
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder University Centre
Volume 40, 2012, 225–243

PERIODIC SOLUTIONS TO NONLINEAR EQUATIONS
WITH OBLIQUE BOUNDARY CONDITIONS

Walter Allegretto — Duccio Papini

Abstract. We study the existence of positive periodic solutions to nonlin-
ear elliptic and parabolic equations with oblique and dynamical boundary

conditions and non-local terms. The results are obtained through fixed

point theory, topological degree methods and properties of related lin-
ear elliptic problems with natural boundary conditions and possibly non-

symmetric principal part. As immediate consequences, we also obtain es-

timates on the principal eigenvalue for non-symmetric elliptic eigenvalue
problems.

1. Introduction

In this paper we consider the existence of positive periodic solutions to nonlin-
ear elliptic/parabolic equations subject to oblique natural boundary conditions.
We first consider an elliptic problem in Section 2 and then apply these results to
parabolic problems that, in particular, involve situations with dynamic bound-
ary conditions. For the sake of simplicity we assume that the right hand side
is described by a standard logistic formula to which we have added a nonlocal
term. This has been previously done for various biological problems ([2], [6],
[7], [27]). It invalidates the use of order methods. For a reference to these we
direct the reader to [24], [29]. We thus proceed with topological methods (for
a detailed reference see the book [3]).
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We observe that the oblique boundary conditions problems we consider would
arise in situations where the motion due to diffusion induced an effect in a dif-
ferent direction, for example in the situation of charged bacteria [23] moving in
a magnetic field. On the other hand, the dynamic boundary condition could be
used to model situations where the biological species was stored and released
depending on conditions at the boundary. To give the flavor of our results we
state as an example the following:

Lemma 1.1. Let M,h, e ≥ 0 (possibly e ≡ 0) and P > 0. Assume that there
exists a periodic function c(t) > 0 such that∫ T

0

∫
Ω

M

c
>

∫ T

0

∫
∂Ω

h

c
.

Then the problem

e(x)c(t)ut −∆u = [M(x, t)− P (x, t)u]u in Ω× (0, T ),
∂u

∂ν
+ c(t)ut + h(x, t)u = 0 on ∂Ω× (0, T ),

e(x)u(x, 0) = e(x)u(x, T ) for x ∈ Ω,

c(0)u(x, 0) = c(T )u(x, T ) for x ∈ ∂Ω,

has a positive generalized solution. Here we assume all problem data regular.

The proof of Lemma 1.1 is given in Theorem 3.4 below. We remark that
the existence results of Sections 3 and 4 are obtained via fixed point theorems
and topological degree arguments. In this respect the use of estimates in Hölder
spaces Cα,α/2 will ensure the compactness of the maps that are involved in
the arguments. Furthermore, solution bounds in these spaces depend only on
coefficients estimates, not on the specific coefficients themselves.

The history of problems with oblique boundary conditions is vast, but we
were unable to find our results in previous work. Problems with dynamic bound-
ary conditions have somewhat fewer results. However we were only able to find
[1] that deals with the periodic case. There the model is a degenerate parabolic
equation and the existence and asymptotic stability of periodic solutions are
proved. We note that in [1] the existence of a positive solution in cases where
there is also the identically zero solution was not considered, nor were the effects
on the solution existence of changing c.

Other references deal with the initial value problem and other questions. For
example, in [22] dynamical boundary conditions are considered for the Laplace
and heat equations with semi-linear forcing terms. Existence and uniqueness
of initial value problems are obtained via semigroup theory. See also [13]–[15],
[21], [31] for analogous results. [38] studies a non-symmetric elliptic equation
with respect to global existence for initial value problems. In [35] and [36] the
problems of global existence and blow-up in finite time are tackled for elliptic or



Equations with Oblique Boundary Conditions 227

parabolic equations with a nonlinear dynamical boundary condition. The blow-
up phenomenon is considered also in [8] for the Laplace equation and conditions
for the continuability after the blow-up are given. Well- or ill-posedness of the
initial value problem for linear heat and Laplace equations with dynamical and
reactive boundary conditions are studied in [33], [34]. The paper [16] deals with
reaction-diffusion equation from the point of view of global existence for initial
value problems and global attractor. [30] considers an analogous problem but it
is mainly concerned with quenching solutions, that is: bounded solutions with
a bounded maximal time-interval of existence. In [18] a distributed model for
the ecology of mangroves featuring dynamic boundary conditions is considered;
existence and uniqueness of solutions of initial value problems and convergence
to steady state are proved. [4] proves existence and uniqueness of initial value
problems for degenerate elliptic-parabolic equation with nonlinear diffusion and
nonlinear dynamical boundary condition. [17] also deals with a degenerate par-
abolic equation with p-Laplacean and nonlinear dynamic boundary conditions
and shows the existence of a global attractor. In [12] a Hamilton–Jacobi equa-
tion with dynamic boundary condition is studied: in order to prove existence
of a viscosity solution of the initial value problem, an approximating parabolic
problem with dynamic boundary conditions is solved. The papers [37] and [11]
deal with global existence and convergence to steady states for Cahn–Hilliard
and Caginalp equations with dynamic boundary conditions and regular poten-
tials. On the other hand, [19], [28], [9], [10], [20] considers different assumptions
on the potentials for Cahn–Hilliard and Caginalp phase-field systems.

2. Oblique elliptic problems

We consider in this section the elliptic problem:

(2.1) −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+

n∑
j=1

βj(x)
∂u

∂xj
+ l(x) u = f(x)

for x ∈ Ω ⊂ Rn with n ≥ 3 and Ω a smooth bounded domain, subject to the
natural boundary condition:

(2.2)
n∑

i,j=1

aij(x)
∂u

∂xj
νi(x) + h(x) u = g(x),

where h ≥ 0 and −→ν = (ν1, . . . , νn) is the outward normal to ∂Ω. We assume
all data is regular and set A = (aij),

−→
β = (β1, . . . , βn). We also assume that

(2.1)–(2.2) is elliptic, i.e. 〈A−→ξ ,
−→
ξ 〉 > δ|−→ξ |2 for some δ > 0, but do not require

that A be symmetric. Consequently, condition (2.2) becomes:

〈(As + Aa)∇u,−→ν 〉+ hu = g
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where As = (A + A>)/2, Aa = (A−A>)/2. Since 〈Aa
−→ν ,−→ν 〉 = 0, we recover in

this way oblique derivative problems. We remark that if an oblique condition is
given a priori, then the form associated with (2.1) can be modified so that the
given condition becomes “natural”. We will do this later explicitly for a special
case, and the general process may be found in detail in the book by Troian-
iello [32]. We also note that it will be convenient for us to consider a related
T -periodic elliptic problem in QT

M= Ω × (0, T ): now (2.2) is to apply only to
∂Ω× (0, T ), and we add periodic conditions on the problem data and u:

u(x, 0) = u(x, T ) for x ∈ Ω.

We observe that if u solves either (2.1)–(2.2) or the periodic problem, then u

is a classical solution (see, e.g. [32]. For the periodic problem extend u to
Ω× (−T, 2T ) by periodicity).

Lemma 2.1. Let u ≥ 0, nontrivial, solve (2.1)–(2.2) then

(2.3) 0 ≤
∫

Ω

{〈
AA−1

s A>∇φ,∇φ
〉

+
〈
∇φ + A−1

s A>a ∇φ,
−→
β
〉

φ

+
〈
A−1−→β ,

−→
β
〉 φ2

4
+ l

u

u + η
φ2

}
+
∫

∂Ω

hu

u + η
φ2 −

∫
Ω

φ2

u + η
f −

∫
∂Ω

φ2

u + η
g

for all φ ∈ H1(Ω) and η > 0. If, moreover, f, g are nonnegative and R(φ) ≤ 0
for some nontrivial φ ∈ H1(Ω), where

R(φ) M=
∫

Ω

{〈
AA−1

s A>∇φ,∇φ
〉

+
〈
∇φ + A−1

s A>a ∇φ,
−→
β
〉

φ +
〈
A−1

s

−→
β ,

−→
β
〉 φ2

4
+ lφ2

}
+
∫

∂Ω

hφ2,

then either µ{x ∈ Ω | u(x) = 0} + µ′{x ∈ ∂Ω | u(x) = 0} > 0 (where µ and µ′

denote the measures in Rn and in ∂Ω respectively), or R(φ) = 0, φ2f = φ2g = 0
and

∇
(

φ

u

)
= (A>)−1

(
Aa

∇u

u
−
−→
β

2

)
φ

u
wherever u > 0.

Proof. Assume first that φ(x) > 0, u(x) > 0. We observe by direct calcu-
lation:〈

As∇
(

φ

u

)
,∇
(

φ

u

)〉
u2 = 〈As∇φ,∇φ〉+2〈A>a ∇φ,∇u〉 φ

u
−
〈

A>∇
(

φ2

u

)
,∇u

〉
.

Put
−→
b = 2(A>a ∇φ)/φ, whence

2
〈
A>a ∇φ,∇u

〉 φ

u
=
〈−→

b ,∇u
〉 φ2

u
= −

〈
−→
b ,∇

(
φ

u

)〉
uφ +

〈−→
b ,∇φ

〉
φ.
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We note that
〈−→

b ,∇φ
〉

φ = 0, whence

u2

〈
As∇

(
φ

u

)
,∇
(

φ

u

)〉
+
〈
−→
b +

−→
β ,∇

(
φ

u

)〉
uφ

= 〈As∇φ,∇φ〉 −
〈

A>∇
(

φ2

u

)
,∇u

〉
+
〈−→

β ,∇φ
〉

φ−
〈−→

β ,∇u
〉 φ2

u
.

We add the term 〈(As)−1(
−→
b +

−→
β ),

−→
b +

−→
β 〉φ2/4 to both sides, thus completing

the square on the left hand side and obtaining

0 ≤
〈

A−1
s

[
uAs∇

(
φ

u

)
+

φ

2

(−→
b +

−→
β
)]

,

[
uAs∇

(
φ

u

)
+

φ

2

(−→
b +

−→
β
)]〉

= 〈As∇φ,∇φ〉+
〈−→

β ,∇φ
〉

φ−
〈

A>∇
(

φ2

u

)
,∇u

〉
−
〈−→

β ,∇u
〉 φ2

u
+
〈
A−1

s

(−→
b +

−→
β
)

,
−→
b +

−→
β
〉 φ2

4
.

We expand the last term on the right hand side and obtain:〈
A−1

s

(−→
b +

−→
β
)

,
−→
b +

−→
β
〉 φ2

4

= 〈AaA
−1
s A>a ∇φ,∇φ〉+

〈
A−1

s A>a ∇φ,
−→
β
〉

φ +
〈
A−1

s

−→
β ,

−→
β
〉 φ2

4
.

We thus obtain for x such that φ(x) > 0:

0 ≤
〈

A−1
s

[
uAs∇

(
φ

u

)
+

φ

2

(−→
b +

−→
β
)]

,

[
uAs∇

(
φ

u

)
+

φ

2

(−→
b +

−→
β
)]〉

= 〈AA−1
s A>∇φ,∇φ〉+

〈
∇φ + A−1

s A>a ∇φ,
−→
β
〉

φ +
〈
A−1

s

−→
β ,

−→
β
〉 φ2

4

−
〈

A>∇
(

φ2

u

)
,∇u

〉
−
〈−→

β ,∇u
〉 φ2

u
,

where we used the identity As+AaA
−1
s A>a = (As+Aa)A−1

s (As−Aa) = AA−1
s A>.

Since on the set {x : φ(x) = 0} we have ∇φ = 0 almost everywhere, the above
inequality holds for almost all x ∈ Ω. Integrating, we obtain:

0 ≤
∫

Ω

〈
A−1

s

[
uAs∇

(
φ

u

)
+

φ

2

(−→
b +

−→
β
)]

,

[
uAs∇

(
φ

u

)
+

φ

2

(−→
b +

−→
β
)]〉

=
∫

Ω

[
〈AA−1

s A>∇φ,∇φ〉+
〈−→

β ,∇φ
〉

φ

+
〈
A−1

s A>a ∇φ,
−→
β
〉

φ +
〈
A−1

s

−→
β ,

−→
β
〉 φ2

4
+ lφ2

]
+
∫

∂Ω

hφ2 −
∫

Ω

φ2

u
f −

∫
∂Ω

φ2

u
g.
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If u ≥ 0, we repeat the argument, replacing u by u+η, for η > 0, in the inequality.
We obtain the same estimate with∫

Ω

lφ2 +
∫

∂Ω

hφ2 −
∫

Ω

φ2

u
f −

∫
∂Ω

φ2

u
g

replaced by ∫
Ω

l
u

u + η
φ2 +

∫
∂Ω

hu

u + η
φ2 −

∫
Ω

φ2

u + η
f −

∫
∂Ω

φ2

u + η
g

That is exactly (2.3).
If moreover R(φ) ≤ 0, f, g are non-negative and

µ{x ∈ Ω | u(x) = 0}+ µ′{x ∈ ∂Ω | u(x) = 0} = 0,

then from (2.3), as η → 0, we have that R(φ) = 0, φ2f = φ2g = 0 and at any x

with u(x) > 0:

0 =As∇
(

φ

u

)
+

φ

2u

(−→
b +

−→
β
)

=As∇
(

φ

u

)
−Aa∇

(
φ

u
u

)
1
u

+
φ

u

−→
β

2
= A>∇

(
φ

u

)
−
(

Aa
∇u

u
−
−→
β

2

)
φ

u

and the result follows. �

As immediate applications of Lemma 2.1 we obtain estimates of the principal
eigenvalue of non-symmetric elliptic operators, by letting η → 0.

Corollary 2.2. Let λ denote the principal eigenvalue for (2.1)–(2.2), where
f

M= λu and g ≡ 0, with eigenvector u > 0. Then:

λ ≤ inf
φ∈H1(Ω)

[
R(φ)∫
Ω

φ2

]
.

The choice φ ≡ 1 gives:

Corollary 2.3.

λ ≤ 1
|Ω|

{∫
Ω

(〈
A−1

s

−→
β ,

−→
β
〉

4
+ l

)
+
∫

∂Ω

h

}
.

The following result is an application of Lemma 2.1 to the principal Steklov
eigenvalue. We refer to [5] for recent results on Steklov eigenvalues in the sym-
metric case.

Corollary 2.4. Let λ denote the principal eigenvalue for the following
Steklov eigenvalue problem:{

−∇ · [A∇u] +
−→
β · ∇u + lu = 0 in Ω,

〈A∇u,−→ν 〉+ hu = λu on ∂Ω.
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Then

λ ≤ R(φ)∫
∂Ω

φ2
for all φ ∈ H1(Ω).

We comment on the analogous situation for the periodic-elliptic problem in
QT

M= Ω × (0, T ). Observe that in this case similar results hold if all data is
periodic and now

φ ∈ H1,per(QT ) = {φ | φ ∈ H1(QT ), φ is periodic in xn+1},

once we observe that a solution u must also have ∂u/∂xn+1 periodic, while on
∂Ω × (0, T ) the outward normal −→n =

(−→ν >, 0
)> must be perpendicular to the

xn+1-axis. In particular it is also convenient to observe for the periodic-elliptic
problem we consider next, that in the preceding argument the variables can be
treated differently in the case of a cylindrical domain as follows: set xn+1 = t,

∇u =
(

∂u
∂x1

, . . . , ∂u
∂xn

)>
, δu = (∇>u, ut)>. Consider the problem:

Lu
M= −∇·

[
A∇u+

−→
b ut

]
− ∂

∂t

[
−−→b ·∇u+εut

]
+−→z ·∇u+eut +ru = f in QT

with smooth periodic data, and(
A∇u +

−→
b ut

)
· −→ν + hu = 0 on ∂Ω× [0, T ],

u(x, 0) = u(x, T ) for x ∈ Ω,

where −→ν is the outward normal to ∂Ω. Assume further that A = (aij) is
a symmetric positive definite n× n matrix, ε > 0. We then have:

Corollary 2.5. Let k > 1, u > 0, and set

A =

((
1− 1

k

)
A

−→
b

−−→b > ε

)

with As = (A + A>)/2, Aa = (A−A>)/2. Let φ be smooth, periodic in t. Then:

0 ≤
∫

QT

〈
A

k
∇φ,∇φ

〉
+
∫

QT

〈−→z ,∇φ〉φ +
∫

QT

k

4
〈
A−1−→z ,−→z

〉
φ2

+
∫

QT

〈
AA−1

s A>δφ, δφ
〉

+
∫

QT

rφ2 +
∫ T

0

∫
∂Ω

φ2h−
∫

QT

φ2

u
(f − eut).

Proof. Choose k > 1 and set

L1u =−∇ ·
[
A

k
∇u

]
+−→z · ∇u,

L2u =−∇ ·
[(

1− 1
k

)
A∇u +

−→
b ut

]
− ∂

∂t

[
−→
b · ∇u + εut

]
+ ru.
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We then observe that L(u) = f implies L1(u) + L2(u) = f − eut. We basically
repeat the calculation of Lemma 2.1 for this case and obtain for any t ∈ (0, T ):

(2.4) 0 ≤
∫

Ω

〈
A

k
∇φ,∇φ

〉
+
∫

Ω

〈−→z ,∇φ〉 φ

+
∫

Ω

k

4
〈
A−1−→z ,−→z

〉
φ2 −

∫
∂Ω

〈
A

k
∇u,−→ν

〉
φ2

u
−
∫

Ω

φ2

u
L1(u).

Next observe that once again repeating the calculations of Lemma 2.1 yields,
with A replacing A and

−→
β = 0 in (2.3), and recalling δφ = (∇φ, φt)

(2.5) 0 ≤
∫

QT

〈AA−1
s A>δφ, δφ〉+

∫
QT

rφ2−
∫

∂QT

φ2

u
〈A δu,−→n 〉−

∫
QT

φ2

u
L2(u).

Integrating (2.4) with respect to t and adding to (2.5) yield, noting that on
∂Ω× (0, T ) the normal −→n is perpendicular to the t-axis,

0 ≤
∫

QT

〈
A

k
∇φ,∇φ

〉
+
∫

QT

〈−→z ,∇φ〉 φ(2.6)

+
∫

QT

k

4
〈
A−1−→z ,−→z

〉
φ2 +

∫
QT

〈AA−1
s A>δφ, δφ〉

+
∫

QT

rφ2 −
∫ T

0

∫
∂Ω

φ2

u

〈
A∇u +

−→
b ut,

−→ν
〉
−
∫

QT

φ2

u
L(u).

We observe that the last two terms of (2.6) are:∫ T

0

∫
∂Ω

φ2h−
∫

QT

φ2

u
(f − eut). �

3. The periodic parabolic problem

We now consider, as an application of the results in Section 2, the following
periodic parabolic problem:

(3.1)



d(x, t)ut −∆u =
(

M(x, t)− P (x, t)u−
∫

Ω

S(ξ, t)udξ

)
u

in QT
M= Ω× (0, T ) ⊂ Rn+1,

∂u

∂ν
+ c(x, t)

∂u

∂t
+ h(x, t)u = 0 on ∂Ω× (0, T ),

d(x, 0) u(x, 0) = d(x, T )u(x, T ) for x ∈ Ω,

c(x, 0) u(x, 0) = c(x, T )u(x, T ) for x ∈ ∂Ω,

with d, M, S, h ≥ 0, P, c > 0 and all periodic. Specifically, we perturb the
problem to an elliptic equation as follows: for 0 < ε < 1 and a suitable smooth
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function a(x, t) ≥ a0 > 0

(3.2) − ε

a(x, t)
utt + d(x, t)ut −∆u

=
(

M(x, t)− P (x, t)u−
∫

Ω

S(ξ, t)u dξ

)
u+ +

ε

a(x, t)

subject to the (dynamic) boundary conditions:

∂u

∂ν
+ c(x, t)

∂u

∂t
+ h(x, t) u = 0 (x, t) ∈ ∂Ω× (0, T ),(3.3)

u(x, 0) = u(x, T ) x ∈ Ω.(3.4)

We can incorporate (3.3) as a natural condition in (3.2) by dividing (3.3) by c

and rewriting (3.2) in the form:

L1(u) M= −∇ ·
(
a∇u +

−→
b ut

)
− ∂

∂t

(
−−→b · ∇u + εut

)
(3.5)

+∇a · ∇u + adut +
(
∇ · −→b

)
ut −

∂
−→
b

∂t
· ∇u

= a

(
M − Pu−

∫
Ω

Su

)
u+ + ε

with the following choices: a(x, t) = 1/c(x, t) and
−→
b : Ω→Rn such that

−→
b ·−→ν =1

on ∂Ω, where c is extended to a positive smooth function on QT and −→ν denotes
the outward normal to ∂Ω). We recall that we are interested in the solution of
(3.3)–(3.5) in the limit as ε → 0, and that all data is assumed smooth, periodic.

Theorem 3.1. Problem (3.3)–(3.5) has a positive classical solution uε for
any ε > 0. This uε also solves (3.2)–(3.4).

Proof. First of all add a linear term aRu to both sides of (3.5) so that the
left hand side is coercive, and such that any regular solution of (3.3)–(3.5) is
positive in Ω× (0, T ) by the maximum principle.

Secondly, any solution of (3.3)–(3.5) is bounded above uniformly with respect
to ε ∈ (0, 1). Indeed, since u > 0, we have(

M +R−Pu−
∫

Ω

Su

)
u+

ε

a
≤ (M +R−Pu) u+

1
a0

≤ ‖M + R‖2
∞

4 minP
+

1
a0

M= K.

Now let z = z(x) > 0 be the solution of{ −∆z + Rz = K in Ω,

∂z

∂ν
= 0 on ∂Ω,

and observe that L1(z−u)+aR(z−u) ≥ 0, therefore u(x, t) ≤ z(x) again by the
maximum principle. In particular, the regularity estimates in [25] show that any
solution of (3.2)–(3.4) is bounded in Cα(QT ) with α and the bound depending
only on ε. For the reader’s convenience, we recall that, if ∂Ω is smooth and
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0 < α < 1, Cα(QT ) is the Banach space of continuous functions u:QT → R such
that

(3.6) 〈u〉(α)
QT

M= sup
|u(x, t)− u(x′, t′)|
|(x− x′, t− t′)|α

< +∞

where the supremum is taken over all (x, t), (x′, t′) ∈ QT such that |x−x′|+ |t−
t′| ≤ ρ0 for some fixed ρ0 > 0. Therefore we can consider the compact operator
T :Cα/2(QT ) → Cα/2(QT ) such that T (ξ) is the solution of L1(v) + aRv =
a(M + R − Pξ −

∫
Ω

Sξ)ξ+ + ε with (3.3)–(3.4). The existence of a solution
uε follows by the Schauder Fixed Point Theorem. Regularity is also immediate
from local elliptic estimates (see [25]) after we extend u to t ∈ [−T, 2T ] by
periodicity. Finally the equivalence of (3.3)–(3.5) to (3.2)–(3.4) is by direct
calculation, since we observe that (3.3) can be recovered as the natural boundary
condition associated with (3.5). �

We remark that during the preceding proof we obtained also:

Lemma 3.2. The solutions uε of (3.2)–(3.4) are bounded above uniformly
with respect to ε ∈ [0, 1].

We employ the results of Section 2 to obtain conditions to ensure that uε 6→ 0.
Specifically:

Lemma 3.3. If one of the following three conditions is satisfied:

(a) d = d(x) and M ≥ 0, c = c(x) and∫
QT

M >

∫ T

0

∫
∂Ω

h;

(b) d = d(x) and M ≥ 0 and the Dirichlet problem:{
−∆w −M(x)w = λ1w in Ω,

w = 0 on ∂Ω,

has least eigenvalue λ1 < 0 with eigenvector φ1, where

M(x) =
1
T

∫ T

0

M(x, t) dt and ‖φ‖L2(Ω) = 1;

(c) The quotient d/c is a function of x (we allow d ≡ 0) and

(3.7)
∫

QT

M

c
>

∫
QT

c

4

∣∣∣∣∇(1
c

)∣∣∣∣2 +
∫ T

0

∫
∂Ω

h

c
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then {uε} are bounded away from zero.

Proof. We first deal with cases (a) and (b). Since c = c(x) and a(x) =
1/c(x) in (3.2), we observe that uε satisfies:

−∆u =
(

M(x, t)− P (x, t)u−
∫

Ω

Su

)
u+ +

ε

a(x)
+

εutt

a(x)
− d(x)ut

in Ω, t ∈ (0, T ),
∂u

∂ν
+ h(x, t)u = −c(x)ut on ∂Ω, t ∈ (0, T ),

thus we can apply (2.3) in Lemma 2.1 with the choices A ≡ diag(1, . . . , 1),
−→
β ≡ 0, l ≡ 0, g = −c(x)∂uε

∂t and

f(x, t) =
(

M(x, t)− P (x, t)uε −
∫

Ω

Suε

)
u+

ε +
ε

a(x)
+

ε

a(x)
∂2uε

∂t2
− d(x)

∂uε

∂t

and, after integrating on (0, T ), we obtain by T -periodicity:

0 ≤
∫

QT

|∇φ|2 +
∫ T

0

∫
∂Ω

huεφ
2

uε + η

−
∫

QT

φ2

(
M − Puε −

∫
Ω

Suε

)
uε

uε + η
− ε

∫
QT

φ2

a(uε + η)

(
∂2uε

∂t2
+ 1
)

,

where the last integral can be dropped since:∫
QT

φ2

a(uε + η)
∂2uε

∂t2
=
∫

QT

φ2

a(uε + η)2

(
∂uε

∂t

)2

≥ 0.

In case (a) we choose φ ≡ 1 and let η → 0 to obtain

0 ≤
∫ T

0

∫
∂Ω

h−
∫

QT

(
M − Puε −

∫
Ω

Suε

)
and we observe that ‖uε‖L1 cannot tend to zero.

In case (b) we choose φ = φ1 and note that the Dirichlet condition eliminates
the boundary integrals. Hence we obtain, as η → 0,

0 ≤
∫

QT

|∇φ1|2 −
∫

QT

(
M − Puε −

∫
Ω

Suε

)
φ2

1

=
∫

QT

(M − λ1) φ2
1 −

∫
QT

(
M − Puε −

∫
Ω

Suε

)
φ2

1

and ‖uε‖L1 6→ 0 since λ1 < 0.
Finally, to deal with case (c) we choose a(x, t) = 1/c(x, t) in (3.5) or, equiv-

alently, in (3.2) and we apply Corollary 2.5 with

A = diag(a, . . . , a), a =
1
c
, −→z = ∇

(
1
c

)
,

r =
−M + Puε +

∫
Ω

Suε

c
, e =

d

c
+∇ · −→b , f = ε, k > 1
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and φ ≡ 1 to obtain

0 ≤
∫

QT

kc

4

∣∣∣∣∇(1
c

)∣∣∣∣2 +
∫ T

0

∫
∂Ω

h

c

−
∫

QT

1
c

(
M − Puε −

∫
Ω

Suε

)
+
∫

QT

(
d

c
+∇ · −→b

)
(uε)t

uε
.

Once again, since d/c+∇·−→b are functions purely of x, integration with respect
to t shows that the last term vanishes by periodicity. We thus conclude that
‖uε‖L1 6→ 0 if (3.7) holds and the result follows. �

We note that since uε are bounded above in L∞, then there is a subsequence
that converges strongly in L2(QT ) [26], while (3.2)–(3.4) indicate that {uε} are
also bounded in V 1,0

2 (see [26]) by integration. We recall that V 1,0
2 (QT ) can

be obtained by completing the Sobolev space W 1,1
2 (QT ) with respect to the

norm ess supt∈[0,T ] ‖u(·, t)‖L2(Ω) + ‖∇u‖L2(QT ). It follows that without loss of
generality we may assume the existence of a nontrivial u ≥ 0 such that uε → u

strongly in L2(QT ) and weakly in V 1,0
2 .

Let φ:QT → R be a smooth function such that φ(x, 0) = φ(x, T ), φt(x, 0) =
φt(x, T ). We recall that

−→
b · −→ν = 1 and integrate (3.2)–(3.4) to obtain:

−
∫

QT

uε
∂

∂t
(dφ) +

∫
QT

∇uε · ∇φ +
∫

QT

uε∇ ·
{
−→
b

[
hφ− ∂

∂t
(cφ)

]}
− ε

∫
QT

uε
∂2

∂t2

(
φ

a

)
+
∫

QT

∇uε ·
−→
b

[
hφ− ∂

∂t
(cφ)

]
=
∫

QT

[(
M − Puε −

∫
Ω

Suε

)
uε +

ε

a

]
φ.

If one of the conditions of Lemma 3.3 holds, we pass to the limit as ε → 0
and find the existence of a weak V2 solution to (3.1) after noting that functions
that are periodic as well as their derivatives are dense in the space of periodic
functions.

We have thus obtained:

Theorem 3.4. If one of the conditions of Lemma 3.3 holds, then there exists
a positive weak solution of problem (3.1).

We note some of the consequences of condition (c) of Lemma 3.3, and in
particular that if c = c(t), then (3.7) reduces to∫ T

0

1
c

(∫
Ω

M dx

)
dt >

∫ T

0

1
c

(∫
∂Ω

h dx

)
dt.

Whence we have
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Corollary 3.5. If ∫
Ω

M(x, t0) dx >

∫
∂Ω

h(x, t0)

for some t0 ∈ (0, T ) and recalling that the coefficients are smooth, then there
exists a positive function c = c(t) such that problem (3.1) has a positive solution
with d(x, t) = c(t) p(x) and any non-negative function p.

Observe that the condition on d/c will always hold if d ≡ 0.

4. Solution of the nonlinear periodic parabolic problem

We now consider the existence of a solution of the nonlinear version of prob-
lem (3.1) given by

(4.1)


d(x, t)ut −∇ · [A(x, t, u)∇u] =

(
M − Pu−

∫
Ω

Su

)
u in QT ,

〈A(x, t, u)∇u,−→ν 〉+ c(x, t)ut + h(x, t)u = 0 on ∂Ω× (0, T ),

u(x, 0) = u(x, T ) x ∈ Ω.

We recall that all data is smooth, c, d, P > 0, M,S, h ≥ 0 and that A is uniformly
elliptic and bounded:

a0

∣∣∣−→ξ ∣∣∣2 ≤ 〈A(x, t, u)
−→
ξ ,
−→
ξ
〉
≤ A0

∣∣∣−→ξ ∣∣∣2 for all suitable x, t, u,
−→
ξ

for some positive constants a0, A0. We do not require A to be symmetric,
although we believe the results to be new even in this case. We explicitly observe
that henceforth we assume d > 0.

We proceed by observing the following regularity results which will be useful
in the next section. Specifically consider the linear parabolic problem:

(4.2)

{
L(w) M= d(x, t)wt −∇ · [B(x, t)∇w] + N(x, t)w = f(x, t) in QT ,

〈B∇w,−→ν 〉+ c(x, t)wt + h(x, t)w = 0 on ∂Ω×(0, T )

with B, d, N , c, h smooth, d, c > 0, h ≥ 0, f ∈ L∞ and 〈B(x, t)
−→
ξ ,
−→
ξ 〉 ≥

a0|
−→
ξ |2 for all suitable x, t,

−→
ξ and a positive constant a0. B is not necessarily

symmetric. Existence, uniqueness and suitable regularity of the solution of (4.2)
follow from [31] and its references and can also be obtained by adaptations of
the techniques described in the book [26]. However, for the reader’s convenience
we list here the properties that we need. For 0 < α < 1, let Cα,α/2(QT ) denote
the Hölder space of continuous functions u:QT → R such that

sup
t∈[0,T ]

〈u( · , t)〉(α)
Ω + sup

x∈Ω

〈u(x, · )〉(α/2)
(0,T ) < +∞

(see (3.6) and [26]). In the sequel α will denote a generic positive constant that
may change from proof to proof or even within the same proof. Let N > 0 be
sufficiently large.
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Lemma 4.1. If the initial data w0 is smooth, the Initial Value Problem asso-
ciated with (4.2) has a weak solution w ∈ Cα,α/2(QT ) ∩ V 1,0

2 (QT ). If the initial
data satisfies w0 ≥ 0 and f ≥ 0, then w ≥ 0.

We then note that w is defined in QT for any T > 0 and furthermore:

Lemma 4.2. Let w be the solution of Lemma 4.1. Then

‖w‖L∞(Ω×[T/2,3T/2]) ≤ K[‖w‖L2(Ω×[T/4,7T/4]) + ‖f‖L∞(QT )].

Lemma 4.3. There exist constants K0 > 0, α > 0 such that

(4.3) ‖w‖Cα,α/2(Ω×[T/2,3T/2]) ≤ K0[‖w‖L2(Ω×(T/4,7T/4)) + ‖f‖L∞(QT )]

with K0 independent of the coefficient N of (4.2). If w ≥ 0 and f ≤ 0 then the
dependence on ‖f‖L∞(QT ) may be dropped.

Consider now the periodic problem associated with (4.2). For any w0 ∈
Cα(Ω) (α small) we put T to be the Poincaré map: T (w0) = w( · , T ), where
w is the (generalized) solution in Cα,α/2(QT ) ∩ V 1,0

2 (QT ) of the initial value
problem. We then have:

Theorem 4.4. Let N be large enough. Then the Poincaré map has a fixed
point, i.e. problem (4.2) has a unique solution in Cα,α/2(QT ). The coefficient α

only depends on the estimates for B(x, t), not on B itself.

Without loss of generality, suppose N > 0 and let w0 ∈ Cα(Ω). We recall
that the coefficient K0 in (4.3) is independent of N . Assume ‖w0‖Cα ≤ C0‖f‖L∞

for some C0 to be chosen below. The energy inequality yields

‖w‖L2(Ω×[T/4,7T/4]) ≤
B(1 + C0)

inf N
‖f‖L∞

for some constant B independent of w, f . Choosing N shows that T maps
a ball in Cα(Ω) to itself. It is easy to see that T is continuous and completely
continuous. The fixed point of T yields the desired solution, whose uniqueness
follows in the usual way by taking differences of two possible solutions.

Theorem 4.5. If one of the following three conditions is satisfied:

(a) d = d(x) and M ≥ 0, c = c(x) and∫
QT

M >

∫ T

0

∫
∂Ω

h;

(b) d = d(x) and M ≥ 0 and the Dirichlet problem: −A2
0

a0
∆w −M(x)w = λ1w in Ω,

w = 0 on ∂Ω,
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has least eigenvalue λ1 < 0 with eigenfunction φ1, where M(x) =
(1/T )

∫ T

0
M(x, t) dt and ‖φ1‖L2(Ω) = 1;

(c) The quotient d/c is a function of x and∫
QT

M

c
>

A2
0

a0

∫
QT

c

4

∣∣∣∣∇(1
c

)∣∣∣∣2 +
∫ T

0

∫
∂Ω

h

c
.

Then there exists a non-negative solution to problem (4.1).

Proof. We add the linear term +Nu to both sides of the equation of (4.1),
with N > 0 to be chosen later sufficiently large depending only on data, and for
v ∈ Cα,α/2(QT ) put u = Z(v) if and only if

dut −∇ · [A(x, t, Jη(v))∇u] + Nu =
(

M + N − Pv −
∫

Ω

Sv

)
v+

subject to the same boundary conditions of (4.1). Here Jη denotes a map:
Cα,α/2(QT ) → C∞(QT ) such that Jη(v) → v in Cα,α/2(QT ) as η → 0. Using the
previous regularity results, we view Z as a map Cα,α/2(QT ) → Cα,α/2(QT ), for
some small positive α, whose fixed points are the nonnegative solutions of (4.1).

Under the assumptions of the theorem, no solution u of

(4.4) dut −∇ · [A(x, t, Jη(u))∇u] =
(

M − Pu−
∫

Ω

Su

)
u + ε,

subject to the boundary conditions of (4.1) can have a small Cα,α/2-norm for
a fixed ε ≥ 0. In particular we show that the norm of the solutions u to (4.4)
are bounded from below independently of ε small. Indeed, in case (a) we apply
Lemma 2.1 with the choices φ ≡ 1,

−→
β ≡ 0, l ≡ 0, g = −cut and

f =
(

M − Pu

∫
Ω

Su

)
u + ε− dut,

we integrate (2.3) on (0, T ), use T -periodicity, let η → 0 and obtain∫
QT

M −
∫ T

0

∫
∂Ω

h ≤
∫

QT

(
Puε +

∫
Ω

Suε

)
≤ (‖P‖∞ + |Ω|‖S‖∞)‖uε‖L1 .

In case (b) we make the same choices as in case (a) except for φ = φ1 and
we get

‖φ1‖2
∞(‖P‖∞ + |Ω|‖S‖∞)‖uε‖L1 ≥

∫
QT

(
Puε +

∫
Ω

Suε

)
φ2

1

≥ −
∫

QT

〈AA−1
s A>∇φ1,∇φ1〉+

∫
QT

Mφ2
1

≥ −
∫

QT

A2
0

a0
|∇φ1|2 +

∫
QT

Mφ2
1 = −Tλ1.
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In case (c) we write (4.4) in the following way:

(4.5) −∇ ·
[
A

c
∇u

]
+
[
A>∇

(
1
c

)]
· ∇u =

(
M − Pu−

∫
Ω

Su

)
u

c
+

ε

c
− d

c
ut

and the boundary condition on ∂Ω× (0, T ) as〈
A

c
∇u,−→ν

〉
+

h

c
u = −ut,

therefore we can apply Lemma 2.1 with the choices φ ≡ 1, A/c in place of A,
−→
β = A>∇(1/c), l ≡ 0, h/c in place of h, g = −ut and f equal to the right
hand side of (4.5). Recalling that now d/c does not depend on t, the usual
computations with (2.3) lead to

‖P‖∞ + |Ω|‖S‖∞
min c

‖uε‖L1 ≥
∫

QT

Puε +
∫
Ω

Suε

c

≥
∫

QT

M

c
−
∫

QT

c

4

〈
A−1

s A>∇
(

1
c

)
, A>∇

(
1
c

)〉
−
∫ T

0

∫
∂Ω

h

c

≥
∫

QT

M

c
− A2

0

a0

∫
QT

c

4

∣∣∣∣∇(1
c

)∣∣∣∣2 − ∫ T

0

∫
∂Ω

h

c
.

In all three cases the norm ‖uε‖L1 is bounded away from zero uniformly
with respect to ε (and η), therefore, the same holds for the stronger norm
‖uε‖Cα,α/2(QT ). By the continuity of the Leray-Schauder degree, we conclude
that deg(u−Z(u), Br, 0) = 0 where Br is the ball of radius r in Cα,α/2(QT ) for
some small r > 0 independent of η.

In the same way, if

(4.6) dut −∇ · [A(x, t, Jη(u))∇u] + Nu = λ

[(
M + N − Pu−

∫
Ω

Su

)
u+

]
for some λ, 0 ≤ λ ≤ 1, then we show that ‖u‖L2 is bounded uniformly with
respect to λ (and η). Indeed, we multiply both sides of equation (4.6) by u and
integrate over QT using the boundary conditions and obtain∫

QT

(
M + N − Pu−

∫
Ω

Su

)
u2

≥ a0

∫
QT

|∇u|2 +
∫ T

0

∫
∂Ω

hu2 +
∫

QT

(
N − dt

2

)
u2 −

∫ T

0

∫
∂Ω

ctu
2

2
.

Now, let the function c be extended to a smooth T -periodic function on QT and
let

−→
b : Ω → Rn be a smooth vector field such that

−→
b · −→ν = 1 on ∂Ω. We can
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estimate the last integral in the preceding inequality as follows:∫
∂Ω

ctu
2

2
=
∫

∂Ω

ctu
2

2
−→
b · −→ν =

∫
Ω

u2∇ ·
(

ct

2
−→
b

)
+
∫

Ω

ctu
−→
b · ∇u

≤
∫

Ω

u2∇ ·
(

ct

2
−→
b

)
+ η

∫
Ω

|∇u|2 +
∫

Ω

c2
t |
−→
b |2

4η
u2

for any η > 0. Therefore, if we choose η < a0 and

N > sup
QT

[
dt

2
+∇ ·

(
ct

2
−→
b

)
+

c2
t |
−→
b |2

4η

]
,

we have that

0 <

∫
QT

(
M + N − Pu−

∫
Ω

Su

)
u2 ≤ (‖M‖∞ + N)‖u‖2

L2 −
minP

|QT |1/2
‖u‖3

L2

by Hölder’s inequality and, hence, ‖u‖L2 is bounded uniformly with respect to
λ ∈ [0, 1].

We conclude from (4.3) by periodicity that ‖u‖Cα,α/2(QT ) is bounded uni-
formly with respect to λ ∈ [0, 1]. It follows that deg(u − Z(u), BR \ Br, 0) = 1
and the existence of a nontrivial nonnegative solution to (4.1) is immediate by
the properties of the Leray-Schauder degree and a limit argument as η → 0 (we
recall that the obtained bounds on u are uniform with respect to η). �

Remark 4.6. If A(x, t, u) is symmetric then the constant A2
0/a0 in condi-

tions (b) and (c) can be replaced by A0.
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