X$ such that f(x) = f(y).

K. Borsuk has suggested to define antipodal points in an arbitrary space in the following way: $x_1, x_2 \in X$ are said to be *antipodal points relative to an*

©2009 Juliusz Schauder Center for Nonlinear Studies

²⁰⁰⁰ Mathematics Subject Classification. Primary 55M20 55R91; Secondary 55R25.

Key words and phrases. Borsuk–Ulam theorem, \mathbb{Z}_p -index, (H, G)-coincidence, free actions. The first author was supported in part by FAPESP of Brazil Grant numbers 06/03932-8 and 04/10229-6.

The second author was supported in part by FAPESP of Brazil Grant number 04/10229-6.

essential map¹ $\varphi: X \to S^n$ if $\varphi(x_1) = -\varphi(x_2)$. Using the Borsuk's suggestion, Spież [11] has proved that if X is a compact Hausdorff space and if $\varphi: X \to S^n$ is an essential map, then for every continuous map $f: X \to \mathbb{R}^k$, the covering dimension of the set

 $A_{\varphi}(f) = \{x \in X : \text{there exists } y \in X, \text{ such that } \varphi(x) = -\varphi(y) \text{ and } f(x) = f(y)\}$

is not less than n - k, obtaining thus a generalization of the Joshi's theorem.

M. Izydorek [7] has extended the proposition of Borsuk for a cyclic group G of order prime which acts freely on a *n*-dimensional sphere S^n and has proved the following generalization of the SpiePlr \dot{z} 's theorem: if X is a compact Hausdorff space and if $\varphi: X \to S^n$ is an essential map, then for every continuous map $f: X \to \mathbb{R}^k$, the covering dimension of the set

$$A_{\varphi}(f) = \{x \in X : \text{there exists } x_2, \dots, x_p \text{ such that} \\ \varphi(x) = g^{-1}\varphi(x_2) = \dots = g^{1-p}\varphi(x_p) \text{ and } f(x) = f(x_2) = \dots = f(x_p)\}$$

is not less than n - (p-1)k, where g is a fixed generator of G. Moreover, if \mathbb{R}^k is replace by a generalized k-dimensional manifold M^k over \mathbb{Z}_p , then an analogous theorem has been proved (see [7, Theorem 4]).

Gonçalves, Jaworowski and Pergher [3] have defined (H, G)-concidence for a continuous map f from a n-sphere S^n into a k-dimensional CW-complex Y, where G is a finite group which acts freely on S^n and have proved that if H is a nontrivial normal cyclic subgroup of a prime order, then

$$\operatorname{cohom.dim} A(f, H, G) \ge n - |G|k,$$

where A(f, H, G) is the set of (H, G)-coincidence points of f and cohom.dim denotes the cohomological dimension. The other papers closely related to [3] are [4]–[6], [8], [9] and [13].

The purpose of this paper is to define the set $A_{\varphi}(f, H, G)$ of (H, G)-coincidence points of a continuous map $f: X \to Y$ relative to an essential map $\varphi: X \to S^n$, where X is a compact Hausdorff space, Y is a topological space, G is a finite group which acts freely on the n-dimensional sphere S^n and H is a subgroup of G. Using this definition, under certain conditions, we estimate the cohomological dimension of the set $A_{\varphi}(f, H, G)$. Specifically, we will prove the following nonsymmetric version of the main theorem of [3]:

THEOREM 1.1. Let X be a compact Hausdorff space, Y a k-dimensional CW-complex and $\varphi: X \to S^n$ an essential map. Given a finite group G which acts freely on S^n and H a normal cyclic subgroup of prime order, then for every

 $^(^1)$ A map $\varphi: X \to S^n$ is said to be an *essential map* if φ induces nonzero homomorphism $\varphi^*: H^n(S^n; \mathbb{Z}_p) \to H^n(X; \mathbb{Z}_p).$

continuous map $f: X \to Y$ such that $f^*: H^i(Y; \mathbb{Z}_p) \to H^i(X; \mathbb{Z}_p)$ is trivial for $i \geq 1$, cohom.dim $A_{\varphi}(f, H, G) \geq n - |G|k$.

For the proof of Theorem 1.1, it was fundamental to prove the following version of the main Theorem of [3],

THEOREM 1.2. Let X be a paracompact Hausdorff space, Y a k-dimensional CW-complex, G a finite group which acts freely on X and $H \subset G$ a normal cyclic subgroup of prime order. Let $f: X \to Y$ be a continuous map such that $f^*: H^i(Y; \mathbb{Z}_p) \to H^i(X; \mathbb{Z}_p)$ is trivial, for $i \ge 1$. Suppose that the \mathbb{Z}_p -index of X is greater than or equal to n, then the \mathbb{Z}_p -index of the set A(f, H, G) is greater than or equal to n - |G|k. Consequently, cohom.dim $A(f, H, G) \ge n - |G|k$.

2. Preliminaries

Throughout this paper the symbols H_* and H^* will denote Čech homology and cohomology groups with coefficients in \mathbb{Z}_p , unless otherwise indicated. If Gis a group which acts on a topological space X, we will denote by X^* the orbit space X/G.

We start by introducing some basic notions and definitions as follows.

2.1. (H,G)-coincidence. Suppose that X,Y are topological spaces, G is a group acting freely on X and $f: X \to Y$ is a map. If H is a subgroup of G, then H acts on the right on each orbit Gx of G as follows: if $y \in Gx$ and y = gx, $g \in G$, then hy = ghx (such action may depend on the choice of the reference point x). Following [4], [6], [9] the concept of G-coincidence is generalized as follows: a point $x \in X$ is said to be a (H, G)-coincidence point of f if f sends every orbit of the action of H on the G-orbit of x to a single point (see [5]). We will denote by A(f, H, G) the set of all (H, G)-coincidence. If H = G, this is the usual definition of coincidence. If $G = Z_p$ with p prime, then a nontrivial (H, G)-coincidence point is a G-coincidence point.

2.2. The space X_{φ} and the set $A_{\varphi}(f, H, G)$. Let us consider X a compact Hausdorff space and an essential map $\varphi: X \longrightarrow S^n$. Suppose G be a finite group of order r which acts freely on S^n and H be a subgroup of order p of G. Let $G = \{g_1, g_2, \ldots, g_r\}$ be a fixed enumeration of elements of G, where g_1 is the identity of G. A nonempty space X_{φ} can be associated with the essential map $\varphi: X \longrightarrow S^n$ as follows:

$$X_{\varphi} = \{ (x_1, \dots, x_r) \in X^r : \varphi(x_1) = (g_2)^{-1} \varphi(x_2) = \dots = (g_r)^{-1} \varphi(x_r) \}$$

= $\{ (x_1, \dots, x_r) \in X^r : g_i \varphi(x_1) = \varphi(x_i), \ i = 1, \dots, r \},$

where X^r denotes the *r*-fold cartesian product of *X*. The set X_{φ} is a closed subset of X^r and so it is compact. We define a *G*-action on X_{φ} as follows: for

D. de Mattos — E. L. dos Santos

each $g_i \in G$ and for each $(x_1, \ldots, x_r) \in X_{\varphi}$,

(2.1)
$$g_i(x_1, \dots, x_r) = (x_{\sigma_{g_i}(1)}, \dots, x_{\sigma_{g_i}(r)})$$

where the permutation σ_{g_i} is defined by $\sigma_{g_i}(k) = j$, $g_k g_i = g_j$. We observe that if $x = (x_1, \ldots, x_r) \in X_{\varphi}$ then $x_i \neq x_j$, for any $i \neq j$ and therefore G acts freely on X_{φ} .

Now, let us consider a continuous map $f: X \to Y$, where Y is a topological space and $\tilde{f}: X_{\varphi} \to Y$ given by $\tilde{f}(x_1, \ldots, x_r) = f(x_1)$. Let $y = (x_1, \ldots, x_r) \in A(\tilde{f}, H, G)$ and consider the orbit $Gy = \{g_1y, g_2y, \ldots, g_ry\}$. Note that

(i) From (2.1), we have that for each *i*, the 1-th coordinate of $g_i y$ is x_i .

(ii) The action of H on Gy determines a partition of the orbit Gy in s = (r/p) disjoint suborbits, and we can be rewrite

$$Gy = \{g_{1_1}y, \dots, g_{1_p}y; \dots; g_{j_1}y, \dots, g_{j_p}y; \dots; g_{s_1}y, \dots, g_{s_p}y\},\$$

where $\{1, \ldots, r\} \leftrightarrow \{1_1, \ldots, 1_p; \ldots; j_1, \ldots, j_p; \ldots; s_1, \ldots, s_p\}$ is a bijection. Since y is a (H, G)-coincidence point of \tilde{f} , it follows from (i) and (ii) that,

$$f(x_{1_1}) = \ldots = f(x_{1_p}); \ldots; f(x_{j_1}) = \ldots = f(x_{j_p}); \ldots; f(x_{s_1}) = \ldots = f(x_{s_p}).$$

In these conditions, we have the following

DEFINITION 2.1. The set $A_{\varphi}(f, H, G)$ of (H, G)-coincidence points of f relative to φ is defined by

$$A_{\varphi}(f, H, G) = A(\tilde{f}, H, G) = \{ (x_1, \dots, x_r) \in X^r : g_i \varphi(x_1) = \varphi(x_i), \ i = 1, \dots, r \text{ and } f(x_{j_1}) = \dots = f(x_{j_n}), \ j = 1, \dots, s \}.$$

REMARK 2.2. Let us observe that if $G = H = \mathbb{Z}_p$,

$$A_{\varphi}(f, H, G) = A_{\varphi}(f) = \{(x_1, \dots, x_p) \in X^p :$$

$$g_i \varphi(x_1) = \varphi(x_i), \ i = 1, \dots, p \text{ and } f(x_1) = \dots = f(x_p)\}.$$

2.3. The \mathbb{Z}_p -index. Suppose that the cyclic group $G = \mathbb{Z}_p$ of order prime p acts freely on a Hausdorff and paracompact space X. Then $X \to X^*$ is a principal \mathbb{Z}_p -bundle and one can take $h: X^* \to B\mathbb{Z}_p$ a classifying map for the G-bundle $X \to X^*$.

REMARK 2.3. It is well known that if \hat{h} is another classifying map for the principal \mathbb{Z}_p -bundle $X \to X^*$, then there is a homotopy between h and \hat{h} .

We will consider the following definition for the \mathbb{Z}_p -index of X (see [7]).

DEFINITION 2.4. We say that the \mathbb{Z}_p -index of X is greater than or equal to k if the homomorphism $h^*: H^k(B\mathbb{Z}_p) \to H^k(X^*)$ is nontrivial. We say that the \mathbb{Z}_p -index of X is equal to k if it is greater than or equal to k and moreover $h^*: H^i(B\mathbb{Z}_p) \to H^i(X^*)$ is zero, for any $i \ge k + 1$.

REMARK 2.5. A model for $B\mathbb{Z}_2$ the classifying space for \mathbb{Z}_2 is the infinite real projective space P^{∞} . Then $H^*(B\mathbb{Z}_2) \cong H^*(P^{\infty})$ is isomorphic to $\mathbb{Z}_2[a]$, where $a \in H^1(P^{\infty})$ is the generator. The generator of $H^i(B\mathbb{Z}_2)$ is a^i for any $i \ge 0$. If p > 2 a model for $B\mathbb{Z}_p$ the classifying space for \mathbb{Z}_p is the infinite lens space $L_p^{\infty} = S^{\infty}/\mathbb{Z}_p$. Thus, $H^i(B\mathbb{Z}_p) = H^i(L_p^{\infty}) \cong \mathbb{Z}_p$ for any $i \ge 0$ and given any nonzero element $a \in H^1(L_p^{\infty})$, one has that $b = \beta(a)$ is a nonzero element of $H^2(L_p^{\infty})$, where $\beta: H^1(L_p^{\infty}) \to H^2(L_p^{\infty})$ is the Bockstein homomorphism. More generally, a generator $\mu \in H^i(B\mathbb{Z}_p)$ is given by

$$\mu = \left\{ \begin{array}{ll} a \smile b^{(i-1)/2} & \text{if i is odd} \\ \\ b^{i/2} & \text{if i is even.} \end{array} \right.$$

2.4. The Smith special cohomology groups with coefficients in \mathbb{Z}_p . In this work, we will be considering the definition of the Smith special cohomology groups with coefficients in \mathbb{Z}_p in the sense of [2]. Smith homology and cohomology were originally defined in [12] and in a series of subsequent papers. A systematic exposition of the Smith theory can be found in [2]. Let X be a topological space; given a finite group G of prime order p which acts freely on X, let g be a fixed generator of G and put

$$\sigma = 1 + g + g^2 + \ldots + g^{p-1}$$
 and $\tau = 1 - g$

in the group ring $\mathbb{Z}_p(G)$. We have that $\sigma = \tau^{p-1}$. If $\rho = \tau^i$, we put $\overline{\rho} = \tau^{p-i}$, then $\tau = \overline{\sigma}$ and $\sigma = \overline{\tau}$. There exists an exact sequence with coefficients in \mathbb{Z}_p [2, p.125],

$$\longrightarrow H^n_\rho(X) \xrightarrow{\rho^*} H^n(X) \xrightarrow{\mathcal{T}} H^n(X^*) \xrightarrow{\delta} H^{n+1}_\rho(X)^{\rho^*} \xrightarrow{\delta}$$

called Smith exact sequence, where $H^*_{\rho}(X)$ denotes the Smith special cohomology groups and \mathcal{T} is the transfer homomorphism.

REMARK 2.6. The Smith cohomology groups are natural with respect to \mathbb{Z}_p equivariant maps, that is, if $f: X \to Y$ is a \mathbb{Z}_p -equivariant map then f induces homomorphism $f_{\rho}^*: H_{\rho}^*(Y) \to H_{\rho}^*(X)$ which commutes with the homomorphisms
in the Smith sequence.

3. The \mathbb{Z}_p -index of X_{φ}

Let us consider the free G-space X_{φ} as defined in Section 2.2. If $H \subset G$ is a cyclic subgroup of prime order p, then X_{φ} is a free $H \cong \mathbb{Z}_p$ -space. In these conditions, as in [7, Theorem 3], we have the following THEOREM 3.1. Let X be a compact Hausdorff space and $\varphi: X \longrightarrow S^n$ an essential map. Then, the \mathbb{Z}_p -index of X_{φ} is equal to n.

PROOF. For i = 1, ..., r, let us consider the maps $\varphi_i: X \to S^n$ given by $\varphi_i(x) = (g_i)^{-1} \varphi(x)$, where $g_i \in G$. Then, we can define the map

$$\psi = \varphi_1 \times \ldots \times \varphi_r \colon X^r \to [S^n]^r,$$

where $[S^n]^r$ denotes the *r*-fold cartesian product of *r* copies of S^n , such that $X_{\varphi} = \psi^{-1} \Delta [S^n]^r$, where $\Delta [S^n]^r$ is the diagonal in $[S^n]^r$. In these conditions, we prove the following

LEMMA 3.2. The homomorphism $\psi^* \colon H^*([S^n]^r) \to H^*(X^r)$ induced by $\psi \colon X^r \to [S^n]^r$ is a monomorphism in each dimension.

PROOF. Let m be an integer and for each t = 1, ..., r consider $H^m([S^n]^t)$. If m is not divisible by n then $H^m([S^n]^t) = 0$ and the result follows. Suppose that m is divisible by n; one then has that there exists $\alpha = 0, 1, ...$, such that $m = \alpha n$. Let us consider the following commutative diagram

Applying the Künneth's formula, we have that the upper row of the above diagram is an isomorphism and the lower row is a monomorphism, for each $\alpha = 0, 1, \ldots$ and $t = 1, \ldots, r$.

The proof will be done by induction on t. We assume inductively that for some t = 1, ..., r - 1 and for each $\alpha = 0, 1, ...$ the homomorphism $(\varphi_1 \times ... \times \varphi_t)^* : H^{\alpha n}([S^n]^t) \to H^{\alpha n}(X^t)$ is a monomorphism and we will show that $(\varphi_1 \times ... \times \varphi_t)^* \otimes \varphi_{t+1}^*$ is a monomorphism.

The result will follow from the commutativity of the diagram (3.1). By induction hypothesis it suffices to show that φ_{t+1}^* is a monomorphism. For this, observe that $\varphi_i^* = \varphi_j^*$, for any $1 \le i, j \le r$. If φ_{t+1}^* is not a monomorphism, then φ_i^* is not a monomorphism, for any $1 \le i \le t$, which completes the proof. \Box

The next step is to use Lemma 3.2 to show that the homomorphism induced by $\psi|_{X_{\varphi}}: X_{\varphi} \to \Delta[S^n]^r$ is a monomorphism. Let us consider the following commutative diagram

$$(3.2) \qquad \begin{array}{c} H^{n}(X^{r}, X_{\varphi}) \xrightarrow{j^{*}} H^{n}(X^{r}) \xrightarrow{k^{*}} H^{n}(X_{\varphi}) \\ \psi^{*} \uparrow & \psi^{*} \uparrow & \uparrow^{(\psi|_{X_{\varphi}})^{*}} \\ H^{n}([S^{n}]^{r}, \Delta[S^{n}]^{r}) \longrightarrow H^{n}([S^{n}]^{r}) \xrightarrow{i^{*}} H^{n}(\Delta[S^{n}]^{r}) \end{array}$$

whose rows are exact. If γ is a generator of $H^n(S^n) \cong \mathbb{Z}_p$ let us denote by α_i the element $q_i^*(\gamma) \in H^n([S^n]^r)$, where $q_i: [S^n]^r \to S^n$ is the natural projection on the *i*-th coordinate for $i = 1, 2, \ldots, r$. Let us observe that $q_i \circ i = q_j \circ i$ for any $1 \leq i, j \leq r$, where $i: \Delta[S^n]^r \hookrightarrow [S^n]^r$ is the natural inclusion. In this way, one has that

(3.3)
$$i^*(\alpha_i) = i^* \circ q_i^*(\gamma) = (q_i \circ i)^*(\gamma) = (q_j \circ i)^*(\gamma) = i^*(\alpha_j)$$

LEMMA 3.3. $(\psi|_{X_{\varphi}})^*: H^n(\Delta[S^n]^r) \to H^n(X_{\varphi})$ is a monomorphism.

PROOF. Since $\Delta[S^n]^r$ is homeomorphic to S^n , it follows from (3.3) that $i^*(\alpha_i)$ is a nonzero element in $H^n(\Delta[S^n]^r)$ for any $i = 1, \ldots, r$. Thus, it suffices to show that $(\psi|_{X_{\varphi}})^*(i^*(\alpha_1)) \neq 0$. Let us assume that this does not happen. From the diagram (3.2) we have that

$$k^* \circ \psi^*(\alpha_1) = (\psi|_{X_{\omega}})^* \circ i^*(\alpha_1) = 0,$$

which implies that $\psi^*(\alpha_1) \in \operatorname{Ker}(k^*) = \operatorname{Im}(j^*)$ and there exists an element $U \in H^n(X^r, X_{\varphi})$ such that

(3.4)
$$j^*(U) = \psi^*(\alpha_1) \neq 0,$$

since by Lemma 3.2 ψ^* is a monomorphism and $\alpha_1 = q_1^*(\gamma) \in H^n([S^n]^r)$ is a nonzero element. Let us consider the following commutative diagram,

$$\begin{aligned} H^{(r-1)n}(X^r, X^r - X_{\varphi}) & \xrightarrow{j^*} H^{(r-1)n}(X^r) \xrightarrow{k^*} H^{(r-1)n}(X^r - X_{\varphi}) \\ (3.5) & \psi^* \uparrow & \uparrow \psi^* & \uparrow \psi^* \\ H^{(r-1)n}([S^n]^r, [S^n]^r - \Delta[S^n]^r) & \xrightarrow{j_1^*} H^{(r-1)n}([S^n]^r) \xrightarrow{k_1^*} H^{(r-1)n}([S^n]^r - \Delta[S^n]^r) \\ & D^{-1} \uparrow & \uparrow D^{-1} \\ & H_n(\Delta[S^n]^r) \xrightarrow{i_*} H_n([S^n]^r) \end{aligned}$$

where the first and the second rows are exact, D is the Alexander–Spanier Duality which is an isomorphism and all others maps are induced by appropriate inclusions.

Let us denote by a_1, \ldots, a_r the elements of $H_n([S^n]^r)$ which are conjugated to $\alpha_1, \ldots, \alpha_r$ in $H^n([S^n]^r)$. More precisely,

$$\langle \alpha_j, a_i \rangle = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases}$$

where the map $\langle \cdot, \cdot \rangle \colon H^n([S^n]^r) \times H_n([S^n]^r) \to \mathbb{Z}_p$ denotes the Kronecker product. Let us denote by $c \in H_n(\Delta[S^n]^r)$ the conjugated element to $i^*(\alpha_1) = \dots = i^*(\alpha_r)$ in $H^n(\Delta[S^n]^r)$. Then for any $j = 1, \dots, r$ one has $\langle i^*(\alpha_j), c \rangle = 1$. Furthermore, it follows from properties of the Kronecker product that for any $j = 1, \ldots, r$

$$\langle i^*(\alpha_j), c \rangle = \langle \alpha_j, i_*(c) \rangle = 1,$$

which implies that

(3.6)
$$i_*(c) = \sum_{i=1}^r a_i.$$

Let us consider for each i = 1, ..., r the elements

$$\beta_i = \alpha_1 \smile \ldots \smile \alpha_{i-1} \smile \widehat{\alpha}_i \smile \alpha_{i+1} \smile \ldots \smile \alpha_r \in H^{(n-1)r}([S^n]^r),$$

where the symbol $\hat{\alpha}_i$ means that the element α_i is omitted.

To simplify notation, here we will also denote by $[S^n]^r$ the generator of $H_{nr}([S^n]^r)$, which is called *the fundamental class of* $[S^n]^r$. We will show that

$$D^{-1}(a_i) = (-1)^{i+1}\beta_i$$
, that is, $(-1)^{i+1}\beta_i \cap [S^n]^r = a_i$.

In fact, it follows from properties of the cup and cap products with respect to the Kronecker product and by definition of β_i that

(3.7)
$$\langle \alpha_i, (-1)^{i+1} \beta_i \cap [S^n]^r \rangle = \langle \alpha_i \smile (-1)^{i+1} \beta_i, [S^n]^r \rangle$$

$$= \langle (-1)^{i+1} (-1)^{n(n(i-1))} \alpha_1 \smile \ldots \smile \alpha_r, [S^n]^r \rangle$$
$$= \langle \alpha_1 \smile \ldots \smile \alpha_r, [S^n]^r \rangle = 1$$

observing that $\alpha_1 \sim \ldots \sim \alpha_r$ is the generator of $H^{nr}([S^n]^r)$. Thus,

$$D^{-1}\left(\sum_{i=1}^{r} a_i\right) = \sum_{i=1}^{r} D^{-1}(a_i) = \sum_{i=1}^{r} (-1)^{i+1} \beta_i.$$

It follows from (3.6), (3.7) and from commutativity of diagram (3.5) that

$$j_1^* \circ D^{-1}(c) = D^{-1} \circ i_*(c) = \sum_{i=1}^r (-1)^{i+1} \beta_i,$$

that is,

$$\sum_{i=1}^{r} (-1)^{i+1} \beta_i \in \mathrm{Im}\,(j_1^*).$$

Since the second row of diagram (3.5) is exact, one has that

$$k_1^* \left(\sum_{i=1}^r (-1)^{i+1} \beta_i \right) = 0.$$

By using again the commutativity of diagram (3.5)

$$k^* \circ \psi^* \left(\sum_{i=1}^r (-1)^{i+1} \beta_i \right) = \psi^* \circ k_1^* \left(\sum_{i=1}^r (-1)^{i+1} \beta_i \right) = 0,$$

which implies that

$$\psi^*\left(\sum_{i=1}^r (-1)^{i+1}\beta_i\right) \in \operatorname{Ker}(k^*) = \operatorname{Im}(j^*).$$

Thus, there exists an element $V \in H^{(r-1)n}(X^r, X^r - X_{\varphi})$ such that

(3.8)
$$j^*(V) = \psi^*\left(\sum_{i=1}^p (-1)^{i+1}\beta_i\right) \neq 0,$$

since ψ^* is a monomorphism. Using the naturality of the cup product in the following diagram

$$H^{n}(X^{r}) \otimes H^{(r-1)n}(X^{r}) \xrightarrow{\smile} H^{rn}(X^{r})$$
$$\psi^{*} \uparrow \qquad \qquad \uparrow \psi^{*}$$
$$H^{n}([S^{n}]^{r}) \otimes H^{(r-1)n}([S^{n}]^{r}) \xrightarrow{\smile} H^{rn}([S^{n}]^{r})$$

and observing that

$$\sum_{i=2}^{r} \alpha_1 \smile (-1)^{i+1} \beta_i = 0$$

one has that

$$(3.9) \quad \psi^*(\alpha_1) \smile \psi^*\left(\sum_{i=1}^r (-1)^{i+1}\beta_i\right) = \psi^*\left(\alpha_1 \smile \sum_{i=1}^r (-1)^{i+1}\beta_i\right)$$
$$= \psi^*\left(\alpha_1 \smile \beta_1 + \sum_{i=2}^r \alpha_1 \smile (-1)^{i+1}\beta_i\right)$$
$$= \psi^*(\alpha_1 \smile \beta_1) = \psi^*\left(\alpha_1 \smile \ldots \smile \alpha_r\right) \neq 0,$$

since $\alpha_1 \smile \ldots \smile \alpha_r$ is the generator of $H^{rn}([S^n]^r)$ and ψ^* is a monomorphism. On the other hand, from naturality of the cup product in the diagram

$$\begin{array}{ccc} H^{n}(X^{r}, X_{\varphi}) \otimes H^{(r-1)n}(X^{r}, X^{r} - X_{\varphi}) & \xrightarrow{\smile} & H^{rn}(X^{r}, X^{r}) \\ & & \downarrow^{j^{*}} \\ & & \downarrow^{j^{*}} \\ & & H^{n}(X^{r}) \otimes H^{(r-1)n}(X^{r}) & \xrightarrow{\smile} & H^{rn}(X^{r}) \end{array}$$

and from equations (3.4) and (3.8) we conclude that

$$\psi^*(\alpha_1 \smile \ldots \smile \alpha_r) = \psi^*(\alpha_1) \smile \psi^*\left(\sum_{i=1}^p (-1)^{i+1}\beta_i\right)$$

= $j^*(U) \smile j^*(V) = j^*(U \smile V) = j^*(0) = 0,$

which contradicts (3.9). This completes the proof.

Now, let us consider the map $\theta = q_1 \circ \psi|_{X_{\varphi}} \colon X_{\varphi} \to S^n$, where $q_1 \colon \Delta[S^n]^r \to S^n$ is the natural projection on the 1-th coordinate, which is an homeomorphism. Since by Lemma 3.3, $(\psi|_{X_{\varphi}})^*$ is a monomorphism, one then has that $\theta^* \colon H^n(S^n) \to H^n(X_{\varphi})$ is a monomorphism. Note that, if $(x_1, \ldots, x_r) \in X_{\varphi}$, we have that for each $i, g_i\theta(x_1, \ldots, x_r) = g_i\varphi(x_1) = \varphi(x_i) = \theta g_i(x_1, \ldots, x_r)$, thus θ is a G-equivariant map, and consequently, θ is a H-equivariant map, where $H \subset G$ is a cyclic subgroup of prime order. Thus, in particular for $\rho = \sigma$, we can consider the homomorphism induced by $\theta, \theta^*_{\sigma} \colon H^n_{\sigma}(S^n) \to H^n_{\sigma}(X_{\varphi})$, where H^n_{σ} denotes the n-dimensional Smith special cohomology group with coefficients in \mathbb{Z}_p in the sense of Section 2.4.

By remarks in [2, Results following 5.2] whose dual holds in cohomology, $i^*: H^n(S^n) \to H^n_{\sigma}(S^n)$ is an isomorphism, and since $\theta^*: H^n(S^n) \to H^n(X_{\varphi})$ is a monomorphism it follows that θ^*_{σ} is a monomorphism. To conclude that the \mathbb{Z}_p index of X_{φ} is equal to n it suffices to verify that the map between the orbit spaces $\overline{\theta}: X_{\varphi}/H \to S^n/H$ induces a monomorphism in cohomology. From results in [2, (3.10), p. 125], we have that $H^n_{\sigma}(S^n) \cong H^n(S^n/H)$ and $H^n_{\sigma}(X_{\varphi}) \cong H^n(X_{\varphi}/H)$, and considering the commutative diagram

$$H^{n}_{\sigma}(S^{n}) \xrightarrow{\theta^{*}_{\sigma}} H^{n}_{\sigma}(X_{\varphi})$$

$$\cong \uparrow \qquad \uparrow \qquad \uparrow \cong$$

$$H^{n}(S^{n}/H) \xrightarrow{\overline{\theta^{*}}} H^{n}(X_{\varphi}/H)$$

it follows that $\overline{\theta}^*: H^n(S^n/H) \to H^n(X_{\varphi}/H)$ is a monomorphism. Therefore, the \mathbb{Z}_p -index of X_{φ} is equal to n. \Box

4. Proof of Theorems 1.1 and 1.2

PROOF OF THEOREM 1.2. By following the similar steps of [3], we first prove Theorem 1.2 in the case that $G = H = Z_p$, where $p \ge 2$. We need to show that the \mathbb{Z}_p -index of the set $A_f = \{x \in X : f(x) = f(gx) = \ldots = f(g^{p-1}x)\}$ is greater than or equal to n - pk. For this, let us consider $F: X \to Y^p$ given by $F(x) = (f(x), f(gx), \ldots, f(g^{p-1}x))$, where $Y^p = Y \times \ldots \times Y$ denotes the *p*-fold cartesian product of Y and g is a fixed generator of \mathbb{Z}_p . In these conditions, we prove the following

LEMMA 4.1. The homomorphism $F^*: H^q(Y^p) \to H^q(X)$ induced by the map $F: X \to Y^p$ is zero for any $q \ge 1$.

PROOF. We have that $F = (f_0 \times \ldots \times f_{p-1}) \circ d$, where $d: X \to X^p$ is the diagonal map and $f_i(x) = f(g^i x)$, for any $x \in X$ and $i = 0, \ldots, p-1$. In this way, it suffices to show that $(f_0 \times f_1 \times \ldots \times f_{p-1})^* : H^q(Y^p) \to H^q(X^p)$ is trivial

for any $q \ge 1$. Let us consider the following commutative diagram

Since Y is a CW-complex, applying the Künneth's formula we have that the upper row of diagram (4.1) is an isomorphism for any q = 1, 2, ... and t = 1, ..., p-1.

The proof will be done by induction on t. Suppose inductively that $(f_0 \times \ldots \times f_t)^* \colon H^i(Y^t) \to H^i(X^t)$ is zero for some $t = 1, \ldots, p-1$ and for each $i = 1, 2, \ldots$ By hypothesis, f induces the zero homomorphism in each dimension; in particular f_{t+1}^* is zero and thus $(f_0 \times \ldots \times f_t)^* \otimes f_{t+1}^*$ is trivial. It follows from commutativity of the diagram (4.1) that $(f_0 \times \ldots \times f_{t+1})^*$ is zero, which completes the proof.

We can define a \mathbb{Z}_p -action on Y^p as follows: for each $(y_1, \ldots, y_p) \in Y^p$ $g(y_1, \ldots, y_{p-1}, y_p) = (y_p, y_1, \ldots, y_{p-1})$. Since p is a prime, this action is free on $Y^p - \Delta$, where Δ is the diagonal in Y^p . Let us observe that $A_f = F^{-1}(\Delta)$, thus F determines a \mathbb{Z}_p -equivariant map $F_0: X - A_f \to Y^p - \Delta$, which induces a map between the orbit spaces $\overline{F}_0: [X - A_f]^* \to [Y^p - \Delta]^*$. In these conditions, we prove that

LEMMA 4.2. The map
$$\overline{F}_0^*: H^{pk}([Y^p - \Delta]^*) \to H^{pk}([X - A_f]^*)$$
 is zero.

PROOF. Let us consider the map of pairs (F, F_0) : $(X, X - A_f) \to (Y, Y - \Delta)$. One then has the following commutative diagram

$$\longrightarrow H^{pk}(X) \xrightarrow{i^*} H^{pk}(X - A_f) \longrightarrow H^{pk+1}(X, X - A_f) \longrightarrow$$

$$F^* \bigwedge^{f^*} \bigwedge^{f^*} \bigwedge^{f^*} \bigwedge^{(F,F_0)^*} (F,F_0)^* \longrightarrow H^{pk}(Y^p) \xrightarrow{i^*} H^{pk}(Y^p - \Delta) \longrightarrow H^{pk+1}(Y^p, Y^p - \Delta) \longrightarrow$$

where the homomorphisms i^* and j^* are induced by appropriate inclusions. Since dim (Y^p) is less than or equal to pk we have that $H^{pk+1}(Y^p, Y^p - \Delta)$ is trivial and thus j^* is surjective. On the other hand $F_0: (X - A_f) \to (Y^p - \Delta)$ is a \mathbb{Z}_p -equivariant map and it follows from Remark 2.6 that the diagram

$$H^{pk}(X - A_f) \xrightarrow{\mathcal{T}} H^{pk}([X - A_f]^*) \longrightarrow H^{pk+1}_{\rho}(X - A_f)$$

$$\downarrow^{F_0^*} \qquad \uparrow^{\overline{F}_0^*} \qquad \uparrow^{\overline{F}_0^*} \qquad \uparrow^{pk+1}(Y^p - \Delta)$$

$$H^{pk}(Y^p - \Delta) \xrightarrow{\mathcal{T}} H^{pk}([Y^p - \Delta]^*) \longrightarrow H^{pk+1}_{\rho}(Y^p - \Delta)$$

between the Smith sequences of $X - A_f$ and $Y^p - \Delta$ is commutative and since $H_o^{pk+1}(Y^p - \Delta)$ is zero, \mathcal{T} is surjective.

Putting together these diagrams, one obtains a new commutative diagram

(4.2)
$$\begin{array}{c} H^{pk}(X) \xrightarrow{i^{*}} H^{pk}(X - A_{f}) \xrightarrow{\mathcal{T}} H^{pk}([X - A_{f}]^{*}) \\ F^{*} \uparrow \qquad \uparrow F_{0}^{*} \qquad \uparrow \overline{F}_{0}^{*} \\ H^{pk}(Y^{p}) \xrightarrow{j^{*}} H^{pk}(Y^{p} - \Delta) \xrightarrow{\mathcal{T}} H^{pk}([Y^{p} - \Delta]^{*}) \end{array}$$

where the horizontal sequences are not necessarily exacts, but the composition $\mathcal{T} \circ j^*$ is surjective. Therefore, as F^* is zero by Lemma 4.1, it follows from commutativity of the diagram (4.2) that \overline{F}_0^* is zero.

Let $h: X^* \to B\mathbb{Z}_p$ be a classifying map for the principal \mathbb{Z}_p -bundle $X \to X^*$. Then the compositions $h \circ i_1: A_f^* \to B\mathbb{Z}_p$ and $h \circ i_2: [X - A_f]^* \to B\mathbb{Z}_p$ are classifying maps for the following principal \mathbb{Z}_p -bundles $A_f \to A_f^*$ and $X - A_f \to [X - A_f]^*$ respectively, where the maps $i_1: A_f^* \to X^*$ and $i_2: [X - A_f]^* \to X^*$ are induced by the inclusions between the orbit spaces.

Let us consider $G: Y^p - \Delta \to B\mathbb{Z}_p$ a classifying map for the principal \mathbb{Z}_p bundle $Y^p - \Delta \to [Y^p - \Delta]^*$. Since $F_0: X - A_f \to Y^p - \Delta$ is a \mathbb{Z}_p -equivariant map, one the has that

 $G \circ \overline{F}_0 : [X - A_f]^* \to B\mathbb{Z}_p$

also classifies the principal \mathbb{Z}_p -bundle $X - A_f \to [X - A_f]^*$. In this way,

(4.3)
$$i_2^* \circ h^* = \overline{F}_0^* \circ G^* \colon H^*(B\mathbb{Z}_p) \to H^*([X - A_f]^*).$$

To conclude that the \mathbb{Z}_p -index of A_f is greater than or equal to n-pk, it suffices to show that $i_1^* \circ h^*(\mu) \neq 0$, where μ is the generator of $H^{n-pk}(B\mathbb{Z}_p)$.

We first consider the case when k is odd. Let us observe that n must be necessarily odd, since p > 2 is a prime. Then, n - pk is even and it follows from Remark 2.5 that $\mu = b^{(n-pk)/2} \in H^{n-pk}(B\mathbb{Z}_p)$. Suppose that $i_1^* \circ h^*(\mu) = 0$. From continuity of the cohomology, there exists a neighbourhood V of A_f in X which is invariant by the action of \mathbb{Z}_p and such that $i_1^* \circ h^*(\mu) = 0$ in $H^{n-pk}(V^*)$. From the exact cohomology sequence of the pair (X^*, V^*) one has

(4.4)
$$h^*(\mu) \in \operatorname{Im} [H^{n-pk}(X^*, V^*) \to H^{n-pk}(X^*)].$$

Since pk is odd from Remark 2.5 $\eta = a \smile b^{(pk-1)/2}$ is a generator of $H^{pk}(B\mathbb{Z}_p)$. It follows from Lemma 4.2 and (4.3) that

$$i_2^* \circ h^*(\eta) = \overline{F}_0^* \circ G^*(\eta) = 0 \in H^{pk}([X - A_f]^*)$$

and from the exact cohomology sequence of the pair $(X^*, [X - A_f]^*)$ one has

(4.5)
$$h^*(\eta) \in \operatorname{Im} [H^{pk}(X^*, [X - A_f]^*) \to H^{pk}(X^*)].$$

Thus from (4.4), (4.5) and by the naturality of the cup product we have

$$h^*(\eta \smile \mu) = h^*(\eta) \smile h^*(\mu) \in \text{Im} \left[H^n(X^*, [X - A_f]^* \cup V^*) \to H^n(X^*) \right].$$

Let us note that the element

$$n \smile \mu = a \smile b^{(pk-1)/2} \smile b^{(n-pk)/2} = a \smile b^{(n-1)/2}$$

is a generator of $H^n(B\mathbb{Z}_p)$. Furthermore,

$$H^{n}(X^{*}, [X - A_{f}]^{*} \cup V^{*}) = H^{n}(X^{*}, X^{*}) = 0$$

and then $h^*(\eta \smile \mu) = 0 \in H^n(X^*)$, that is, $h^*: H^n(B\mathbb{Z}_p) \to H^n(X^*)$ is trivial which contradicts the hypothesis that the \mathbb{Z}_p -index of X is greater than or equal to n.

If k is even, then n - pk is odd and pk is even. In this case, the proof is analogous to the previous case, considering now the generators

$$\mu = a \smile b^{(n-pk-1)/2} \in H^{n-pk}(B\mathbb{Z}_p) \text{ and } \eta = b^{(pk)/2} \in H^{pk}(B\mathbb{Z}_p).$$

Let us examine the case where $G = \mathbb{Z}_2$. Here, n can be any positive integer and the generator of $H^{n-2k}(B\mathbb{Z}_2)$ is $\mu = a^{n-2k}$. To show that the \mathbb{Z}_2 -index of A_f is greater than or equal to n-2k, it suffices to prove that $i_1^* \circ h^*(\mu) \neq 0$. Let us assume that $i_1^* \circ h^*(\mu) = 0$. Then there exists a neighbourhood V of A_f in X which is invariant with respect to the action and such that $i_1^* \circ h^*(\mu) = 0$ in $H^{n-2k}(V^*)$. From exact cohomology sequence of the pair (X^*, V^*) one has that

(4.6)
$$h^*(\mu) \in \operatorname{Im} [H^{n-2k}(X^*, V^*) \to H^{n-2k}(X^*)].$$

On the other hand, $\eta = a^{2k}$ is the generator of $H^{2k}(B\mathbb{Z}_2)$ and it follows from Lemma 4.2 and (4.3) that

$$i_{2}^{*} \circ h^{*}(\eta) = \overline{F}_{0}^{*} \circ G^{*}(\eta) = 0 \in H^{2k}([X - A_{f}]^{*}).$$

Moreover, from exact cohomology sequence of $(X^*, [X - A_f]^*)$ one has that

(4.7)
$$h^*(\eta) \in \operatorname{Im} [H^{2k}(X^*, [X - A_f]^*) \to H^{2k}(X^*)].$$

Thus, from (4.6), (4.7) and by the naturality of the cup product we have

$$h^*(\eta \smile \mu) = h^*(\eta) \smile h^*(\mu) \in \text{Im} \left[H^n(X^*, [X - A_f]^* \cup V^*) \to H^n(X^*) \right].$$

Let us observe that $\eta \smile \mu = a^{2k} \smile a^{n-2k} = a^n$ is the generator of $H^n(B\mathbb{Z}_2)$. Furthermore, $H^n(X^*, [X - A_f]^* \cup V^*) = H^n(X^*, X^*)$ is trivial and then $h^*(\eta \smile \mu) = 0 \in H^n(X^*)$ which contradicts the hypothesis that the \mathbb{Z}_2 -index of X is greater than or equal to n. This concludes the proof of Theorem 1.2 in the case $G = H = \mathbb{Z}_p$.

For the general case, suppose that G is a finite group which acts freely on X and let $H \subset G$ be a normal cyclic subgroup of prime order p. We denote by s = |G|/p, the number of the left cosets of G/H and let a_1, \ldots, a_s be a set of representatives of the cosets. We define the map $F: X \to Y^s$ by

(4.8)
$$F(x) = (f(a_1x), \dots, f(a_ix), \dots, f(a_sx)).$$

We need to show that

$$A(f, H, G) = A_F = \{x \in X : F(x) = F(hx), \text{ for all } h \in H\}.$$

Let x be a point in the set A(f, H, G), then f collapses each orbit determined by the action of H on $a_i x$ to a single point, for each i = 1, ..., s. If $h \in H$

$$F(hx) = (f(ha_1x), \dots, f(ha_ix), \dots, f(ha_sx)).$$

Since *H* is a normal subgroup of *G*, $ha_i x = a_i \hat{h} x$. Furthermore, $a_i x$ and $a_i \hat{h} x = ha_i x$ belongs to the same *H*-orbit and $f(a_i x) = f(ha_i x)$, for each $i = 1, \ldots, s$ which implies that F(x) = F(hx). Therefore $x \in A_F$. The proof of the another inclusion is entirely analogous.

To conclude, let us observe that $H \cong \mathbb{Z}_p$ acts freely on X by restriction and by hypothesis the \mathbb{Z}_p -index of X is greater than or equal to n. By using Lemma 4.1 for the map $F: X \to Y^s$ defined in (4.8) one has that $F^*: H^q(Y^s) \to H^q(X)$ is trivial for any $q \ge 1$. Since dimension of Y^s is ks and Theorem 1.2 is true for $G = \mathbb{Z}_p$ we can conclude that the \mathbb{Z}_p -index of $A_F = A(f, H, G)$ is greater than or equal n - p(ks) = n - pk(|G|/p) = n - |G|k and this completes the proof. \Box

PROOF OF THEOREM 1.1. Let $\tilde{f}: X_{\varphi} \to Y$ given by $\tilde{f}(x_1, \ldots, x_r) = f(x_1)$, that is $\tilde{f} = f \circ \pi_1$ where π_1 is the natural projection on the 1-th coordinate. By hypothesis f induces the zero homomorphism in each dimension, then we have that $\tilde{f}^*: H^i(Y) \to H^i(X_{\varphi})$ is trivial for any $i \geq 1$. Moreover, the \mathbb{Z}_p -index of X_{φ} is equal to n by Theorem 3.1. In this way, X_{φ} and \tilde{f} satisfy the hypotheses of Theorem 1.2 which implies that the \mathbb{Z}_p -index of the set $A(\tilde{f}, H, G)$ is greater than or equal to n - |G|k. By Definition 2.1 $A_{\varphi}(f, H, G) = A(\tilde{f}, H, G)$, and then cohom.dim $A_{\varphi}(f, H, G) \geq n - |G|k$.

REMARK 4.3. In the particular case that $G = H = \mathbb{Z}_p$ with p prime, Volovikov in [13, Theorem 3.2] proved a version of Theorem 1.1.

Acknowledgements. The authors are grateful to the referee for the comments and suggestions concerning the presentation of this article, which led to this present version.

References

- K. BORSUK, Drei Sätze über die n-dimensionale Euklidische Sphäre, Fund. Math. 20 (1933), 177–190.
- [2] G. E. BREDON, Introduction to Compact Transformation Groups, Pure Appl. Math., Academic Press, New York, 1972.
- [3] D. L. GONÇALVES, J. JAWOROWSKI AND P. L. Q. PERGHER, Measuring the size of the coincidence set, Topology Appl. 125 (2002), 465–470.
- [4] _____, G-coincidences for maps of homotopy spheres into CW-complexes, Proc. Amer. Math. Soc. 130 (2002), 3111–3115.
- [5] D. L. GONÇALVES, J. JAWOROWSKI, P. L. Q. PERGHER AND A. YU. VOLOVIKOV, Coincidences for maps of spaces with finite group actions, Topology Appl. 145 (2004), 61–68.
- [6] D. L. GONÇALVES AND P. L. Q. PERGHER, Z_p-coincidence for maps of spheres into CW-complexes, Kobe J. Math. 15 (1998), 191–195.
- [7] M. IZYDOREK, On the Borsuk–Ulam theorem for free Z_p-action, Bull. Polish Acad. Sci. Math. 38 (1990), 15–21.
- [8] M. IZYDOREK AND J. JAWOROWSKI, Antipodal coincidence for maps of spheres into complexes, Proc. Amer. Math. Soc. 123 (1995), 1947–1950.
- [9] J. JAWOROWSKI, Periodic coincidence for maps of spheres, Kobe J. Math. 17 2000, 21–26.
- [10] K. D. JOSHI, A non-symmetric generalization of the Borsuk-Ulam Theorem, Fund. Math. 80 (1973), 13–33.
- S. SPIEŻ, On generalizations of theorems of Borsuk-Ulam, Dyson and Livesay, Bull. L'Acadêmie Polonaise Sciences 4 (1978), 325–333.
- [12] P. A. SMITH, Transformations of finite period, Ann. of Math. 39 (1938), 127–164.
- [13] A. YU. VOLOVIKOV, Coincidence points of mappings of Zⁿ_p-spaces, Izv. Ross. Akad. Nauk Ser. Mat. 69 (2005), 53–106; transl. in Izv. Math. 69 (2005), 913–962.

Manuscript received December 31, 2007

DENISE DE MATTOS Universidade de São Paulo-USP-ICMC Departamento de Matemática Caixa Postal 668 13560-970, São Carlos-SP, BRAZIL *E-mail address*: deniseml@icmc.usp.br

EDIVALDO LOPES DOS SANTOS Universidade Federal de São Carlos-UFSCAR Departamento de Matemática Caixa Postal 668 13560-970, São Carlos-SP, BRAZIL

 $E\text{-}mail\ address:\ edivaldo@dm.ufscar.br $$TMNA: VOLUME 33 - 2009 - N^o 1$$$