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ON THE SPECTRAL FLOW FOR PATHS
OF ESSENTIALLY HYPERBOLIC BOUNDED OPERATORS

ON BANACH SPACES

Daniele Garrisi

To my parents and my sister

Abstract. We give a definition of the spectral flow for paths of bounded
essentially hyperbolic operators on a Banach space. The spectral flow in-

duces a group homomorphism on the fundamental group of every connected
component of the space of essentially hyperbolic operators. We prove that

this homomorphism completes the exact homotopy sequence of a Serre

fibration. This allows us to characterise its kernel and image and to pro-
duce examples of spaces where it is not injective or not surjective, unlike

what happens for Hilbert spaces. For a large class of paths, namely the

essentially splitting, the spectral flow of A coincides with −ind(FA), the
Fredholm index of the differential operator FA(u) = u′ −Au.

1. Introduction

The spectral flow first appeared in [7] for a family of elliptic and self-adjoint
operators At, ascribed to the joint work of M. Atiyah and G. Lusztig. We outline
their effective description as “net number of eigenvalues that change sign (from
− to +) while the parameter family is completing a period” in the definition
given by J. Robbin and D. Salamon in [24, Theorem 4.21]: In a neighbourhood
[t−, t+] of the real line of a point t ∈ R (called a crossing) such that 0 ∈ σ(At)
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(the spectrum of At), σ(As) can be described as a finite family of continuously
differentiable curves λi: [t−, t+] → R such that λ′i(t) 6= 0. The contribution to
the spectral flow of a crossing is given by∑

λi

sign (λi(t+))− sign (λi(t−))

and the spectral flow is the sum of these contributions over all the crossings. The
spectral flow was used to define a Morse index for 1-periodic hamiltonian orbits,
as in [27, pp. 23], and then to define the Floer homology. The definition by
J. Robbin and D. Salamon in [24] requires some differentiability hypotheses and
transversality conditions. P. Rabier extended their work to unbounded families of
operators in Banach spaces in [23]. In [21], J. Phillips simplified their definition as
follows: At ∈ Fsa(H) is assumed to be a continuous path of Fredholm, bounded
and self-adjoint operators, on [0, 1]. If U is a neighbourhood of the origin and
J = [t−, t+] is a closed interval such that

(1) σ(As) ∩ ∂U = ∅ for every s ∈ J ;
(2) σ(As) ∩ U is a finite set of eigenvalues,

then the contribution to the spectral flow from the interval J is defined as

dim(P (A(t+);U))− dim(P (A(t−);U))

where P (A;U) is the spectral projector of A relative to U . The spectral flow is
the sum of all the contributions obtained over a partition of the unit interval,
Ji, such that a neighbourhood Ui as in (1), (2) corresponds to each Ji. It is
invariant for fixed-endpoint homotopies and defines a groups homomorphism on
the fundamental group of each connected component of Fsa(H). If H is infinite-
dimensional and separable, then there are exactly three connected components,
corresponding to I and−I (these are contractible to a point) and to 2P−I, where
P is a projector with infinite-dimensional kernel and image. On the fundamental
group of the third one, denoted by Fsa

∗ , the spectral flow

sf:π1(Fsa
∗ ) → Z

is a group isomorphism. In [8], J. Phillips later extended this definition to con-
tinuous families of unbounded, Fredholm and self-adjoint operators. In contrast
with [24], no assumptions of differentiability or transversality are made. C. Zhu
and Y. Long in [29] extended the definition in [21] to bounded, admissible op-
erators (which are compact perturbations of hyperbolic operators) on Banach
spaces: On every interval Ji = [ti−, ti+] of a suitable partition of [0, 1], they
provide a path of projectors Qi such that:

• Qi: Ji → P(L(E)) is continuous,
• Qi(t)− P+(A(t)) is compact for t ∈ Ji,
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• Qi(t) is a spectral projector of A(t).

The contribuition of Ji to the spectral flow is

[Qi(ti−)− P+(A(ti−))]− [Qi(ti+)− P+(A(ti+))],

where [Q − P ] denotes the Fredholm index of P : Range(Q) → Range(P ). The
spectral flow is defined as the sum of the quantity above as Ji varies over the
partition of [0, 1]. We denote the spectral projector relative to the positive
complex half-plane by P+(A), and P(L(E)) is the set of projectors of E. This
work has three essential purposes:

(I) Further simplifying the definition of spectral flow. Given a path At ∈
eH(E) on [0, 1] of essentially hyperbolic operators (which are compact pertur-
bations of hyperbolic operators and correspond to the admissible ones used in
[29]), there exists a continuous path P of projectors on [0, 1] such that

P (t)− P+(A(t)) is compact

for every t ∈ [0, 1]. Thus, we define

sf(A) = [P (0)− P+(A(0))]− [P (1)− P+(A(1))].

Therefore, we do not need to partition the unit interval (as in the definition in
[29]), as long as we do not require P (t) to be a spectral projector of A(t).

The existence of such a path P follows from the homotopy lifting property
of the Serre fibration

p:P(L(E)) → P(C(E)).

We use C(E) to denote the quotient of the operator algebra L(E) by the ideal of
the compact operators. P(C(E)) is the space of projectors of the Calkin algebra
and p is the quotient projection. The definition we give of spectral flow coincides
with the one in [29]. In Section 4, we show that the spectral flow is invariant for
fixed-endpoint homotopies and that, given two continuous paths A and B such
that A(1) = B(0), there holds sf(A ∗B) = sf(A) + sf(B). These and other basic
facts are outlined in Proposition 4.3.

(II) Studying the homomorphism properties of the spectral flow. We prove
that eH(E) is homotopically equivalent to P(C(E)) and that the spectral flow
completes the exact homotopy sequence of the fibration above. This allows us
to characterise the kernel and the image of the spectral flow sfP defined on the
fundamental group of the connected component of 2P − I ∈ eH(E). Precisely:
an integer m belongs to the image of sfP if and only if

(h1) there exists a projector Q connected to P by a path in the space of
projectors P(L(E)), such that Q− P is compact and [P −Q] = m;

ker(sfP ) ∼= im(p∗). Hence, sfP is injective if and only if

(h2) im(p∗) = {0}.
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The existence of a projector satisfying (h1) and (h2) depends heavily on the
structure of the Banach space E. When E is Hilbert, J. Phillips proved in [21]
that for every projector with infinite-dimensional range and kernel, (h1), with
m = 1, and (h2) hold. We show that `p and `∞ have this property as well. In
general, at least one projector (and then infinitely many) exists in the spaces
satisfying the hypotheses of Propositions 5.6 and 5.7.

The question whether property (h1) holds for some projector is strongly re-
lated to the existence of complemented subspaces isomorphic to closed subspaces
of co-dimension m. This relation is highlighted in Proposition 5.6. In fact, given
a space E, isomorphic to its hyperplanes, the projector over each of the sum-
mands of E⊕E fulfills property (h1). Thus, sfP is surjective. If E is isomorphic
to its subspaces of co-dimension two, but not to its hyperplanes, the image of the
spectral flow is 2Z, and so on. Examples of such spaces have been constructed by
W. T. Gowers and B. Maurey in [15]. If E is not isomorphic to any of its proper
subspaces, then sfP is zero. Such a space was constructed by W. T. Gowers and
B. Maurey in the celebrated paper [14].

We prove that in a Douady space (cf. [12]), there are projectors P such that
sfP is not injective and projectors with infinite-dimensional range and kernel
such that the spectral flow is zero.

(III) Comparing the spectral flow with the Fredholm index of the differential
operator

FA:W 1,p(R) → Lp(R), u 7→
(

d

dt
−A(t)

)
u.

In Section 6, we extend the definition of spectral flow for a path At ∈ eH(E) on
R with hyperbolic limits at ±∞. We prove in Theorem 6.6 that for a large class
of paths, which are essentially hyperbolic, with hyperbolic limits, and essentially
splitting (cf. [2]), the equality

ind(FA) = −sf(A)

holds. The equality above applies, for instance, in the special case where A is
a continuous, compact perturbation of a path of hyperbolic operators with some
boundary conditions (check [2, Theorem E]). Our theorem confirms the guess of
A. Abbondandolo and P. Majer in §7 of [2] that for these paths, the equality
above holds.

We remark that our work deals with bounded operators. The differential
operator FA arises naturally from the linearisation of a vector field ξ ∈ C1(E,E)
on a solution v′(t) = ξ(v(t)), such that the endpoints are zeroes of ξ and A(t) =
Dξ(v(t)). If FA is Fredholm and surjective (and the zeroes are hyperbolic), then
the set

Wξ(p, q) = {v: R → E : v′(t) = ξ(v(t)), v(−∞) = p, v(∞) = q}
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is a sub-manifold of dimension ind(FA). This constitutes a landmark for the
study of the Morse theory on Banach manifolds, as in [3]. A proof of this can be
found in [2, §8]. If A fulfils the hypotheses of Theorem 6.6, then sf(A) determines
the dimension of the manifold.

The spectral flow also provides an index for 1-periodic solutions of u′(t) =
X(u(t)). If DX(ut) is essentially hyperbolic, then indexX(u) = sf(DX(ut)).
Thus, in order to have a good Morse theory for periodic solutions, the question
whether there are loops with non-trivial spectral flow becomes relevant.

Acknowledgements. I would like to thank Prof. Alberto Abbondandolo
and Prof. Pietro Majer for their aid and suggestions, the referees for their careful
reading and for pointing out to me the papers of Yiming Long and Zhu Chaofeng.
I also thank my parents and my sister for always supporting me.

2. Preliminaries

Here we review some basic definitions and results on spectral theory and
Fredholm operators. Our main references are [25, Chapter X] and [16, IV.4,5].

2.1. Spectral theory. A Banach algebra is an algebra A with unit, 1, over
the real or complex field and a norm ‖ · ‖ such that:

• (A, ‖ · ‖) is a Banach space,
• ‖xy‖ ≤ ‖x‖ · ‖y‖ for every x, y ∈ A.

We denote by G(A) the set of invertible elements of the algebra; it is an open
subset of A. Given x ∈ A, the subset of the field

σ(x) = {λ ∈ F : x− λ · 1 6∈ G(A)}

is called the spectrum of x. Let us review some properties of the spectrum.

Proposition 2.1. For every x ∈ A, t ∈ F and Ω ⊂ F an open subset,

(a) if σ(x) is non-empty, then it is closed and bounded;
(b) σ(x + t) = σ(x) + t, σ(tx) = tσ(x);
(c) then there exists δ > 0 such that σ(y) ⊂ Ω for every y ∈ B(x, δ);
(d) if A is complex, then σ(x) is non-empty;
(e) if f :A → B is an algebras homomorphism such that f(1) = 1, then

σ(f(x)) ⊆ σ(x).

Given a real algebra, we can consider the complex algebra associated with
it, AC = A⊗R C. We have an inclusion of algebras

A ↪→ AC, x 7→ x⊗ 1

and σ(x) ⊆ σ(x⊗ 1). Hereafter, we will take σ(x⊗ 1) as the spectrum of x.
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Definition 2.2. A finite family of closed curves in the complex plane, Γ =
{ci : 1 ≤ i ≤ n}, is said to be simple if, for every z 6∈

⋃n
i=1 im(ci),

indΓ(z) :=
1

2πi

∫
Γ

dζ

z − ζ
=

1
2πi

n∑
i=1

∫
ci

dζ

z − ζ
∈ {0, 1}.

We denote by Ω0(Γ) and Ω1(Γ) the subsets of the complex space such that
indΓ(z) is 0 and 1, respectively.

Definition 2.3. An element p ∈ A is said to be a projector if p2 = p. We
can associate with it the sub-algebra A(p) = {pxp : x ∈ A}, with the unit p. We
denote by σp(y) the spectrum of an element y ∈ A(p).

If xp = px, we have the equality

(2.1) σ(x) = σp(xp) ∪ σ1−p(x(1− p)).

Theorem 2.4. Let x ∈ A, Σ ⊂ σ(x) open and closed in σ(x). Then, there
exists a projector, called a spectral projector relative to Σ, which we denote by
P (x; Σ), such that

(a) σP (PxP ) = Σ;
(b) Px = xP ;
(c) I − P = P (x; Σc);
(d) given an algebra homomorphism, f :A → B, f(P (x; Σ)) = P (f(x); Σ).

Given Γ simple such that Σ = Ω1(Γ) ∩ σ(x),

P (x; Σ) = PΓ(x) :=
1

2πi

∫
Γ

(x− ζ)−1 dζ.

On the open subset A(Γ) = {x ∈ A : σ(x) ∩ Γ = ∅}, PΓ(x) is a continuous map.

For the proof and more details check [25, Theorem 10.27] or [16, Theo-
rem 6.17].

2.2. Spaces of projectors. Given Banach spaces E and F , we denote by
L(E,F ) the space of bounded operators from E to F . When E = F we use the
notation L(E). We denote the subsets of compact operators by Lc(E,F ) and
Lc(E). The composition of operators endows the space L(E) with the structure
of a Banach algebra (the identity operator being the unit), and the subspace of
compact operators is a closed ideal. We denote the quotient algebra by C(E). It
inherits the structure of a Banach algebra and is called the Calkin algebra. The
quotient projection

(2.2) p:L(E) → C(E), A 7→ A + Lc(E)

is an algebra homomorphism.
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Definition 2.5. Given a Banach algebra A, we define the following subsets

(a) P(A) = {p ∈ A : p2 = p}, projectors;
(b) Q(A) = {q ∈ A : q2 = 1}, square roots of the unit;
(c) H(A) = {x ∈ A : σ(x) ∩ iR = ∅}, hyperbolic elements.

Properties and remarks. P and Q are closed subsets, locally path connected
and analytic sub-manifolds. A proof can be found in [4, Lemma 1.5]. P and Q
are diffeomorphic to each other through the diffeomorphism p 7→ 2p− 1. By (c)
of Proposition 2.1, applied with Ω = {z : Re(z) 6= 0}, the subset H(A) ⊂ A is
open. We denote by G1(A) the connected component of G(A) of the unit.

Theorem 2.6. Given two projectors p, q such that either ‖p − q‖ < 1 or
both are in the same connected component of P(A), there exists u ∈ G1(A) such
that up = qu.

For the proof and details, we refer to [22, Proposition 4.2] and [13, Proposi-
tion 2.2]. The theorem above has two consequences:

(c1) P(A) is locally path-connected. So is Q(A);
(c2) when A = L(E), two projectors in the same connected component have

isomorphic ranges and kernels.

The quotient projection p in (2.2) restricts to the subset of projectors and roots
of the unit

P(p):P(L(E)) → P(C(E)), P 7→ P + Lc(E)

Q(p):Q(L(E)) → Q(C(E)), Q 7→ Q + Lc(E).

Definition 2.7. A continuous map p:E → B has the homotopy lifting prop-
erty w.r.t. a topological space X if, given continuous maps

h:X × [0, 1] → B, f :X × {0} → E,

there exists H:X × [0, 1] → E such that H(x, 0) = f(x, 0) and p ◦H = h. If the
homotopy lifting property holds w.r.t. [0, 1]n for every n ≥ 0, then p is called
a Serre fibration.

Proposition 2.8. The maps P(p) and Q(p) are surjective Serre fibrations.

In general, every surjective algebra homomorphism induces a Serre fibration.
For a proof, see [10, Theorem 2.4]. The surjectivity of P(p) and Q(p) follows
from [4, Proposition 4.1]. In fact, P(p) and Q(p) are locally trivial fiber bundles,
as follows from [4, Proposition 1.3] or [13, Theorem 4.2].

2.3. Fredholm operators and relative dimension. Let T ∈ L(E,F ) be
a bounded operator. If the image of T is a closed subspace, we have two Banach
spaces associated with it, namely ker(T ) and E/Range(T ) = coker(T ).
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Definition 2.9. An operator as above is said to be semi-Fredholm if either
ker(T ) or coker(T ) is a finite-dimensional space. If both have finite dimension,
T is called Fredholm and the integer

ind(T ) = dim ker(T )− dim coker(T )

is the Fredholm index. Otherwise, the index is defined to be +∞ or −∞ as long
as ker(T ) or coker(T ) has infinite dimension.

We denote by Fred(E,F ) and Fred(E) the subsets of Fredholm operators in
L(E,F ) and L(E), respectively; Fredk(E,F ) is the set of Fredholm operators of
index k.

Proposition 2.10. Let T ∈ Fred(E,F ), U ∈ Fred(F,G) and K ∈ Lc(E,F ).
We have

(a) Fredk(E,F ) ⊆ L(E,F ) is an open subset;
(b) T + K ∈ Fred(E,F ) and ind(T + K) = ind(T );
(c) U ◦ T ∈ Fred(E,G) and ind(U ◦ T ) = ind(U) + ind(T );
(d) given B ∈ L(E,F ), there exists ε > 0 such that the maps dim ker(T +

λB) and dim coker(T + λB) are constant on B(0, ε) \ {0};
(e) T ∈ Fred(E,F ) if and only if there exists S ∈ L(F,E) such that T and

S are the essential inverse of each other, that is, T ◦S− I ∈ Lc(F ) and
S ◦ T − I ∈ Lc(E).

Statements (a), (e) are easy to check. Statements (a), (b), (d) are all stated
and proved in [16, Chapter IV.5] in the more general setting of semi-Fredholm
and unbounded operators.

Definition 2.11. A pair of closed subspaces (X, Y ) is semi-Fredholm if and
only if their sum is closed and either X∩Y or E/(X +Y ) has a finite dimension.
If both have finite dimension, then the Fredholm index of the pair (X, Y ) is
defined as

ind(X, Y ) = dim X ∩ Y − codim X + Y.

Otherwise, the index is +∞ or −∞, when either X∩Y or E/(X +Y ) has infinite
dimension.

Two projectors P , Q are compact perturbations of each other if P − Q ∈
Lc(E). In this case, the restriction of Q to Range(P ) is in Fred(Range(P ),
Range(Q)). The relative dimension between P and Q is defined as

[P −Q] := ind(Q: Range(P ) → Range(Q)).

This definition is meant to generalise the dimension gap between two finite-
dimensional spaces to Banach spaces. The notation above is used by C. Zhu
and Y. Long in [29]. Corresponding definitions are known in Hilbert spaces,



Spectral Flow in Banach Spaces 361

considered by A. Abbondandolo and P. Majer in [1, Definition 1.1] (see also [9,
Remark 4.9]). A definition of relative dimension for pairs of closed subspaces
(X, Y ), not necessarily complemented, can be found in [13, Definition 5.8].

Theorem 2.12. Given pairs of projectors (P,Q) and (Q, R) with compact
difference, we have

(a) if Range(P ) and Range(Q) have finite dimension, then [P − Q] =
dim Range(P )− dim Range(Q);

(b) [P −R] = [P −Q] + [Q−R];
(c) on the subset {(P,Q) ∈ P(L(E))×P(L(E)) : P −Q ∈ Lc(E)}, the map

[P −Q] is continuous;
(d) [P −Q] = [(I −Q)− (I − P )];
(e) (Range(P ), ker(Q)) is a Fredholm pair and ind(Range(P ), ker(Q)) =

[Q− P ].

Property (c) follows from stability results for the index of semi-Fredholm
pairs; see [16, Remark IV.4.31] and [13, Theorem 3.3]. For a proof of (d) and
(e), see [29, Lemma 2.3] and [13, Proposition 5.13], respectively; (a) follows from
the remarks after Definition 5.8 in [13].

3. Essentially hyperbolic operators

We recall that a bounded operator A ∈ L(E) – or more generally an element
of a Banach algebra A – is called hyperbolic if its spectrum does not meet the
imaginary axis. We denote by GL(E) the group of invertible operators on E and
by GLI(E) the connected component of the identity operator.

Given A ∈ L(E), the spectrum of A+Lc(E) is called the essential spectrum.
It is usually denoted by σe(A). By (e) of Proposition 2.10,

(3.1) σe(A) = {λ : A− λ 6∈ Fred(E)}.

Definition 3.1. An operator A is called essentially hyperbolic if A+Lc(E)
is a hyperbolic element in C(E).

By the equality above, an operator A ∈ L(E) is essentially hyperbolic if and
only if its essential spectrum does not meet the imaginary axis. A consequence
of (3.1) is:

Lemma 3.2. Let D(A) be the set of all isolated points of σ(A), and let ∂σ(A)
be the set of the boundary points of σ(A). Then ∂σ(A)\D(A) is a subset of σe(A).

Proof. Let λ ∈ ∂σ(A) \D(A), and suppose that λ 6∈ σe(A), thus A − λ ∈
Fred(E). Let ε > 0 as in (d) of Proposition 2.10, with B = −I. Therefore, for
some c, k ∈ Z

dim ker(A− z) = c, dim coker(A− z) = k, for every z ∈ B(λ, ε) \ {λ}.
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Because λ ∈ ∂σ(A), there exists w ∈ B(λ, ε) \ {λ} such that A−w is invertible.
Thus, c = k = 0 and A − z is invertible for every z ∈ B(λ, ε) \ {λ}. Hence λ is
isolated in σ(A). �

We need a well-known fact about the topology of the real line:

Proposition 3.3. A closed proper subset of the real line with an empty
boundary is discrete.

Corollary 3.4. If A is an essentially hyperbolic operator, the set σ(A)∩iR
is finite.

Proof. We show that the boundary of σ(A) ∩ iR is empty. Suppose it is
not and let λ ∈ ∂(σ(A)∩ iR) be an arbitrary point. Hence, λ ∈ ∂σ(A). Because
σ(A)∩iR is closed, λ ∈ iR. Hence λ 6∈ σe(A), because A is essentially hyperbolic.
Thus, λ ∈ ∂σ(A)\σe(A), whence, by Lemma 3.2, λ ∈ D(A). Hence, λ is isolated
in σ(A) ∩ iR in contradiction with the hypothesis that λ is a boundary point.
By the proposition above, σ(A)∩ iR is discrete. Because it is also compact, it is
a finite set. �

Proposition 3.5. If A is an essentially hyperbolic operator, each of the
points of σ(A) ∩ iR is an eigenvalue of finite algebraic multiplicity.

Proof. Let λ ∈ σ(A) ∩ iR. We infer that A − λ ∈ Fred0(E). By (3.1),
A− λ ∈ Fredk(E) for some k ∈ Z. Now, by (a) of Proposition 2.10, there exists
a neighbourhood V of λ such that

A− z ∈ Fredk(E), z ∈ V.

Because λ is isolated, there exists z′ ∈ V \{λ} such that A−z′ is invertible, hence
k = 0. Thus, because A − λ is not invertible, ker(A − λ) 6= {0}. Hence λ is an
eigenvalue and, by hypothesis, isolated. These two conditions, by Theorems 5.10
and 5.28 of [16], imply that the spectral projector P (A; {λ}) has range of finite
dimension, which is the algebraic multiplicity. �

Theorem 2.4 provides us with projectors Pi = P (A; {λi}) for every λi ∈
σ(A) ∩ iR. Let P = P (A;σ(A) ∩ {Re(z) 6= 0}). We can write

(3.2) A =
(

AP +
n∑

i=1

Pi

)
+ (A− I)

n∑
i=1

Pi.

According to (a) and (b) of Theorem 2.4, the term in the brackets is hyperbolic.
The last term has finite rank. Thus, we have proved that an essentially hyperbolic
operator is a compact perturbation of a hyperbolic one. Conversely, a compact
perturbation of a hyperbolic operator is essentially hyperbolic. In fact, let H, K

be a hyperbolic and a compact operator, respectively: By (b) of Proposition 2.10
and (3.1), σe(H +K) = σe(H) ⊆ σ(H). Because H is hyperbolic, σ(H) does not



Spectral Flow in Banach Spaces 363

meet the imaginary axis, so neither does σe(H). Therefore, H + K is essentially
hyperbolic. Thus, by (3.2) and the remarks after it, we have proved the following

Theorem 3.6. An operator is essentially hyperbolic if and only if it is a com-
pact perturbation of a hyperbolic operator.

We denote by eH(E) the set of essentially hyperbolic operators endowed with
the topology induced by the operator norm.

Proposition 3.7. eH(E) is an open subset of L(E), and homeomorphic to
the product H(C(E))× Lc(E).

Proof. By Definition 3.1,

(3.3) eH(E) = p−1(H(C)),

where p is the quotient projection defined in (2.2). Because the right term is an
open subset of L(E), so is eH(E). Because p is linear, continuous and surjective,
there exists s: C(E) → L(E) continuous such that p ◦ s = id. This follows from
[4, Proposition A.1]. We define the continuous maps

f : eH(E) → H(C(E))× Lc(E), A 7→ (p(A), A− s(p(A))),

g:H(C(E))× Lc(E) → eH(E), (x,K) 7→ s(x) + K.

Both are well defined. In fact, by (3.3), p(A) ∈ H(C(E)). By the property of s,

p(A− s(p(A))) = 0,

thus the L(E) component of f is compact, because Lc(E) = ker(p). As for g,
because p(s(x)) = x ∈ H(C(E)), by (3.3), s(x) ∈ eH(E), hence

σe(s(x)) ∩ iR = ∅.

Because σe(s(x) + K) = σe(s(x)), s(x) + K ∈ eH(E). We conclude the proof by
checking that f and g are the inverses of each other:

f ◦ g(x,K) = f(s(x) + K)

= (p(s(x) + K), s(x) + K − s(p(s(x) + K))) = (x, K),

g ◦ f(A) = s(p(A)) + A− s(p(A)) = A. �

Definition 3.8. Let x ∈ A be such that σ+(x) = σ(x) ∩ {Re(z) > 0} is
open and closed in σ(x). We denote by p+(x) the projector P (x; {Re(z) > 0}).
Similarly, we define p−(x).
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Proposition 3.9. The map p+:H(A) → P(A) defines a homotopy equiva-
lence, a homotopy inverse being the map j:P(A) → H(A), j(p) = 2p− 1.

Proof. For x ∈ H(A), σ+(x) is open and closed in σ(x). Thus, there exists
a rectangle Q = (0, a) × (−b, b) such that σ(x) ⊂ Q. There is a continuous,
closed and simple (in the sense of Definiton 2.2) curve c, such that im(c) = ∂Q+.
Thus, p+(x) = Pc(x). By (c) of Proposition 2.1, there exists δ > 0 such that, if
d(y, x) < δ, then y ∈ H(A) and σ(y) ⊂ Q. Thus Q+∩σ(y) = σ+(y) and p+(y) =
Pc(y). By Theorem 2.4, Pc is continuous on B(x, δ). Thus, p+ is continuous on
a neighbourhood of x, namely B(x, δ). Repeating the same argument for every
x, we obtain that p+ is continuous on H(A).

Given a projector p, j(p) is a square root of the unit. In fact,

j(p)2 = (2p− 1)2 = 4p2 − 4p + 1 = 1.

Thus σ(j(p)) ⊆ {−1, 1}, hence j(p) is hyperbolic. Given ζ ∈ C \ {−1, 1}, we
have

(j(p)−ζ)−1 =
ζ

1− ζ2
+

j(p)
1− ζ2

=
1
2

(
− 1

ζ + 1
+

1
1− ζ

)
−1

2

(
− 1

ζ + 1
− 1

1− ζ

)
j(p).

Let c be a simple curve as c(t) = 1 + e−2πit/2. Thus, following the notations of
Definition 2.2, we have

σ+(j(p)) = σ(j(p)) ∩ Ω1(c).

Therefore, we can compute the spectral projector relative to 1 ∈ σ(j(p)) as in
Theorem 2.4. By integrating both sides of the above equality,

p+(j(p)) =
1

2πi

∫
c

(j(p)− ζ)−1dζ

=
1
2
(
− indc(−1) + indc(1)

)
− 1

2
(
− indc(−1)− indc(1)

)
j(p)

=
1
2
(
0 + 1 + j(p)

)
=

1
2
(1 + 2p− 1) = p.

The computation above shows that p+ ◦j is the identity map on P(A). To prove
that j ◦ p+ is homotopically equivalent to the identity on H(A), we define

(3.4) H(t, x) = ((1− t)x + t)p+(x) + ((1− t)x− t)p−(x).

Because x is hyperbolic, σ+(x) ∪ σ−(x) = σ(x), thus, by (c) of Theorem 2.4,

(3.5) p+(x) + p−(x) = 1.
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By (2.1) and by (b) of Theorem 2.4, we have

σ(H(t, x)) =σp+(x)((1− t)xp+(x) + tp+(x))(3.6)

∪ σp−(x)((1− t)xp−(x)− tp−(x))

= {(1− t)σ+(x) + t} ∪ {(1− t)σ−(x)− t}.

The second equality follows from (a) of Theorem 2.4 applied to p+(x) (resp.
p−(x)) and σ+(x) (resp. σ−(x)). Because the subsets of the complex plane
{Re(z) > 0} and {Re(z) < 0} are convex, the sets in the second line of (3.6) do
not meet the imaginary axis, and thus H(t, x) is hyperbolic. Moreover,

H(0, x) = p+(x) + p−(x) = 1,

H(1, x) = p+(x)− p−(x) = 2p+(x)− 1 = j(p+(x))

by (3.5). Hence H is a homotopy of j ◦ p+ with the identity map. �

Because Lc(E) is a vector space, thus it is contractible to a point, the projec-
tion onto the first factor inH(C(E))×Lc(E) is a homotopy equivalence. Together
with the last two propositions, we have proved the following

Corollary 3.10. The map Ψ: eH(E) → P(C(E)), A 7→ p+(A + Lc(E)) is
a homotopy equivalence.

Given an essentially hyperbolic operator A, we denote by P+(A) and P−(A)
the spectral projectors relative to {Re(z) > 0} and {Re(z) < 0}, respectively.

Proposition 3.11. Given a connected component X ⊂ eH(E), there exists
P ∈ P(L(E)) such that 2P − I ∈ X . Moreover, two essentially hyperbolic
operators A,B belong to the same connected component X , if and only if there
exists T ∈ GLI(E) such that

TP+(A)T−1 − P+(B) ∈ Lc(E).

Proof. By Proposition 3.7, eH(E) is an open subset of L(E). Thus, X is
path-connected. Let A ∈ X ⊂ eH(E) be an essentially hyperbolic operator. By
Theorem 3.6, there exists a hyperbolic operator H such that

A−H ∈ Lc(E).

By the converse of the same theorem, the continuous convex combination

γ: t 7→ A + t(H −A)

lies in eH(E). Because γ(0) = A ∈ X , γ(1) = H ∈ X . By Proposition 3.9,
j◦p+(H) = 2P+(H)−I is path-connected to H, a path being defined as in (3.4).
Thus 2P+(H)− I ∈ X , and this concludes the first part of the proposition.
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Given A,B ∈ X , there exists a path At such that A(0) = A and A(1) = B.
Thus, the path

α := Ψ ◦A ∈ P(C(E))

connects α(0) = Ψ(A) to α(1) = Ψ(B). By Proposition 2.8, the fibration
(P(L(E),P(C(E), p) satisfies the homotopy lifting property w.r.t. to the unit
interval [0, 1]. Thus, there exists a path of projectors P such that

(3.7) P (0) = P+(A), p(P (t)) = α(t).

By Theorem 2.6, there exists T ∈ GLI(E) such that

(3.8) TP+(A)T−1 = P (1).

From (3.7) with t = 1, we obtain

p(P (1)) = Ψ(B) = p+(B + Lc(E)) = P+(B) + Lc(E) = p(P+(B)).

The second equality follows from the definition Ψ and the third one from (d) of
Proposition 2.4. Thus, comparing the first and the last terms in the chain of
equalities above, we obtain

P (1)− P+(B) ∈ Lc(E).

Hence, by (3.8),
TP+(A)T−1 − P+(B) ∈ Lc(E). �

4. The spectral flow

Let A: [0, 1] → eH(E) be a continuous path. By Proposition 3.10, Ψ(A(t)) is
a continuous path in P(C(E)). This path can be lifted to a path of projectors P ,
such that

p(P (t)) = Ψ(A(t)) = p(P+(A(t)))

by Proposition 2.8. We define the integer

(4.1) sf(A;P ) := [P (0)− P+(A(0))]− [P (1)− P+(A(1))].

Proposition 4.1. The integer sf(A;P ) does not depend on the choice of the
path of projectors P .

Proof. Let Q be a path of projectors such that p(Q(t)) = p(P (t)). Thus,
Q(0) − P (0) and Q(1) − P (1) are compact operators. By (b) of Theorem 2.12,
we have

sf(A;Q) = [Q(0)− P+(A(0))]− [Q(1)− P+(A(1))]

= [Q(0)− P (0)] + [P (0)− P+(A(0))]

− [Q(1)− P (1)]− [P (1)− P+(A(1))] = sf(A;Q)
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By (c) of Theorem 2.12, [Q(t) − P (t)] is constant. Thus, the third equality
follows. �

Definition 4.2. Given A: [0, 1] → eH(E) continuous, we define the spectral
flow as the integer sf(A;P ) where P is any of the paths of projectors such that
p(P (t)) = p(P+(A(t))). We denote it by sf(A).

Given T ∈ L(E) and S ∈ L(F ), we refer to T ⊕ S as the linear operator on
E ⊕ F such that T ⊕ S(x, y) = (Tx, Sy). Given two paths A and B such that
A(1) = B(0), we denote by A ∗B the continuous path

A ∗B(t) =

{
A(2t) if 0 ≤ t ≤ 1/2,

B(2t− 1) if 1/2 ≤ t ≤ 1.

Proposition 4.3. The spectral flow satisfies the following properties:

(a) Given two paths A and B such that A(1) = B(0), sf(A ∗ B) = sf(A) +
sf(B);

(b) the spectral flow of a constant path or a path in H(L(E)) is zero;
(c) it is invariant for homotopies with endpoints in H(L(E)) and for fixed-

endpoint homotopies in eH(E);
(d) if Ai ∈ C([0, 1], eH(Ei)) for 1 ≤ i ≤ n, then

sf
( n⊕

i=1

Ai

)
=

n∑
i=1

sf(Ai);

(e) if E is an n-dimensional linear space, then for every integer −n ≤ k ≤
n, there is a path such that sf(A) = k;

(f) if E has infinite dimension, then for every k there is A such that

sf(A) = k.

Proof. (a) Let A,B be two paths such that A(1) = B(0). We can choose
paths of projectors P and Q such that p(P (t)) = p(P+(A(t)) and p(Q(t)) =
p(P+(B(t))), with Q(0) = P (1). Denote by C and R the paths A∗B and P ∗Q,
respectively. Then,

sf(A ∗B) = [R(0)− P+(C(0))]− [R(1)− P+(C(1))]

= [P (0)− P+(A(0))]− [Q(1)− P+(B(1))] = [P (0)− P+(A(0))]

− [P (1)− P+(A(1))] + [Q(0)− P+(B(0))]− [Q(1)− P+(B(1))]

= sf(A) + sf(B).

(b) If A is constant, P+(A(t)) is constant; if A is hyperbolic, P+(A(t)) is
continuous. In both cases, P+(A(t)) is a continuous path and can be chosen as
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a lifting path of p(P+(A(t))). Therefore,

sf(A) = [P+(A(0))− P+(A(0))]− [P+(A(1))− P+(A(1))] = 0.

(c) Let H: I × I → eH(E) be a continuous map. By the homotopy lifting
property of the fibre bundle p:P(L(E)) → P(C(E)) w.r.t. I2, there exists P : I×
I → P(L(E)) such that

P (t, s)− P+(H(t, s)) ∈ Lc(E), for every t, s.

Let H( · , 0) = A and H( · , 1) = B. We have

sf(A) = [P (0, 0)− P+(H(0, 0))]− [P (1, 0)− P+(H(1, 0))].

For i = 0, 1 and every s, the operator P (i, s) − P+(H(i, s)) is compact. For
a fixed i, the right summand is constant or continuous, whether the homotopy
has fixed endpoints in eH(E) or lies in H(L(E)). In both cases, is continuous.
By (c) of Theorem 2.12, there are integers k1, k2 such that

[P (i, s)− P+(H(i, s))] = ki

for every 0 ≤ s ≤ 1 and i = 0, 1. Thus, sf(A) = k0 − k1 = sf(B).
(d) Let Pi be continuous paths of projectors such that Pi(t) − P+(Ai(t)) ∈

Lc(Ei).

sf
( n⊕

i=1

Ai

)
=

[ n⊕
i=1

Pi(0)−
n⊕

i=1

P+(Ai(0))
]
−

[ n⊕
i=1

Pi(1)−
n⊕

i=1

P+(Ai(1))
]

=
n∑

i=1

[Pi(0)− P+(Ai(0))]− [Pi(1)− P+(Ai(1))] =
n∑

i=1

sf(Ai).

(e) We denote the identity on Rk by Ik. Given 0 ≤ k ≤ n, the spectral flow
of

A(t) = (2t− 1)Ik ⊕ In−k

can be computed using P (t) ≡ In. Because P+(A(1)) = In and P+(A(0)) =
0⊕ In−k, we have

sf(A; In) = [In − 0⊕ In−k]− [In − In] = k

by (a) of Theorem 2.12. We define A(t) := A(1 − t). By property (a), proved
above, sf(A; In) = −k.

(f) Given k ∈ Z, let E = Xk ⊕ Rk where Xk is a closed subspace and
dim(Rk) = k. Thus, the spectral flow of A(t) = (2t − 1)IRk

⊕ IXk can be
computed with P (t) ≡ I. We obtain sf(A; I) = k and sf(A; I) = −k. �



Spectral Flow in Banach Spaces 369

Spectral sections. The definition of spectral flow we used corresponds to
the one given by C. Zhu and Y. Long in [29] for paths of admissible operators (see
[29, Definition 2.3]), which are essentially hyperbolic. We recall the definition of
s-section:

Definition 4.4. An s-section for a path of projectors Q on J ⊂ [0, 1] is
a continuous path P such that P (t)−Q(t) ∈ Lc(E).

Given a continuous path A: [0, 1] → eH(E), the authors show in [29, Lem-
ma 2.5] and [29, Corollary 2.1] that there exists a partition of the unit interval
(Jk)n

k=1 and Pk: Jk → P(L(E)) such that

Pk is an s-section for P+(A) on Jk,(4.2)

Pk(t) is a spectral projector of A(t).(4.3)

Then, they define

sf(A) =
n∑

k=1

sf(Ak;Pk)

where Ak is the restriction of A to Jk. In our definition we do not need to
partition the unit interval because we dropped the requirement (4.3). This allows
us to simplify the definition of spectral flow and to provide simpler proofs of well
known properties – such as the homotopy invariance – than the original ones in
[29, Proposition 2.2] or in [21].

We conclude by showing that there exists a path A such that P+(A(t)) does
not admit an s-section fulfilling (4.3).

Example 4.5. Consider the decomposition E = R1 ⊕ X− ⊕ X+, where
E is a Banach space, X− and X+ are closed, infinite-dimensional subspaces
and dim(R1) = 1. Denote by P1, P−, P+ the projectors onto R1, X− and X+,
respectively. Define

A: [0, 1] → eH(E), A(t) = P+ − P− + (2t− 1)P1.

Then A(t) ∈ eH(E), and no continuous s-section satisfying (4.3) exists.

Proof. For every t ∈ [0, 1] we can write A(t) = P+ − (P− + P1) + 2tP1;
because P+ − P− − P1 ∈ H(L(E)) (in fact, is a square root of the identity) and
P1 is compact, A(t) ∈ eH(E). By contradiction, suppose that such P exists. We
have

A(0) = P+ − P− − P1, P+(A(0)) = P+, σ(A(0)) = {−1, 1}.

Because P (0) is spectral, there exists Σ0⊂σ(A(0)) such that P (0)=P (A(0); Σ0).
The only choice is Σ0 = {1}, thus P (0) = P (A(0); {1}) = P+. On the other
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endpoint,

A(1) = P+ − P− + P1, P+(A(1)) = P+ + P1, σ(A(1)) = {−1, 1}.

As above, P (1) is spectral and P (1) = P (A(1); {1}) = P+ + P1. Because P

is an s-section and P+(A(t)) − P+(A(s)) is compact for every 0 ≤ t, s ≤ 1,
P (t) − P (s) is also compact. By (c) of Theorem 2.12, m(t) := [P (t) − P (0)] is
constant. Because m(0) = 0, m(1) = 0. But,

0 = m(1) = [P (1)− P (0)] = [(P+ + P1)− P+] = [P1] = 1

where the last equality follows from (a) of Theorem 2.12. Thus, we obtained
a contradiction. �

5. Spectral flow as group homomorphism

By (c) and (a) of Proposition 4.3, the spectral flow determines a Z-valued
group homomorphism on the fundamental group of each connected component
of eH(E). Given a projector P , we denote by sfP the spectral flow on the
fundamental group of the connected component of 2P − I.

The fiber of p:P(L(E)) → P(C(E)) over a point of the base space, P +Lc(E)
is the set

Pc(E;P ) = {Q ∈ P(L(E)) : Q− P ∈ Lc(E)}
i:Pc(E;P ) ↪→ P(L(E)).

Proposition 5.1. The connected components of Pc(E;P ) correspond to Z
through the bijection Q 7→ [P −Q] for every projector P . Moreover, if the range
and the kernel have infinite dimension, π1(Pc(E;P ), P ) ∼= Z2.

The two facts follow from [13, Theorem 6.3] and [13, Theorems 7.2,7.3].
Because p induces a Serre fibration, the sequence of homomorphisms

(5.1) π1(Pc(E;P ), P ) i∗−→ π1(P(L(E)), P )
p∗−→ π1(P(C(E)), P + Lc(E))

is exact. The homotopy equivalence Ψ defined in Corollary 3.10 determines
a group isomorphism

Ψ∗:π1(eH(E), 2P − I) → π1(P(C(E)), P + Lc(E)).

Theorem 5.2. There exists a homomorphism δP such that the sequence

(5.2) π1(P(L(E)), P )
p∗−→ π1(P(C(E)), P + Lc(E)) δP−→ Z,

is exact and δP ◦Ψ∗ = sfP .

Proof. Let a be a loop at the base point P + Lc(E), and let Q be a path
of projectors such that Q(0) = P and p(Q(t)) = a(t). Because a(0) = a(1),
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Q(1)− P is compact. We define

δP ([a]) = [Q(1)− P ].

Arguing as in Proposition 4.1, δP is well defined. Let A be a closed path in
eH(E) and Q a path of projectors such that

p(Q(t)) = Ψ(A(t)), Q(0) = P.

Hence, Q(t) − P+(A(t)) is compact for every t ∈ [0, 1]. By (4.1), sf(A) =
[Q(1)−P ]. By the definition above, δP ([Ψ◦A]) = [Q(1)−P ], thus δP ◦Ψ∗ = sfP .
Because Ψ∗ is invertible, δP is a homomorphism. We prove that δP is exact.

ker(δP ) ⊆ im(p∗): Let a be a loop at the base point P + Lc(E) such that
[a] ∈ ker(δP ). Then,

[Q(1)− P ] = 0.

P and Q(1) are in the same connected component in Pc(E;P ) by Proposition 5.1.
Thus, there exists a continuous path of projectors R such that

R(0) = Q(1), R(1) = P, R(t)− P ∈ Lc(E) for every t.

Set S := Q ∗ R. It is a closed path of projectors, and p ◦ S = a ∗ cp(P ), where
cp(P ) is the constant path p(P ). Thus, [a] ∈ im(p∗).

im(p∗) ⊆ ker(δP ): Given a loop Pt ∈ P(L(E)) at the base point P , we have

δP (p∗(Pt)) = [P (1)− P ] = 0

because P (1) = P . �

Proposition 5.3. Given a projector P , m ∈ im(sfP ) if and only if there
exists a projector Q such that Q − P is compact, [Q − P ] = m and is path-
connected to P .

By the previous theorem, im(sfP ) = im(δP ). Therefore, the proposition
follows from the definition of δP .

We define the following properties:

(h1) P is path-connected to a projector Q such that Q− P is compact and
[Q− P ] = m.

(h2) the image of p∗:π1(P(L(E)), P ) → π1(P(C(E), p(P )) is trivial.

Corollary 5.4. Given P ∈ P(L(E)), we characterise the kernel and the
image of the spectral flow sfP :

(a) m ∈ im(sfP ) if and only if P fulfills property (h1).
(b) im(p∗) ∼= ker(sfP ). sfP is injective if and only if P fulfills property (h2).

The isomorphism classes of the kernel and the image of sfP depend only on
the conjugacy class of P + Lc(E) in P(C(E)). We show that in many cases we
can find a projector P such that sfP is an isomorphism.
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Lemma 5.5. Let E be a Banach space, and X, Y ⊂ E closed subspaces such
that X ∼= Y and X ⊕ Y = E. Then, the projectors PX , PY with ranges X and
Y respectively, are connected by a continuous path in P(L(E)).

A proof of this can be found in [22, §9] or in [19].

Proposition 5.6. Let X, Y ⊂ E be as above. Suppose that X is isomorphic
to its closed subspaces of co-dimension m. Let P be the projector onto X with
kernel Y . Then P satisfies the property (h1) w.r.t. m.

Proof. Let Xm, Rm ⊂ X be closed subspaces such that dim(Rm) = m and
Xm ∼= X. We have the following decompositions and isomorphism:

E = Rm ⊕Xm ⊕ Y, Xm ∼= Y, Rm ⊕Xm = X.

By applying Lemma 5.5 to Xm ⊕ Y and subspaces Xm and Y , we obtain that
PXm is connected to PY . By applying it a second time to E and subspaces X

and Y , we obtain that PX is connected to PY . Hence, PX is connected to PXm .�

In Proposition 5.6, we required E to be isomorphic to a cartesian product
of a space X with itself, but it suffices that E has a complemented subspace F

fulfilling the requirements of Proposition 5.6. In fact, if At ∈ eH(F ) is such that
sf(At) = m, then sf(I ⊕At) = m, by (d) of Proposition 4.3.

Proposition 5.7. Given P ∈ P(L(E)), the map π: GL(E) → P(L(E)),
T 7→ TPT−1 defines a principal bundle with fiber GL(X)×GL(Y ), where X =
Range(P ) and Y = ker(P ).

A proof of this can be found in [10, Theorem 2.1] or in [4, Proposition 1.2].
Both theorems are stated in the more general setting of Banach algebras.

Corollary 5.8. If GL(E) is simply-connected and GL(X),GL(Y ) are con-
nected, then sfP is injective.

Proof. Because a locally trivial bundle is a Serre fibration, we have a long
exact sequence of homomorphisms that ends

π1(GL(E), I) π∗−→ π1(P(L(E)), P ) ∆−→ π0(GL(X)×GL(Y ), I).

Thus, if GL(E) is simply connected and GL(X) and GL(Y ) are connected, the
middle group is trivial, hence in (5.2) p∗ is the trivial map, thus δP is injective
and sfP is injective. �

Then, we have sufficient conditions for a Banach space to have at least one
projector P such that sfP is an isomorphism.
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Theorem 5.9. Let E = X ⊕X be such that X is isomorphic to its hyper-
planes, GL(E) is simply-connected and GL(X) is connected. Then sfPX

is an
isomorphism.

Proof. That sfPX
is surjective follows from Proposition 5.6. From the corol-

lary above, sfPX
is also injective. �

Let us consider the particular case, where E is isomorphic to E × E and to
its hyperplanes, and GL(E) is contractible to a point. This, in fact, is the case of
the most common infinite-dimensional spaces as separable Hilbert spaces, c0, `p

with p ≥ 1, and Lp(Ω, µ) with p > 1, C(K, F ) for large classes of compact spaces
K and Banach spaces F , and many others. For a richer list, see Theorem 2
of [28] and [17], [6], [20], [19]. Sequence spaces `p, `∞ and c0 are also prime (see
[5, Theorem 2.2.4] and [18]), that is, they are isomorphic to their complemented,
infinite-dimensional subspaces. Thus, for every projector P such that Range(P )
and ker(P ) have infinite dimension, sfP is an isomorphism.

Trivial spectral flow. When P is a projector with a finite-dimensional range
or kernel, P + Lc(E) is 0 or 1, then its connected component in P(C(E)) is
{0} or {1}. Hence, sfP = 0. This is the case of finite-dimensional spaces. A
space is said to be undecomposable if the only projectors are as above. In [14],
W. T. Gowers and B. Maurey showed the existence of an infinite-dimensional,
undecomposable space.

Non-trivial and not surjective spectral flow. W. T. Gowers and B. Maurey
proved in [15] the existence of a space isomorphic to their subspaces of co-
dimension two, but not their hyperplanes. If we denote by X a space with
such a property and by P the projector onto the first factor in E = X⊕X, then
2 ∈ im(sfP ) by Proposition 5.6. However, if 1 ∈ im(sfP ), by Proposition 5.3 and
(c2) in Section 2.2, X would be isomorphic to its hyperplanes.

The Douady space. We show the existence of a projector P such that δP ,
and thus sfP , is not injective.

Proposition 5.10. Let E = X ⊕X. Given T ∈ GL(X), there exists a loop
x in the space of projectors such that

∆(x) =
(

T 0
0 T−1

)
,

where ∆ is the connecting homomorphism in the sequence of Corollary 5.8.

Proof. Let M be the operator defined in the line above. Let Ut ∈ GL(E)
be such that U(1) = M and U(0) = I. The existence of U follows from the fact
that T ⊕ T ′ is connected to TT ′ ⊕ I (see [19]). Because M commutes with PX ,
the path

P (t) = U(t)PXU(t)−1
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is a loop in P(L(E)) with base point PX . We denote its homotopy class by x.
The path Ut is a lifting path for P . Hence ∆(x) = U(1) = M . �

Let F and G be Banach spaces such that

(i) every bounded map G → F is compact;
(ii) both F and G are isomorphic to their hyperplanes.

The next lemma follows from a more general result of A. Douady, [12, Propo-
sition 1]. We briefly sketch the proof by B. S. Mitjagin in [19].

Lemma 5.11. Let X = F ⊕G, F and G as above. Then, there exists a con-
tinuous, surjective homomorphism j: GL(X) → Z.

Proof. Let T ∈ GL(X) be an invertible operator and S be its inverse. We
have (

IF 0
0 IG

)
= TS =

(
T11S11 + T12S21 T11S12 + T12S22

T21S11 + T22S21 T22S22 + T21S12

)
.

A similar equality holds for ST . Taking the first element of the diagonals of TS

and ST , respectively, we have the following relations

T11S11 + T12S21 = IF , S11T11 + S12T21 = IF .

Because S21 and T21 are compact operators, T11 and S11 are the essential inverse
of each other. According to (e) of Proposition 2.10, T11 is a Fredholm operator.
We define

j(T ) = ind(T11).

By (a) of Proposition 2.10, there exists ε > 0 such that, if ‖T ′11 − T11‖ < ε, then
T ′11 is a Fredholm operator and ind(T ′11) = ind(T11). This proves the continuity.
Moreover, given two invertible operators T and S, we have

j(TS) = ind(TS)11 = ind(T11S11+T12S21) = ind(T11S11) = ind(T11)+ind(S11),

where (b) and (c) of Proposition 2.10 have been used. Thus, j is a group ho-
momorphism. Let F 1 and G1 be hyperplanes of F and G, respectively. We
define

σ:F → F 1, F = 〈v〉 ⊕ F 1,

τ :G1 → G, G = 〈w〉 ⊕G1,

B:G → F, tw + y 7→ tv.

where σ, τ are isomorphisms, which exist by (i). We define

T (x, y) = (σ(x) + B(y), τ(Py))

where P :G → G is a projector onto G1. T is invertible and ind(T11) = ind(σ) =
−1. Because j is a homomorphism, it is surjective. �
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Proposition 5.12. If E = X ⊕X, where X is a direct sum of two spaces
F and G as in (i) and (ii) above, then sfPX

is surjective, but not injective.

Proof. From the lemma above, for every k ∈ Z, there exists Tk ∈ GL(X)
such that j(Tk) = k. By Proposition 5.10, there exists xk ∈ π1(P(L(E)), PX)
such that ∆(xk) = Tk ⊕ T−1

k and xk 6= xh if k 6= h. Then π1(P(L(E)), PX) has
infinitely many elements, while π1(Pc(E;P ), PX) is a finite group, by Proposi-
tion 5.1. Hence, in (5.1), i∗ is not surjective, thus xk 6∈ im(i∗) for infinitely many
k ∈ Z. Hence,

p∗(xk) 6= 0, δPX
(p∗(xk)) = 0.

because the sequence (5.1) is exact; therefore, the kernel of δPX
is not trivial.

Because E and X fulfill the hypothesis of Proposition 5.6, sfPX
is surjective. �

By [26, Theorem 4.23], examples of pairs of Banach spaces as in (i) and (ii)
are given by (`p, `2), with p > 2.

In the next proposition, we show the existence of a projector P whose range
and kernel are isomorphic to their hyperplanes, but sfP = 0.

Proposition 5.13. Let X = F ⊕G, where F and G fulfill properties (i) and
(ii). Then, sfPF

= 0.

Proof. Let 0 ≥ −m ∈ im(sfPF
). Then, by (a) of Corollary 5.4, PF is

connected to a projector Q ∈ P(L(X)) such that Q− PF is compact and [PF −
Q] = m. Let Pm ∈ P(L(X)) be a projector onto a subspace Fm ⊂ F of co-
dimension m such that Pm(I − PF ) = 0. Thus, PF − Pm is compact and [PF −
Pm] = m. Therefore, Q−Pm is compact and [Pm −Q] = 0. By Proposition 5.1,
Q is connected to Pm. Hence, PF is connected to Pm. By Theorem 2.6, there
exists a continuous path Ut ∈ GL(X) such that

U(0) = I, U(1)PF = PmU(1).

From these relations, it follows that U(1)11(F ) = Fm, hence j(U(1)) = −m, and
j(U(0)) = 0. By the lemma above, j(U(t)) is constant, therefore m = 0. �

6. The Fredholm index of FA and the spectral flow

Definition 6.1. A path A: R → L(E) of bounded operators is said to be
asymptotically hyperbolic if the limits A(+∞) and A(−∞) exist and are hyper-
bolic operators.

If A is also essentially hyperbolic, we can define the spectral flow as follows:
Because the set of hyperbolic operators is an open subset of L(E), there exists
δ > 0 such that A(t) is hyperbolic for every t ∈ (−∞,−δ] ∪ [δ,+∞). We set

(6.1) sf(A) = sf(A, [−δ, δ]).
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The definition does not depend on the choice of δ by (a) and (b) of Proposi-
tion 4.3. Let P+(A) be the spectral projector P (A; {Re(z) > 0}).

Definition 6.2. An asymptotically hyperbolic path is called essentially
splitting if the following properties

(a) P+(A(+∞))− P+(A(−∞)) is compact;
(b) [A(t), P+(A(+∞))] is compact for every t ∈ R,

hold, where [A,P ] = AP − PA.

The definition above corresponds to the one given in [2, Theorem 6.3] when
(a) holds. For short, we will refer to essentially splitting as a path satisfying (a)
and (b).

Lemma 6.3. Let A be an asymptotically hyperbolic and essentially hyperbolic
path. It is also essentially splitting if and only if P+(A(t))−P+(A(s)) is compact
for every t, s ∈ R.

Proof. Suppose A is essentially splitting. We denote by E+ and E− the
ranges of P+(A(+∞)) and P−(A(+∞)), respectively. With respect to the de-
composition E = E+ ⊕ E−, we can write A(t) block-wise:

A(t) =
(

A+(t) K±(t)
K∓(t) A−(t)

)
where K±(t) and K∓(t) are compact operators by (a). Then A(t) is a compact
perturbation of A+(t)⊕A−(t). Therefore

(6.2) P+(A(t))− P+(A+(t))⊕ P+(A−(t)) ∈ Lc(E) for every t ∈ R.

Because A(+∞) commutes with P+(A(+∞)) and P−(A(+∞)), K±(+∞),
K∓(+∞) are null operators, hence A(+∞) = A+(+∞)⊕A−(+∞). By the defi-
nition of essential spectrum and (b) of Proposition 2.10, σe(A(t)) = σe(A+(t))∪
σe(A−(t)). Therefore,

P+(A+(+∞)) = IE+ , A+(t) ∈ eH(E+),(6.3)

P+(A−(+∞)) = 0E− , A−(t) ∈ eH(E−).(6.4)

From the first part of (6.3) and Proposition 3.11,

A+(+∞) ∈ XIE+ ⊂ eH(E+).

where XIE+ is the connected component of IE+ in eH(E+). Because eH(E+) is
locally path-connected, XIE+ is open. Then, by the second part of (6.3)

A+(t) ∈ XIE+ for every t ∈ R.

By Proposition 3.11,

(6.5) P+(A+(t))− IE+ ∈ Lc(E) for every t ∈ R.
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Similarly, from (6.4) and Proposition 3.11, we obtain

(6.6) P+(A−(t)) ∈ Lc(E) for every t ∈ R.

By the definition of P+(A(+∞)), IE+ ⊕ 0E− = P+(A(+∞)). Thus, by (6.2),
(6.5) and (6.6),

P+(A(t))− P+(A(+∞)) ∈ Lc(E) for every t ∈ R.

Conversely, suppose that each of the projectors of the set {P+(A(t)) : t ∈ R} is
a compact perturbation of the others. Let a > 0 be such that A(s) is hyperbolic
for every |s| > a. By the continuity of P+, it follows that

P+(A(+∞))− P+(A(−∞)) = lim
s→+∞
|s|>a

(P+(A(s))− P+(A(−s))).

because A is asymptotically hyperbolic. Hence, the left member is the limit of
a sequence of compact operators. Because Lc(E) is a closed subset of L(E), we
have proved (a). Property (b) follows from the equality

[A(t), P+(A(s))] = [A(t), P+(A(t))] + [A(t), P+(A(s))− P+(A(t))],

where the first summand of the right member is zero and the second one is
compact by hypothesis. In particular, the equality holds for s > a, so we finish
our proof by taking the limit on the left member as s → +∞. �

The spectral flow and the Fredholm index of FA. Given a continuous,
bounded path At ∈ L(E), we denote by FA the differential operator

FA:W 1,p(R, E) → Lp(R, E), FA(u) =
du

dt
−A( · )u.

Theorem 6.4. Let A be an asymptotically hyperbolic and essentially splitting
path. Then FA is a Fredholm operator and

ind(FA) = [P−(A(−∞))− P−(A(+∞))]

A. Abbondandolo and P. Majer proved it in [2, Theorem 6.3] where E is
a Hilbert space and p = 2. However, the theorem, like much of the content of
their work, can be generalised to Banach spaces as in [13, Theorem 3.3].

Theorem 6.5. Let A be an asymptotically hyperbolic, essentially splitting
and essentially hyperbolic path. Then,

sf(A) = −[P−(A(−∞))− P−(A(+∞))]

Proof. Let δ > 0 as in (6.1). By Lemma 6.3, the constant path P ≡
P+(A(δ)) is an s-section for P+(At) on [−δ, δ] in the sense of Definition 4.4.
Hence,

sf(A) = [P+(A(δ))− P+(A(−δ))].
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Because A is hyperbolic on (−∞− δ] ∪ [δ,+∞), the path P+(At) is continuous
on this subset. By (c) of Theorem 2.12,

[P−(A(−∞))− P−(A(+∞))] = −[P+(A(δ))− P+(A(−δ))] = −sf(A). �

From Theorems 6.5 and 6.4 we have the final result.

Theorem 6.6. If A is essentially hyperbolic, essentially splitting and asymp-
totically hyperbolic, then

(6.7) ind(FA) = −sf(A).

Let A(t) = A0(t) + K(t), where A0(t) is hyperbolic and A0, A are asymptot-
ically hyperbolic. K(t) is compact and

A0(t)E− ⊆ E−, A0(t)E+ ⊆ E+,

E− = E−(A0(±∞)), E+ = E+(A0(±∞)).

The second line tells us that P+(A0(+∞))=P+(A0(−∞)) and thus P+(A(+∞))
−P+(A(−∞)) is compact. From the first line, it follows that [A(t), P+(A(+∞))]
is compact. Thus, by Theorem 6.6, we confirm the guess of A. Abbondandolo
and P. Majer in [2, §7], that for paths satisfying the hypotheses of [2, Theorem E],
corresponding to those listed above, the relation (6.7) holds.

When A is not essentially splitting, the authors provided in [2, Example 6.7]
counterexamples to (6.7).
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c0, Math. Ann. 174 (1967), 33–40.

[21] J. Phillips, Self-adjoint Fredholm operators and spectral flow, Canad. Math. Bull. 39

(1996), 460–467.

[22] H. Porta and L. Recht, Spaces of projections in a Banach algebra, Acta Cient. Vene-

zolana 38 (1987), 408–426.

[23] P. J. Rabier, The Robbin–Salamon index theorem in Banach spaces with UMD, Dynam.

Partial Differential Equations 1 (2004), 303–337.

[24] J. Robbin and D. Salamon, The spectral flow and the Maslov index, Bull. London

Math. Soc. 27 (1995), 1–33.

[25] W. Rudin, Functional analysis, International Series in Pure and Applied Mathematics,

McGraw–Hill Inc., New York, 1991, second edition.

[26] R. A. Ryan, Introduction to tensor products of Banach spaces, Springer Monographs in

Mathematics, Springer–Verlag London Ltd., London, 2002.

[27] D. Salamon, Lectures on Floer homology, Symplectic Geometry and Topology (Park

City, UT, 1997), IAS/Park City Math. Ser., vol. 7, Amer. Math. Soc., Providence, RI,
1999, pp. 143–229.

[28] H. Schroeder, On the topology of the group of invertible elements, ArXiv Mathematics
e-prints (October 1998).

[29] Ch. Zhu and Y. Long, Maslov-type index theory for symplectic paths and spectral
flow I, Chinese Ann. Math. Ser. B 20 (1999), 413–424.

Manuscript received May 31, 2010

Daniele Garrisi
Pohang Mathematics Institute

Department of Mathematics

Postech San 31
Hyojadong, Namgu, Pohang

Gyungbuk 790-784, REPUBLIC OF KOREA

TMNA : Volume 36 – 2010 – No 2


