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STUDY ON A QUADRATIC HADAMARD TYPE
FRACTIONAL INTEGRAL EQUATION

ON AN UNBOUNDED INTERVAL

JinRong Wang — Chun Zhu — Yong Zhou

Abstract. In this paper, a quadratic Hadamard type fractional integral

equations on an unbounded interval is studied. By applying a technique of
measure of noncompactness and Schauder fixed point theorem, existence

and uniform local attractivity of solutions are presented after overcoming

some difficulty from the Hadamard type singular kernel. Moreover, three
new solutions sets who tend to zero at infinity are constructed to obtain

local stability of solutions. Finally, two examples are made to illustrate our

theory results.

1. Introduction

Fractional integral and differential equations play increasingly important
roles in the modeling of real world problems. Some problems in physics, me-
chanics and other fields can be described with the help of all kinds of fractional
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differential and integral equations. For more recent development on Riemann-
Liouville, Caputo and Hadamard fractional calculus, the reader can refer to the
monographs of Baleanu et al. [4], Kilbas et al. [15], Lakshmikantham et al. [17],
Miller and Ross [21], Podlubny [22] and Tarasov [23] and the works on frac-
tional integral and differential equations [1]–[3], [7]–[11], [13], [14], [16], [18], [19],
[26]–[29].

Recently, Banás and O’Regan [6] study the existence and local attractivity
of solutions of a quadratic Riemann–Liouville type fractional integral equation
in the space of real functions defined, continuous and bounded on an unbounded
interval. Further, Wang et al. [24], [25] study the existence, local attractivity and
stability of solutions of Urysohn type and Erdélyi–Kober type fractional integral
equations respectively.

It is worthwhile mentioning that up to now Hadamard type fractional integral
equations in the space of real functions defined on a unbounded interval have
not been studied. Motivated by [6], [24], [25], we will extend to study existence,
uniform local attractivity and local stability of solutions for quadratic Hadamard
type fractional integral equations of the form

(1.1) x(t) = p(t) + f(t, x(t))(HD−α
t0,tu(t, s, x(s))),

where t ∈ [t0,+∞), t0 > 0, α ∈ (0, 1), the symbol HD−α
t0,tu denotes the Hadamard

fractional integral on the continuous function u of the order α, which is defined
by

(1.2) HD−α
t0,tu(t, s, x(t)) :=

1
Γ(α)

∫ t

t0

(
ln

t

s

)α−1

u(t, s, x(s))
ds

s
,

the term (ln(t/s))α−1 is so-called the Hadamard type singular kernel and Γ( · )
is the Euler Gamma function.

Firstly, by applying the same technique of measure of noncompactness in the
space BC([t0,∞)) and Schauder fixed point theorem which appeared in [6], we
obtain the existence and uniform local attractivity results of the solutions for
the equation (1.1) after overcoming the main difficulty from the Hadamard type
singular kernel (ln(t/s))α−1, which is different from the Riemann–Liouville type
singular kernel (t− s)α−1.

Secondly, local stability of the solutions of a special case the equation (1.1)
with t0 = 1 are studied by adopting some ideas in [11], [24], [25]. To achieve our
aim, we try to construct three certain characters solutions sets: XL,γ = {x : x ∈
BC([1,∞)) and |x(t)| ≤ L(ln t)−γ for L > 0, t > 1}, X1,α = {x : x ∈ BC([1,∞))
and |x(t)| ≤ (ln t)−α for t > 1} and X1,(1−(α+ν)) = {x : x ∈ BC([1,∞)) and
|x(t)| ≤ (ln t)−(1−(α+ν)) for t > 1}. The constructing techniques considered
here may be a stimulant for further investigations concerning local stability of
solutions of other types nonlinear fractional integral equations.
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2. Preliminaries

In this section we collect some definitions and results which will be needed
later.

First we present some facts concerning measures of noncompactness (see
Banás and Goebel [5]).

Let (E, ‖ · ‖) be a Banach space. Denote by B(x, r) the closed ball centered
at x and with radius r. The symbol Br stands for the ball B(θ, r) where θ is
the zero element. If X is a subset of X we write X, ConvX in order to denote
the closure and convex closure of X, respectively. Moreover, we denote by ME

the family of all nonempty and bounded subsets of E and by NE its subfamily
consisting of all relatively compact sets.

We collect the following definition of the concept of a measure of noncom-
pactness [5].

Definition 2.1. A mapping µ:ME → R+ = [0,∞) is said to be a measure
of noncompactness in E if it satisfies the following conditions:

(a) The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂ NE .
(b) If X ⊂ Y then µ(X) ≤ µ(Y ).
(c) µ(X) = µ(X).
(d) µ(ConvX) = µ(X).
(f) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1].
(g) If (Xn) is a sequence of closed sets from ME such that Xn+1 ⊂ Xn (for

n = 1, 2, . . . ) and if lim
n→∞

µ(Xn) = 0,then the intersection X∞ =
∞⋂

n=1
Xn

is nonempty.

The family kerµ described in (a) is said to be the kernel of the measure of
noncompactness µ. Let us observe that the intersection set X∞ from (f) belongs
to kerµ. In fact, since µ(X∞) ≤ µ(Xn) for every n then we have that µ(X∞) = 0.
This simple observation will be essential later.

We introduce the space BC([t0,∞)) which is consisting of all real functions
defined, continuous and bounded on [t0,∞). Endowed with the norm ‖x‖ =
sup{|x(t)| : t ≥ t0}, it is easy to see (BC([t0,∞)), ‖ · ‖) is a Banach space.

We will use a same measure of noncompactness in the space BC([t0,∞)) [6].
We need the following preparations which are taken from [6].

Take a nonempty bounded subset X ⊂ BC([t0,∞)) and a T > 0. For x ∈ X

and ε ≥ 0, denote

ωT (x, ε) = sup{|x(t)− x(s)| : t, s ∈ [t0, T ], |t− s| ≤ ε}.

Set ωT (X, ε) = sup{ωT (x, ε) : x ∈ X}, ωT
0 (X) = lim

ε→0
ωT (X, ε), ω0(X) =

lim
T→∞

ωT
0 (X). For t ∈ [t0,∞), denote X(t) = {x(t) : x ∈ X} and diam X(t) =
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sup{|x(t)− y(t)| : x, y ∈ X}. Now, consider the function µ defined on the family
MBC([t0,∞)) by the formula

(2.1) µ(X) = ω0(X) + lim
t→∞

sup diam X(t).

Then the function µ is a measure of noncompactness in the space BC([t0,∞)) [6].
The kernel kerµ of this measure consists of nonempty and bounded sets X such
that functions from X are locally equicontinuous on [t0,∞) and the thickness of
the bundle formed by functions from X tends to zero at infinity. This property
can help us to characterize solutions of the equation (1.1) and other kinds of
integral equations.

In order to introduce some basic concepts, we choose a Ω ⊂ BC([t0,∞)),
Ω 6= ∅, define Q: Ω → BC([t0,∞)) and consider the following operator equation:

(2.2) x(t) = (Qx)(t), t ≥ t0.

The following locally attractive concept for the solutions of the above oper-
ator equation (2.2) is introduced in [6].

Definition 2.2. A solution of the equation (2.2) is said to be locally attrac-
tive if there exists a ball B(x0, r) in the space BC([t0,∞)) such that for arbitrary
solutions x, y ∈ B(x0, r) ∩ Ω of the equation (2.2) satisfying

(2.3) lim
t→∞

(x(t)− y(t)) = 0.

In the case when the limit (2.3) is uniform with respect to the set B(x0, r) ∩ Ω,
i.e. for each ε > 0 there exists T > t0 such that

(2.4) |x(t)− y(t)| ≤ ε

for all x, y ∈ B(x0, r)∩Ω and for t ≥ T , we will say that solutions of the equation
(2.2) are uniformly locally attractive.

Definition 2.4. A solution of the equation (2.2) is said to be locally stable
if lim

t→∞
|x(t)| = 0.

The following two inequalities are useful in the sequel. For more details, one
can see Michalski [20].

Lemma 2.5. For all β > 0 and ϑ > −1,∫ t

0

(t− s)β−1sϑ ds =
Γ(β)Γ(ϑ + 1)
Γ(β + ϑ + 1)

tβ+ϑ.

Lemma 2.6. For all λ, v, w > 0, then for any t > 0, we have∫ t

0

(t− s)v−1sλ−1e−ws ds ≤ max{1, 21−v}Γ(λ)
(

1 +
λ

v

)
w−λt−(1−v).
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3. Existence and uniform local attractivity of solutions

In this section, we will study the existence and uniform local attractivity of
the solutions of the equation (1.1).

We introduce the following assumptions:

(H1) p: [t0,∞) → R is continuous and bounded function on [t0,∞).
(H2) f : [t0,∞)×R → R is continuous and there exists a function m: [t0,∞) →

R+ being continuous on [t0,∞) and such that

|f(t, x)− f(t, y)| ≤ m(t)|x− y| for all x, y ∈ R.

(H3) u: [t0,∞) × [t0,∞) × R → R is continuous. Moreover, there exist a
function n: [t0,∞) → R+ being continuous on [t0,∞) and a function
Φ: R+ → R+ being continuous and nondecreasing on R+ with Φ(0) = 0
and such that

|u(t, s, x)− u(t, s, y)| ≤ n(t)Φ(|x− y|) for all x, y ∈ R.

Define u1: [t0,∞) → R+ where u1 = max{|u(t, s, 0)| : t0 ≤ s ≤ t}. Clearly,
u1 is continuous on [t0,∞).

We need the following additional conditions.

(H4) For some 0 < α < 1, the functions a, b, c, d: [t0,∞) → R+ defined by

a(t) = m(t)n(t)(ln t− ln t0)α, b(t) = m(t)u1(t)(ln t− ln t0)α,

c(t) = n(t)|f(t, 0)|(ln t− ln t0)α, d(t) = u1(t)|f(t, 0)|(ln t− ln t0)α,

are bounded on [t0,+∞) and a( · ), c( · ) satisfying

lim
t→∞

a(t) = lim
t→∞

c(t) = 0.

For brevity, define

A = sup{a(t) : t ∈ [t0,∞)}, B = sup{b(t) : t ∈ [t0,∞)},
C = sup{c(t) : t ∈ [t0,∞)}, D = sup{d(t) : t ∈ [t0,∞)}.

(H5) There exists a number r0 > 0 satisfying the following inequality

‖p‖+
ArΦ(r) + Br + CΦ(r) + D

Γ(α + 1)
≤ r.

And, the inequality AΦ(r0) + B < Γ(α + 1) also holds.

In order to use the technique of fixed point theorem, we introduce the oper-
ator V : BC([t0,∞)) → BC([t0,∞)) defined by

(V x)(t) = p(t) + (Fx)(t)(Ux)(t),



262 J.-R. Wang — Ch. Zhu — Y. Zhou

where F,U : BC([t0,∞)) → BC([t0,∞)) defined by

(Fx)(t) = f(t, x(t)), (Ux)(t) =
1

Γ(α)

∫ t

t0

u(t, s, x(s))
(ln t− ln s)1−α

ds

s
.

Lemma 3.1. Let the assumptions (H1)–(H5) be satisfied. Then we have:

(a) the operator V :Br0 ⊂ BC([t0,∞)) → Br0 , where r0 satisfying the as-
sumption (H5),

(b) the fixed points of the operator V is just the solutions of the equa-
tion (1.1).

Proof. (a) We firstly verify that V is continuous operator.
To achieve our aim, we only need to verify that F , U are continuous operators.

In fact, for any function x ∈ BC([t0,∞)), it is clear that the function Fx is
continuous on [t0,∞). We only need to show that the function Ux is continuous
on [t0,∞).

For an arbitrary x ∈ BC([t0,∞)) and fix T > t0 and ε > 0. Without loss of
generality we can assume that t0 ≤ t1 < t2 ≤ T with |t2 − t1| ≤ ε. After some
standard computation, we obtain

|(Ux)(t2) − (Ux)(t1)| =
1

Γ(α)

∣∣∣∣ ∫ t1

t0

u(t2, s, x(s))
(ln t2 − ln s)1−α

ds

s

+
∫ t2

t1

u(t2, s, x(s))
(ln t2 − ln s)1−α

ds

s
−

∫ t1

t0

u(t1, s, x(s))
(ln t1 − ln s)1−α

ds

s

∣∣∣∣
≤ 1

Γ(α)

∫ t1

t0

∣∣∣∣ u(t2, s, x(s))
(ln t2 − ln s)1−α

− u(t1, s, x(s))
(ln t2 − ln s)1−α

∣∣∣∣ ds

s

+
1

Γ(α)

∫ t1

t0

∣∣∣∣ u(t1, s, x(s))
(ln t2 − ln s)1−α

− u(t1, s, x(s))
(ln t1 − ln s)1−α

∣∣∣∣ ds

s

+
1

Γ(α)

∫ t2

t1

|u(t2, s, x(s))|
(ln t2 − ln s)1−α

ds

s

=
1

Γ(α)

∫ t1

t0

|u(t2, s, x(s))− u(t1, s, x(s))|
(ln t2 − ln s)1−α

ds

s

+
1

Γ(α)

∫ t1

t0

|u(t1, s, x(s))|
[

1
(ln t1 − ln s)1−α

− 1
(ln t2 − ln s)1−α

]
ds

s

+
1

Γ(α)

∫ t2

t1

|u(t2, s, x(s))|
(ln t2 − ln s)1−α

ds

s

≤ ωT
1 (u, ε; ‖x‖)

Γ(α)

∫ t1

t0

1
(ln t2 − ln s)1−α

ds

s

+
1

Γ(α)

∫ t1

t0

[|u(t1, s, x(s))− u(t1, s, 0)|+ |u(t1, s, 0)|]

×
[

1
(ln t1 − ln s)1−α

− 1
(ln t2 − ln s)1−α

]
ds

s



Quadratic Hadamard Type Fractional Integral Equation 263

+
1

Γ(α)

∫ t2

t1

|u(t2, s, x(s))− u(t2, s, 0)|+ |u(t2, s, 0)|
(ln t2 − ln s)1−α

ds

s

≤ ωT
1 (u, ε; ‖x‖)

Γ(α)
(ln t2 − ln t0)α − (ln t2 − ln t1)α

α

+
1

Γ(α)

∫ t1

t0

[n(t1)Φ(|x(s)|) + u1(t1)]

×
[

1
(ln t1 − ln s)1−α

− 1
(ln t2 − ln s)1−α

]
ds

s

+
1

Γ(α)

∫ t2

t1

n(t2)Φ(|x(s)|) + u1(t2)
(ln t2 − ln s)1−α

ds

s

≤ ωT
1 (u, ε; ‖x‖)
Γ(α + 1)

(ln t1 − ln t0)α

+
n(t1)Φ(‖x‖) + u1(t1)

Γ(α + 1)
[(ln t2 − ln t1)α + (ln t1 − ln t2)α]

+
n(t2)Φ(‖x‖) + u1(t2)

Γ(α + 1)
(ln t2 − ln t1)α

≤ 1
Γ(α + 1)

{(ln t1 − ln t0)αωT
1 (u, ε; ‖x‖)

+ (ln t2 − ln t1)α[n(t1)Φ(‖x‖) + u1(t1)]

+ (ln t2 − ln t1)α[n(t2)Φ(‖x‖) + u1(t2)]},

where ωT
1 (u, ε; ‖x‖) = sup{|u(t2, s, y) − u(t1, s, y)| : s, t1, t2 ∈ [t0, T ], s ≤ t1,

s ≤ t2, |t2 − t1| ≤ ε, |y| ≤ ‖x‖}.
Obviously, we have that ωT

1 (u, ε; ‖x‖) → 0 as ε → 0 due to the uniform
continuity of the function u(t, s, y) on the set [t0, T ]× [t0, T ]× [−‖x‖, ‖x‖].

Denote n(T ) = max{n(t) : [t0, T ]}, u1(T ) = max{u1(t) : [t0, T ]}. Then, we
have

ωT (Ux, ε) ≤ 1
Γ(α + 1)

{(lnT − ln t0)αωT
1 (u, ε; ‖x‖)

+ 2 ln(1 + ε)α[n(T )Φ(‖x‖) + u1(T )]},

which implies the function Ux is continuous on the interval [t0, T ] for any T > t0.
Further, we can obtain the continuity of Ux on [t0,∞). As a result, the continuity
of V x on [t0,∞) can be derived.

Secondly, we show that the function V x is bounded on [t0,∞).
For an arbitrary x ∈ BC([t0,∞)) and a fixed t ∈ [t0,+∞) we have

|(V x)(t)| ≤ |p(t)|+ 1
Γ(α)

[|f(t, x(t))− f(t, 0)|+ f(t, 0)]

×
∫ t

t0

|u(t, s, x(s))− u(t, s, 0)|+ |u(t, s, 0)|
(ln t− ln s)1−α

ds

s
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≤‖p‖+
m(t)|x(t)|+ |f(t, 0)|

Γ(α)

∫ t

t0

n(t)Φ(|x(s)|) + u1(t)
(ln t− ln s)1−α

ds

s

≤‖p‖+
m(t)‖x‖+ |f(t, 0)|

Γ(α)
[n(t)Φ(‖x‖) + u1(t)]

∫ t

t0

1
(ln t− ln s)1−α

ds

s

≤‖p‖+
1

Γ(α + 1)
[m(t)n(t)(ln t− ln t0)α‖x‖Φ(‖x‖)

+ m(t)u1(u)(ln t− ln t0)α‖x‖
+ n(t)|f(t, 0)|(ln t− ln t0)αΦ(‖x‖) + |f(t, 0)|u1(u)(ln t− ln t0)α]

= ‖p‖+
1

Γ(α + 1)
[a(t)‖x‖Φ(‖x‖) + b(t)‖x‖+ c(t)Φ(‖x‖) + d(t)].

By assumption (H4), we can show the function V x is bounded on [t0,∞). Com-
bining with the continuity of V x on [t0,∞), we can obtian V x ∈ BC([t0,∞)).
Moreover, we can obtain the following inequality

‖V x‖ ≤ ‖p‖+
1

Γ(α + 1)
[A‖x‖Φ(‖x‖) + B‖x‖+ CΦ(‖x‖) + D].

Combining the above estimate with assumption (H5) we deduce that there exists
r0 > 0 such that the operator V : Br0 → Br0 .

(b) It comes from the fact V :Br0 → Br0 we have the second assertion im-
mediately. �

Now, we are ready to state and prove one of our main results in this paper.

Theorem 3.2. Let the assumptions (H1)–(H5) be satisfied. Then we have:

(a) the equation (1.1) has at least one solution x ∈ BC([t0,∞)),
(b) the solutions of the equation (1.1) are uniformly locally attractive.

Proof. (a) Take X ∈ Br0 and X 6= ∅, where Br0 is just described the ball
in Lemma 3.1. Then, for x, y ∈ X and for an arbitrarily fixed t ∈ [t0,∞), using
our assumptions (H2)–(H4) we obtain

|(V x)(t) − (V y)(t)|

=
∣∣∣∣f(t, x(t))

Γ(α)

∫ t

t0

u(t, s, x(s))
(ln t− ln s)1−α

ds

s
− f(t, y(t))

Γ(α)

∫ t

t0

u(t, s, y(s))
(ln t− ln s)1−α

ds

s

∣∣∣∣
≤ 1

Γ(α)
|f(t, x(t))− f(t, y(t))|

∫ t

t0

|u(t, s, x(s))|
(ln t− ln s)1−α

ds

s

+
|f(t, y(t))|

Γ(α)

∫ t

t0

|u(t, s, x(s))− u(t, s, y(s))|
(ln t− ln s)1−α

ds

s

≤ 1
Γ(α)

m(t)|x(t)− y(t)|
∫ t

t0

|u(t, s, x(s))− u(t, s, 0)|+ |u(t, s, 0)|
(ln t− ln s)1−α

ds

s

+
1

Γ(α)
[|f(t, y(t))− f(t, 0)|+ |f(t, 0)|]

∫ t

t0

n(t)Φ(|x(s)− y(s)|)
(ln t− ln s)1−α

ds

s



Quadratic Hadamard Type Fractional Integral Equation 265

≤ m(t)|x(t)− y(t)|
Γ(α)

∫ t

t0

n(t)Φ(|x(s)|) + u1(t)
(ln t− ln s)1−α

ds

s

+
[m(t)|y(t)|+ |f(t, 0)|]n(t)

Γ(α)

∫ t

t0

Φ(|x(s)− y(s)|)
(ln t− ln s)1−α

ds

s

≤ m(t)n(t)(|x(t)|+ |y(t)|)
Γ(α)

∫ t

t0

Φ(|x(s)|)
(ln t− ln s)1−α

ds

s

+
m(t)u1(t)

Γ(α)
|x(t)− y(t)|

∫ t

t0

1
(ln t− ln s)1−α

ds

s

+
m(t)n(t)|y(t)|

Γ(α)

∫ t

t0

Φ(|x(s)|+ |y(s)|)
(ln t− ln s)1−α

ds

s

+
n(t)|f(t, 0)|

Γ(α)

∫ t

t0

Φ(|x(s)|+ |y(s)|)
(ln t− ln s)1−α

ds

s

≤ 2m(t)n(t)r0Φ(r0)
Γ(α)

∫ t

t0

1
(ln t− ln s)1−α

ds

s

+
m(t)u1(t)

Γ(α)
diam X(t)

∫ t

t0

1
(ln t− ln s)1−α

ds

s

+
m(t)n(t)r0Φ(2r0)

Γ(α)

∫ t

t0

1
(ln t− ln s)1−α

ds

s

+
n(t)|f(t, 0)|Φ(2r0)

Γ(α)

∫ t

t0

1
(ln t− ln s)1−α

ds

s

=
2a(t)

Γ(α + 1)
r0Φ(r0) +

a(t)
Γ(α + 1)

r0 Φ(2r0)

+
c(t)

Γ(α + 1)
Φ(2r0) +

b(t)
Γ(α + 1)

diam X(t).

From the above estimate we derive the following inequality:

diam (V x)(t) ≤ 2a(t)r0Φ(r0)
Γ(α + 1)

+
a(t)r0Φ(2r0)

Γ(α + 1)
+

c(t)Φ(2r0)
Γ(α + 1)

+
b(t)diam X(t)

Γ(α + 1)
.

Hence, by assumption (H4) we get

(3.1) lim
t→∞

sup diam (V x)(t) ≤ k lim
t→∞

sup diam X(t),

where k = (AΦ(r0) + B)/(Γ(α + 1)) < 1 due to assumption (H5).
Further, take T > t0 and ε > 0. For an arbitrary x ∈ X and t1, t2 ∈ [t0, T ]

with |t2 − t1| ≤ ε. Without loss of generality we assume that t1 < t2. Then,
using our assumptions and the previously obtained estimate we get

|(V x)(t2)− (V x)(t1)| ≤ |p(t2)− p(t1)|+ |(Fx)(t2)(Ux)(t2)− (Fx)(t1)(Ux)(t2)|
+ |(Fx)(t1)(Ux)(t2)− (Fx)(t1)(Ux)(t1)|

≤ωT (p, ε) + |f(t2, x(t2))− f(t1, x(t1))|
1

Γ(α)

∫ t2

t0

|u(t2, s, x(s))|
(ln t2 − ln s)1−α

ds

s
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+
|f(t1, x(t1))|

Γ(α + 1)
{(lnT − ln t0)αωT

1 (u, ε; r0)

+ 2 ln(1 + ε)α[n(T )Φ(r0) + u1(T )]}

≤ωT (p, ε) +
|f(t2, x(t2))− f(t2, x(t1))|+ |f(t2, x(t1))− f(t1, x(t1))|

Γ(α)

×
∫ t2

t0

|u(t2, s, x(s))− u(t2, s, 0)|+ |u(t2, s, 0)|
(ln t2 − ln s)1−α

ds

s

+
|f(t1, x(t1))− f(t1, 0))|+ |f(t1, 0))|

Γ(α + 1)

× {(lnT − ln t0)αωT
1 (u, ε; r0) + 2 ln(1 + ε)α[n(T )Φ(r0) + u1(T )]}

≤ωT (p, ε) +
m(t2)|x(t2)− x(t1)|+ ωT

1 (f, ε)
Γ(α)

∫ t2

t0

n(t2)Φ(|x(s)|) + u1(t2)
(ln t2 − ln s)1−α

ds

s

+
m(t1)|x(t1)|+ |f(t1, 0))|

Γ(α + 1)

× {(lnT − ln t0)αωT
1 (u, ε; r0) + 2 ln(1 + ε)α[n(T )Φ(r0) + u1(T )]}

≤ωT (p, ε) +
[m(t2)ωT (x, ε) + ωT

1 (f, ε)](ln t2 − ln t0)α[n(t2)Φ(r0) + u1(t2)]
Γ(α + 1)

+
m(T )r0 + f(T )

Γ(α + 1)
{(lnT − ln t0)αωT

1 (u, ε; r0)

+ 2 ln(1 + ε)α[n(T )Φ(r0) + u1(T )]}

≤ωT (p, ε) +
1

Γ(α + 1)
[m(t2)n(t2)(ln t2 − ln t0)αΦ(r0)

+ m(t2)u1(t2)(ln t2 − ln t0)α]ωT (x, ε)

+
ωT

1 (f, ε) (lnT − ln t0)α[n(T )Φ(r0) + u1(T )]
Γ(α + 1)

+
m(T )r0 + f(T )

Γ(α + 1)
{(lnT − ln t0)αωT

1 (u, ε; r0)

+ 2 ln(1 + ε)α[n(T )Φ(r0) + u1(T )]}

≤ωT (p, ε) +
AΦ(r0) + B

Γ(α + 1)
ωT (x, ε)

+
ωT

1 (f, ε) (lnT − ln t0)α[n(T )Φ(r0) + u1(T )]
Γ(α + 1)

+
m(T )r0 + f(T )

Γ(α + 1)
{(lnT − ln t0)αωT

1 (u, ε; r0)

+ 2 ln(1 + ε)α[n(T )Φ(r0) + u1(T )]},

where

ωT
1 (f, ε) = sup{|f(t2, x)− f(t1, x)| : t1, t2 ∈ [t0, T ], |t2 − t1| ≤ ε, x ∈ [−r0, r0]},
m(T ) = max{m(t) : t ∈ [t0, T ]}, f(T ) = max{|f(t, 0)| : t ∈ [t0, T ]}.
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Now, noting the uniform continuity of the function u = u(t, s, x) on [t0, T ]×
[t0, T ] × [−r0, r0] and the uniform continuity of the function f = f(t, x) on
[t0, T ]× [−r0, r0], from the estimate above we obtain

ωT
0 (V x) ≤ kωT

0 (X).

Further, we obtain

(3.2) ω0(V x) ≤ kω0(X).

Combining (3.1) and (3.2) and noting the definition of the measure of noncom-
pactness µ given by the formula (2.1), we get

(3.3) µ(V x) ≤ kµ(X).

Now, put B1
r0

= ConvV (Br0), B2
r0

= ConvV (B1
r ) and so on. Clearly, from

Lemma 3.1 we have B1
r0
⊂ Br0 . Further, Bn+1

r0
⊂ Bn

r0
for n = 1, 2, . . . The sets

Bn
r0

are closed, convex and nonempty. Moreover, we get µ(Bn
r0

) ≤ knµ(Br0)
for any n = 1, 2, . . . due to (3.3). Combining the fact µ(Br0) = 4r0 with the
inequality µ(Bn

r0
) ≤ knµ(Br0), 0 < k < 1 we obtain lim

n→∞
µ(Bn

r0
) = 0. From

Definition 2.1 we can derive the set Y =
∞⋂

n=1
Bn

r0
is nonempty, bounded, closed

and convex. And, the set Y is a member of the kernel ker µ of the measure of
noncompactness µ. Particularly,

(3.4) lim
t→∞

sup diam Y (t) = lim
t→∞

diam Y (t) = 0.

Thus, the operator V :Y → Y .
Next, we prove that V is continuous on the set Y . To show this fact, fix

ε > 0 and take x, y ∈ Y such that ‖x − y‖ ≤ ε. Follows (3.4) and the fact that
V (Y ) ⊂ Y , there exists T > t0 such that for an arbitrary t ≥ T ,

(3.5) |(V x)(t)− (V y)(t)| ≤ ε.

For t ∈ [t0, T ]. Applying our assumptions, after some standard computation, we
obtain

|(V x)(t) − (V y)(t)| ≤ m(t)|x(t)− y(t)|
Γ(α)

∫ t

t0

n(t)Φ(|x(s)|) + u1(t)
(ln t− ln s)1−α

ds

s

+
[m(t)|y(t)|+ |f(t, 0)|]n(t)

Γ(α)

∫ t

t0

Φ(|x(s)− y(s)|)
(ln t− ln s)1−α

ds

s

≤ [m(t)n(t)Φ(r0) + m(t)u1(t)]ε
Γ(α)

∫ t

t0

1
(ln t− ln s)1−α

ds

s

+
[m(t)n(t)r0 + |f(t, 0)|n(t)]Φ(ε)

Γ(α)

∫ t

t0

1
(ln t− ln s)1−α

ds

s

=
a(t)Φ(r0) + b(t)

Γ(α + 1)
ε +

a(t)r0 + c(t)
Γ(α + 1)

Φ(ε) ≤ AΦ(r0) + B

Γ(α + 1)
ε +

Ar0 + C

Γ(α + 1)
Φ(ε).
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Then, it follows the above inequality, (3.5) and assumption [H4], we known that
the operator V is continuous on the set Y .

By means of Schauder fixed point theorem, the operator V has at least one
fixed point x ∈ Y . Using Lemma 3.1., this fixed point x must be a solution of
the equation (1.1).

(b) It follows the fact Y ∈ kerµ and the characterization of sets belonging to
kerµ, all solutions of the equation (1.1) must be uniformly locally attractive. �

4. Local stability of solutions

In this section, we will study the local stability of solutions for the equation
(1.1) with t0 = 1, i.e. the following quadratic Hadamard type fractional integral
equations

(4.1) x(t) = p(t) + f(t, x(t))(HD−α
1,t u(t, s, x(s))), t ∈ [1,+∞), α ∈ (0, 1),

where

HD−α
1,t u(t, s, x(t)) :=

1
Γ(α)

∫ t

1

(ln
t

s
)α−1u(t, s, x(s))

ds

s
.

We begin to introduce a stronger assumption:

(H6) There are two constants L, γ > 0 such that∣∣∣∣p(t) +
f(t, x(t))

Γ(α)

∫ t

1

u(t, s, x(s))
(ln t− ln s)1−α

ds

s

∣∣∣∣ ≤ L(ln t)−γ .

Theorem 4.1. Let the assumptions ((H1)–(H3) with t0 = 1 and (H6) be
satisfied. The equation (4.1) has at least one solution which tends to zero as
t → +∞. In other word, the equation (4.1) has a solution which is locally stable.

Proof. Define the set

XL,γ = {x : x ∈ BC([1,∞)) and |x(t)| ≤ L(ln t)−γ for L > 0, t > 1}.

It is easy to know that XL,γ is a closed, bounded and convex set.
We define a operator V as follows

(4.2) (V x)(t) = p(t) +
f(t, x(t))

Γ(α)

∫ t

1

u(t, s, x(s))
(ln t− ln s)1−α

ds

s
,

for t ∈ [1,+∞), α ∈ (0, 1).
We shall prove that the operator V has a fixed point in XL,γ .
We firstly show that V transforms the set XL,γ into itself. In fact, for t > 1,

applying assumption (H6) to the operator V , we have |(V x)(t)| ≤ L(ln t)−γ ,
then V (XL,γ) ⊂ XL,γ .

Next, we show that V is continuous. For any xn, x ∈ XL,γ , n = 1, 2, . . . , and
lim

n→∞
|xn − x| = 0, we will show V xn → V x in XL,γ . Let ε > 0 be given, there
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exists a T > 1 such that t ≥ T implies that L(ln t)−γ < ε/2. For 1 < t ≤ T , we
have

|(V xn)(t)− (V x)(t)|

≤ m(t)|xn(t)− x(t)|
Γ(α)

∫ t

1

n(t)Φ(|xn(s)|) + u1(t)
(ln t− ln s)1−α

ds

s

+
m(t)|x(t)|+ |f(t, 0)|

Γ(α)

∫ t

1

|u(t, s, xn(s))− u(t, s, x(s))|
(ln t− ln s)1−α

ds

s

≤ 1
Γ(α + 1)

sup
t∈[1,T ]

m(t)|xn(t)− x(t)|
(

sup
t∈[1,T ]

n(t)Φ(|xn(t)|) + u1(t)
)
(lnT )α

+
1

Γ(α + 1)
sup

t∈[1,T ]

(m(t)Ψ + |f(t, 0)|)(ln T )αn(t)Φ(|xn(t)− x(t)|),

where Ψ = max{|x(t)| : 1 < t ≤ T}. Therefore |(V xn)(t) − (V x)(t)| → 0 as
n →∞.

For t ≥ T , we have |(V xn)(t) − (V x)(t)| ≤ 2L(ln t)−γ ≤ ε. Then, for t > 1,
it is clear that |(V xn)(t)− (V x)(t)| → 0 as n →∞. Therefore, V is continuous.

Lastly, we prove that V (XL,γ) is equicontinuous. Let ε > 0 be given, there
is a T > 1 such that L(ln t)−γ < ε/2 for t > T .

Let t1, t2 > 1 and t2 > t1. For t1, t2 ∈ [1, T ], then we have

|(V x)(t2)− (V x)(t1)| ≤ |p(t2)− p(t1)|

+
∣∣∣∣f(t2, x(t2))

Γ(α)

∫ t2

1

u(t2, s, x(s))
(ln t2 − ln s)1−α

ds

s
− f(t1, x(t1))

Γ(α)

∫ t1

1

u(t1, s, x(s))
(ln t1 − ln s)1−α

ds

s

∣∣∣∣
≤ωT (p, ε) +

|f(t2, x(t2))− f(t1, x(t1)|
Γ(α)

∣∣∣∣ ∫ t2

1

u(t2, s, x(s))
(ln t2 − ln s)1−α

ds

s

∣∣∣∣
+
|f(t1, x(t1))|

Γ(α)

∣∣∣∣ ∫ t2

1

u(t2, s, x(s))
(ln t2 − ln s)1−α

ds

s
−

∫ t1

1

u(t1, s, x(s))
(ln t1 − ln s)1−α

ds

s

∣∣∣∣
≤ωT (p, ε) +

|f(t2, x(t2))− f(t2, x(t1)|+ |f(t2, x(t1))− f(t1, x(t1)|
Γ(α)

×
∣∣∣∣ ∫ t2

1

u(t2, s, x(s))
(ln t2 − ln s)1−α

ds

s

∣∣∣∣
+
|f(t1, x(t1))− f(t1, 0)|+ |f(t1, 0)|

Γ(α)

∫ t2

1

|u(t2, s, x(s))− u(t1, s, x(s))|
(ln t2 − ln s)1−α

ds

s

+
|f(t1, x(t1))− f(t1, 0)|+ |f(t1, 0)|

Γ(α)

×
∣∣∣∣ ∫ t1

1

u(t1, s, x(s))
[

1
(ln t2 − ln s)1−α

− 1
(ln t1 − ln s)1−α

]
ds

s

∣∣∣∣
+
|f(t1, x(t1))− f(t1, 0)|+ |f(t1, 0)|

Γ(α)

∣∣∣∣ ∫ t2

t1

u(t1, s, x(s))
(ln t2 − ln s)1−α

ds

s

∣∣∣∣
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≤ωT (p, ε) +
m(t2)|x(t2)− x(t1)|+ ωT (f, ε)

Γ(α)

×
∫ t2

1

|u(t2, s, x(s))− u(t2, s, 0)|+ |u(t2, s, 0)|
(ln t2 − ln s)1−α

ds

s

+
m(t1)|x(t1)|+ |f(t1, 0)|

Γ(α)

∫ t2

1

|u(t2, s, x(s))− u(t1, s, x(s))|
(ln t2 − ln s)1−α

ds

s

+
m(t1)|x(t1)|+ |f(t1, 0)|

Γ(α)

∫ t1

1

(|u(t1, s, x(s))− u(t1, s, 0)|+ |u(t1, s, 0)|)

×
[

1
(ln t1 − ln s)1−α

− 1
(ln t2 − ln s)1−α

]
ds

s

+
m(t1)|x(t1)|+ |f(t1, 0)|

Γ(α)

∫ t2

t1

|u(t1, s, x(s))− u(t1, s, 0)|+ |u(t1, s, 0)|
(ln t2 − ln s)1−α

ds

s

≤ωT (p, ε) +
sup
t2≤T

m(t2)ωT (x, ε) + ωT (f, ε)

Γ(α)

∫ t2

1

n(t2)Φ(|x(s)|) + u1(t2)
(ln t2 − ln s)1−α

ds

s

+
supt1≤T (m(t1)Ψ + |f(t1, 0)|)

Γ(α)

∫ t2

1

|u(t2, s, x(s))− u(t1, s, x(s))|
(ln t2 − ln s)1−α

ds

s

+
sup
t1≤T

(m(t1)Ψ + |f(t1, 0)|)

Γ(α)

×
∫ t2

1

(n(t1)Φ(|x(s)|) + u1(t1))
[

1
(ln t1 − ln s)1−α

− 1
(ln t2 − ln s)1−α

]
ds

s

+
sup
t1≤T

(m(t1)Ψ + |f(t1, 0)|)

Γ(α)

∫ t2

t1

n(t1)Φ(|x(s)|) + u1(t1)
(ln t2 − ln s)1−α

ds

s

≤ωT (p, ε) +

(
sup
t2≤T

m(t2)ωT (x, ε) + ωT (f, ε))(n(t2)Φ(Ψ) + u1(t2)
)
(lnT )α

Γ(α + 1)

+
sup
t1≤T

(m(t1)Ψ + |f(t1, 0)|)

Γ(α)

∫ t2

1

|u(t2, s, x(s))− u(t1, s, x(s))|
(ln t2 − ln s)1−α

ds

s

+
sup
t1≤T

(m(t1)Ψ + |f(t1, 0)|)(n(t1)Φ(Ψ) + u1(t1))

Γ(α + 1)
× [(ln t1)α − (ln t2)α + (ln t2 − ln t1)α]

+
sup
t1≤T

(m(t1)Ψ + |f(t1, 0)|)(n(t1)Φ(Ψ) + u1(t1))

Γ(α + 1)
(ln t2 − ln t1)α.

Therefore,
|(V x)(t2)− (V x)(t1)| → 0 as t1 → t2.

If t1, t2 > T , then we have

|(V x)(t2)− (V x)(t1)| ≤ 2L(ln t2)−γ ≤ ε.



Quadratic Hadamard Type Fractional Integral Equation 271

If 1 < t1 < T < t2, note that t2 → t1 implies that t2 → T and T → t1,
according to the above discussion we have

|(V x)(t2)− (V x)(t1)| ≤ |(V x)(t2)− (V x)(T )|+ |(V x)(T )− (V x)(t1)| → 0

as t2 → t1. From the above we have |(V x)(t2) − (V x)(t1)| → 0 as t1 → t2 for
t1, t2 > 1. Then V (XL,γ) is equicontinuous. Meanwhile, V (XL,γ) is relatively
compact because that V (XL,γ) ⊂ XL,γ is uniformly bounded. Thus V is com-
pletely continuous on XL,γ . By Schauder fixed point theorem, we deduce that
V has a fixed point x in XL,γ .

It is easy to see that the fixed point x is just the solution of the equation
(4.1) which tends to zero as t → ∞. Thus, the solution of the equation (4.1) is
locally stable. �

Next, we give another sufficient conditions to guarantee the local stability of
solutions of the equation (4.1).

We replace the assumptions (H6) by the following easy checked condition:

(H6′) Suppose that |p(t)| ≤ (ln t)−α/2 and there are two constants Lf , Lu > 0
such that

|f(t, x)| ≤ Lf |x| and |u(t, s, x)| ≤ Lu|x|,

where LfLu = 1/2Γ(1− α).

Theorem 4.2. Suppose that assumptions (H1)–(H3) and (H6′) hold. Then
the equation (4.1) has at least one solution which is locally stable.

Proof. Define the set

X1,α = {x : x ∈ BC([1,∞)) and |x(t)| ≤ (ln t)−α for t > 1}.

It is easy to know that X1,α is a closed, bounded and convex set.
We also introduce a operator V defined by (4.2) in Theorem 4.1. We only

need to show that V transforms the set X1,α into itself. In fact, for t > 1,
applying assumption (H6′) and Lemma 2.1 to the operator V , we have

|(V x)(t)| ≤ |p(t)|+ |f(t, x(t))|
Γ(α)

∫ t

1

|u(t, s, x(s))|
(ln t− ln s)1−α

ds

s

≤ 1
2
(ln t)−α +

LfLu(ln t)−α

Γ(α)

∫ t

1

(ln t− ln s)α−1(ln s)−α ds

s

≤ 1
2
(ln t)−α +

LfLu(ln t)−α

Γ(α)
(Γ(α)Γ(1− α))

≤ 1
2
(ln t)−α +

1
2
(ln t)−α = (ln t)−α.

Then V (X1,α) ⊂ X1,α. The next process is similar to the proof of Theorem 4.1,
one can complete it easily. �



272 J.-R. Wang — Ch. Zhu — Y. Zhou

Further, we replace the assumption (H6′) by the following condition:

(H6′′) Suppose that |p(t)| ≤ (ln t)−(1−(α+ν))/2 and there exist Mf , ν > 0 such
that

|f(t, x)| ≤ Mf and |u(t, s, x)| ≤ (ln t− ln s)νe−αs|x|

where Mf ≤ Γ(α)/(4 max{1, 21−α−ν}Γ(α + ν)α−α−ν) and 0<α+ν <1.

Theorem 4.3. Assume that conditions (H1)–(H3) and (H6′′) hold, then the
equation (4.1) has at least one solution which is locally stable.

Proof. Define the set

X1,(1−(α+ν)) = {x : x ∈ BC([1,∞)) and |x(t)| ≤ (ln t)−(1−(α+ν)) for t > 1}.

It is easy to know that X1,(1−(α+ν)) is a closed, bounded and convex set. We also
introduce a operator V defined by (4.2) in Theorem 4.1. We only need to show
that V transforms the set X1,(1−(α+ν)) into itself. In fact, for t > 1, applying
assumption (H6′′) and Lemma 2.6 to the operator V , we have

|(V x)(t)| ≤ 1
2
(ln t)−(1−(α+ν)) +

Mf

Γ(α)

∫ t

1

(ln t− ln s)α+ν−1(ln s)α+ν−1e−αs ds

s

≤ 1
2
(ln t)−(1−(α+ν))

+
Mf

Γ(α)
max{1, 21−α−ν}Γ(α + ν)(1 + 1)α−α−ν(ln t)−(1−α−ν)

≤ 1
2
(ln t)−(1−(α+ν)) +

1
2
(ln t)−(1−(α+ν)) = (ln t)−(1−(α+ν)).

Then V (X1,(1−(α+ν))) ⊂ X1,(1−(α+ν)). The next process is similar to the proof
of Theorem 4.1, one can complete it easily. �

5. Examples

In this section we make two examples illustrating the main results contained
in Theorem 3.2 and Theorem 4.1.

Example 5.1. Consider a quadratic Hadamard fractional integral equation

(5.1) x(t) = te−3t2

+
(ln t)−1/2 + (ln t)−1/2x(t)

Γ(1/2)

∫ t

1

e−3t−s 3
√

x2(t) + 1/(10t8/3 + 1)
(ln t− ln s)1/2

ds

s
,

for t ∈ [1,∞). Observe that the above equation is a special case of the equation
(1.1). Put α = 1/2, p(t) = te−3t2 , f(t, x) = (ln t)−1/2 + (ln t)−1/2x(t), |f(t, 0)| =
(ln t)−1/2, u(t, s, x) = e−3t−s 3

√
x2(t) + 1/(10t8/3 + 1), m(t) = (ln t)−1/2, n(t) =
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e−3t, Φ(r) = r2/3 and u(t, s, 0) = u1(t) = 1/(10t8/3 + 1). The functions a, b, c,
d take the form

a(t) = c(t) = e−3t, b(t) = d(t) =
1

10t8/3 + 1
.

It is easily seen that a(t) → 0 as t →∞ and A = e−3. Further we have that the
function b(t) is bounded on [1,∞) and B = 1/11. It is also easy to check that
c(t) → 0 as t →∞. Moreover, we have that C = e−3. Also we see that d(t) → 0
as t →∞ and D = 1/11. Further,

L(r) =
√

π

2
e−3 + e−3r5/3 +

1
11

r + e−3r2/3 +
1
11

has a solution r0 = 1 and e−3 + 1/11 <
√

π/2. Then all assumptions given in
Theorem 3.2 are satisfied, our results can be applied to the equation (5.1).

Example 5.2. Consider another quadratic Hadamard type fractional inte-
gral equations

(5.2) x(t) =
2 cos(x(t))

5Γ( 1
2 )

∫ t

1

(ln t)−3/4 sin(x(s)− s)
(ln t− ln s)1/2

ds

s
, t ∈ [1,∞).

Observe that the above equation is a special case of the equation (4.1). In-
deed, if we put α = 1/2 and p(t) = 0, f(t, x) = (2/5) cos(x(t)), u(t, s, x) =
(ln t)−3/4 sin(x(s)− s). Moreover,∣∣∣∣p(t) +

f(t, x(t))
Γ(α)

∫ t

1

u(t, s, x(s))
(ln t− ln s)1−α

ds

s

∣∣∣∣
≤ 2

5Γ(1/2)

∫ t

1

(ln t− ln s)−1/2(ln s)−3/4 ds

s

≤ 2Γ(1/4)
5Γ(3/4)

(ln t)−3/4 ≤ 2(ln t)−3/4.

Then all assumptions given in Theorem 4.1 are satisfied, our results can be
applied to the equation (5.2).
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Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 3129–3139.

[26] J. Wang, M. Fec̆kan and Y. Zhou, On the new concept of solutions and existence

results for impulsive fractional evolution equations, Dynam. Partial Differ. Equ. 8 (2011),

345–361.

[27] J. Wang, L. Lv and Y. Zhou, New concepts and results in stability of fractional

differential equations, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 2530–2538.

[28] J. Wang and Y. Zhou, Mittag–Leffler–Ulam stabilities of fractional evolution equa-

tions, Appl. Math. Lett. 25 (2012), 723–728.

[29] Y. Zhou and F. Jiao, Nonlocal Cauchy problem for fractional evolution equations,

Nonlinear Anal. 11 (2010), 4465–4475.

Manuscript received April 16, 2012

JinRong Wang
School of Mathematics and Computer Science

Guizhou Normal College

Guiyang
Guizhou 550018, P.R. CHINA

and

Department of Mathematics
Guizhou University

Guiyang, Guizhou 550025, P.R. CHINA

E-mail address: wangjinrong@gznc.edu.cn, wjr9668@126.com

Chun Zhu

Department of Mathematics
Guizhou University

Guiyang, Guizhou 550025, P.R. CHINA

E-mail address: czhumath@126.com

Yong Zhou

Department of Mathematics

Xiangtan University
Xiangtan, Hunan 411105, P.R. CHINA

E-mail address: yzhou@xtu.edu.cn

TMNA : Volume 42 – 2013 – No 2


