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A GENERALIZATION
OF NADLER’S FIXED POINT THEOREM
AND ITS APPLICATION
TO NONCONVEX INTEGRAL INCLUSIONS

HEMANT KUMAR PATHAK — NASEER SHAHZAD

ABSTRACT. In this paper, a generalization of Nadler’s fixed point theorem
is presented. In the sequel, we consider a nonconvex integral inclusion and
prove a Filippov type existence theorem by using an appropriate norm on
the space of selection of the multifunction and a H*-type contraction for
set-valued maps.

1. Introduction

Dynamical systems described by differential equations with continuous right-
hand sides was the areas of vigorous steady in the later half of the 20th century
in applied mathematics, in particular, in the study of viscous fluid motion in
a porous medium, propagation of light in an optically non-homogeneous medium,
determining the shape of a solid of revolution moving in a flow of gas with least
resistance, etc. Fuler’s equation plays a key role in dealing with the existence
of the solution of such problems. On the other hand, Filipopov [6] has devel-
oped a solution concept for differential equations with a discontinuous right-hand
side. In practice, such dynamical systems do arise and require analysis. Exam-
ples of such systems are mechanical systems with Coulomb friction modeled as
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a force proportional to the sign of a velocity, systems whose control laws have
discontinuities.

In a parallel development, the study of fixed points for multivalued con-
traction maps using the Hausdoff metric was initiated by Nadler [13]. Later,
an interesting and rich fixed point theory for such maps has been developed,
see, for instance, the work of Feng and Liu [5], Kaneko [7], Klim and War-
dowski [8], Lim [10], Lami Dozo [11], Mizoguchi and Takahashi [12], Pathak and
Shahzad [14], Reich [16], [17], Suzuki [18], and many others. For details, see [15].

2. Preliminaries and definitions

Let (X, d) be a metric space. Let CB(X) and C(X) denote the collection of
all nonempty closed and bounded subsets of X and the collection of all compact
subsets of X, respectively.

For A, B € CB(X), let

H(A,B) = max{p(A4, B),p(B, A}, H*(A,B) = ;{o(A, B) + p(B, A)}

where p(A, B) = sup d(z, B) and d(z, B) = in}fg d(z,y). It is well known that H
€A ye

is a metric on CB(X). Such a map H is called Hausdorff metric induced by d. In
Proposition 2.1 below we show that H™ is also a metric on CB(X). For A C X,
A denotes the closure of A.

A set-valued mapping T: X — CB(X) is said to be a

(i) multi-valued contraction mapping if there exists a fixed real number L,
0 < L < 1 such that
(2.1) H(Tz,Ty) < Ld(z,y)
(ii) multi-valued nonexpansive mapping if

(2.2) H(Tz,Ty) < d(x,y) forall z,y € X.

PROPOSITION 2.1. H™T is a metric on CB(X).

PRrROOF. Let A, B € CB(X) such that H*(A, B) = 0. Then this is equiv-
alent to p(A,B) = 0 and p(B,A) = 0; i.e. iglfg d(z,y) = 0 for any x € A and
y

in1f4 d(y,z) = 0 for any y € B. Therefore, these are equivalent to x € B = B for
AS

any z € A, and y € A = A for any y € B. It follows that A C B and B C A.
Hence A = B.
The symmetry of the function H follows directly from the definition.
To show the triangle inequality, let A, B, C' € CB(X). Then for any (z,y, z) €
A x B x C, we have
d(z,z) < d(x,y) +d(y, 2),
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whence
1gg d(z,2) <d(z,y) + 11612 d(y, z) < d(z,y) + p(B,C).
Since the above inequality holds for any y € B, we get

inf d(z,2) < inf d(z,y) + p(B,C) < p(A, B) + p(B, C).
zeC yeB

Hence
(2.3) p(A,C) < p(A, B) + p(B,C).
Interchanging the roles of A and C, we get
(2.4) p(C,A) < p(C,B) + p(B, A).
Adding (2.3) and (2.4), and then dividing by 2, we get
(2.5) HT(A,C)<HY(A,B)+ H"(B,C).
Notice that the two metrics H and HT are equivalent (see [9]) since
%H(A,B) < H*(A, B) < H(A, B). 0
It is routine to prove the following:

PROPOSITION 2.2. Let (X, || - ||) be a normed linear space. For any X\ (real
or complez), A, B € CB(X)
() H*(\A,\B) = |\H* (4, B),
(i) H"(A+a,B+a) = HY(A, B).

In a classical approach one can easily prove Theorems 2.3 and 2.5 stated
below (see, also Banas and Goebel [1]).

THEOREM 2.3. Ifa,b€ X and A, B € CB(X), then the relations:

(1) d(a,b) = H* ({a}, (b))

(2) A C S(B;r1), B C S(A;rs) = HY(A,B) <1 where r = (r1 +12)/2,
and

(3) HY(A,B) < r = 3Fri,r2 > 0 such that (r1+12)/2 = r and A C
S(B;r1), B C S(A;re) hold.

PRrROOF. The relation (1) follows immediately from the definition of the func-
tion HT.
To prove relation (2), from the inclusions A C S(B;ry), B C S(A;rg), it
follows that
Ve € A Jy, € B such that d(z,y,) <m
and
Vy € B 3z, € A such that d(z,,y) <.
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From here it follows that

inf d(z,y) <r foreveryx € A and inf d(z,y) <ry for every y € B.
yeB r€EA

Hence

su inf d(x, )ST and su (infdac, )gr.
sup (_inf d(z,y)) <7, sup (_nf d(z.y)) <72

Therefore HT (A, B) < r where r = (r1 + r2)/2.
To prove relation (3), let H" (A, B) = k < r. Then there exist ki, ky > 0
such that k& = (k1 + k2)/2 and

inf d —k inf d — ko,
iEIZ(J?B (fay)) 15 SEE(JEA (fcvy)) 2

As 0 < k < r, it follows that there exist r1,79 > 0 such that k1 < rq1, ko < 1o

and 7 = (r1 + r2)/2. Then from the above inequalities it follows that

inf d(z,y) <k; <ry foreveryxze A
yeB

and

irelg d(z,y)) <ks <ry foreveryy € B.
x
Then, for any x € A there exists y, € B such that

d(z,y,) < inf d(z,y) + 111 — k1 <711.

yeB

and, for any y € B, there exists x, € A such that

d(zy,y) < irelgd(x,y) + 71y — ka2 <ra.
Hence, for any « € A and y € B it follows that

x € U S(y;r1) and ye€ U S(x;ra),
yeEB z€A

that is

ACS(B;r) and B C S(A4;rs). O

REMARK 2.4. From the relations (2) and (3) it follows immediately that the
relations:
(2') A C S(B;r1),B C S(A;re) = HT(A,B) < r where 7 = (r1 +12)/2,
and
(3') HY(A,B) < r = Jry,re > 0 such that (r; +72)/2 = r and A C
S(B;r1), B C S(A;72) hold.
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THEOREM 2.5. If A, B € CB(X), then the equalities:
(4) HY(A,B) =inf{r >0: AC S(B;r1), BC S(4;r3), r = (r1 +12)/2},
(4") HY(A,B) =inf{r >0: AC S(B;r1), AC S(B;re), r=(r1+12)/2}
hold.
PROOF. From the relation (2') it follows that
HT(A,B) <inf{r >0: AC S(B;ry), ACS(B;ry), r = (r1 +12)/2}.

To prove the opposite inequality, let HT(A,B) = k and let ¢ > 0. Then
H*(A,B) < k+t. From (3) it follows that there exist t1,t2 > 0 with (¢1 + t2)/2
=t such that A C S(B;k+t1) and B C S(A; k + t2). Hence

{r>0:ACS(B;r), BCS(A;ra)}
D{k+t:t>0, AC S(B;k+t1), BCS(A;k+1t2)}.

From this inclusion relation it follows that
inf{r >0:A4C S(B;r1),BCS(A;r)} <inf{k+t:t>0}=k=H"(A,B).
In conclusion we have

HT(A,B)=inf{r >0: AC S(B;r1),B C S(A;r9),r = (r1 +12)/2}. O

THEOREM 2.6. If the metric space (X,d) is complete, then so is (CB(X),
H™) and also C(X) is a closed subspace of (CB(X), HY).

PROOF. Let (X, d) be a complete metric space and let {A,, }nen be a Cauchy
sequence in CB(X). We claim that the sequence {A, },en is convergent to the
set B = LsA, ={zr € X :V¥e >0,Ym € N3In € N, n > m such that
S(z;e) N A, # 0}

Since the sequence {A,, }nen is Cauchy, for any € > 0 there exists m(e) € N
such that

HY (A, Ape)) <e forany n €N, n>m(e).
Hence, by relation (4), it follows that there exist £1,e2 > 0 with (g1 +2)/2 =¢
and m(e1), m(e2) € N such that min{m(ey), m(e2)} > m(e), A C S(An(cy)i€1)
for any n € N, n > m(e1) and A, (c,) C S(An;e2) for any n € N, n > m(ea).

From the properties of upper topological limit Ls it follows that B C |J Ag
k>n

for any n € N. Therefore B C S(Am(al); 1), whence the relation:
(2.6) B C S(Am(e,); 4e1)

holds. On the other hand, taking &, = £1/2%, k € N, it follows that there exists
ng = m(gr) € N such that

H"(A,, A, ) <&, foralln>n.
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Next, we choose ny, such that the sequence {ng }ren to be strictly increasing.
Let p € Ap, = Ay (c,) arbitrarily, and let there be the sequence {py, }ren such
that p,, = p and p,, € A,, with the property that d(pn,,pn,_,) < €1/2"2.
It follows that the sequence {pn, }ren is a Cauchy sequence in the complete
metric space (X, d). Hence it is convergent to a point [ € X.

Since d(pn,, Pn,) < 4€1, it follows that d(l,p) < 4e;. Therefore ylg}; d(p,y) <

4¢eq; that is, p € S(B;4e1), which implies that:
(2.7) An, CS(B;der).

Keeping in view the relations (2.6) and (2.7), (3) yields H*(4,,,B) < 4e;.
Taking into account the fact that H* is a metric on CB(X), we get

H+(A7L7B) S H+(AnaAn0) + H+(AnoaB) < 5515

for any n > m(e1) = ng. Thus, the sequence {4, },en converges to B = Ls Ay;
that is, (CB(X), HT) is a complete metric space. This proves the first assertion
of our theorem.

To prove the second assertion, we just require to show that C(X) is a complete
subspace of (CB(X), H'). Let {A,,}nen be a Cauchy sequence in C(X). Then,
{A,}nen is a Cauchy sequence in CB(X). Let A € CB(X) be such that A =
lim A,. Then for any € > 0 there exists m(e) € N such that

HT(An, A) < % for all n > m(e), n € N.

Hence, by relation (4), it follows that there exist e1,e5 > 0 with (g1 +2)/2 =¢

and m(e1),m(e2) € N such that min{m(e;),m(e2)} > m(e), A, C S(A;e1/2)

for any n € N, n > m(ey) and A C S(A,;e2/2) for any n € N, n > m(es).
Suppose ng > m(ez2) is a fixed natural number. Then A C S(A,,,;€2/2).

Since A, is compact in X, it follows that it is totally bounded. Hence there
P P

i € 1,p such that A,, C |J S(z5*;e2/2), whence A C |J S(z5%;¢2).
i=1 =1

Therefore A € C(X). O

exist z;2,

In [13], S.B. Nadler proved the following result, which he announced earlier.

THEOREM 2.7. Let (X,d) be a complete metric space and T: X — CB(X)
a multi-valued contraction mapping. Then T has a fized point.

In this paper, we intend to generalize this result by weakening the multi-
valued contraction. Our main results are summarized in Section 3. Subsequently,
in Section 4, first we introduce the concept of H'-type nonexpansive mappings,
then we extend some fixed point results of Lami Dozo [11] for H-type non-
expansive mappings. Finally, in Section 5, we consider a nonconvex integral

inclusion and prove a Filippov type existence theorem by using an appropriate
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norm on the space of selection of the multifunction and a H'-type contraction
for set-valued maps.
3. Main results

Now we state and prove our main result. We begin our discussion with the
following definition.

DEFINITION 3.1. Let (X,d) be a complete metric space. A multi-valued
map T : X — CB(X) is called HT-contraction if

(1) there exists L in (0,1) such that
HY(Tx,Ty) < Ld(x,y) for everyw,y € X,
(2) for every z in X,y in T'(x) and e > 0, there exists z in T'(y) such that

d(y,z) < HY(T(y), T()) +e.

Now we state and prove our main result.

THEOREM 3.2. Every HT-type multi-valued contraction mapping T: X —
CB(X) with Lipschitz constant L < 1 has a fized point.

PROOF. Let € > 0 be given. Let zg € X be arbitrary. Fix an element x; in
Tzo. From (2) it follows that we can choose o € T'zy such that

(3.1) d(xl,mg) < H+(T$0,T.’L‘1) +e
In general, if z,, be chosen, then we choose 11 € Tz, such that
(3.2) d(Zn, Tni1) < HY(Tzp_1,Ty) + 6.

Set ¢ = (1/vV/L — 1)H*(Txy,_1,Txy,). Then from (3.2), it follows that

d(Zp, Tpy1) < HY(Txp_1, Tzy,) + ( - 1) H+(Txn1,Txn>

1
VL
= HY (T, 1, Txy,).

-

Thus, we have
(3.3) \Ed(xn, Tpi1) < HY(Tap_1,Txy).
Now, from (1) we have
VL d(2y, 2pi1) < Ld(zn_1,20) = (VL) d(2n_1,2).
Hence, for all n € N we have

AT, Tpi1) < \Ed(xn,l, Tn).
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Repeating the same argument n-times we get
A, 2ny1) < L% d(20, x1).

This implies that {z,} is a Cauchy sequence. Since X is complete, there exists
u € X such that lim z, = u.

n—oo

Since
1
§{p(T93n7TU) +p(Tu,Txy,)} = H+(T:L‘n,Tu) < Ld(zn,u),

it follows that
lim inf{p(T,, Tu) + p(Tu, Tx,)} = 0.

n—oo

Since
liminf p(Tz,,, Tu) + iminf p(Tu, Tx,) < lIiminf{p(Tx,, Tu) + p(Tu, Tx,)},
we have
liminf p(Txy,, Tu) 4+ liminf p(Tu, Tx,) = 0.

This implies that
liminf p(Tz,, Tu) = 0.

n—oo
Since lim d(2n+1,u) = 0 exists, and

n—oo

d(u, Tu) < p(Txp, Tu) + d(Tpe1,u),
it follows that

d(u, Tu) < liminf[p(T2,, Tu) + d(xpy1,u))

= liminf p(Tz,, Tu) + lim d(zp41,u) = 0.
n—oo

n— o0

This implies that d(u,Tu) = 0, and since T'u is closed it must be the case that
u € Tu. g

REMARK 3.3. As max{a,b} > i{a + b} for all a,b > 0, it follows that
multi-valued contraction (2.1) always implies multi-valued H*-contraction but
the converse implication need not be true.

To see this, we observe the following:
ExXAMPLE 3.4. Let X = {0,1/4,1} and d: X x X — R be a standard metric.
Let T: X — CB(X) be such that
{0} for x =0,
T(x) =14 {0,1/4} for z =1/4,
{0,1} for z = 1.

It is routine to check that multi-valued H*-contraction condition (1) is satis-
fied for all z, y € X and for any L € [2/3,1). Further, we see that for every z € X,
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y € T'(z) and € > 0, there exists z € T'(y) such that d(y, z) < H*(T(y), T(z))+e.
Indeed,

(i) if £ =0,y € T(0) = {0}, € > 0, there exists z € T'(y) = {0} such that
0=d(y,z) < H'(T(y),T()) +e,
(ila) ifx =1/4,y € T(x) =T(1/4) = {0,1/4}, say y = 0, € > 0, there exists
z € T(y) = {0} such that
0=d(y,z) < é +e=H(T(y),T(x)) +e¢,

(iib) if x = 1/4, y € T(x) = T(1/4) = {0,1/4}, say y = 1/4, € > 0, there
exists z(=1/4) € T(y) = {0,1/4} such that

0=d(y,2) <0+e=HT(y),T(z)) +e,

(iffa) if z = 1, y € T(x) = T(1) = {0,1}, say y = 0, € > 0, there exists
z € T(y) = {0} such that
1
0=dly2) < 5 +2 = H"(T(y), T(x)) + 2,
(iiib) if « =1, y € T(x) = T(1) = {0,1}, say y = 1, € > 0, there exists
z(=1) € T(y) = {0,1} such that

0=d(y,z) <0+e=H"(T(y),T(x)) +e.

Thus the condition (2) is also satisfied. Clearly, 0, 1/4, 1 are fixed points of T'.
However, we observe that the map 7' does not satisfy the assumptions of Theo-
rem 2.7. Indeed, for z = 0 and y = 1 we have

H(T(0),T(1)) = H({0},{0,1}) =1 > Ld(0,1), for all L € (0,1).

EXAMPLE 3.5. Let X = [0,2v/2/3]U {1} and d: X x X — R be a standard
metric. Let T: X — CB(X) be such that

11z 11 2v/2
Rl B 0.2V~
{50(:5—1—1)’50] Ome[’ 3 }

11 . 1
50 or x = 1.

Set L = 0.99. We discuss the following cases:
Case 1. When z,y € [0,2v/2/3], y > x, we note that

T(z) =

H* (T, Ty) = — A
x - - ¢
YT 00 l+z+y+ay
11 - -
< i <0.99-2"T < 0.99d(z,y).

_1700.1+yfx l1+y—=z
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Case 2. When z € [0,2v/2/3] and y = 1, we note that

11 x
H (T, Ty) = — |1 — <099(1 —
(Te.Ty) = 150 1+x‘_099( ?)
is true if
B L 9901 -a)
100 1+rz— .

ie if 1/9<1—2% ie if 0 <z <22/3.

To check the condition (2), we consider the following cases:

Case (i). For any x € [0, %], yeTzr = [%, 1] and € > 0 there exists
1y 1

2(=v) € Ty = [555,11> £1] such that

11 Y-z
Oy < L y=T s |
0:2) = 155 Tragygay te = HTTWLTE) +e
Note that
ny 1y _u
50y +1) — 50 — Y =50
ie.yeTy.
Case (ii). Forz =1,y € Tz = {%} le.y = % and € > 0, there exists
2(= gigs) € Ty = [355, £ such that
11 11
(¥:2) 192 S 122 7€ (T(y), T(x)) + €

This proves the condition (2). Thus, all the requirements of Theorem 3.1 are
satisfied and 0 € T0 is the unique fixed point of 7. However, we note that when

y=1and z — 2\/5/3 from the left, then
11z
HTxz,Ty)=—————>1—1x.
(T Ty) = g > 1=
Thus, T does not satisfy the assumptions of Theorem 2.7.

PROPOSITION 3.6. Suppose X and CB(X) are as in the preceding theorem,
and let T;: X — CB(X), i = 1,2, be two H™T -type multi-valued contraction map-
pings with Lipschitz constant L < 1. Then if Fix(T1) and Fix(T) denote the
respective fized point sets of Ty and Ty,

1
H* (Fix(Ty), Fix(Ty)) < ———= sup H' (Tyz, Thx).
1— L rzeX

PROOF. Let € > 0 be given. Select zg € Fiz(T1), and then select z1 € Thxyg.

From (2) it follows that we can choose zo € Thx; such that

d(zy,29) < H+(T2.%'0, Toxq) + €.
Now define {z,} inductively so that z,1 € To(z,) and

(34) d(.’lﬁn, l‘n+1) < at (Tg.ﬁn,l, Tgl’n) + €.
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Set € = (% — 1)H+(T2xn,17T2xn). Then from (3.4), it follows that

1
d(xna (En+1) < H+(T2xn717T2mn) + (\/z - 1) H+(T2:En17T2xn>

%H+(Tgwn,1,TQ$n).
Thus, we have
(3.5) VELAd(2p, tpi) < HY (Toxn_1, Toiy,).
Now applying (1) for T we have
\FLd(xn,an) < Ld(zp_1,2,) = (\FL)2 d(xn—1,2n).

Hence, for all n € N we have

(s Tps1) < VL d(zp_1, ).
Repeating the same argument n-times we get

A, Trpr) < L2 d(z0, 21).

This implies that {z,} is a Cauchy sequence with limit, say z. Since Tb is
continuous, we have

lim H(Tex,,Trz) = 0.

n—oo
Also, since 2,11 € To(z,,) it must be the case that z € Tyz; that is, z € Fix(T»).
Furthermore, using (3.5) we have

d(zg, 2) < i d(@pi1,20) < (L+ VL + (VL) +...)d(x1, x0)
n=0

1
<
“1-VL

Reversing the roles of 77 and T, and repeating the argument as above leads to

(I{JF(TVQQS'Q7 Tll'o) + 6).

the conclusion that, for each yo € Fix(T3), there exist y1 € T1yo and w € Fix(Ty)
such that

1
d(yo, w) <

Since € > 0 is arbitrary, the conclusion follows. |

(H* (Tvyo, Toyo) + €)-

THEOREM 3.7. Suppose X and CB(X) are as in the preceding theorem, and
let T;: X — CB(X), i = 1,2,... be a sequence of HT-type multi-valued con-
traction mappings with Lipschitz constant L < 1. If lim H™(T,z,Toz) = 0
uniformly for x € X, then

lim H*(Fix(T,), Fix(Tp)) = 0.

n—oo
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PROOF. Let € > 0 be given. Since lim HT(T,z,Toz) = 0 uniformly for
x € X, it is possible to choose N € N, so that for n > N,

sup HY (T,z, Tox) < (1 — VIL)e.
reX

By Proposition 3.6, H*(Fix(T,), Fix(Ty)) < € for all n > N. Hence the conclu-
sion follows. O

4. H'-type nonexpansive mappings

In this section, first we introduce the class of H-type nonexpansive map-
pings. Then we apply the main result of preceding section to obtain fixed points
of H'-type nonexpansive mappings in its natural terrain; i.e. Banach space
satisfying Opial’s condition.

DEFINITION 4.1. Let (X, - ||) be a Banach space. A multi-valued map
T: X — CB(X) is called H"-nonexpansive if

(1) H*(Tz,Ty) < ||z —y| for every z,y € X,

(2") for every x € X, y € T'(z) and ¢ > 0, there exists z € T'(y) such that

ly — 2| < HT(T(y), T (x)) +&.

In the following K is a nonempty convex weakly compact subset of a Banach
space X. X is said to satisfy Opial’s condition if for each zy in X and each
sequence {x,} converging weakly to zo (i.e. z, — zg), the inequality

liminf ||z, — z|| > liminf ||z, — zo|
n—oo n—oo

holds for all x # x.
We will say that a mapping T: X — 2% is demiclosed if

zy, 2 and y, €Tz, -y=>yecTx.

PROPOSITION 4.2. Let T: K — C(X) be H -type multi-valued nonexpansive
mapping and let X satisfy Opial’s condition. Then I —T is demiclosed.

PROOF. Since the domain of I — T is weakly compact it is enough to prove
that the graph of I — T is sequentially closed. Let (x,,y,) € G(I — T) where
G(I — T) denotes the graph of I — T such that

T, =« and ¥y, —y.

Then z € K and we have to prove that y € (I — T)x. Since y, € z, — Ty,
Yn = Tpn — zp for some z, € Tx,.
By (2'), for z, € Tx,, and € > 0, we can choose z,, € Tz such that

llzn — 20|l < HT (T2, Tx) + €.
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Since T is nonexpansive, the above inequality yields
(41) ||Zn - Z;LH < ”xn - .CE” +e.

Since £ > 0 is arbitrary, so on letting ¢ — 0 and taking liminf on both sides
of (4.1), we have

(4.2) liminf ||z, — z|| > liminf |z, — 2, || > liminf ||z, — v, — 2, ]|.
n—oo n—oo n—oo

But Tz is compact and y,, — y. Hence there exists a subsequence of {z,}, again
denoted by {z/,}, converging to z € T'z. Hence, from (4.2) we get

(4.3) liminf ||z, — || > liminf ||z, —y — 2]
n—oo n—oo
By Opial’s condition we have y + z =xz. Thusy=xz —z € x — Tx. |

Let K be a nonempty convex subset of a Banach space X. Let T : K — C(X)
be a multi-valued mapping. For a fixed 2y € K and any « € K, we define the
segment [z, o] by [z,z0] ={y € K:y=Ax+ (1 = N)zo,0 <A <1} Wecall T
to be zp-redundant if Ty = Tz for all y € [z, zo].

THEOREM 4.3. Let X be a Banach space which satisfies Opial’s condition,
K is a nonempty convexr weakly compact subset of X and let T: K — C(K) be
a HT -type multi-valued nonexzpansive mapping. If there exists xo € K such that
T is xo-redundant, then T has a fixed point in K.

PRrROOF. Let {k,} be a sequence of real numbers such that 0 < k, < 1 and
k, — 1 as n — 0o. Define

(4.4) Tox =ky,Tx+ (1 —ky)ze foralze K and n e N.
By Proposition 2.2 (i) and (ii), for any z,y € K and n € N we have
H (To(2)), Tu(y) = kn H(T(2), T(y)) < knllz — yll.

Now let € > 0 be given. By(2'), corresponding to any y in T'(x) i.e. in turn, for
any y' = k,y—+(1—k,)xo in T, (z), there exists z € T(y) and, in turn, there exists
2 =knpz+ (1 —kn)xo in T,,(y), and hence, in T, (v') = k., T(y") + (1 — kp)zo =
knT(kny + (1 — kp)zo) + (1 — kn)zo = knT(y) + (1 — ky)xo = Ty (y) such that

ly — 2|l < HH(T(y), T()) +e.
Thus, for all n € N, this yields

ly" = 2l = knlly — 2l < kn(H*(T(y), T(w)) +¢)
= H*(To(y), Tn(2)) + kne < H (Tu(y'), Tn(2)) + .

Hence T, is a HT-type multivalued k,-contraction mapping for all n € N. Also,
since K is a complete metric space, therefore it follows from Theorem 3.2, that
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for each n € N; there exists z,, € K such that z,, € T, (z,). Since K is weakly
compact, there exists a subsequence of {x,}, again denoted by {z, }, converging
weakly to € K. From (4.4), there exists z,, € T, such that

Ty = knzp + (1 — kp)zo for all n € N.

It then follows that

|20 — 20l = (1 = kn)llzo — 2nl]-
Hence y, = ©, — 2, € (I — T)x, and y, — 0 as n — oo. This means that
(Tnyyn) € GUI —T) and x, — 2, y, — 0. So by demiclosedness of (I —T),0 €
(I -T)xie zeTx. O

5. Existence theorem for nonconvex integral inclusions

In this section, we shall consider a nonconvex integral inclusion and prove
a Filippov type existence theorem by using an appropriate norm on the space of
selection of the multifunction and a HT-type contraction for set-valued maps.

Let I :=[0,T], T > 0 and £(I) denote the o-algebra of all Lebesgue measur-
able subsets of I. Let X be a real separable Banach space with the norm || - ||.
Let P(X) denote the family of all nonempty subsets of X and B(X) the family
of all Borel subsets of X.

Throughout this section, let C(I, X) denote the Banach space of all con-

tinuous functions z(-):I — X endowed with the norm |z(-)||c = sup ||z(¢)]].
tel
Consider the following integral inclusion

(5.1) x(t) = A\(t) +/O [a(t, s) g(t,u(s)) + f(t,s,u(s))]ds,
(5.2) u(t) € F(t,V(x)(t)) ae. (I:=10,T)),

where A(+ ): I = X, g(+, - )i IXX > X, F(-, ) IxX —>P(X), f(-, -, ):Ix
IxX - X, V:C(I,X)— C(I,X),a(-, ) IxI - R=(—00,00) are given map-
pings. In the sequel, we also use the following: For any x € X, A € C(I,X),0 €
LY(I, E), we define the set-valued maps My ,(t) := F(t,V(z,)(t)), t € I,Tx(0)
={Y(-) € LMI,E) : ¢(t) € My, (t) a.e. (I)}.

In order to study problem (5.1)—(5.2) we introduce the following assumption.

HyYPOTHESIS 5.1. Let F(-,-):I x X — P(X) be a set-valued map with
nonempty closed values that verify:
(Hy) The set-valued map F(-, -) is L(I) ® B(X) measurable.
(Hy) There exists L(-) € L*(I,Ry) such that, for almost all t € I, F(t, -) is
L(t)-Lipschitz in the sense that:

(C1) HY(F(t,z), F(t,y)) < L(t) |z =yl for all z,y € X,
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and for any x,y € X, w € F(t,z) and £ > 0, there exists z € F(t,y)
such that:

lw =2l < HY(F(t,z), F(t,y)) + ¢

and T\(-) satisfies the condition: For any o € L'(I,E), o1 € Tx(0)
and any given € > 0 there exists oo € Tx(01) such that:

lor — o2lli < HT(Th(0), Tx(01)) +&  for almost all t € 1.

The mappings f:I x I x X — X, g, 21 x X — X are continuous,
V:C(I,X) — C(I,X) and there exist the constants My, My, M35 > 0
such that:

1f(t,s,u1) — f(t,s,u2)|| < Myllup —us, for all uy,us € X,

l9(s,ur) = g(s, u2)|| < Mallus — s, for all uy,up € X,

[V(z1)(t) = V(z2) ()| < Ms|lz1(t) —22(t)|, forallt €,

(Ha)

and all x1, 29 € C(I, X).

Let a: I x I — R be continuous and satisfy the uniform Hélder’s conti-
nuity condition in the first and second arguments with the exponent p;
i.e. there exists a positive number b such that

la(t1,51) — altz, s2)| < b([t1 — t2|” + |s1 — s2/)

for allty,ta, s1,52 € I and |a(t, s)| < 2bT+]a(0,0)| = My for alit,s € I
and 0 < p < 1.

Note that the system (5.1)—(5.2) includes a large variety of differential inclu-

sions and control systems including those defined by partial differential equations.

Assume that U be an open bounded subset of R™ (or Y, a subset of X
homeomorphic to R"?) and Ur = U x (0,T] for some fixed T > 0. We say that
the partial differential operator % + L is parabolic if there exists a constant 6 > 0
such that

n

D a(x, 068 > 0l

i,5=1

for all (z,t) € Up, £ € R™. The letter L denotes for each time ¢ a second order
partial differential operator, having either the divergence form

n

Lu=— Y (a"(x,t)ug,)z, + > _ b (2, t)uq, + Clz, t)u

i,j=1 i=1

or else the nondivergence form

n

Lu= =Y a’(z,)ugq, + b (@, t)ug, + Clz, t)u,

ij=1 i=1
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for given coefficients '/, b%, ¢ (1,5 = 1,... ,n).
A family{G(t) : t € R4 =[0,00)} of bounded linear operators from X into X
is a Cp-semigroup (also called linear semigroup of class (Cp)) on X if

(i) G(0) = the identity operator, and G(t + s) = G(t)G(s) for all
(ii) G(-) is strongly continuous in ¢t € Ry;
(iii) [|G(#)]| < Me*!t for some M > 0, real w and t € R.

EXAMPLE 5.2. Set f(t,7,u) = G(t — T)u, g(1,u(r)) =0, V() =z, A\(t) =
G(t)zo where {G(t)}+1>0 is a Cp-semigroup with an infinitesimal generatorA.
Then a solution of system (5.1)—(5.2) represents a mild solution of

(5.3) 2/ (t) € Ax(t) + F(t,z(t)), =(0)= zo.

In particular, this problem includes control systems governed by parabolic
partial differential equations as a special case. When A = 0, the relation (5.3)
reduces to classical differential inclusions

(5.4) 7' (t) € F(t,z(t)), z(0)=xo.

Denote

(5.5) @Wﬂﬂ:[ﬁduﬂﬂﬂuh»+fmnuhﬂmﬂ tel
Then the integral inclusion system (5.1)—(5.2) reduces to the form

(5.6) 2(t) = A(t) + B(u)(t), u(t) € F(t,V(2)(t) ae. (I),

which may be written in more compact form as

u(t) € F( VN + B(w)(t) ae. (D).

Now we recall the following:

DEFINITION 5.3. A pair of functions (z,u) is called a solution pair of in-
tegral inclusion system (5.6), if z(-) € C(I,X), u(-) € L'(I,X) and satisfy
relation (5.6).

For our further discussion, we denote by S(\) the solution set of (5.1)-(5.2).

Notice that the integral operator in (5.5) plays a key role in the proofs of our
main results.

For given a@ € R we denote by L'(I, X) the Banach space of all Bochner
integrable functions u(-): I — X endowed with the norm

T
Ju( )l = [ eI o ),
0

where m(t) = fot L(s)ds, teI.
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THEOREM 5.4. Let Hypothesis 5.1 be satisfied, A(-, - ), p(-, -) € C(Ix X, X)
and let u(-) € LY(I,X) be such that

d(v(t), F(t,V(y)(1) < p(t)  a.e. (1),

where p(-) € L*(I,Ry) and y(t) = p(t,u(t)) + ®(u)(t), for allt € I. Then for
every a > 1, 0 < h < 1, there exist v € N and z(-) € S(\) such that, for every
tel,

(M4 My+My) Msm(T) :|
Val/a=T1)

va Mad M) Ma(T) [ o
V" (M.M M a(My 2+M1)M3m(T)/ a(MayMo+My)Msm(t) t dt
+(\/a—1)( 4aMso + My)e Oe p(t)

PROOF. For X\ € C(I,X) and v € L' (I, X) define

lx(t) — y(®)]| < |IA — Mllc[l N

t
2ua(® = MO + [ lalt, ) gl u(9) + ft, 5. u(s))] ds.
0
Let us consider that A € C(I, X), o € L'(I, X) and define the set-valued maps

(57) M)\,U(t) = F(t7 V(xo,/\)(t))’ te I7
(5.8) Ta(o) = {u(-) € LI, X) : (t) € My, o(t) ae. (I)}.

Further, in view of condition (C3) of Hypothesis 5.1(Hz), Th( -) satisfies the
condition: For any o € LP(I,E), o1 € Tx(o) and any given ¢ > 0 there exists
o9 € T\(o1) such that

(5.9) loy = o2y < H™(Tx(0), Tx(01)) + e

Now we claim that T (o) is nonempty and closed for every o € L1(I, X).

The set-valued map M)y ,(-) is measurable. For example the map ¢t —
F(t,V(zs)(t) can be approximated by step functions and so we can apply
Theorem IIT.40 in [2]. Since the values of F' are closed, with the measurable
selection theorem we infer that M) ,(-) is nonempty.

Also, the set Ty (o) is closed. Indeed, if ¥, € Ta(-) and ||3p, —¥||1 — 0, then
there exists a subsequence 1, such that ¢, (t) — ¥(t) for almost every ¢t € I
and we find that ¢ € Ty (o).

Let 01,09 € L*(I, X) be given. Let ¢; € T\(01) and let § > 0. Consider the
following set-valued map:

G(t) := M0, (1)

ﬂ{z € X: ||’t/11(t)—2:|| < M3(M4M2+M1)L(t)/0 ||O'1(S)—(72(S)||d8+(5}
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Then

(1, My,0, (1)) < p(F (L, V (20, 2)(1)), F(t, V(20,0)(1))) + €
SLONV (20, 1) (1) = V(Zer 2) @) +€
SM3L(1)]|20, A(t) = 2o, A (B)]| + €

< M3L(t) [/0 la(t, 8)[llg(t, 01(s)) — g(t, 02(s))| ds

+ / 1£(t.5.01(5)) — F(t, 5,00(5))]ds | +e

<M3L(t)[(M4M2+M1)/O ||(71(S)—O’2(S)||d$ +e.

Since ¢ is arbitrary, letting € — 0, we have that G(-) is nonempty bounded and
has closed values. Further, by Proposition III.4 in [2], G(-) is measurable.
Let 15( - ) be a measurable selector of G(-). It follows that 12 € T (02) and

T
o —tall = [ eIy () 1)
0
T t
S/ efa(M4M2+M1)M3M(t)M3L(t) |:(M4M2 -+ Ml)/ ||0'1(S) — 0'2(8)” ds| dt
0 0
T
+ 5/ efa(]\/[4M2+M1)]Vfgm(t) dt
0
1 T
< *||0‘1 — (72H1 + (5/ e_a(M4M2+M1)M3m(t) dt.
o 0

Since § is arbitrary, so letting § — 0 we deduce from the above inequality that

1
d(1,T(02)) < E”Ul — a1

Thus, we have

1
(5.10) p(Ta(o1),Tx(o2)) =  sup  d(v1,Ta(02)) < —lor — o2l
P1E€T(o1) «a

Now replacing o1 () with o2(-), we obtain

1
(5.11) H*(Tx(01), Ta(02)) < S low = ozl
Now adding (5.10) and (5.11) and dividing by 2, we obtain

1
H(Tx(01),Ta(02)) < EHUl — ol
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Hence we conclude that Ty(-) is a contraction on L'(I, X). Next, we consider
the following set-valued maps

F(t,z) == F(t, ) +p(t),
My (t) == F(t,V(zox)(t), tel,
Ta(o) = {y(-) € LI, X); ¥(t) € My o(t) ae. (I)}.

It is obvious that F( -, -) satisfies Hypothesis 5.1.
Let ¢ € T\(0), § > 0 and define

Gi(t) == Moy N {2z € X : [|¢(t) — 2| < MsL(t)|IA — pllc + p(t) + 8}

Using the same argument as used for the set valued map G(-), we deduce that
G1(-) is measurable with nonempty closed values.

Next, we prove the following estimate:

512 H*(D0) Tuo) £ s

T
+ / 67a(M4M2+M1)M3m(t)p(t) dt.
0

A= pllo

Let ¢(-) € T, (). Then

T
n¢fwh§/’eﬂW““M“MW“Www—w@Wﬁ
0
T
< / ¢~ OLMAMO)MmO ML LY A — pllo + p(t) + 6] dt
0
T
— A=l [ eSO 1 (1)
0

T T
+/ e—a(M4M2+M1)M3m(t)p(t) dt + (5/ e—a(M4M2+M1)M3m(t) dt
0 0

1
- Oz(M4M2 + Ml)

T
+4 / e (MaMatM)Mam(t) gy,
0

T
H>‘ o ,U”C +/ 6704(M4M2+M1)M3m(t)p(t) dt
0

As ¢ is arbitrary, we obtain (5.12).
Now applying Proposition 3.6 we obtain

_ 1
H* (Fix(Th), Fix(T,)) <
(Fix(Ty), Fix(T,,)) < Va(ya —1)(MyMs + M,
T
VI LT,

Va—1J

A—plle
A —al
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Since v(-) € Fix(T},), it follows that there exists v € N and u(-) € Fix(T},) such
that

613 o=l € e A sl

T
+ \/l/a e*O{(M4M2+M1)M3m(t)p(t) dt.
a—1J
We define

t
o= M0+ [ lalts) glt.u(s) + 5, u(s)) .
0
Then one has the following inequality:
t
() =y < [IAE) — p(®)]| + (Mo M + M) /O [u(s) —v(s)[| ds
<A = plle + (MaMa + My)er MM MOMamD [y — ),

Combining the last inequality with (5.13), we obtain

lz(t) = y(®)]| < |A = plle|1+°

a(MyMo+My)Mzm(T)
Va(ya—1) }

\/a My Mo+ M- T —
M4 M. M a(MyMo+My)Msm(T) a(MaMo+My)Mszm(t) t) dt.
+(\/a_1)( 4 M2 + 1)6 06 p()

This completes the proof. O

REMARKS 5.5. (a) If a(t,7) = 0, Theorem 5.4 complements the result in [4]
obtained for mild solutions of the semilinear differential inclusion (5.3).

(b) If a(t,7) = 0, f(t,7,u) = G(t — T)u, V(z) = x, A\(t) = G(t)xo where
{G(t)}+>0 is a Cp-semigroup with an infinitesimal generator A, Theorem 5.4
complements the result in [3] obtained for mild solutions of the semilinear dif-
ferential inclusion (5.3).
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