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A GENERALIZATION
OF NADLER’S FIXED POINT THEOREM

AND ITS APPLICATION
TO NONCONVEX INTEGRAL INCLUSIONS

Hemant Kumar Pathak — Naseer Shahzad

Abstract. In this paper, a generalization of Nadler’s fixed point theorem
is presented. In the sequel, we consider a nonconvex integral inclusion and

prove a Filippov type existence theorem by using an appropriate norm on

the space of selection of the multifunction and a H+-type contraction for
set-valued maps.

1. Introduction

Dynamical systems described by differential equations with continuous right-
hand sides was the areas of vigorous steady in the later half of the 20th century
in applied mathematics, in particular, in the study of viscous fluid motion in
a porous medium, propagation of light in an optically non-homogeneous medium,
determining the shape of a solid of revolution moving in a flow of gas with least
resistance, etc. Euler’s equation plays a key role in dealing with the existence
of the solution of such problems. On the other hand, Filipopov [6] has devel-
oped a solution concept for differential equations with a discontinuous right-hand
side. In practice, such dynamical systems do arise and require analysis. Exam-
ples of such systems are mechanical systems with Coulomb friction modeled as
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a force proportional to the sign of a velocity, systems whose control laws have
discontinuities.

In a parallel development, the study of fixed points for multivalued con-
traction maps using the Hausdoff metric was initiated by Nadler [13]. Later,
an interesting and rich fixed point theory for such maps has been developed,
see, for instance, the work of Feng and Liu [5], Kaneko [7], Klim and War-
dowski [8], Lim [10], Lami Dozo [11], Mizoguchi and Takahashi [12], Pathak and
Shahzad [14], Reich [16], [17], Suzuki [18], and many others. For details, see [15].

2. Preliminaries and definitions

Let (X, d) be a metric space. Let CB(X) and C(X) denote the collection of
all nonempty closed and bounded subsets of X and the collection of all compact
subsets of X, respectively.

For A,B ∈ CB(X), let

H(A,B) = max{ρ(A,B), ρ(B,A)}, H+(A,B) =
1
2
{ρ(A,B) + ρ(B,A)},

where ρ(A,B) = sup
x∈A

d(x,B) and d(x,B) = inf
y∈B

d(x, y). It is well known that H

is a metric on CB(X). Such a map H is called Hausdorff metric induced by d. In
Proposition 2.1 below we show that H+ is also a metric on CB(X). For A ⊂ X,
A denotes the closure of A.

A set-valued mapping T :X → CB(X) is said to be a

(i) multi-valued contraction mapping if there exists a fixed real number L,
0 < L < 1 such that

(2.1) H(Tx, Ty) ≤ Ld(x, y)

(ii) multi-valued nonexpansive mapping if

(2.2) H(Tx, Ty) ≤ d(x, y) for all x, y ∈ X.

Proposition 2.1. H+ is a metric on CB(X).

Proof. Let A,B ∈ CB(X) such that H+(A,B) = 0. Then this is equiv-
alent to ρ(A,B) = 0 and ρ(B,A) = 0; i.e. inf

y∈B
d(x, y) = 0 for any x ∈ A and

inf
x∈A

d(y, x) = 0 for any y ∈ B. Therefore, these are equivalent to x ∈ B = B for

any x ∈ A, and y ∈ A = A for any y ∈ B. It follows that A ⊂ B and B ⊂ A.
Hence A = B.

The symmetry of the function H+ follows directly from the definition.
To show the triangle inequality, let A,B,C ∈ CB(X). Then for any (x, y, z) ∈

A×B × C, we have
d(x, z) ≤ d(x, y) + d(y, z),
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whence
inf
z∈C

d(x, z) ≤ d(x, y) + inf
z∈C

d(y, z) ≤ d(x, y) + ρ(B,C).

Since the above inequality holds for any y ∈ B, we get

inf
z∈C

d(x, z) ≤ inf
y∈B

d(x, y) + ρ(B,C) ≤ ρ(A,B) + ρ(B,C).

Hence

(2.3) ρ(A,C) ≤ ρ(A,B) + ρ(B,C).

Interchanging the roles of A and C, we get

(2.4) ρ(C,A) ≤ ρ(C,B) + ρ(B,A).

Adding (2.3) and (2.4), and then dividing by 2, we get

(2.5) H+(A,C) ≤ H+(A,B) +H+(B,C).

Notice that the two metrics H and H+ are equivalent (see [9]) since

1
2
H(A,B) ≤ H+(A,B) ≤ H(A,B). �

It is routine to prove the following:

Proposition 2.2. Let (X, ‖ · ‖) be a normed linear space. For any λ (real
or complex), A,B ∈ CB(X)

(i) H+(λA, λB) = |λ|H+(A,B),
(ii) H+(A+ a,B + a) = H+(A,B).

In a classical approach one can easily prove Theorems 2.3 and 2.5 stated
below (see, also Banaś and Goebel [1]).

Theorem 2.3. If a, b ∈ X and A,B ∈ CB(X), then the relations:

(1) d(a, b) = H+({a}, {b}),
(2) A ⊂ S(B; r1), B ⊂ S(A; r2) ⇒ H+(A,B) ≤ r where r = (r1 + r2)/2,

and
(3) H+(A,B) < r ⇒ ∃r1, r2 > 0 such that (r1 + r2)/2 = r and A ⊂

S(B; r1), B ⊂ S(A; r2) hold.

Proof. The relation (1) follows immediately from the definition of the func-
tion H+.

To prove relation (2), from the inclusions A ⊂ S(B; r1), B ⊂ S(A; r2), it
follows that

∀x ∈ A ∃yx ∈ B such that d(x, yx) ≤ r1

and
∀y ∈ B ∃xy ∈ A such that d(xy, y) ≤ r2.
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From here it follows that

inf
y∈B

d(x, y) ≤ r1 for every x ∈ A and inf
x∈A

d(x, y) ≤ r2 for every y ∈ B.

Hence

sup
x∈A

(
inf
y∈B

d(x, y)
)
≤ r1 and sup

y∈B

(
inf
x∈A

d(x, y)
)
≤ r2.

Therefore H+(A,B) ≤ r where r = (r1 + r2)/2.
To prove relation (3), let H+(A,B) = k < r. Then there exist k1, k2 > 0

such that k = (k1 + k2)/2 and

sup
x∈A

(
inf
y∈B

d(x, y)
)

= k1, sup
y∈B

(
inf
x∈A

d(x, y)
)

= k2.

As 0 < k < r, it follows that there exist r1, r2 > 0 such that k1 < r1, k2 < r2
and r = (r1 + r2)/2. Then from the above inequalities it follows that

inf
y∈B

d(x, y) ≤ k1 < r1 for every x ∈ A

and

inf
x∈A

d(x, y)) ≤ k2 < r2 for every y ∈ B.

Then, for any x ∈ A there exists yx ∈ B such that

d(x, yx) < inf
y∈B

d(x, y) + r1 − k1 ≤ r1.

and, for any y ∈ B, there exists xy ∈ A such that

d(xy, y) < inf
x∈A

d(x, y) + r2 − k2 ≤ r2.

Hence, for any x ∈ A and y ∈ B it follows that

x ∈
⋃
y∈B

S(y; r1) and y ∈
⋃
x∈A

S(x; r2),

that is

A ⊂ S(B; r1) and B ⊂ S(A; r2). �

Remark 2.4. From the relations (2) and (3) it follows immediately that the
relations:

(2′) A ⊂ S(B; r1), B ⊂ S(A; r2) ⇒ H+(A,B) ≤ r where r = (r1 + r2)/2,
and

(3′) H+(A,B) < r ⇒ ∃r1, r2 > 0 such that (r1 + r2)/2 = r and A ⊂
S(B; r1), B ⊂ S(A; r2) hold.
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Theorem 2.5. If A,B ∈ CB(X), then the equalities:

(4) H+(A,B) = inf{r > 0 : A ⊂ S(B; r1), B ⊂ S(A; r2), r = (r1 + r2)/2},
(4′) H+(A,B) = inf{r > 0 : A ⊂ S(B; r1), A ⊂ S(B; r2), r = (r1 + r2)/2}

hold.

Proof. From the relation (2′) it follows that

H+(A,B) ≤ inf{r > 0 : A ⊂ S(B; r1), A ⊂ S(B; r2), r = (r1 + r2)/2}.

To prove the opposite inequality, let H+(A,B) = k and let t > 0. Then
H+(A,B) < k+ t. From (3) it follows that there exist t1, t2 > 0 with (t1 + t2)/2
= t such that A ⊂ S(B; k + t1) and B ⊂ S(A; k + t2). Hence

{r > 0 : A ⊂ S(B; r1), B ⊂ S(A; r2)}
⊃ {k + t : t > 0, A ⊂ S(B; k + t1), B ⊂ S(A; k + t2)}.

From this inclusion relation it follows that

inf{r > 0 : A ⊂ S(B; r1), B ⊂ S(A; r2)} ≤ inf{k + t : t > 0} = k = H+(A,B).

In conclusion we have

H+(A,B) = inf{r > 0 : A ⊂ S(B; r1), B ⊂ S(A; r2), r = (r1 + r2)/2}. �

Theorem 2.6. If the metric space (X, d) is complete, then so is (CB(X),
H+) and also C(X) is a closed subspace of (CB(X),H+).

Proof. Let (X, d) be a complete metric space and let {An}n∈N be a Cauchy
sequence in CB(X). We claim that the sequence {An}n∈N is convergent to the
set B = LsAn = {x ∈ X : ∀ε > 0, ∀m ∈ N ∃n ∈ N, n ≥ m such that
S(x; ε) ∩An 6= ∅}.

Since the sequence {An}n∈N is Cauchy, for any ε > 0 there exists m(ε) ∈ N
such that

H+(An, Am(ε)) < ε for any n ∈ N, n ≥ m(ε).

Hence, by relation (4), it follows that there exist ε1, ε2 > 0 with (ε1 + ε2)/2 = ε

and m(ε1),m(ε2) ∈ N such that min{m(ε1),m(ε2)} ≥ m(ε), An ⊂ S(Am(ε1); ε1)
for any n ∈ N, n ≥ m(ε1) and Am(ε2) ⊂ S(An; ε2) for any n ∈ N, n ≥ m(ε2).

From the properties of upper topological limit Ls it follows that B ⊂
⋃
k≥n

Ak

for any n ∈ N. Therefore B ⊂ S(Am(ε1); ε1), whence the relation:

(2.6) B ⊂ S(Am(ε1); 4ε1)

holds. On the other hand, taking εk = ε1/2k, k ∈ N, it follows that there exists
nk = m(εk) ∈ N such that

H+(An, Ank
) < εk, for all n ≥ nk.
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Next, we choose nk such that the sequence {nk}k∈N to be strictly increasing.
Let p ∈ An0 = Am(ε1) arbitrarily, and let there be the sequence {pnk

}k∈N such
that pn0 = p and pnk

∈ Ank
with the property that d(pnk

, pnk−1) < ε1/2k−2.
It follows that the sequence {pnk

}k∈N is a Cauchy sequence in the complete
metric space (X, d). Hence it is convergent to a point l ∈ X.

Since d(pnk
, pn0) < 4 ε1, it follows that d(l, p) ≤ 4 ε1. Therefore inf

y∈B
d(p, y) ≤

4 ε1; that is, p ∈ S(B; 4ε1), which implies that:

(2.7) An0 ⊂ S(B; 4 ε1).

Keeping in view the relations (2.6) and (2.7), (3) yields H+(An0 , B) ≤ 4 ε1.
Taking into account the fact that H+ is a metric on CB(X), we get

H+(An, B) ≤ H+(An, An0) +H+(An0 , B) < 5 ε1,

for any n ≥ m(ε1) = n0. Thus, the sequence {An}n∈N converges to B = LsAn;
that is, (CB(X),H+) is a complete metric space. This proves the first assertion
of our theorem.

To prove the second assertion, we just require to show that C(X) is a complete
subspace of (CB(X),H+). Let {An}n∈N be a Cauchy sequence in C(X). Then,
{An}n∈N is a Cauchy sequence in CB(X). Let A ∈ CB(X) be such that A =
lim
n→∞

An. Then for any ε > 0 there exists m(ε) ∈ N such that

H+(An, A) <
ε

2
for all n ≥ m(ε), n ∈ N.

Hence, by relation (4), it follows that there exist ε1, ε2 > 0 with (ε1 + ε2)/2 = ε

and m(ε1),m(ε2) ∈ N such that min{m(ε1),m(ε2)} ≥ m(ε), An ⊂ S(A; ε1/2)
for any n ∈ N, n ≥ m(ε1) and A ⊂ S(An; ε2/2) for any n ∈ N, n ≥ m(ε2).

Suppose n0 ≥ m(ε2) is a fixed natural number. Then A ⊂ S(An0 ; ε2/2).
Since An0 is compact in X, it follows that it is totally bounded. Hence there

exist xε2i , i ∈ 1, p such that An0 ⊂
p⋃
i=1

S(xε2i ; ε2/2), whence A ⊂
p⋃
i=1

S(xε2i ; ε2).

Therefore A ∈ C(X). �

In [13], S.B. Nadler proved the following result, which he announced earlier.

Theorem 2.7. Let (X, d) be a complete metric space and T :X → CB(X)
a multi-valued contraction mapping. Then T has a fixed point.

In this paper, we intend to generalize this result by weakening the multi-
valued contraction. Our main results are summarized in Section 3. Subsequently,
in Section 4, first we introduce the concept of H+-type nonexpansive mappings,
then we extend some fixed point results of Lami Dozo [11] for H+-type non-
expansive mappings. Finally, in Section 5, we consider a nonconvex integral
inclusion and prove a Filippov type existence theorem by using an appropriate
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norm on the space of selection of the multifunction and a H+-type contraction
for set-valued maps.

3. Main results

Now we state and prove our main result. We begin our discussion with the
following definition.

Definition 3.1. Let (X, d) be a complete metric space. A multi-valued
map T : X → CB(X) is called H+-contraction if

(1) there exists L in (0, 1) such that

H+(Tx, Ty) ≤ Ld(x, y) for everyx, y ∈ X,

(2) for every x in X, y in T (x) and ε > 0, there exists z in T (y) such that

d(y, z) ≤ H+(T (y), T (x)) + ε.

Now we state and prove our main result.

Theorem 3.2. Every H+-type multi-valued contraction mapping T :X →
CB(X) with Lipschitz constant L < 1 has a fixed point.

Proof. Let ε > 0 be given. Let x0 ∈ X be arbitrary. Fix an element x1 in
Tx0. From (2) it follows that we can choose x2 ∈ Tx1 such that

(3.1) d(x1, x2) ≤ H+(Tx0, Tx1) + ε

In general, if xn be chosen, then we choose xn+1 ∈ Txn such that

(3.2) d(xn, xn+1) ≤ H+(Txn−1, Txn) + ε.

Set ε = (1/
√
L− 1)H+(Txn−1, Txn). Then from (3.2), it follows that

d(xn, xn+1) ≤ H+(Txn−1, Txn) +
(

1√
L
− 1)H+(Txn−1, Txn

)
=

1√
L
H+(Txn−1, Txn).

Thus, we have

(3.3)
√
Ld(xn, xn+1) ≤ H+(Txn−1, Txn).

Now, from (1) we have
√
Ld(xn, xn+1) ≤ Ld(xn−1, xn) = (

√
L)2 d(xn−1, xn).

Hence, for all n ∈ N we have

d(xn, xn+1) ≤
√
Ld(xn−1, xn).
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Repeating the same argument n-times we get

d(xn, xn+1) ≤ Ln/2 d(x0, x1).

This implies that {xn} is a Cauchy sequence. Since X is complete, there exists
u ∈ X such that lim

n→∞
xn = u.

Since
1
2
{ρ(Txn, Tu) + ρ(Tu, Txn)} = H+(Txn, Tu) ≤ Ld(xn, u),

it follows that
lim inf
n→∞

{ρ(Txn, Tu) + ρ(Tu, Txn)} = 0.

Since

lim inf
n→∞

ρ(Txn, Tu) + lim inf
n→∞

ρ(Tu, Txn) ≤ lim inf
n→∞

{ρ(Txn, Tu) + ρ(Tu, Txn)},

we have
lim inf
n→∞

ρ(Txn, Tu) + lim inf
n→∞

ρ(Tu, Txn) = 0.

This implies that
lim inf
n→∞

ρ(Txn, Tu) = 0.

Since lim
n→∞

d(xn+1, u) = 0 exists, and

d(u, Tu) ≤ ρ(Txn, Tu) + d(xn+1, u),

it follows that

d(u, Tu) ≤ lim inf
n→∞

[ρ(Txn, Tu) + d(xn+1, u)]

= lim inf
n→∞

ρ(Txn, Tu) + lim
n→∞

d(xn+1, u) = 0.

This implies that d(u, Tu) = 0, and since Tu is closed it must be the case that
u ∈ Tu. �

Remark 3.3. As max{a, b} ≥ 1
2{a + b} for all a, b ≥ 0, it follows that

multi-valued contraction (2.1) always implies multi-valued H+-contraction but
the converse implication need not be true.

To see this, we observe the following:

Example 3.4. Let X = {0, 1/4, 1} and d:X×X → R be a standard metric.
Let T :X → CB(X) be such that

T (x) =


{0} for x = 0,

{0, 1/4} for x = 1/4,

{0, 1} for x = 1.

It is routine to check that multi-valued H+-contraction condition (1) is satis-
fied for all x, y ∈ X and for any L ∈ [2/3, 1). Further, we see that for every x ∈ X,
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y ∈ T (x) and ε > 0, there exists z ∈ T (y) such that d(y, z) ≤ H+(T (y), T (x))+ε.
Indeed,

(i) if x = 0, y ∈ T (0) = {0}, ε > 0, there exists z ∈ T (y) = {0} such that

0 = d(y, z) ≤ H+(T (y), T (x)) + ε,

(iia) if x = 1/4, y ∈ T (x) = T (1/4) = {0, 1/4}, say y = 0, ε > 0, there exists
z ∈ T (y) = {0} such that

0 = d(y, z) <
1
8

+ ε = H+(T (y), T (x)) + ε,

(iib) if x = 1/4, y ∈ T (x) = T (1/4) = {0, 1/4}, say y = 1/4, ε > 0, there
exists z(= 1/4) ∈ T (y) = {0, 1/4} such that

0 = d(y, z) < 0 + ε = H+(T (y), T (x)) + ε,

(iiia) if x = 1, y ∈ T (x) = T (1) = {0, 1}, say y = 0, ε > 0, there exists
z ∈ T (y) = {0} such that

0 = d(y, z) <
1
2

+ ε = H+(T (y), T (x)) + ε,

(iiib) if x = 1, y ∈ T (x) = T (1) = {0, 1}, say y = 1, ε > 0, there exists
z(= 1) ∈ T (y) = {0, 1} such that

0 = d(y, z) < 0 + ε = H+(T (y), T (x)) + ε.

Thus the condition (2) is also satisfied. Clearly, 0, 1/4, 1 are fixed points of T .
However, we observe that the map T does not satisfy the assumptions of Theo-
rem 2.7. Indeed, for x = 0 and y = 1 we have

H(T (0), T (1)) = H({0}, {0, 1}) = 1 > Ld(0, 1), for all L ∈ (0, 1).

Example 3.5. Let X = [0, 2
√

2/3] ∪ {1} and d:X ×X → R be a standard
metric. Let T :X → CB(X) be such that

T (x) =


[

11x
50(x+ 1)

,
11
50

]
for x ∈

[
0,

2
√

2
3

]
,{

11
50

}
for x = 1.

Set L = 0.99. We discuss the following cases:
Case 1. When x, y ∈ [0, 2

√
2/3], y > x, we note that

H+(Tx, Ty) =
11
100

· y − x

1 + x+ y + xy

≤ 11
100

· y − x

1 + y − x
< 0.99

y − x

1 + y − x
≤ 0.99 d(x, y).
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Case 2. When x ∈ [0, 2
√

2/3] and y = 1, we note that

H+(Tx, Ty) =
11
100

∣∣∣∣1− x

1 + x

∣∣∣∣ ≤ 0.99(1− x)

is true if
11
100

· 1
1 + x

≤ 0.99(1− x)

i.e. if 1/9 ≤ 1− x2, i.e. if 0 ≤ x ≤ 2
√

2/3.
To check the condition (2), we consider the following cases:
Case (i). For any x ∈ [0, 2

√
2

3 ], y ∈ Tx = [ 11x
50(x+1) ,

11
50 ] and ε > 0 there exists

z(= y) ∈ Ty = [ 11y
50(y+1) ,

11
50 ] such that

0 = d(y, z) ≤ 11
100

· y − x

1 + x+ y + xy
+ ε = H+(T (y), T (x)) + ε.

Note that
11y

50(y + 1)
≤ 11y

50
≤ y ≤ 11

50
i.e. y ∈ Ty.

Case (ii). For x = 1, y ∈ Tx = { 11
50} i.e. y = 11

50 and ε > 0, there exists
z(= 792

6100 ) ∈ Ty = [ 121
3050 ,

11
50 ] such that

d(y, z) =
11
122

<
11
122

+ ε = H+(T (y), T (x)) + ε.

This proves the condition (2). Thus, all the requirements of Theorem 3.1 are
satisfied and 0 ∈ T0 is the unique fixed point of T . However, we note that when
y = 1 and x→ 2

√
2/3 from the left, then

H(Tx, Ty) =
11x

50(1 + x)
> 1− x.

Thus, T does not satisfy the assumptions of Theorem 2.7.

Proposition 3.6. Suppose X and CB(X) are as in the preceding theorem,
and let Ti:X → CB(X), i = 1, 2, be two H+-type multi-valued contraction map-
pings with Lipschitz constant L < 1. Then if Fix(T1) and Fix(T2) denote the
respective fixed point sets of T1 and T2,

H+(Fix(T1),Fix(T2)) ≤
1

1−
√
L

sup
x∈X

H+(T1x, T2x).

Proof. Let ε > 0 be given. Select x0 ∈ Fix(T1), and then select x1 ∈ T2x0.
From (2) it follows that we can choose x2 ∈ T2x1 such that

d(x1, x2) ≤ H+(T2x0, T2x1) + ε.

Now define {xn} inductively so that xn+1 ∈ T2(xn) and

(3.4) d(xn, xn+1) ≤ H+(T2xn−1, T2xn) + ε.



A Generalization of Nadler’s Fixed Point Theorem 217

Set ε =
(

1√
L
− 1

)
H+(T2xn−1, T2xn). Then from (3.4), it follows that

d(xn, xn+1) ≤ H+(T2xn−1, T2xn) +
(

1√
L
− 1)H+(T2xn−1, T2xn

)
=

1√
L
H+(T2xn−1, T2xn).

Thus, we have

(3.5)
√
Ld(xn, xn+1) ≤ H+(T2xn−1, T2xn).

Now applying (1) for T2 we have
√
Ld(xn, xn+1) ≤ Ld(xn−1, xn) = (

√
L)2 d(xn−1, xn).

Hence, for all n ∈ N we have

d(xn, xn+1) ≤
√
Ld(xn−1, xn).

Repeating the same argument n-times we get

d(xn, xn+1) ≤ Ln/2 d(x0, x1).

This implies that {xn} is a Cauchy sequence with limit, say z. Since T2 is
continuous, we have

lim
n→∞

H(T2xn, T2z) = 0.

Also, since xn+1 ∈ T2(xn) it must be the case that z ∈ T2z; that is, z ∈ Fix(T2).
Furthermore, using (3.5) we have

d(x0, z) ≤
∞∑
n=0

d(xn+1, xn) ≤ (1 +
√
L+ (

√
L)2 + . . . )d(x1, x0)

≤ 1
1−

√
L

(H+(T2x0, T1x0) + ε).

Reversing the roles of T1 and T2 and repeating the argument as above leads to
the conclusion that, for each y0 ∈ Fix(T2), there exist y1 ∈ T1y0 and w ∈ Fix(T1)
such that

d(y0, w) ≤ 1
1−

√
L

(H+(T1y0, T2y0) + ε).

Since ε > 0 is arbitrary, the conclusion follows. �

Theorem 3.7. Suppose X and CB(X) are as in the preceding theorem, and
let Ti:X → CB(X), i = 1, 2, . . . be a sequence of H+-type multi-valued con-
traction mappings with Lipschitz constant L < 1. If lim

n→∞
H+(Tnx, T0x) = 0

uniformly for x ∈ X, then

lim
n→∞

H+(Fix(Tn),Fix(T0)) = 0.
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Proof. Let ε > 0 be given. Since lim
n→∞

H+(Tnx, T0x) = 0 uniformly for
x ∈ X, it is possible to choose N ∈ N, so that for n ≥ N ,

sup
x∈X

H+(Tnx, T0x) < (1−
√
L)ε.

By Proposition 3.6, H+(Fix(Tn),Fix(T0)) < ε for all n ≥ N . Hence the conclu-
sion follows. �

4. H+-type nonexpansive mappings

In this section, first we introduce the class of H+-type nonexpansive map-
pings. Then we apply the main result of preceding section to obtain fixed points
of H+-type nonexpansive mappings in its natural terrain; i.e. Banach space
satisfying Opial’s condition.

Definition 4.1. Let (X, ‖ · ‖) be a Banach space. A multi-valued map
T :X → CB(X) is called H+-nonexpansive if

(1′) H+(Tx, Ty) ≤ ‖x− y‖ for every x, y ∈ X,
(2′) for every x ∈ X, y ∈ T (x) and ε > 0, there exists z ∈ T (y) such that

‖y − z‖ ≤ H+(T (y), T (x)) + ε.

In the following K is a nonempty convex weakly compact subset of a Banach
space X. X is said to satisfy Opial’s condition if for each x0 in X and each
sequence {xn} converging weakly to x0 (i.e. xn ⇀ x0), the inequality

lim inf
n→∞

‖xn − x‖ > lim inf
n→∞

‖xn − x0‖

holds for all x 6= x0.
We will say that a mapping T :X → 2X is demiclosed if

xn ⇀ x and yn ∈ Txn → y ⇒ y ∈ Tx.

Proposition 4.2. Let T :K → C(X) be H+-type multi-valued nonexpansive
mapping and let X satisfy Opial’s condition. Then I − T is demiclosed.

Proof. Since the domain of I − T is weakly compact it is enough to prove
that the graph of I − T is sequentially closed. Let (xn, yn) ∈ G(I − T ) where
G(I − T ) denotes the graph of I − T such that

xn ⇀ x and yn → y.

Then x ∈ K and we have to prove that y ∈ (I − T )x. Since yn ∈ xn − Txn,
yn = xn − zn for some zn ∈ Txn.

By (2′), for zn ∈ Txn and ε > 0, we can choose z′n ∈ Tx such that

‖zn − z′n‖ ≤ H+(Txn, Tx) + ε.
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Since T is nonexpansive, the above inequality yields

(4.1) ‖zn − z′n‖ ≤ ‖xn − x‖+ ε.

Since ε > 0 is arbitrary, so on letting ε → 0 and taking lim inf on both sides
of (4.1), we have

(4.2) lim inf
n→∞

‖xn − x‖ ≥ lim inf
n→∞

|zn − z′n‖ ≥ lim inf
n→∞

‖xn − yn − z′n‖.

But Tx is compact and yn → y. Hence there exists a subsequence of {z′n}, again
denoted by {z′n}, converging to z ∈ Tx. Hence, from (4.2) we get

(4.3) lim inf
n→∞

‖xn − x‖ ≥ lim inf
n→∞

‖xn − y − z‖.

By Opial’s condition we have y + z = x. Thus y = x− z ∈ x− Tx. �

Let K be a nonempty convex subset of a Banach space X. Let T : K → C(X)
be a multi-valued mapping. For a fixed x0 ∈ K and any x ∈ K, we define the
segment [x, x0] by [x, x0] = {y ∈ K : y = λx+ (1− λ)x0, 0 ≤ λ ≤ 1}. We call T
to be x0-redundant if Ty = Tx for all y ∈ [x, x0].

Theorem 4.3. Let X be a Banach space which satisfies Opial’s condition,
K is a nonempty convex weakly compact subset of X and let T :K → C(K) be
a H+-type multi-valued nonexpansive mapping. If there exists x0 ∈ K such that
T is x0-redundant, then T has a fixed point in K.

Proof. Let {kn} be a sequence of real numbers such that 0 < kn < 1 and
kn → 1 as n→∞. Define

(4.4) Tnx = knTx+ (1− kn)x0 for all x ∈ K and n ∈ N.

By Proposition 2.2 (i) and (ii), for any x, y ∈ K and n ∈ N we have

H+(Tn(x)), Tn(y)) = knH
+(T (x), T (y)) ≤ kn‖x− y‖.

Now let ε > 0 be given. By(2′), corresponding to any y in T (x) i.e. in turn, for
any y′ = kny+(1−kn)x0 in Tn(x), there exists z ∈ T (y) and, in turn, there exists
z′ = knz + (1− kn)x0 in Tn(y), and hence, in Tn(y′) = knT (y′) + (1− kn)x0 =
knT (kny + (1− kn)x0) + (1− kn)x0 = knT (y) + (1− kn)x0 = Tn(y) such that

‖y − z‖ ≤ H+(T (y), T (x)) + ε.

Thus, for all n ∈ N, this yields

‖y′ − z′‖ = kn‖y − z‖ ≤ kn(H+(T (y), T (x)) + ε)

= H+(Tn(y), Tn(x)) + knε < H+(Tn(y′), Tn(x)) + ε.

Hence Tn is a H+-type multivalued kn-contraction mapping for all n ∈ N. Also,
since K is a complete metric space, therefore it follows from Theorem 3.2, that
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for each n ∈ N, there exists xn ∈ K such that xn ∈ Tn(xn). Since K is weakly
compact, there exists a subsequence of {xn}, again denoted by {xn}, converging
weakly to x ∈ K. From (4.4), there exists zn ∈ Txn such that

xn = knzn + (1− kn)x0 for all n ∈ N.

It then follows that
‖xn − zn‖ = (1− kn)‖x0 − zn‖.

Hence yn = xn − zn ∈ (I − T )xn and yn → 0 as n → ∞. This means that
(xn, yn) ∈ G(I − T ) and xn ⇀ x, yn → 0. So by demiclosedness of (I − T ), 0 ∈
(I − T )x i.e. x ∈ Tx. �

5. Existence theorem for nonconvex integral inclusions

In this section, we shall consider a nonconvex integral inclusion and prove
a Filippov type existence theorem by using an appropriate norm on the space of
selection of the multifunction and a H+-type contraction for set-valued maps.

Let I := [0, T ], T > 0 and L(I) denote the σ-algebra of all Lebesgue measur-
able subsets of I. Let X be a real separable Banach space with the norm ‖ · ‖.
Let P(X) denote the family of all nonempty subsets of X and B(X) the family
of all Borel subsets of X.

Throughout this section, let C(I,X) denote the Banach space of all con-
tinuous functions x( · ): I → X endowed with the norm ‖x( · )‖C = sup

t∈I
‖x(t)‖.

Consider the following integral inclusion

x(t) = λ(t) +
∫ t

0

[a(t, s) g(t, u(s)) + f(t, s, u(s))] ds,(5.1)

u(t) ∈ F (t, V (x)(t)) a.e. (I := [0, T ]),(5.2)

where λ( · ): I → X, g( · , · ): I ×X → X, F ( · , · ): I ×X → P(X), f( · , · , · ): I ×
I×X → X, V : C(I,X) → C(I,X), a( · , · ): I×I → R = (−∞,∞) are given map-
pings. In the sequel, we also use the following: For any x ∈ X, λ ∈ C(I,X), σ ∈
L1(I, E), we define the set-valued maps Mλ,σ(t) := F (t, V (xσ,λ)(t)), t ∈ I, Tλ(σ)
:= {ψ(·) ∈ L1(I, E) : ψ(t) ∈Mλ,σ(t) a.e. (I)}.

In order to study problem (5.1)–(5.2) we introduce the following assumption.

Hypothesis 5.1. Let F ( · , · ): I × X → P(X) be a set-valued map with
nonempty closed values that verify:

(H1) The set-valued map F ( · , · ) is L(I)⊗ B(X) measurable.
(H2) There exists L( · ) ∈ L1(I,R+) such that, for almost all t ∈ I, F (t, · ) is

L(t)-Lipschitz in the sense that:

(C1) H+(F (t, x), F (t, y)) ≤ L(t) ‖x− y‖ for all x, y ∈ X,
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and for any x, y ∈ X, w ∈ F (t, x) and ε > 0, there exists z ∈ F (t, y)
such that:

(C2) ‖w − z‖ ≤ H+(F (t, x), F (t, y)) + ε

and Tλ( · ) satisfies the condition: For any σ ∈ L1(I, E), σ1 ∈ Tλ(σ)
and any given ε > 0 there exists σ2 ∈ Tλ(σ1) such that:

(C3) ‖σ1 − σ2‖1 ≤ H+(Tλ(σ), Tλ(σ1)) + ε for almost all t ∈ I.

(H3) The mappings f : I × I × X → X, g, λ: I × X → X are continuous,
V : C(I,X) → C(I,X) and there exist the constants M1,M2,M3 > 0
such that:

‖f(t, s, u1)− f(t, s, u2)‖ ≤M1‖u1 − u2‖, for all u1, u2 ∈ X,
‖g(s, u1)− g(s, u2)‖ ≤M2‖u1 − u2‖, for all u1, u2 ∈ X,

‖V (x1)(t)− V (x2)(t)‖ ≤M3‖x1(t)− x2(t)‖, for all t ∈ I,
and all x1, x2 ∈ C(I,X).

(H4) Let a: I × I → R be continuous and satisfy the uniform Hölder’s conti-
nuity condition in the first and second arguments with the exponent ρ;
i.e. there exists a positive number b such that

|a(t1, s1)− a(t2, s2)| ≤ b(|t1 − t2|ρ + |s1 − s2|ρ)

for all t1, t2, s1, s2 ∈ I and |a(t, s)| ≤ 2bT+ |a(0, 0)| = M4 for all t, s ∈ I
and 0 < ρ ≤ 1.

Note that the system (5.1)–(5.2) includes a large variety of differential inclu-
sions and control systems including those defined by partial differential equations.

Assume that U be an open bounded subset of Rn (or Y , a subset of X
homeomorphic to Rn) and UT = U × (0, T ] for some fixed T > 0. We say that
the partial differential operator ∂

∂t+L is parabolic if there exists a constant θ > 0
such that

n∑
i,j=1

aij(x, t)ξiξj ≥ θ|ξ|2

for all (x, t) ∈ UT , ξ ∈ Rn. The letter L denotes for each time t a second order
partial differential operator, having either the divergence form

Lu = −
n∑

i,j=1

(aij(x, t)uxi
)xj

+
n∑
i=1

bi(x, t)uxi
+ C(x, t)u

or else the nondivergence form

Lu = −
n∑

i,j=1

aij(x, t)uxixj +
n∑
i=1

bi(x, t)uxi + C(x, t)u,
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for given coefficients aij , bi, c (i, j = 1, . . . , n).
A family{G(t) : t ∈ R+ =[0,∞)} of bounded linear operators from X into X

is a C0-semigroup (also called linear semigroup of class (C0)) on X if

(i) G(0) = the identity operator, and G(t+ s) = G(t)G(s) for all
(ii) G( · ) is strongly continuous in t ∈ R+;
(iii) ‖G(t)‖ ≤Meωt for some M > 0, real ω and t ∈ R+.

Example 5.2. Set f(t, τ, u) = G(t − τ)u, g(τ, u(τ)) = 0, V (x) = x, λ(t) =
G(t)x0 where {G(t)}t≥0 is a C0-semigroup with an infinitesimal generatorA.
Then a solution of system (5.1)–(5.2) represents a mild solution of

(5.3) x′(t) ∈ Ax(t) + F (t, x(t)), x(0) = x0.

In particular, this problem includes control systems governed by parabolic
partial differential equations as a special case. When A = 0, the relation (5.3)
reduces to classical differential inclusions

(5.4) x′(t) ∈ F (t, x(t)), x(0) = x0.

Denote

(5.5) Φ(u)(t) =
∫ t

0

[a(t, τ)g(τ, u(τ)) + f(t, τ, u(τ))] dτ, t ∈ I.

Then the integral inclusion system (5.1)–(5.2) reduces to the form

(5.6) x(t) = λ(t) + Φ(u)(t), u(t) ∈ F (t, V (x)(t)) a.e. (I),

which may be written in more compact form as

u(t) ∈ F (t, V (λ+ Φ(u))(t)) a.e. (I).

Now we recall the following:

Definition 5.3. A pair of functions (x, u) is called a solution pair of in-
tegral inclusion system (5.6), if x( · ) ∈ C(I,X), u( · ) ∈ L1(I,X) and satisfy
relation (5.6).

For our further discussion, we denote by S(λ) the solution set of (5.1)–(5.2).
Notice that the integral operator in (5.5) plays a key role in the proofs of our

main results.
For given α ∈ R we denote by L1(I,X) the Banach space of all Bochner

integrable functions u( · ): I → X endowed with the norm

‖u( · )‖1 =
∫ T

0

e−α(M4M2+M1)M3m(t)‖u(t)‖ dt,

where m(t) =
∫ t
0
L(s) ds, t ∈ I.
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Theorem 5.4. Let Hypothesis 5.1 be satisfied, λ( · , · ), µ( · , · ) ∈ C(I×X,X)
and let u( · ) ∈ L1(I,X) be such that

d(v(t), F (t, V (y)(t)) ≤ p(t) a.e. (I),

where p( · ) ∈ L1(I,R+) and y(t) = µ(t, u(t)) + Φ(u)(t), for all t ∈ I. Then for
every α > 1, 0 < h < 1, there exist ν ∈ N and x( · ) ∈ S(λ) such that, for every
t ∈ I,

‖x(t)− y(t)‖ ≤ ‖λ− µ‖C
[
1 +

eα(M4M2+M1)M3m(T )

√
α(
√
α− 1)

]
+

√
α

(
√
α− 1)

(M4M2 +M1)eα(M4M2+M1)M3m(T )

∫ T

0

e−α(M4M2+M1)M3m(t)p(t) dt.

Proof. For λ ∈ C(I,X) and u ∈ L1(I,X) define

xu,λ(t) = λ(t) +
∫ t

0

[a(t, s) g(t, u(s)) + f(t, s, u(s))] ds.

Let us consider that λ ∈ C(I,X), σ ∈ L1(I,X) and define the set-valued maps

Mλ,σ(t) := F (t, V (xσ,λ)(t)), t ∈ I,(5.7)

Tλ(σ) := {ψ( · ) ∈ L1(I,X) : ψ(t) ∈Mλ, σ(t) a.e. (I)}.(5.8)

Further, in view of condition (C3) of Hypothesis 5.1(H2), Tλ( · ) satisfies the
condition: For any σ ∈ Lp(I, E), σ1 ∈ Tλ(σ) and any given ε > 0 there exists
σ2 ∈ Tλ(σ1) such that

(5.9) ‖σ1 − σ2‖1 ≤ H+(Tλ(σ), Tλ(σ1)) + ε.

Now we claim that Tλ(σ) is nonempty and closed for every σ ∈ L1(I,X).
The set-valued map Mλ,σ( · ) is measurable. For example the map t →

F (t, V (xσ,λ)(t) can be approximated by step functions and so we can apply
Theorem III.40 in [2]. Since the values of F are closed, with the measurable
selection theorem we infer that Mλ,σ( · ) is nonempty.

Also, the set Tλ(σ) is closed. Indeed, if ψn ∈ Tλ( · ) and ‖ψn−ψ‖1 → 0, then
there exists a subsequence ψnk

such that ψnk
(t) → ψ(t) for almost every t ∈ I

and we find that ψ ∈ Tλ(σ).
Let σ1, σ2 ∈ L1(I,X) be given. Let ψ1 ∈ Tλ(σ1) and let δ > 0. Consider the

following set-valued map:

G(t) := Mλ,σ2(t)

∩
{
z ∈ X : ‖ψ1(t)− z‖ ≤M3(M4M2 +M1)L(t)

∫ t

0

‖σ1(s)−σ2(s)‖ ds+ δ

}
.
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Then

d(ψ1,Mλ,σ2(t)) ≤ ρ(F (t, V (xσ1,λ)(t)), F (t, V (xσ2,λ)(t))) + ε

≤L(t)‖V (xσ1,λ)(t))− V (xσ2,λ)(t))‖+ ε

≤M3L(t)‖xσ1,λ(t)− xσ2,λ(t)‖+ ε

≤M3L(t)

[ ∫ t

0

|a(t, s)|‖g(t, σ1(s))− g(t, σ2(s))‖ ds

+
∫ t

0

‖f(t, s, σ1(s))− f(t, s, σ2(s))‖ds

]
+ ε

≤M3L(t)

[
(M4M2 +M1)

∫ t

0

‖σ1(s)− σ2(s)‖ds

]
+ ε.

Since ε is arbitrary, letting ε → 0, we have that G(·) is nonempty bounded and
has closed values. Further, by Proposition III.4 in [2], G(·) is measurable.

Let ψ2( · ) be a measurable selector of G( · ). It follows that ψ2 ∈ Tλ(σ2) and

‖ψ1 − ψ2‖1 =
∫ T

0

e−α(M4M2+M1)M3m(t)‖ψ1(t)− ψ2(t) ‖dt

≤
∫ T

0

e−α(M4M2+M1)M3m(t)M3L(t)
[
(M4M2 +M1)

∫ t

0

‖σ1(s)− σ2(s)‖ ds
]
dt

+ δ

∫ T

0

e−α(M4M2+M1)M3m(t) dt

≤ 1
α
‖σ1 − σ2‖1 + δ

∫ T

0

e−α(M4M2+M1)M3m(t) dt.

Since δ is arbitrary, so letting δ → 0 we deduce from the above inequality that

d(ψ1, Tλ(σ2)) ≤
1
α
‖σ1 − σ2‖1.

Thus, we have

(5.10) ρ(Tλ(σ1), Tλ(σ2)) = sup
ψ1∈Tλ(σ1)

d(ψ1, Tλ(σ2)) ≤
1
α
‖σ1 − σ2‖1.

Now replacing σ1( · ) with σ2( · ), we obtain

(5.11) H+(Tλ(σ1), Tλ(σ2)) ≤
1
α
‖σ1 − σ2‖1.

Now adding (5.10) and (5.11) and dividing by 2, we obtain

H+(Tλ(σ1), Tλ(σ2)) ≤
1
α
‖σ1 − σ2‖1.
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Hence we conclude that Tλ( · ) is a contraction on L1(I,X). Next, we consider
the following set-valued maps

F̃ (t, x) := F (t, x) + p(t),

M̃λ,σ(t) := F̃ (t, V (xσ,λ)(t)), t ∈ I,
T̃λ(σ) := {ψ( · ) ∈ L1(I,X); ψ(t) ∈ M̃λ,σ(t) a.e. (I)}.

It is obvious that F̃ ( · , · ) satisfies Hypothesis 5.1.
Let φ ∈ Tλ(σ), δ > 0 and define

G1(t) := M̃λ,σ(t) ∩ {z ∈ X : ‖φ(t)− z‖ ≤M3L(t)‖λ− µ‖C + p(t) + δ}.

Using the same argument as used for the set valued map G( · ), we deduce that
G1( · ) is measurable with nonempty closed values.

Next, we prove the following estimate:

(5.12) H+(Tλ(σ), T̃µ(σ)) ≤ 1
α(M4M2 +M1)

‖λ− µ‖C

+
∫ T

0

e−α(M4M2+M1)M3m(t)p(t) dt.

Let ψ( · ) ∈ Tµ(σ). Then

‖φ− ψ‖1 ≤
∫ T

0

e−α(M4M2+M1)M3m(t)‖φ(t)− ψ(t)‖ dt

≤
∫ T

0

e−α(M4M2+M1)M3m(t)[M3L(t)‖λ− µ‖C + p(t) + δ] dt

= ‖λ− µ‖C
∫ T

0

e−α(M4M2+M1)M3m(t)M3L(t) dt

+
∫ T

0

e−α(M4M2+M1)M3m(t)p(t) dt+ δ

∫ T

0

e−α(M4M2+M1)M3m(t) dt

≤ 1
α(M4M2 +M1)

‖λ− µ‖C +
∫ T

0

e−α(M4M2+M1)M3m(t)p(t) dt

+ δ

∫ T

0

e−α(M4M2+M1)M3m(t) dt.

As δ is arbitrary, we obtain (5.12).
Now applying Proposition 3.6 we obtain

H+(Fix(Tλ),Fix(T̃µ)) ≤
1√

α(
√
α− 1)(M4M2 +M1)

‖λ− µ‖C

+
√
α√

α− 1

∫ T

0

e−α(M4M2+M1)M3m(t)p(t) dt.
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Since v( · ) ∈ Fix(T̃µ), it follows that there exists ν ∈ N and u( · ) ∈ Fix(Tµ) such
that

‖v − u‖1 ≤
1√

α(
√
α− 1)(M4M2 +M1)

‖λ− µ‖C(5.13)

+
√
α√

α− 1

∫ T

0

e−α(M4M2+M1)M3m(t)p(t) dt.

We define

x = λ(t) +
∫ t

0

[a(t, s) g(t, u(s)) + f(t, s, u(s))] ds.

Then one has the following inequality:

‖x(t)− y(t)‖ ≤ ‖λ(t)− µ(t)‖+ (M4M2 +M1)
∫ t

0

‖u(s)− v(s)‖ ds

≤ ‖λ− µ‖C + (M4M2 +M1)eα(M4M2+M1)M3m(T )‖u− v‖1.

Combining the last inequality with (5.13), we obtain

‖x(t)− y(t)‖ ≤ ‖λ− µ‖C
[
1 +

eα(M4M2+M1)M3m(T )

√
α(
√
α− 1)

]
+

√
α

(
√
α− 1)

(M4M2 +M1)eα(M4M2+M1)M3m(T )

∫ T

0

e−α(M4M2+M1)M3m(t)p(t) dt.

This completes the proof. �

Remarks 5.5. (a) If a(t, τ) ≡ 0, Theorem 5.4 complements the result in [4]
obtained for mild solutions of the semilinear differential inclusion (5.3).

(b) If a(t, τ) = 0, f(t, τ, u) = G(t − τ)u, V (x) = x, λ(t) = G(t)x0 where
{G(t)}t≥0 is a C0-semigroup with an infinitesimal generator A, Theorem 5.4
complements the result in [3] obtained for mild solutions of the semilinear dif-
ferential inclusion (5.3).
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