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FIXED POINTS AND NON-CONVEX SETS
IN CAT(0) SPACES

Bożena Piątek — Rafa Esṕınola

Abstract. Dropping the condition of convexity on the domain of a nonex-

pansive mapping is a difficult and unusual task in metric fixed point theory.
Hilbert geometry has been one of the most fruitful at which authors have

succeeded to drop such condition. In this work we revisit some of the re-

sults in that direction to study their validity in CAT(0) spaces (geodesic
spaces of global nonpositive curvature in the sense of Gromov). We show

that, although the geometry of CAT(0) spaces resembles at certain points

that one of Hilbert spaces, much more than the CAT(0) condition is re-
quired in order to obtain counterparts of fixed point results for non-convex

sets in Hilbert spaces. We provide significant examples showing this fact

and give positive results for spaces of constant negative curvature as well
as R-trees.

1. Introduction

Metric fixed point theory [7], [13] studies the existence of fixed points in Ba-
nach and metric spaces for mappings satisfying metric conditions such as be-
ing a contraction (Banach fixed point theorem) or a nonexpansive mapping
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(i.e. d(Tx, Ty) ≤ d(x, y)), among others. This field has been extensively devel-
oped over the last fifty years, especially after Browder–Göhde–Kirk fixed point
theorem for nonexpansive mappings in 1965. From that moment the standard
situation has been to study the existence of fixed points for a nonexpansive self-
mapping defined on a convex and bounded set. Most techniques developed in the
last fifty years work especially well under convexity and boundedness of the do-
main of the mapping while very little has been said under the lack of any of them.
In this work we take up the question of studying the existence of fixed points for
nonexpansive and a class of asymptotically nonexpansive mappings with non-
convex domain in CAT(0) spaces. Works motivating ours are mainly [20], [21]
and the pioneering one [6].

It is well-known (Browder–Göhde–Kirk fixed point theorem) that any nonex-
pansive mapping defined from a nonempty bounded closed and convex subset D
of a Hilbert space to itself has a fixed point. Actually, Browder–Göhde–Kirk
fixed point theorem holds for more general Banach spaces [7], [13]. Goebel and
Schöneberg [6] proved that ifH is a Hilbert space and D is not necessarily convex
but it is Chebyshev with respect to its convex hull (i.e. for any y in the closed
convex hull of D there is a unique x ∈ D such that ‖y − x‖ = inf

z∈D
‖y − z‖)

then every nonexpansive self-mapping on D has a fixed point. This result was
obtained via Kirszbraun-Valentine [14], [23] results on extension of nonexpansive
mappings. It is very-well known that these extension results are very intrinsic to
the Euclidean geometry within the class of normed spaces. Goebel–Schöneberg’s
result was extended in [21] by Rouhani to different classes of asymptotically non-
expansive mappings by following a completely different approach than that one
from [6]. In fact, Kirszbraun–Valentine results are no longer useful for this new
class of mappings. In this work we focus on these same problems for CAT(0)
spaces which, as it is well-known, contain the class of Hilbert spaces. Our results
will require of a different approach than that one from [20], [21], in fact our ap-
proach will very much rely on the hyperbolic geometry of the spaces we consider
and will take us to a number of technical and geometrical results which will be
needed to reach our goals.

Fixed points on CAT(0) spaces, or spaces of globally nonpositive curvature
in the sense of Gromov, have been extensively studied in the last years by differ-
ent authors (see for instance [3], [4], [12] as well as the seminar papers [9], [10]
and references therein). [2] provides a very comprehensive exposition on CAT(0)
spaces. CAT(0) spaces share a number of good properties with Hilbert spaces
and so it is not that surprising that certain results originally obtained for Hilbert
spaces find counterparts in CAT(0) spaces. We will show that results obtained
by Rouhani in [20], [21] require a very strong symmetry of the metric of the
space and so they are far to hold on any CAT(0) spaces. We give two examples
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of CAT(0) spaces where such results do not hold. One of them will link this
problem with property (Q4) recently studied in [4], [12]. The second example
happens to be a CAT(0) tangent cone. The singularity about CAT(0) spaces
which are 0-cones is that they contain many flat subsets (isometric to subsets
of the 2-dimensional Euclidean space, see [2], [17], [18]), and so they could be
considered as good candidates for positive answers. Our main results give exten-
sions of Rouhani’s results to CAT(0)-spaces of constant curvature and R-trees.
This work is organized as follows. In Section 2 we introduce the required

terminology and preliminary results for a better understanding of our work.
In Section 3 we focus on the problem of absolute fixed points. Thanks to a re-
cent result on extension of nonexpansive mappings on spaces of bounded curva-
ture [17] (see also [16]) we can obtain counterparts of Rouhani’s results from [20]
in spaces of constant curvature and R-trees. We also provide our first example
of a CAT(0) space which does not verify Rouhani’s results on existence of fixed
points for non-convex subsets. In Section 4 we give an example of a 0-cone failing
Rouhani’s result. Then we present a collection of results which will ultimately
lead us to our main result: counterparts of Goebel–Schöneberg and Rouhani’s
results for spaces of negative constant curvature. In our last section, Section 5,
we take up the same problem for R-trees (which can be regarded as spaces of −∞
constant curvature). We will see that in this case the situation is much simpler
and we will even be able to provide a multi-valued version of our result. We
close our work with an appendix where we study the same problems for nonlin-
ear contraction semigroups. In this work we do not consider the case of positive
constant curvature.

2. Preliminaries and definitions

A geodesic path joining x ∈ X to y ∈ Y (or, more briefly, a geodesic from x
to y) is a map c: [0, l] ⊆ R→ X such that

c(0) = x, c(l) = y and d(c(t), c(t′)) = |t− t′| for all t, t′ ∈ [0, l].

In particular, c is an isometry and d(x, y) = l. The image α of c is called
a geodesic (or metric) segment joining x and y. When it is unique this geodesic
is denoted by [x, y]. The space (X, d) is said to be a geodesic space if every
two points of X are joined by a geodesic, uniquely geodesic if there is exactly
one geodesic joining x and y for each x, y ∈ X, and is said to have the geodesic
extension property if each geodesic segment is contained in a geodesic which is
isometric to the real line. Let Y ⊂ X, we denote by G1(Y ) the union of all
geodesic segments in X with endpoints in Y . Then Y is said to be convex if
G1(Y ) = Y or, equivalently, if every segment connecting two points x, y ∈ Y is
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contained in Y . For n ≥ 2 we inductively define Gn(Y ) = G1(Gn−1(Y )); then

conv(Y ) =
∞⋃
n=1

Gn(Y )

is the convex hull of Y .
Next we describe the model spaces of negative and zero curvature, the reader

may find a much more thorough description of them in [2, Chapter I.2].
Let En stand for the metric space obtained by equipping the vector space Rn

with the metric associated to the norm arising from the Euclidean scalar product

(x | y) =
n∑
i=1
xiyi, where x = (x1, . . . , xn) and y = (y1, . . . , yn), i.e. Rn endowed

with the usual Euclidean distance.
Let En,1 denote the vector space Rn+1 endowed with the symmetric bilinear

form which associates to vectors u=(u1, . . . , un, un+1) and v=(v1, . . . , vn, vn+1)
the real number 〈u|v〉 defined by

〈u | v〉 = −un+1vn+1 +
n∑
i=1

uivi.

Then the real hyperbolic n-space Hn is

{u ∈ En,1 : 〈u |u〉 = −1, un+1 ≥ 1}.

Proposition 2.1. Let d:Hn ×Hn → R be the function that assigns to each
pair (A,B) ∈ Hn ×Hn the unique non-negative number d(A,B) such that

cosh d(A,B) = −〈A |B〉.

Then (Hn, d) is a uniquely geodesic metric space.

The Model Spaces M2κ for κ ≤ 0 are defined as follows.

Definition 2.2. Given κ ∈ (−∞, 0], we denote by M2κ the following metric
spaces:

(a) if κ = 0 then M20 is the Euclidean space E2;
(b) if κ < 0 then M2κ is obtained from the hyperbolic space H2 by multi-
plying the distance function by the constant 1/

√
−κ.

Let (X, d) be a geodesic metric space. a geodesic triangle 4(x1, x2, x3) in X
consists of three points in X (the vertices of 4) and a geodesic segment be-
tween each pair of vertices (the edges of 4). A comparison triangle for a geo-
desic triangle 4(x1, x2, x3) in (X, d) is a triangle 4(x1, x2, x3) in M2κ such that
dM2κ(xi, xj) = d(xi, xj) for i, j ∈ {1, 2, 3}. If κ ≤ 0 then such a comparison
triangle always exists in M2κ and it is unique up to isometries.
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A geodesic triangle 4 in X is said to satisfy the CAT(κ) inequality if, given
4 a comparison triangle in M2κ for 4, for all x, y ∈ 4

d(x, y) ≤ dM2κ(x, y),

where x, y ∈ 4 are the respective comparison points of x, y, i.e. if x ∈ [xi, xj ] is
such that d(x, xi) = λd(xi, xj) and d(x, xj) = (1 − λ)d(xi, xj) then x ∈ [xi, xj ]
is such that dM2κ(x, xi) = λdM2κ(xi, xj) and dM2κ(x, xj) = (1− λ)dM2κ(xi, xj).

Definition 2.3. If κ ≤ 0, then X is called a CAT(κ) space if X is a geodesic
space such that all of its geodesic triangles satisfy the CAT(κ) inequality.

Definition 2.4. We will say that a space is of constant curvature κ ∈
(−∞, 0] if it is geodesic and all its triangles are isometric to their comparing
ones in M2κ .

We will also need the notion of Alexandrov’s angle. Let (p, q, z) be a triple
in a CAT(0) space X and (p, q, z) a comparison triple in M2κ . Assume p, q 6= z.
Then the (κ-)comparison angle ∠κz (p, q) ∈ [0, π] is the (Riemannian) angle at z
subtended by the segments [z, p], [z, q] in M2κ . Now let x, y be points in X and
let σ: [0, d(z, x)]→ X and τ : [0, d(z, y)]→ X be the geodesics from z to x and y
respectively. It can then be shown (see [2]) that the limit

∠z(x, y) := lim
s′,t′→0

∠κz (σ(s
′), τ(t′))

exists.
The Hyperbolic Cosine Law for the model space of curvature −1 (see [2,

p. 24]) will be heavily used in this work.

Proposition 2.5. Consider a triangle with side lengths a, b and c in M2−1,
then the Hyperbolic Law of Cosines holds

cosh c = cosh a cosh b− sinh a sinh b cos γ,

where γ stands for the hyperbolic angle (which coincides with the Alexandrov
angle) opposite to side of length c.

We summarize next some of the properties of CAT(0) spaces which can be
found in [2, Chapter II] and will be needed in our work.

Proposition 2.6. Let (X, d) be a CAT(0) space, then the following proper-
ties hold:

(a) (X, d) is a uniquely geodesic space.
(b) If ∆=∆(A,B,C) is a triangle in (X, d) and ∆ = ∆(A,B,C) is its
Euclidean comparison triangle, then for any vertex of ∆, let us say A,

γ = ∠A(B,C) ≤ ∠A(B,C).
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(c) (Law of cosines) If γ is as above and a = d(B,C), b = d(A,C) and
c = d(A,B) then

a2 ≥ b2 + c2 − 2bc cos γ.

In particular, if γ ≥ π/2 then the largest side of ∆ is the opposite to γ.

Another important feature from CAT(0) spaces is the behavior of the metric
projection. This behavior resembles that of the same projections in Hilbert
spaces.

Definition 2.7. Given a metric space X and a nonempty subset K of X,
the metric projection (or nearest point map) from X onto K is denoted as PK
and defined by

PK(x) = {y ∈ K : d(x, y) = dist(x,K)}
where dist(x,K) = infy∈K d(x, y).

The next proposition, which summarizes the properties of the metric projec-
tion onto closed and convex subsets of CAT(0) spaces, can be found in [2].

Proposition 2.8. Let X be a complete CAT(0) space and K ⊆ X non-
empty, closed and convex. Then the metric projection onto K is well-defined
(single-valued) and nonexpansive. Moreover, if x /∈ K and y ∈ K with y 6= PK(x)
then

∠PK(x)(x, y) ≥
π

2
.

R-trees are a particular class of CAT(0) spaces with many applications in dif-
ferent fields. Since they are CAT(κ) spaces for any κ they are also referred to
as spaces of −∞ constant curvature (see [2, p. 167] for more details). The in-
terested reader may check [1], [5], [11], [19] for recent advances on R-trees and
fixed points.

Definition 2.9. An R-tree is a metric space M such that:
(a) it is a uniquely geodesic metric space;
(b) if x, y and z ∈M are such that [y, x]∩ [x, z] = {x}, then [y, x]∪ [x, z] =
[y, z].

In this work we will deal with nonexpansive mappings and a class of mild
asymptotically nonexpansive mappings which is defined next.

Definition 2.10. Let X be a metric space and D ⊆ X nonempty. A map-
ping T :D → D is said to be
(a) nonexpansive if d(Tx, Ty) ≤ d(x, y) for every x, y ∈ D.
(b) asymptotically nonexpansive in the intermediate sense if

lim sup
n→∞

sup
x,y∈D

(d(Tnx, Tny)− d(x, y)) ≤ 0.
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It is immediate to see that nonexpansive mappings are asymptotically non-
expansive in the intermediate sense.
Asymptotic elements are very useful in metric fixed point theory. Consider

(xn) a bounded sequence in X. For x ∈ X set

r(x, (xn)) = lim sup
n→∞

d(x, xn).

The asymptotic radius r(xn) of (xn) is given by

r(xn) = inf{r(x, (xn)) : x ∈ X},

and the asymptotic center of (xn), which we will generically denote as A(xn), is
given by the set

A(xn) = {x ∈ X : r(x, (xn)) = r(xn)}.
The following fundamental property has been proved in [12].

Proposition 2.11. Let (xn) be a bounded sequence in a CAT(0) space.
Then the asymptotic center of (xn) is a singleton. Moreover,

A(xn) ∈ conv{xn:n ∈ N}.

Next we introduce the notion of absolute fixed point given by Rouhani in [20].

Definition 2.12. LetX be a metric space,D ⊆ X nonempty and T :D → D
a nonexpansive mapping. We say that x ∈ X is an absolute fixed point of T if
the extension T̃ of T from D∪{x} to D∪{x} such that T̃ x = x is nonexpansive
and if x is a fixed point for any nonexpansive extension of T to the union of D
and a subset of X containing x.

Remark 2.13. Notice that a fixed point of T is trivially an absolute fixed
point after the above definition.
Rouhani obtained the following result in [20] (see also [6]).

Theorem 2.14. Let D be a nonempty subset of a real Hilbert space H, and
T :D → D a nonexpansive mapping. Then T has an absolute fixed point in H
if and only if the sequence (Tnx) is bounded for some x ∈ D (and hence for
any point in D). In this case, for any x ∈ D, the asymptotic center of (Tnx)
is an absolute fixed point for T . Moreover, the mapping sending each x ∈ D to
the asymptotic center of (Tnx) is nonexpansive.

Later on, Rouhani proved some results on Hilbert spaces in [21] which ex-
tended pioneering fixed point results on non-convex sets from [6].

Theorem 2.15. Let T be an asymptotically nonexpansive in the intermedi-
ate sense mapping defined on a nonempty subset D of a Hilbert space H. As-
sume TN is nonexpansive for some integer N ≥ 1. Then T has a fixed point
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in D if and only if there exists x ∈ D with bounded orbit and such that for any
y ∈ conv{Tnx : n ≥ 0} there is a unique p ∈ D such that ‖y− p‖ = inf

z∈D
‖y− z‖.

Remark 2.16. We would like to notice here that actually a bit more than
that is proved in Rouhani’s paper. In fact the condition “there exists x ∈ D
such that for any y ∈ conv{Tnx : n ≥ 0} there is a unique p ∈ D such that
‖y− p‖ = inf

z∈D
‖y− z‖” can be replaced with “there exists x ∈ D such that there

is a unique p ∈ D in such a way that

‖A(Tnx)− p‖ = inf
z∈D
‖A(Tnx)− z‖,

where, as usual, A(Tnx) stands for the asymptotic center of the sequence of ite-
rates”.

Remark 2.17. Theorem 2.15 was proved in [21] for the so-called class of
asymptotically nonexpansive type self-mappings which is a slightly more gene-
ral class than that of asymptotically nonexpansive in the intermediate sense
mappings.

3. Absolute fixed points in CAT(0) spaces

One of the main keys for Rouhani’s results from [20], [21] is Lemma 3.1
in [20] which states that if H is a Hilbert space, D ⊆ H nonempty and T :D →
D nonexpansive with bounded orbits, then the sequence (‖Tny − c‖), where
c = A(Tnx), is decreasing for any y ∈ D. We show next that this is no longer
true in general CAT(0) spaces.

Example 3.1. Let X be defined by

X := {(x, y) ∈ R2 : (x < 0 ∧ y = 0) ∨ x ≥ 0}

endowed with the induced length metric from E2. This space is CAT(0) because
it can be seen as gluing of two CAT(0) spaces (see [2, p. 347]). Consider now
the set D = {X1, X2, Y1, Y2} where

X1 = (0,−2), Y1 = (−1, 0), X2 = (0, 2), Y2 = (
√
5, 0).

It is enough to define T :D → D as T (Xi) = Xj , T (Yi) = Yj for i, j ∈ {1, 2}
with i 6= j. Then T is an isometry (and so nonexpansive). However, for x = X1
and y = Y1 we obtain that A(Tnx) = (0, 0) =: 0 while, as it is easy to see,
(d(Tny, 0)) is not decreasing.

As a consequence of this example we obtain the next corollary.
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Corollary 3.2. Remark 2.16 does not hold on general CAT(0) spaces even
for isometries.

Proof. Just notice that the mapping from the example is fixed point free
and that dist(0, D) is reached only at Y1. �

Another interesting thing from the previous example is that it fails the re-
cently introduced [12] property (Q4).

Definition 3.3. A CAT(0) space X is said to enjoy property (Q4) if for
points x, y, p, q in X

d(x, p) < d(x, q)
d(y, p) < d(y, q)

}
⇒ d(m, p) ≤ d(m, q)

for any point m on the segment [x, y].

Property (Q4) was further studied in [4]. (Q4) has not been checked yet in any
other space which is not of constant curvature and we think that the lack of con-
dition (Q4) is very close to the failure of Theorem 2.15. If we restrict ourselves
to spaces of constant curvature then we can obtain a counterpart of Rouhani’s
Lemma 3.1 in [20]. It is worth to say that Rouhani’s proof is constructive while,
as the same author indicates in his paper, a more direct proof could be derived
from Kirszbraun–Valentine [23] results on extension of nonexpansive mappings.
We would like to point out that actually Kirszbraun–Valentine’s result would be
applied when extending from a set D into another set D ∪ {p} and so it would
also provide a constructive proof. Kirszbraun–Valentine’s results have been ex-
tended recently to spaces of bounded curvature in [17] (see also [16]). We next
state a particular case of one of the main results from [17].

Theorem 3.4. Let X be a complete space of constant curvature κ ∈ (−∞, 0].
Let D ⊆ X nonempty and T :D → X nonexpansive. Then, given p /∈ D, there
exists a nonexpansive extension of T to D ∪ {p}.

We will need the second part of the next lemma for our absolute fixed point
result. The same lemma will be needed at its full in our last section.

Lemma 3.5. Let X be a complete CAT(0) space and (xn) ⊆ X a bounded
sequence. Then for any y ∈ X \ {A(xn)} there is a subsequence (xq(n)) of (xn)
such that

lim
n→∞
d(xq(n), A(xn)) = lim sup

n→∞
d(xn, A(xn)) =: r(xn)

and

lim
n→∞
P[A(xn),y](xq(n)) = A(xn).
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Proof. For an easier exposition make A = A(xn). Suppose the lemma is
not true, then there is a positive number ε and N ∈ N such that

d(xn, A) > r(xn)− ε =⇒ d(P[A,y](xn), A) > ε

for all n > N . Let us choose p ∈ [A, y] such that d(A, p) = ε
2
. Then, as

a consequence of Proposition 2.8, ∠p(A, xn) ≥ π/2 for all xn such that d(xn, A) >
r(xn)− ε and n > N . Therefore, by (c) of Proposition 2.6,

d2(A, xn)− d2(A, p) ≥ d2(p, xn),

still for the same xn, and finally

lim sup d2(p, xn) ≤ r2(xn)−
(
ε

2

)2
< r2(xn)

what is a contradiction with the definition of asymptotic center. �

The next result (counterpart of Theorem 2.14 for hyperbolic spaces) follows,
in part, as a corollary of Theorem 3.4.

Theorem 3.6. Let X be a complete space of constant curvature κ ∈ (−∞, 0],
D ⊆ X nonempty and T :D → D nonexpansive. Assume that (Tnx) is bounded
for some x ∈ D. Then A(Tnx) is an absolute fixed point of T . Moreover,
the sequence (d(Tny,A(Tmx)))n∈N is non increasing and the mapping U from D
into the set of absolute fixed points of T given by U(x) = A(Tnx) is nonexpansive.

Proof. Notice first that if there is x such that (Tnx) is bounded then,
from the nonexpansivity of T , the same is true for any y ∈ D. Denote (xn)
the sequence of iterates of x ∈ D. If it is the case that A(xn) ∈ D then it
is immediate to check that T (A(xn)) is also an asymptotic center of (xn) and,
since asymptotic centers are unique in CAT(0) spaces (Proposition 2.11), there is
a nonexpansive extension of T to D∪{A(xn)} and, by same arguments as above,
T (A(xn)) = A(xn). Therefore, A(xn) is an absolute fixed point of T either way.
Also, the nonexpansivity of T or its extension, implies that (d(Tny,A(xm)))n∈N

is non increasing for any y in D.
Next we want to show that U is nonexpansive, that is, if (xn) and (yn) stand

for the sequences of iterates of x and y respectively, then d(A(xn), A(yn)) ≤
d(x, y).
Let us assume that d(A(xn), A(yn)) > d(x, y) > 0. There is no loss of gener-

ality if we assume that κ = −1. The case κ = 0 would also follow after the same
reasoning although this case was studied in [20] from a different approach. From
Lemma 3.5, we know that A(xn) is an accumulation point of (P[A(xn),A(yn)](xn)).
Let (xnk) be such that

P[A(xn),A(yn)](xnk)→ A(xn) as k →∞.
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At the same time, we may fix (ymk) such that

P[A(xn),A(yn)](ymk)→ A(yn) as k →∞.

Without loss of generality we may further assume that n1 ≤ m1 ≤ n2 ≤ m2 ≤ . . .
Make l = [A(xn), A(yn)]. Now, the nonexpansivity of the metric projec-

tion and T implies that d(Pl(xnk), Pl(ynk)) ≤ d(x, y) for any k and so, since
d(A(xn), A(yn)) > d(x, y) > 0, we can assume that there exists δ > 0 such that

d(A(yn), Pl(ynk)) ≥ δ for any k.

For simplicity we will assume that Pl(ynk) = p for any k and that d(p,A(yn)) = δ.
Otherwise, since we can assume that (Pl(ynk)) converges to such a p, a continuity
reasoning would work.
For k = 1 let d1 = d(A(xn), yn1) and consider B(A(xn), d1). Remember that

m1 ≥ n1 and then, since the sequence (d(yn, A(xn))) is non increasing, it must
also be the case that

ym1 ∈ B(A(xn), d1).
Let now a = d(A(xn), p) and b1 = d(p, yn1). By isometries if needed, we can
consider that [A(xn), A(yn)] and yn1 are in H2. Consider the orthogonal line l′

to [A(xn), A(yn)] thought A(yn) in H2. Take z ∈ l′ different from A(yn), then,
from the Hyperbolic Cosine Law, we have that if bz = d(A(yn), z)

cosh d(A(xn), z) = cosh(a+ δ) cosh bz

and, by applying again the law of cosines, it results that z ∈ B(A(xn), d1) if and
only if bz ≤ b2 where b2 is given by

cosh b2 =
cosh a

cosh(a+ δ)
cosh b1.

Since this can be reproduce for any such points, this is a property that holds
on X. Now, back to X, consider ym1 . Since Pl(ymk) → A(yn) we can assume
that ∠A(yn)(p, ymk) → α ≥ π/2 as k → ∞. For simplicity, we will assume that
∠A(yn)(p, ymk) ≥ π/2 for any k since otherwise a continuity argument would
work. We know that ym1 ∈ B(A(xn), d1) therefore, as an application of the Hy-
perbolic Cosine Law, we obtain that d(A(yn), ym1) ≤ b2.
Next, since d(A(ym), yn) is decreasing with n, yn2 ∈ B(A(yn), b2) and so

d(yn2 , p) ≤ b2. By repeating the same argument we obtain b3 such that

cosh b3 =
cosh a

cosh(a+ δ)
cosh b2 =

(
cosh a

cosh(a+ δ)

)2
cosh b1

and ym2 ∈ B(A(yn), b3) which, after a finite number of steps, leads to a contra-
diction. �

As a corollary we obtain the following counterparts to the main result from [6].
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Corollary 3.7. Let X be a complete space of constant curvature κ ∈
(−∞, 0], D ⊆ X nonempty and T :D → D nonexpansive. Then T has a fixed
point if and only if there is x ∈ D for which the sequence of its iterates (Tnx) is
bounded and there is a unique y ∈ D such that

d(A(Tnx), y) = dist(A(Tnx), D).

Corollary 3.8. Let X be a complete space of constant curvature κ ∈
(−∞, 0], D ⊆ X nonempty and T :D → D nonexpansive. Then T has a fixed
point in D if and only if there is x ∈ D for which the sequence of its iterates
(Tnx) is bounded and for any y ∈ conv{Tnx:n ≥ 0} there is a unique p ∈ D
such that dist(y,D) = d(y, p).

The same results hold true for R-trees.

Theorem 3.9. Let X be a complete R-tree, D ⊆ X nonempty and T :D → D
nonexpansive. Assume that (Tnx) is bounded for some x ∈ D. Then A(Tnx) is
an absolute fixed point of T . Moreover, the sequence (d(Tny,A(Tmx))) is non
increasing and the mapping U from D into the set of absolute fixed points of T
given by U(x) = A(Tnx) is nonexpansive.

Proof. The proof for R-trees follows the same scheme as the previous one.
Extending nonexpansive mappings in a nonexpansive way when defined into
an R-tree is a very well-known fact since complete R-trees are hyperconvex (see
[8], [18]). The nonexpansivity of U can be proved by paralleling the reasoning
in the previous proof although now it follows in an easier way. �

Equivalent corollaries to Corollaries 3.7 and 3.8 follow for R-trees.

4. Fixed point on non convex sets

Example 3.1 already showed that Theorem 2.15 does not hold on general
CAT(0) spaces. That example basically shows that Theorem 2.15 is hard to
hold on CAT(0) spaces which are obtained as gluings of other CAT(0) spaces
(see [2] for details about gluings). The next example provides a similar example
on a 0-cone. The significance of 0-cones is that they can be regarded as quite reg-
ular class of CAT(0) spaces since they contain many two-dimensional Euclidean
subsets.

Definition 4.1. Given a metric space Y , considerX the quotient of [0,∞)×
Y given by the equivalence relation: (t, y) ∼ (t′, y′) if t = t′ = 0 or t = t′ > 0
and y = y′ otherwise. For x = ty and x′ = t′y′ in X, define

d2(x, x′) = t2 + t′2 − 2tt′ cos(dπ(y, y′))

where dπ(y, y′) := min{π, d(y, y′)}. Then (X, d) is the 0-cone of Y .
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A more detailed treatment of 0-cones can be found in [2, p. 59] or [17], [18].

Example 4.2. Let M be the segment [0, 3π) with distance d defined by

d(x, y) = min{|x− y|, 3π − |x− y|, π}.

It is easy to check that M is a CAT(1) space.

Let X be the 0-cone of M . It is shown in [2, p. 188] that the 0-cone
of a CAT(1) space is a CAT(0) space, therefore X is a CAT(0) space. Moreover,
X is not a tangent cone of M but M is a space of directions of X at the point 0,
so X is a self tangent cone.

Now let us consider D ⊆ X made of the points:

X1 = 2 · π, Y1 = 1 · 0, X2 = 2 · 2π, Y2 =
√
5 · 3π
2
.

If we define T :D → D as T (Xi) = Xj , T (Yi) = Yj for i, j ∈ {1, 2} with i 6= j,
then T is an isometry (so nonexpansive) and assumptions from Remark 2.16 hold
for x = X1 and y = Y1 because A(Tnx) = 0. Notice also that T is fixed point
free.

Our positive result in this direction will be on spaces of constant curvature.
For simplicity we will consider, however, the spaces H∞ of constant curvature −1
in our proofs. In Lemma 4.7 we will apply the geodesic extension property of H∞,
but since the convex hull of finite sets of spaces of curvature −1 are isometric, we
may generalize our results for spaces of constant curvature without the geodesic
extension property.

For constant curvature κ ∈ (−∞, 0) the result would follow the same way.
The unique modification we have to apply is that in the definition of barycenters
(see Lemma 4.4) distances should be multiplied by

√
−κ. The fact that we work

on H∞ instead of a finite dimensional model space of −1 curvature is only to
show that compactness arguments do not play any role in our reasonings. In fact,
our proofs work the same with no regards on the dimension of the space.

For our first result we will need the CN inequality of CAT(0) spaces ([2,
p. 163]).

Proposition 4.3. Let X be a CAT(0) space, p, q, r ∈ X and m the middle
point of [q, r], then

d2(p, q) + d2(p, r) ≥ 2d2(m, p) + 1
2
d2(q, r).

A main tool in our results will be cosh d-barycenters in H∞. We define such
barycenters in the following lemma motivated by Proposition 1.7 in [22].



148 B. Piątek — R. Esṕınola

Lemma 4.4. Let X be a complete CAT(0) space and consider {x1, . . . , xn}
⊆ X. Then there is a unique minimizer z ∈ X for the function

φ(y) =
n∑
k=1

cosh d(y, xk).

This minimizer will be called the cosh d-barycenter, or just barycenter for simplic-
ity, of the set {x1, . . . , xn} and will be denoted as s(x1, . . . , xn). Furthermore,
the barycenter always belongs to the closed convex hull of {x1, . . . , xn}.

Proof. The function φ is positive and so it has an infimum. Let {zm} be
a minimizing sequence, that is,

n∑
k=1

cosh d(zm, xk)→ inf
x∈X

n∑
k=1

cosh d(x, xk)

as m → ∞. Take k ∈ {1, . . . , n} and for p, q ∈ N let zpq the middle point
between zp and zq. Then

cosh d(xk, zpq) = 1 +
d2(xk, zpq)
2!

+
d4(xk, zpq)
4!

+ . . .

(from Proposition 4.3)

(4.1) ≤ 1 +

1
2
d2(xk, zp) +

1
2
d2(xk, zq)−

1
4
d2(zp, zq)

2!
+
d4(xk, zpq)
4!

+ . . .

Now, by recalling that the metric is convex,

d(xk, zpq) ≤
1
2
d(xk, zp) +

1
2
d(xk, zq),

d2j(xk, zpq) ≤
(
1
2
d(xk, zp) +

1
2
d(xk, zq)

)2j
≤ 1
2
d2j(xk, zp) +

1
2
d2j(xk, zq).

Then

(4.1) ≤ 1 +

1
2
d2(xk, zp) +

1
2
d2(xk, zq)−

1
4
d2(zp, zq)

2!

+

1
2
d4(xk, zp) +

1
2
d4(xk, zq)

4!
+ . . .

=
1
2

(
1 +
d2(xk, zp)
2!

+
d4(xk, zp)
4!

+ . . .
)

+
1
2

(
1 +
d2(xk, zq)
2!

+
d4(xk, zq)
4!

+ . . .
)
− 1
8
d2(zp, zq)

=
1
2
cosh d(xk, zp) +

1
2
cosh d(xk, zq)−

1
8
d2(zp, zq),
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and therefore
n∑
k=1

cosh d(xk, zpq) ≤
1
2

n∑
k=1

cosh d(xk, zp) +
1
2

n∑
k=1

cosh d(xk, zq)−
n

8
d2(zp, zq),

from where the conclusion follows by taking limit when p, q go to ∞.
The fact that the minimizer must be in the closed convex hull of {x1, . . . , xn}

directly follows from the nonexpansivity of the metric projection onto closed and
convex subsets of CAT(0) spaces. �

Definition 4.5. Given a sequence (xn) in a CAT(0) space we will de-
note by (s(x1, . . . , xn)) the sequence of its baryncenters and, when it exists,
by A(s(x1, . . . , xn)) the asymptotic center of the sequence of barycenters.

Next we state our main fixed point result for non-convex sets in spaces of neg-
ative constant curvature with the geodesic extension property.

Theorem 4.6. Let D be a nonempty subset of H∞ and T :D → D an asymp-
totically nonexpansive in the intermediate sense mapping. Moreover, suppose
that there is N such that TN is nonexpansive. Then T has at least one fixed
point if and only if there is x ∈ D for which the sequence of its iterates (xn),
where xn = Tn(x), is bounded and there is a unique y ∈ D such that

d(A(s(x1, . . . , xn)), y) = dist(A(s(x1, . . . , xn)), D).

Before proving this theorem we will show a collection of technical lemmas
which will be required in its proof.

Lemma 4.7. Let {p, a1, . . . , an} ⊂ H∞ then
n∑
k=1

cosh d(p, ak) = cosh d(p, s(a1, . . . , an))
n∑
k=1

cosh d(s(a1, . . . , an), ak).

Proof. Let s := s(a1, . . . , an). On account of the Hyperbolic Cosine Law
for each k ∈ {1, . . . , n} and p ∈ H∞ we have

cosh d(ak, p) = cosh d(ak, s) cosh d(p, s)− sinh d(ak, s) sinh d(p, s) cos∠s(p, ak).

Let K :=
n∑
k=1
sinh d(ak, s) sinh d(s, p) cos∠s(p, ak). It is sufficient to show that

K = 0.
Let us consider K positive. Let s′ be a point in the metric segment [s, p].

Then for each k ∈ {1, . . . , n} an angle ∠s′(p, ak) is not smaller than ∠s(p, ak)
and, since ∠s′(s, ak) + ∠s′(p, ak) = π,

cosh d(ak, s) = cosh d(ak, s′) cosh d(s′, s)

+ sinh d(ak, s′) sinh d(s, s′) cos∠s′(p, ak).
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Summing up this equality from k = 1 to n we get

n∑
k=1

cosh d(ak, s) =
n∑
k=1

cosh d(ak, s′) cosh d(s, s′)

+
n∑
k=1

sinh d(ak, s′) sinh d(s, s′) cos∠s′(p, ak).

If d(s′, s) is small enough, then the last sum gets as close to K · d(s
′,s)

d(p,s) as wished
and therefore we can assume it is positive. Hence

n∑
k=1

cosh d(ak, s) ≥
n∑
k=1

cosh d(ak, s′) cosh d(s, s′) >
n∑
k=1

cosh d(ak, s′),

a contradiction.

Now let us suppose that K is negative. Let s′ be a point of a ray containing
[s, p] such that s ∈ (p, s′). Then for each k ∈ {1, . . . , n}, since s is now the interior
point in the segment, the angle ∠s′(p, ak) is not greater than ∠s(p, ak) and

cosh d(ak, s) = cosh d(ak, s′) cosh d(s′, s)

− sinh d(ak, s′) sinh d(s, s′) cos∠s′(p, ak).

Taking d(s′, s) small enough and reasoning as above, we get

n∑
k=1

cosh d(ak, s) ≥
n∑
k=1

cosh d(ak, s′) cosh d(s, s′) >
n∑
k=1

cosh d(ak, s′),

which is a contradiction. �

Lemma 4.8. Let (an) be a bounded sequence in H∞, then

lim
n→∞
d(s(a1, . . . , an), s(a2, . . . , an+1)) = 0.

Proof. Let us fix n > 2 and take sn := s(a2, . . . , an), s′n := s(a1, . . . , an).
For simplicity, we will denote s = sn and s′ = s′n. From the definition of s

′ we
have that

n∑
i=1

cosh d(ai, s′) ≤ cosh d(a1, s) +
n∑
i=2

cosh d(ai, s)

(from Lemma 4.7)

= cosh d(a1, s) +
n∑
i=2

cosh d(ai, s′)
cosh d(s, s′)

.
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Therefore,

cosh d(a1, s′)− cosh d(a1, s) ≤
n∑
i=2

cosh d(ai, s′)
cosh d(s, s′)

−
n∑
i=2

cosh d(ai, s′)

=
n∑
i=2

cosh d(ai, s′)
(

1
cosh d(s, s′)

− 1
)
.

So, bearing in mind that cosh(x) ≥ 1,

(n− 1)
(
1− 1
cosh d(s, s′)

)
≤

n∑
i=2

cosh d(ai, s′)
(
1− 1
cosh d(s, s′)

)
≤ cosh d(a1, s)− cosh d(a1, s′).(4.2)

Now, since s, s′ ∈ conv{a1, . . . , an} ⊆ conv{a1, . . . , am, . . . } for any n ∈ N,

(4.2) ≤ coshM,

where M stands for the diameter of (an). Hence it must be the case that
d(s, s′)→ 0 as n→∞. �

Lemma 4.9. Let {z, y, a1, a2} ⊆ H∞ with diameter M and such that d(y, ai)
≤ d(z, ai) ≤ d(y, ai) + δ for i ∈ {1, 2} and for a certain δ > 0, then

(4.3) d(z, u) ≤ d(y, u) + arc cosh(1 + δ · sinhM)

for any u ∈ [a1, a2].

Proof. Let us consider the triangles 4(a1, a2, y) and 4(a1, a2, z) and u ∈
(a1, a2). Apply now the law of cosines to the triangles4(a1, a2, y) and4(a1, u, y)
at the angle at a1. Therefore we obtain two expressions for cos∠a1(y, a2) which
allows us to replace the first one into the second one to obtain

cosh d(y, u) = cosh d(y, a1) cosh d(a1, u)

− sinh d(a1, u)
sinh d(a1, a2)

(cosh d(y, a1) cosh d(a1, a2)− cosh d(y, a2)).

A similar expression is obtained for cosh d(z, u) by working with triangles
4(a1, a2, z) and 4(a1, u, z).
From where, applying the formula for the sinh(d(a1, a2) − d(a1, u)) in both

cases, we obtain that

(4.4) cosh d(y, u) =
sinh d(u, a2)
sinh d(a1, a2)

cosh d(y, a1) +
sinh d(a1, u)
sinh d(a1, a2)

cosh d(y, a2)

and

(4.5) cosh d(z, u) =
sinh d(u, a2)
sinh d(a1, a2)

cosh d(z, a1) +
sinh d(a1, u)
sinh d(a1, a2)

cosh d(z, a2),
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Since sinh(x) is superadditive in [0,∞), we further obtain

cosh d(z, u)− cosh d(y, u)(4.6)

=
sinh d(u, a2)
sinh d(a1, a2)

(cosh d(z, a1)− cosh d(y, a1))

+
sinh d(a1, u)
sinh d(a1, a2)

(cosh d(z, a2)− cosh d(y, a2))

≤ max{cosh d(z, a1)− cosh d(y, a1), cosh d(z, a2)− cosh d(y, a2)}.

Now we go into some elementary analysis to estimate coshA − coshB for A >
B > 0 (the case 0 < A = B follows in a trivial way). By expressing B and
A − B as convex combination of A and 0, considering the convexity of cosh(x)
and substracting, we obtain that

cosh(A−B) ≤ 1 + coshA− coshB.

From Lagrange’s theorem, there exists C ∈ (B,A) such that coshA− coshB =
(A−B) sinhC, and so

1 + coshA− coshB ≤ 1 + δ sinhM,

where δ = A − B and M ≥ C. Now, it only requires to apply all this with
A = d(z, u), B = d(y, u) and δ and M as above to deduce (4.3). �

Notice that from this lemma we obtain an expectable strong version of con-
dition (Q4) for spaces of constant curvature.

Corollary 4.10. Let z, y, a1, a2 be four points in H∞ such that d(y, ai) <
d(z, ai) for i ∈ {1, 2}, then d(y, u) < d(z, u) for each u ∈ [a1, a2].

Proof. This immediately follows from equations (4.4) and (4.5). �

Theorem 4.11. Let D be a nonempty subset of H∞ and T :D → D an asym-
ptotically nonexpansive mapping in the intermediate sense. Suppose that there
exists x ∈ D such that the sequence of its iterates (xn) is bounded. Then for any
y ∈ D the following equality holds

(4.7) lim
n→∞
d(A(s(x1, . . . , xm)), yn) = inf

n∈N
d(A(s(x1, . . . , xm)), yn),

where, as usual, yn = Tny. Moreover, if there is N ∈ N such that TN is
nonexpansive then the sequence (d(ynN , A(s(x1, . . . , xm))))n∈N is non increasing.

Proof. Take y ∈ D, the metric conditions on T imply that the sequence
of its iterates (yn) is bounded. TakeM as the diameter of {xn, yn:n ∈ N}. From
the asymptotic character of T and the fact that orbits are bounded, we choose
ε > 0 and N1 such that

(4.8) cosh d(xi+k, T k(y)) < cosh d(xi, y) + ε/2 for each k > N1.
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Fix k > N1 and denote s = s(x1, . . . , xn), s′ = s(x1+k, . . . , xn+k). On account
of Lemma 4.7,

n∑
i=1

cosh d(xi, y) = cosh d(s, y)
n∑
i=1

cosh d(xi, s)

and
n+k∑
i=1+k

cosh d(xi, T k(y)) = cosh d(s′, T k(y))
n+k∑
i=1+k

cosh d(xi, s′).

By (4.8) it follows that

n+k∑
i=1+k

cosh d(xi, T k(y)) ≤
n∑
i=1

cosh d(xi, y) + nε/2

and so

n+k∑
i=1+k

cosh d(xi, s′) cosh d(s′, T k(y)) ≤
n∑
i=1

cosh d(xi, s) cosh d(s, y) + nε/2.

Therefore,

cosh d(s, T k(y)) = cosh d(s, T k(y))− cosh d(s′, T k(y)) + cosh d(s′, T k(y))
≤ cosh d(s, T k(y))− cosh d(s′, T k(y))

+

cosh d(s, y)
n∑
i=1

cosh d(xi, s) + nε/2

n+k∑
i=1+k

cosh d(xi, s′)

≤ cosh d(s, y) + d(s, s′) sinhM

+ cosh d(s, y)

k∑
i=1

(cosh d(xi, s)− cosh d(xn+i, s))

n+k∑
i=1+k

cosh d(xi, s′)

+

cosh d(s, y)
n+k∑
i=k+1

(cosh d(xi, s)− cosh d(xi, s′)) + nε/2

n+k∑
i=1+k

cosh d(xi, s′)

≤ cosh d(s, y) + d(s, s′) sinhM

+ coshM
k coshM + n sinhM d(s, s′)

n
+
ε

2
.
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Now, as a consequence of Lemma 4.8, we can assume that there exists N(k) ∈ N
such that

cosh d(T k(y), s(x1, . . . , xn)) < cosh d(y, s(x1, . . . , xn)) + ε, for n > N(k).

We claim next that

cosh d(T k(y), u)− cosh d(y, u)
≤ max{0, sup{cosh d(T k(y), s(x1, . . . , xn))− cosh d(y, s(x1, . . . , xn)):

n > N(k)}}.

for an u ∈ conv{s(x1, . . . , xn):n > N(k)}. Indeed,

conv{s(x1, . . . , xn):n > N(k)} =
∞⋃
j=1

Gj(s(x1, . . . , xn):n > N(k)).

First, consider u ∈ G1. So let u ∈ [s(x1, . . . , xi), s(x1, . . . , xj)] for certain i
and j. If cosh d(T k(y), s) ≤ cosh d(y, s) for s ∈ {s(x1, . . . , xi), s(x1, . . . , xj)},
on account of (4.4)–(4.5) the same holds true for u. Otherwise, the conclusion
follows as a direct application of (4.6). Now, take u ∈ G2. Then there exist
vi ∈ (s(x1, . . . , xn))n≥N(k)+1 for i ∈ {1, 2, 3, 4}, not necessarily different, such
that u is in a segment with endpoints w1 and w3, respectively in [v1, v2] and
[v3, v4].
Now we may repeat the above consideration for w1, w3 and finally u, to

obtain our claim.
Now we only need to recall that A(s(x1, . . . , xn)) ∈ conv{s(x1, . . . , xn) : n ≥

N(k) + 1} (e.g. [4, Proposition 4.5]) to deduce that

cosh d(T k(y), A(s(x1, . . . , xn)))− cosh d(y,A(s(x1, . . . , xn))) ≤ ε

is still true for all k > N1.
Since ε is arbitrary, we have

lim sup
n→∞

cosh d(Tn(y), A(s(x1, . . . , xm))) ≤ cosh d(y,A(s(x1, . . . , xm))),

and repeating our consideration for each i ∈ N we obtain that

lim sup
n→∞

cosh d(Tn(y), A(s(x1, . . . , xm))) ≤ inf
i∈N
cosh d(T i(y), A(s(x1, . . . , xm))),

what on account of monotonicity of cosh function completes the proof of (4.7).
In a similar way one may prove that

d(TN(k+1)(y), A(s(x1, . . . , xm))) ≤ d(TNk(y), A(s(x1, . . . , xm))),

if TN is nonexpansive, which completes our proof. �
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Next we prove our main fixed point theorem. After the previous technical
results, the proof of this theorem is similar to that of Theorem 3.1 in [21], we
show details for completeness.

Proof of Theorem 4.6. Necessity is obvious. Assume now that (xn)
is bounded and let A(s(x1, . . . , xn)) be the asymptotic center of the sequence
of barycenters of (xn).
From Theorem 4.11 we know that (d(A(s(x1, . . . , xn)), T kNy)) is decreasing.

Hence,

d(A(s(x1, . . . , xn)), y) = inf
z∈D
d(A(s(x1, . . . , xn)), z)

≤ d(A(s(x1, . . . , xn)), TNy) ≤ d(A(s(x1, . . . , xn)), y)

and so TNy = y. Therefore, applying again Theorem 4.11, for ε > 0 there exists
n0 such that

d(A(s(x1, . . . , xn)), y)

= inf
z∈D
d(A(s(x1, . . . , xn)), z) ≤ d(A(s(x1, . . . , xn)), T y)

= d(A(s(x1, . . . , xn)), T kN+1y) ≤ d(A(s(x1, . . . , xn)), y) + ε

for k ≥ n0. Now, the arbitrariness of ε implies that

d(A(s(x1, . . . , xn)), T y) = d(A(s(x1, . . . , xn)), y)

and so it suffices to recall the uniqueness of y to finish the proof. �

Along all this section we have replaced the asymptotic centers of the se-
quences of iterates A(xn) by the asymptotic center of the sequence of barycenters
A(s(x1, . . . , xn)). We have not been able to establish a direct relation between
them even for spaces of constant negative curvature. However, we think that
the following two questions should find a positive answer at least in these spaces.

Question 4.12. Under conditions of Theorem 4.6, is A(s(x1, . . . , xn)) =
A(xn)?

Rouhani proved in [20], [21] that the sequence ((x1 + . . .+ xn)/n) where xn
is as in Theorem 2.15 is weak convergent to A(xn). ∆-convergence of sequences,
which coincides with weak convergence in Hilbert spaces, has been recently as-
sociated to weak convergence in CAT(0) spaces in [4], [12].

Question 4.13. Is the sequence of barycenters s(x1, . . . , xn) ∆-convergent
to its asymptotic center?

After Question 4.12 we do not know whether the following corollary provides
a different information than Corollary 3.7. In any case, Corollary 3.8 would also
follow from this one.
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Corollary 4.14. Let D be a nonempty subset of H∞ and T :D → D a non-
expansive mapping. Then T has a fixed point if and only if there is x ∈ D for
which the sequence of its iterates (xn) is bounded and there is a unique y ∈ D
such that

d(A(s(x1, . . . , xn)), y) = dist(A(s(x1, . . . , xn)), D).

5. R-trees

In our last section we will study the same problem as in Section 4 for R-trees.
The very special geometry of R-trees will not only provide us with a simpler
approach to the problem but it will also allow us for a multi-valued version
of our results. We begin studying the single-valued case.

Theorem 5.1. Let (M,d) be a complete R-tree, D a nonempty subset of M
and T :D → D an asymptotically nonexpansive in the intermediate sense map-
ping. Moreover, suppose that there is N such that TN is nonexpansive. Then
T has at least one fixed point if and only if there is x ∈ D such that {Tn(x) :
n ∈ N} is bounded and there exists a unique y ∈ D such that d(A(Tn(x)), y) =
dist(A(Tn(x)), D).

Proof. Necessity is obvious, let us prove the sufficiency. Suppose that
the sequence (xn), where xn = Tn(x), is bounded and let us choose an arbi-
trary y ∈ D. Denote A(xn) by p and Tn(y) by yn for n ∈ N. The proof follows
the same patterns as those Theorems 4.6 and 4.11. In this proof we will only
show that the sequence (d(p, yn)) satisfies

lim
n→∞
d(p, yn) = inf

n∈N
d(p, yn),

the rest follows after applying similar arguments.
Let us choose i ∈ N and fix ε > 0. By definition it follows that d(yi+m, xn+m)

≤ d(yi, xn) + ε for all n and for each m > M for a certain M . We claim
that d(yi+m, p) ≤ d(yi, p) + ε for m as above. Suppose that it is not. Hence
d(yi+m, p) = d(yi, p) + ε+ δ, where δ > 0.
On account of Lemma 3.5 there is a subsequence (xq(n)) of (xn) such that

lim
n→∞
d(xq(n), p) = lim sup

n→∞
d(xn, p) =: r(xn) and lim

n→∞
P[yi+m,p](xq(n)) = p.

Clearly

d(yi+m, xq(n))→ d(yi+m, p) + r(xn) = d(yi, p) + ε+ r(xn) + δ.

Since T is asymptotically nonexpansive in the intermediate sense, we get
d(xq(n)−m, yi) ≥ d(xq(n), yi+m)− ε, what yields to

lim sup
n→∞

d(xq(n)−m, yi) ≥ d(yi, p) + r(xn) + δ
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and finally

lim sup
n→∞

d(xq(n)−m, p) ≥ lim sup
n→∞

d(xq(n)−m, yi)− d(yi, p) ≥ r(xn) + δ,

a contradiction. Hence lim sup
m→∞

d(yi+m, p) ≤ d(yi, p)+ε and finally lim sup
n→∞

d(yn, p)

≤ d(yi, p) for all i ∈ N. �

The next example shows that the nonexpansivity condition on TN is needed
in Theorem 5.1.

Example 5.2. Suppose that M = [0, 1] and D = {1, 2−1, 3−1, . . . , 0}. Let
us define T :D → D as

T (x) =

{
1 if x = 0,
1
n+ 1

if x =
1
n
.

Then a case by case study shows that sup
x,y∈D

(|TN (x)− TN (y)| − |x− y|) ≤ N−1

for each N ≥ 1 and so T is asymptotically nonexpansive in the intermediate
sense. T is fixed point free. All sequences of iterates are convergent to 0 ∈ D.
However, TN (0)− TN (n−1) = n

N(N+n) , N ≥ 1 and so there is no nonexpansive
iterate of T .

We end our work with a multi-valued version of Theorem 5.1. Remember
first that for D a nonempty subset of a metric spaceM , a mapping T :D → 2M is
said to be nonexpansive if H(Tx, Ty) ≤ d(x, y) for each x, y ∈ D, where H( · , · )
stands for the usual Hausdorff distance, and x ∈ D is said to be a fixed point
of T if x ∈ Tx.

Theorem 5.3. Let (M,d) be a complete R-tree and D ⊆M nonempty. Let
T :D → 2M be a nonexpansive mapping with nonempty, bounded, closed and
convex values such that the topological boundary of T (x) is contained in D for
each x ∈ D. Then T has a fixed point if and only if there is x ∈ D such that
the sequence (xn) defined by xn+1 := PT (xn)(xn) is bounded and there is a unique
y ∈ D such that d(A(xn), y) = dist(A(xn), D).

Proof. As in the previous proof, we make p = A(xn) the asymptotic center
of the iterates of x. Let z ∈ D and z′ = PT (z)(z). It is enough to show that

(5.1) d(p, z′) ≤ d(p, z) for any z ∈ D.

We can assume that z /∈ T (z) since otherwise (5.1) easily follows. Consider
now the sequence (xn) given in the statement, we claim that

(5.2) d(xn+1, z′) ≤ d(xn, z)

holds for each n.
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If PT (xn)(z
′) = xn+1 then it must be the case that

d(z′, xn+1) = dist(z′, T (xn)) ≤ H(T (z), T (xn)) ≤ d(z, xn).

Otherwise it must be the case that xn+1 ∈ [xn, z′]. Indeed, assume that this is
not the case. Then T (xn) ∩ [xn, z′] = ∅ and xn+1 = PT (xn)(z′), a contradiction.
Now, assume that PT (z)(xn+1) = z′, then

d(z′, xn+1) = dist(xn+1, T (z)) ≤ H(T (z), T (xn)) ≤ d(z, xn).

If this is not that case, z′ ∈ [xn+1, z] and combining it with xn+1 ∈ [xn, z′] we
obtain

d(z, xn) = d(z, z′) + d(z′, xn+1) + d(xn+1, xn) > d(z′, xn+1),

which proves (5.2).

Now, from Lemma 3.5, there exists a subsequence (xq(n)) such that

lim
n→∞
d(xq(n), p) = r(xn) and lim

n→∞
P[z′,p](xq(n)) = p.

Clearly,

d(z′, xq(n))→ d(z′, p) + r(xn) = d(z, p) + r(xn) + δ

where δ = d(p, z′)− d(p, z).
Now, by (5.2), d(xq(n)−1, z) ≥ d(xq(n), z′) and so

lim sup d(xq(n)−1, z) ≥ d(z, p) + r(xn) + δ

which finally leads to

lim sup d(xq(n)−1, p) ≥ lim sup d(xq(n)−1, z)− d(z, p) ≥ r(xn) + δ.

Therefore δ ≤ 0 and so d(p, z′) ≤ d(p, z) as we wanted to prove. �

6. Appendix: Fixed points of semigroup of contractions

We close this work with an appendix where we study the existence of fixed
points for strongly continuous semigroups of contractions defined on non-convex
subsets of spaces with constant negative curvature and R-trees. This problem
is inspired by Rouhani’s results for semigroups defined on non-convex subsets
of Hilbert spaces [20] as well as results on extension of semigroups by Ko-
mura [15]. Let us begin with the definition of a strongly continuous semigroup
of contractions. Suppose that X is a CAT(0) space and a set D ⊂ X.
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Definition 6.1. A one parameter family (S(t))t≥0 of mappings from D into
D is called a strongly continuous semigroup of contractions on D if:

(a) S(0)(x) = x for all x ∈ D;
(b) S(t+ s)(x) = S(t)(S(s)(x)) for all s, t ≥ 0 and x ∈ D;
(c) lim

t→t0
S(t)(x) = S(t0)(x) for all t0 ≥ 0 and x ∈ D;

(d) d(S(t)(x), S(t)(y)) ≤ d(x, y) for all t > 0 and x, y ∈ D.

A point x ∈ D will be said to be a fixed point of the family (S(t))t≥0 if S(t)(x) =
x for each t.

In the same way as in case of a bounded sequence of X we may consider
{T (t): t ≥ 0} a bounded (continuous) curve in X. For x ∈ X set

r(x, (T (t))) = lim sup
t→∞

d(x, T (t)).

The asymptotic radius r(T (t)) of {T (t): t ≥ 0} is given by

r(T (t)) = inf{r(x, (T (t))) : x ∈ X},

and the asymptotic center of {T (t): t ≥ 0}, which we will generically denote as
A(T (t)), is given by the set

A(T (t)) = {x ∈ X : r(x, (T (t))) = r(T (t))}.

The proof of the following property follows the same patterns as in the case
of bounded sequences (see, for instance, [12]).

Proposition 6.2. Let {T (t): t ≥ 0} be a bounded continuous curve in a spa-
ce CAT(0). Then the asymptotic center of {T (t): t ≥ 0} is a singleton. Moreover,

A(T (t)) ∈ conv{T (t): t ≥ 0}.

Similar results as those from Sections 3 and 4 hold for nonlinear contraction
semigroups.

Theorem 6.3. Let D be a nonempty subset of a complete CAT(0) space with
constant curvature κ ∈ (−∞, 0) and (S(t))t≥0 a strongly continuous semigroup
of contractions from D into D. Then S has at least one fixed point if and only
if there is x ∈ D for which the curve {S(t)(x): t ≥ 0} is bounded and there is
a unique y ∈ D such that

d(A(S(t)(x)), y) = dist(A(S(t)(x))), D),

where A(S(T )(x)) is the asymptotic center of the curve {S(t)(x): t ≥ 0}.

Proof. Let A(S(t)(x)) =: p. First we want to show that for each s > 0 any
nonexpansive extension T of S(s) to D ∪ {p} must verify that Tp = p. Notice
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such extensions exists from Theorem 3.4.

lim sup
t→∞

d(T (p), S(t)(x))) = lim
n→∞
d(T (p), S(tn)(x)).

Condition (d) in Definition 6.1 implies that

lim
n→∞
d(T (p), S(tn)(x)) ≤ lim inf

n→∞
d(p, S(tn − s)(x)) ≤ lim sup

t→∞
d(p, S(t)(x)),

what yields

lim sup
t→∞

d(T (p), S(t)(x))) ≤ lim sup
t→∞

d(p, S(t)(x)),

and, on account of Proposition 6.2, T (p) = p.

Now still for the same s > 0 and y chosen with respect to the assumptions

d(p, S(s)(y)) = d(T (p), T (y)) ≤ d(p, y),

so S(s)(y) = y. Since s > 0 was chosen without any additional assumption, we
get S(t)(y) = y for all t ≥ 0. �

Remark 6.4. Notice that we have also shown that the point p in the above
proof is an absolute fixed point for the family (S(t))t≥0.

Corollary 6.5. Let D be a nonempty subset of a complete CAT(0) space
with constant curvature κ ∈ (−∞, 0) and (S(t))t≥0 a strongly continuous semi-
group of contractions from D into D. Then S has at least one fixed point if and
only if there is x ∈ D for which the curve {S(t)(x): t ≥ 0} is bounded and for any
y ∈ conv{S(t)(x): t ≥ 0} there is a unique z ∈ D such that d(y, z) = dist(y,D).

In the same way we can obtain equivalent results for R-trees.

Theorem 6.6. Let (M,d) be a complete R-tree, D a nonempty subset of M
and (S(t))t≥0 a strongly continuous semigroup of contractions from D into D.
Then S has at least one fixed point if and only if there is x ∈ D such that
the curve {S(t)(x): t ≥ 0} is bounded and there exists a unique y ∈ D such that
d(A(S(T )(x)), y) = dist(A(S(T )(x)), D), where, again, A(S(T )(x)) is the as-
ymptotic center of the curve {S(t)(x): t ≥ 0}.

Remark 6.7. In the case when the curvature κ ∈ (−∞, 0) we have a second
approach to the same problem. Instead of extending mappings we could work out
of the notion of barycenter and follow an approach similar to that one leading
to Corollary 4.14. This would lead to a result similar to Theorem 6.3 where
the asymptotic center of the points in the curve would be replaced by certain
barycenter obtained through integration in a similar way as it is done in [20].
Again, after Question 4.12, we do not know whether this would lead to a result
different than Theorem 6.3.
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[4] R. Esṕınola and A. Fernández-León, CAT(κ)-spaces, weak convergence and fixed

points, J. Math. Anal. Appl. 353 (2009), 410–427.
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[23] F.A. Valentine, On the extension of a function so as to preserve a Lipschitz condition,

Bull. Amer. Math. Soc. 49 (1943), 100–108.

Manuscript received May 30, 2011

Bożena Piątek
Institute of Mathematics
Silesian University of Technology

44-100 Gliwice, POLAND

E-mail address: b.piatek@polsl.pl

Rafa Esṕınola
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