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ON CONVERGENCE AND COMPACTNESS
IN PARABOLIC PROBLEMS
WITH GLOBALLY LARGE DIFFUSION
AND NONLINEAR BOUNDARY CONDITIONS

MARIA C. CARBINATTO — KRZYSZTOF P. RYBAKOWSKI

ABSTRACT. We establish some abstract convergence and compactness re-
sults for families of singularly perturbed semilinear parabolic equations and
apply them to reaction-diffusion equations with nonlinear boundary condi-
tions and large diffusion. This refines some previous results of [17].

1. Introduction

Evolution equations with large diffusion were studied in numerous papers,
starting with the work [8] by Hale, cf. also [6], [9] and the references contained
in [18]. In those papers results like global bounds of solutions, asymptotic spatial
homogenization, and existence of attractors and their upper or lower semiconti-
nuity, as the diffusion goes to infinity, are obtained.

In the present paper we study some systems of parabolic equations with
(globally) large diffusion from the point of view of Conley index theory.

More specifically, let » and N € N, N > 2, Q be a bounded smooth domain
in RNV and I' = 99Q. For each ¢ > 0, consider the following system of parabolic
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equations

i — Div(di e (2)Vu;) + A+ Vie(2))u; = @i e(z,u), t>0,z€Q,
(Ee) di (2)0u; + bic(x)u =Y (x,u), t>0,z€l,

iel..r).
Here, A € R and v is the exterior normal vector field on 0€2. Moreover, for each
iel..r],d;c >m >0, V. and b; ¢, resp. p; and ; ¢, are given functions on
Qand I, resp. 2 x R and I' x R” satisfying some regularity assumptions. We
assume that, for e — 0, ©; c — @i0, Vi — Pio (In some sense), ‘%' fQ Viedr —
Vio € R, ﬁ Jpbie = bio € R, while d; . — oo, uniformly on €.
Equation (E.) can be written abstractly as a semilinear problem

(1.1) uz - _Avi,su + fi,e(u)’ (XS [1"T]

generating a local semiflow 7. on H'(£2,R"). Define

r
Wi = i70+||Q||bi,0+>\7 ZE[].’I"]

Consider the system

(Eo) Uip = —[hili + |%| </Q @i o(r, u)dr +/F¢i,0($»7(u))d0> )

i € [1..7], of ordinary differential equations on the r-dimensional linear subspace
HY(Q,R") of H'(Q,R") consisting of (equivalence classes) of constant functions.
This system generates a (forward time) local semiflow 7o on H}(Q,R").

In the paper [13] the case 7 = 1 in (E.) is considered. The authors prove
a spectral convergence of the family (A;c)eso for ¢ — 0. In the paper [17]
the author establishes a upper semicontinuity result for global attractors of m.,
€ > 0, under additional dissipativity conditions on the nonlinearities.

In this paper we refine some of the results from [17]. In particular, we prove
that, as € — 0, the semiflows 7. converge in a singular sense to the semiflow 7
and we establish a singular compactness result for the family 7., € > 0. As in [5]
we then obtain singular Conley index and homology index braid continuation
principles for this family of semiflows. In particular, invariant sets of the ODE
system (Eg) continue to invariant sets of the PDE system (E.) with the same
Conley index. This provides useful information about the dynamics of (E.) for
small € > 0.

We proceed as in [1] and [5] and keep the presentation of our results at an
abstract level. In fact we only assume certain spectral convergence properties
on a family of linear operators (A4; .)e>0, ¢ € [1..7] (see condition (FSpec)) in
Section 3). We also make an abstract convergence hypothesis (condition (Conv)
in section 4) on a family of nonlinear operators (fe)->0-

The paper is organized as follows.
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In Section 2 we introduce some notation and collect a few preliminary results.

In Section 3 we introduce condition (FSpec) and obtain linear singular con-
vergence results (c¢f. Theorems 3.6 and 3.7). We also prove that our abstract
condition implies a first singular compactness result (cf. Proposition 3.4).

In Section 4 we introduce an abstract condition (Conv). As in [5] we ob-
tain a singular convergence result (Theorem 4.5), a singular compactness result
(Theorem 4.7) a Conley index continuation result (Theorem 4.8) and an index
braid continuation result (Theorem 4.10).

In Section 5 we show that, under appropriate hypotheses on the coefficient
functions and the nonlinearities involved, the system of parabolic equations (E.)
gives rise to a family of linear operators (A; c)e>0, ¢ € [1..7] satisfying condition
(FSpec) and a family (f.).>0 of nonlinear operators for which condition (Conv)
holds. (cf. Hypothesis 5.5).

2. Preliminaries

Assume H is (a finite or infinite dimensional) real linear space which is com-
plete with respect to the scalar product (-, )y and let A:D(A) C H — H
be a (densely defined) positive self-adjoint linear operator on (H, (-, - )y ) with
A=Y H — H compact. Let S = N if H is infinite dimensional and S = [1../] if
dim H = ¢ < co. Let (v;)jes be an H-orthonormal and H-complete sequence of
eigenvectors of A and (u;);jes the corresponding sequence of eigenvalues. Then
there is a bijection v: S — S such that (\;),es, where A\, = pyy, 7 € S, is
nondecreasing. The sequence (\;);es, called the repeated sequence of eigenval-
ues of A, is uniquely determined by the properties that it is nondecreasing and
contains exactly the eigenvalues of A such that the number of occurrences of
each eigenvalue p of A in this sequence is equal to the multiplicity of pu.

The ordering of (A\.),cs plays no role in this section and can even be slightly
confusing when we discuss product operators. Therefore for the moment we will
work with the original unordered sequence (p;)ies-

For o € [0,00[, let H, = H,(A) = D(A*/?). In particular,

Hy=H.
Note that H, is a Hilbert space under the scalar product
(u, )i, = (A%?u, A0V g, w, v € Hy,.

For every j € S, v; € H, and the sequence (,uj_a/2/l/j)jes is H,-orthonormal and
H,-complete. If H is infinite dimensional and u € H, we have

k
u—Y (u,v;) v,

j=1

—0 ask— o
H,

(2.1)
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and so
(2.2) uld, = udl(u,v;)al*.
j=1

If dim H = ¢, then H,, and H are identical as sets and the corresponding norms
are equivalent. Moreover, if u € H, = H then

¢
(2:3) Julfr, =D w5, v)m .
j=1

If € ]0,00[, let H_, = H_,(A) = H/ be the dual of H,. (Thus in the
finite-dimensional case the set H_,, is identical to the dual H’' of H.)

H_, is a Hilbert space under the dual norm
(u, ). = (F o, F7 M)y, u,ve H g,

where F,: H, — H_,, u (-, u) g, is the Fréchet—Riesz isomorphism.

Define the map ¢ = Y o: H = Hy — H_, by ¥(u) =y, where y: H, — K
is defined by

y(v) = (v,u)g, v € H,.

The map v is injective (and bijective if H is finite-dimensional) so that we can
(and will) identify elements u € H with ¢(u) € H_,.

With this identification, the sequence (y?/ 2vj) jes is H_,-orthonormal and
H_-complete. If H is infinite dimensional and v € H_, then

2.4 u— u(v;)v; —0 ask— o0
( A
j=1 H_q
and so
(2.5) uld = nyfulv)).
j=1

IfdimH =¢and u € H_, = H' then

¢
(2.6) Julfr_, =D ny lulo)*.
j=1
For o € ]0,00[ there is a unique continuous extension Al = /T;le,a —

Hy_o of A~Y:H — H,. The map A1 is a bijective linear isometry. Let A =
Za: Hs_ ., — H_, be the inverse of A=l Then A is a positive densely defined
self-adjoint operator on H_,. Moreover, for 5 € [0,00] the S-fractional power
space Hg(A) of A is isometric (as a Hilbert space) to Hg_o = Hg_o(A). If H is
finite-dimensional then, due to our identifications, A7* = A~! and A, = A.
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The linear semigroup et H_, — H_,,t €]0,00[, is an extension of the
semigroup e~ 4 H — H, t € [0, 00], i.e.

(2.7) e_tgw(u) = (e M), te[0,00[, uc H.

Using this it is easily proved that

(2.8) (e_t’zu)(h) =u(e™™h), te[0,00[, u€ H_ o, h € H,.
In fact, if u = ¢ (v) for some v € H, then

(e Au) (k) = (e H(0))(h) = (e 4v) (h)
= (b M) = (e Ahv) i = Y(o) (e Mh) = u(e ).

Now the general case follows by a density argument. For every j € S and
t €0, 00,

e_tAvj = e_t‘zvj = e Miv;.
Therefore, if H is infinite dimensional, then for every u € H, every 8 € [0, 00]
and every t € ]0, 00|

k
ety — Z e (u, ;) v,

Jj=1

(2.9)

—0 ask — oo.
Hg

Moreover, for every u € H_, every 8 € [0,00[ and every ¢ € ]0, 0]

(2.10)

—0 ask — oo.
Hg

k
ety — Z e "Miu(v;)v;
j=1

Now assume that r € N and for each i € [1..7] let (H(;), (-, -)u,,) be a Hilbert
space and let A;: D(A;) C H;y — H(;) be a (densely defined) positive self-adjoint
linear operator on (H, (-, -)m,,) with A;lz Hy — H(;y compact. Then the
product operator A = Xi_; A;: D(A) = Xi_y D(A;) = H = Xi_1 Hyy, u =
(u1,...,ur) — (Ajuq,..., Aru,) is a (densely defined) positive self-adjoint linear
operator on the product Hilbert space (H, (-, -)g) with A=': H — H compact.
Here,

T

(u,u'yg = Z(ui,u;)H(i>, w=(u1,...,u), v = (uy,...,u.) € H.
i=1
For each a € R let Hy, = Hu(A) and for i € [1..7] let Hyy o = Ha(As).
Then, for a € [0,00][, H, is identical (as a set and as a Hilbert space) to the
product Xi_; H(;) . In particular,

(2.11) ulfr, =Y lwliy, . w=(u1,...,u,) € Ha.
i=1
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For each i € [1..7] let e;: H;y — H be the imbedding u; — (0,...,0,u;,0,...,0).
————

Then, for a € ]0,00[ and k € [1..7], the map Ay = Ao Hoo — Hp),—a;
u — uy, is defined by

up: Higy,o = R, by = uler (b)), hi € Hig)a-

Themap A = Ap: H o — Xi_y H(i),—a, u— (Aqy(u), ..., Apy(u)), is a bijective
linear isometry, i.e,

(2.12) wlf =D lwilh, . w€ Hoa, us=Agy(u), i€ [L.r].
=1

Using this map, we identify H_, with the product space Xji_; H(;),—q-
Now let ¢ = ¢ o and for each i € [1..7] let ¥; = ¢¥p ;) o. Then

(2.13) Aoy (u)) = Pi(wi), iell..r], u=(u,...,u,) € H.

Now let A: Hy_n — H_, be the extension of A and for ¢ € [I..7] let
gi:H(i)VQ,a — H;),— be the extension of A;. Then, for t € [0,00[, i € [1..7]
and u € H_,

(2.14) Ay (e ) = e M Ay (u).

We prove (2.14) first for u of the form uw = t(h), where h = (hy,...,h,) € H.
Since e~y (h) = (e~ Ah), e ipi(h;) = (e ihy) and e b = (e hy,
., e7trh) we have by (2.13),

Aoy (e p(h)) =Ag ~w(e—“‘h)) = @(e—mi hi)
= y(hy) = e A (D).

Now a simple density argument completes the proof for general u.

For t € |0,00[, 8 € [0,00[ and u € H_,, we have that e~y lies in Hg.
This follows from (2.10) and means precisely that there is a w = (wy,...,w,) €
Hg C H such that ety = ¥(w). Analogously, for every i € [1..r] there is
an h; € H g with e_tgiAi(u) = 1;(h;). Now (2.13) and (2.14) imply that
Yi(w;) = ¥;(hy;), so w; = h; for all ¢ € [1..7]. In particular, by (2.11),

@15) leFufly, = 3 e Rufsy
=1
t€]0,00[, u€ H o, (u,...,u;) =A(u), 8 €0,00[.

Now suppose « and 7 € ]0, 00| are such that v+« < 2 and let f: H, — H_, be

a locally Lipschitzian map. Thus f: Hvﬂl(g) — Hy(A) is locally Lipschitzian so
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for every a € H., there is a w, € ]0, 00| and a unique, maximally defined solution
u = U(q): [0,wq[ — H,, of the equation

(2.16) i =—Au+ f(u)

with ©(0) = a. By definition, this means that u is continuous into H., and

(2.17) b(u(t)) = e y(a) + / e A f(u(s))ds, € [0,wal.

0

Let D(7) be the set of all (t,a) € [0, 00[ x Hy with t € [0,w,[ and 7: D(7) — H,
be the map (¢, a) — u(q)(t). 7 is the local semiflow generated by equation (2.16).
We write art instead of 7(¢,a). By (2.13) and (2.14), u = u(,) if and only if for

each i € [1..7] u; is continuous into H;) ., and

(2.18) bi(ui(t)) = e~ Aegp(a;) + /0 e~ (=4 £ (u(s)) ds, te€[0,wal.

Here, u; is the ith component function of u, a; is the ith component of a and
fi = A; o f is the ith component of f. Thus we regard the following system

(2.19) w; = —Ziui + fi(u), xS [1. . T]

as an alternative form of equation (2.16). By (2.8), formula (2.18) is equivalent
to the validity of the statement

(2.20) <Ui(t)7hi>H(z‘> = <ai7e_tAihi>H<7:) +/0 fi(“(s))(e_(t_s)Aihi)dsv

t € [0,w,], for every h; € H o

Now assume that, for each i € [1..7] H;) has finite dimension ¢; and S; =
[1..4;]. Let (vij)jes, be an H;-orthonormal and H;-complete sequence of
eigenvectors of A; and (u; ;);ecs, the corresponding sequence of eigenvalues. By
linearity it is enough to have (2.20) for each basis vector v; ;. Thus we obtain

that formula (2.18) is equivalent to formula
(221)  (wi(t), vij)m,, = e (ai, v ) m,
t
+/ e_(t_S)lumfi(u(s))<vi,j) d57 j € Sia te [07‘*}@['
0

Now it follows from (2.18) and (2.21) that system (2.19) is just the following
system

44
(222) U; = Z(—pm<ui,vi7j>H(i) + fi(u)(vm))vi,j, xS []. .T]

Jj=1

of ordinary differential equations.
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3. Singular convergence of linear semiflows

We will now introduce a basic abstract spectral convergence condition.

DEFINITION 3.1. Given g9 > 0 we say that the family

(Hev < RN >H57As)ae[0,eo]

satisfies condition (FSpec) if the following properties are satisfied:

(1)

for every € € [0,e0], (H®, (-, -)m<) is a Hilbert space and A.: D(A.) C
H® — HF¢ is a densely defined positive self-adjoint linear operator on
(H®, (-, -)ge) with A.=1: H® — H€® compact. For a € R write HS :=
H,(A.). In particular, H5 = H¢,;

HO is (-dimensional with ¢ € N while H¢ is infinite dimensional for
e €10, &g

for each ¢ € ]0,&¢], H? is a linear subspace of H¢ and HY is a linear
subspace of Hf;

there exists a constant C' € |1, oo[ such that

julr; < Cluly and [uly < Clul;

for all u € HY and all € € ]0, &¢];

for every ¢ € ]0,e0] let (A ;); be the repeated sequence of eigenval-
ues of A, and (we ;); be a corresponding H¢-orthonormal sequence of
eigenfunctions. Furthermore, let (Ao ;);ef1..¢ be the repeated sequence
of eigenvalues of Ayp.

Whenever (g,), is a sequence in ]0, o] with &, — 0 then

(a) Ae,j — Ao,; as n— oo, for all j € [1..4].

(b) Ae,j — 00 asn— oo, for all j > ¢.

Moreover, there is a sequence (ng)r in N with ng, — 0o as k — oo
and there is an H-orthonormal sequence of eigenfunctions (wyg ;) JElL.f]
of Ay corresponding to (Ao ;);e[1..q such that

(¢) |we,, j— wOJ|Hf"k' —0as k— oo, forall j € [l..4];

(d) (u,we,, j)uene — (U, wo,5)go as k — oo, for all u € H° and all

je..z.

Such a sequence (wo ;);e[1..¢ is called adapted to the sequence (ny)g.

REMARK 3.2. Condition (FSpec) differs from condition (Spec) introduced

in [5] in that here Hj is finite dimensional, the convergence statements involving

the eigenvalues ., ; (and eigenfunctions we,, ;) hold only for j € [1../] and the

other eigenvalues diverge off to infinity.

REMARK 3.3. Note that, for a, t € ]0,00[ and A € [0, o0]

A M < Cla)t™™  with Oa) = (a/e).
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Let (H®, (-, - )<, Ac)cclo,e,] Satisfy condition (FSpec). Let o € [0, 00], € € ]0, 0]
and r € )0, 00[. Using the above estimate, we obtain for every u € HE |

oo

e Al = DO AT (e AT u(w ) 2

Jj=1
00
=D () V2N M u(we )

Jj=1

< (C((a+1)/2)*r~ D) uffe
Consequently, we obtain for every u € HZ |
(3.1) |67A~ETU|H15 < Corf(a+1)/2|U|Hiuv

where Cy = C((a + 1)/2). Moreover, we obtain for every u € HY

e o = ZAS‘J{l (e7204) 2 X0 3 (s wo 3) o

fz ((Moy) @D/ 220572000 (4 2w ) o 2
j=1

< (C((a+1)/2)*r~ D) ulF0
Consequently, we obtain for every u € H°
(3.2) |e_goru|H? < Cor— (et /2|u|

We shall need these estimates in the results to follow.

It turns out that Condition (FSpec) implies an abstract asymptotic compact-
ness property:

PROPOSITION 3.4. Suppose the family (H, (-, -)fe, Ac)zc[o,z,] Satisfies con-
dition (FSpec). Then the following statement holds:

Whenever (e,)n is a sequence in |0,eq] with €, — 0 and (&,)n 1
(3.3) a sequence with &, € Hi" for every n € N and sup,,cy [§n]gen < 00,

then there exist a v € HY and a sequence (ng)g in N with ny — oo
as k — oo such that |&,, — v|gen, — 0 as k — oo.

PROOF. Let (g,), be a sequence in ]0,&0] with &, — 0 and (&), be a se-
quence with &, € Hi" for every n € N and

sup [n|en < C,
neN

for some C € )0, 00[. For each n € N, we have

o0
|€’ﬂ|§—[15" = Z >\En7j|<§n’ w5n7j>‘2'

j=1
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In particular, there exist a sequence (ng)x in N with ny, — 0o as k — oo and
a sequence ({j); such that for each j € N

<£nk7w5nk7j> — ¢ ask— oo

Taking a further subsequence, if necessary, and using condition (FSpec) we
may also assume that there exists an H°-orthonormal sequence of eigenfunc-
tions (wo,;j);ef1..¢ corresponding to (Ao,;)jepi..¢q and adapted to (ng). For each
k € N define

Vi
Vi = ZCwa"k’j'
j=1
We claim that

(3.4) ‘gnk — 'Uk-|H5nk —0 ask — oo.

Indeed for each k£ € N we have

oo
€ny, — vkﬁﬁ"k = Z [(€ny, — Vi w57tka.j>‘2
j=1

~

00
= Z [(&ni — Uk,wenk,jHQ + Z [(€ni — Ukvwenk7j>|2'
=1

j=t+1
For each j € [1..4] we have
(Enp = Vi Wep, j) = (Enps Wep, 5) — (Vks We, ) = (Gngs We,, 5) — GG — 0

as k — oo. Therefore

(3.5) Z [{&n, — vk,wenk’jﬂz —0 ask — oc.
j=1
Moreover,
[ee] (oo}
Z [(€ni — Uk’wfnk7j>|2 = Z ‘<€nk7w5nk:j>|2
j=t+1 j=t+1
1 (oo}
= Z /\en ,€+1|<£7Lk7w6n 7j>|2
>\ a1 k k
R XS]
1 - C?
< N Z Aen,k7j|<§"k’w5nk7j>|2 < X
Eny L+l j=t+1 Eny L1

Condition (FSpec) now implies

oo

(3.6) Z [(€ni — Ukvw&nk,j”z —0 ask— oo
Jj=0+1
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Now (3.5) and (3.6) imply (3.4). Define

L
V= Z ijo’j.
Jj=1

Then
¢
(3.7) ok = vlgene < D> 1G1 - we,, 5 = wo sl e — 0,k — o0
j=1
3.4) and (3.7) imply the assertion of the proposition. O
( ply prop

REMARK 3.5. Assertion (3.3) is called condition (Comp) in [5]. Thus condi-
tion (FSpec), unlike condition (Spec), automatically implies condition (Comp).

We now prove our first linear convergence result.

THEOREM 3.6. Let (H®, (-, ) ue=, Ac)ecjo,eo) Satisfy condition (FSpec). Sup-
pose (en)n is a sequence in ]0,e0] with e, — 0. Let ug € HY and (uy), be
a sequence such that, for every n € N, u, € H;" and

[un — uolgen — 0 asn — oo.

Then

sup et

oy, — e_tA°u0|Hlsn —0 asn — oo.
te[0,00(

PROOF. Since A ; > 0 for all € € ]0,¢¢] and for all j € N, we have

oo o

e 0l = 30w )P < 37 Al we ) = ol
Jj=1 j=1
for all v € Hf, e € ]0,0] and ¢ € [0,00[. Thus we obtain, for all n € N and all
t € [0,00],

A tA

le”tAenay,, — eftA°u0|H§n < [e~ten (uy, — uo)|pren + e mug — eftAO“0|Hf"
< g — U0|an + |€_tAE" up — e~ oy Him -
Therefore we only have to prove that
(3.8) sup e enuy — e oug|yen — 0 as n— oo.
te[0,00[ !

Suppose (3.8) is not true. Then there are a g > 0 and a sequence (ng)x in N
with nj, — 0o as kK — oo such that
(3.9) sup e e uy — e_tA07u60|H€mc >9¢ forall keN.

te[0,00] 1
Taking a further subsequence, if necessary, and using condition (FSpec) we may
also assume that there exists an H%-orthonormal sequence of eigenfunctions
(wo,j)jen..qq corresponding to (Ao ;) eq..q and adapted to (ng)x-
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For each k € N, let Py: H*»x — H®"+ be the H®"x-orthogonal projection of
He" onto the span of {we, 1,...,w., ¢}
Let ¢ € [0, 00| be arbitrary. Then for each k € N we have

|e—tA5nk Uy — e_tAOUJO|H1€"k
< |PeeMeniug — e*tA°u0|Hsn,€ + (I = Py)e Hemnnyg o
1 1
Notice that
(3.10) | Prug — ol yeni — 0 as k — oo.
1
Indeed, for each £ € N we have
¢ ¢
| Prug — U0|Hlfnk = Z<U07 We,, i) gk We,, i — Z(Um Wo,i) HOWO,;
i=1 i=1 Hf"’“
¢
<D Nuoywe,, i) oo | we,, i = wol o
i=1
¢
+ D [uo, we,,, i) grens — (0, wo i) ol |wo,i e
i=1

Condition (FSpec) now imply (3.10). Since
—tA. —tA.
(I = Poe emwug] yemie = e e (I = Pl yemie < (I = Pe)uol o,
it follows from (3.10) that

(3.11) sup |(I — Py)e “ernng

en, — 0 as k — oo.
te[0,00] L

H

We further have

—tA —
|Pk6 Uy — € t"L‘O’LL()|an,c

¢
< Z e (g, We,, i) Home We,,, i — €0 (U, wo4) rowo ; H
zjl
< Z |67t>\5"k “{ug, We,,, ,i>H5nk (wenk g wo,i)\Hlfnk
=1 ,
+ Z |67t’\5”k’i (uo, wsnk,i>H5"k wo,; — e~ (g, Wo i) HOWO,; o
i=1

|<u0, We,,, ,i>H5”k | |wsnk,i — Wo,q HIE"k

-

1
14

+CY e et (g, we, iy grene — €0 (g, wo i) o | [wo il rg-
=1

7
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Since for every i € [1..4],

sup |e et —e7t0i| 50 as k — oo,
te[0,00]
it follows that
(3.12) sup |Pke_tA5nk up — e~ oy g — 0 as k — oo
te[0,00[ 1

Formulas (3.11) and (3.12) imply that

—tA _
sup |e”"reug —e tA0u0|Hsn,C —0 ask — oo,
te[0,00] 1

but this contradicts (3.9). The proof is complete. |
We can also prove a second, more technical, linear convergence result.

THEOREM 3.7. Let (H®, (-, <)<, Ac)celo,e0] Satisfy condition (FSpec). Sup-
pose (en)n is a sequence in |0,e0] with €, — 0. Let a € [0,00[, ug € H° be
arbitrary and let (un)n and (v,)n, be sequences such that u, and v, € HE" for
n € N. Suppose that

(1) |up —vn|lgen — 0 as n — oco.

(2) whenever (;;k)k is a sequence in N with ny — oo as k — oo and when-
ever (wo,j)jeq..q s adapted to (ny)y, then vy, (we, ;) — (uo,wo,;) o
as k — oo for all j € [1..4].

(3) suppen |vn|pen < o0.

For every e € 10,eq], let A = gg’,a:Hgfa — HE, be the extension of A. to
HE . Then, for every 3 € ]0, 0],

o

—tA

e N Uy — e oy,

sup
t€[B,00]

0‘ — 0 asn — oo.
Hin

PROOF. Suppose the theorem is not true. Then there are 3, §y € |0, co[ and
there is a sequence (ng)x in N with ny — 0o as k — oo such that

(3.13) sup ‘e_tgenk Up,, — e_tAouo‘ >0y forall keN.

€ng,
te(B,00] Hy "

Taking a further subsequence, if necessary, and using condition (FSpec) we may
also assume that there exists an H°-orthonormal sequence of eigenfunctions
(wo,j)jen..) corresponding to (Ao j)jeq.. and adapted to (ng)r. Let & > 0
be arbitrary. There is an so = so(J, ) > 0 such that s(*+1/2e=5t < § for 5 > 5
and t > 3. Since Ac,, ¢+1 — 00 as k — oo, there is a kg = ko (6, 8) € N such that

)\Enk’(+1 > sg for k > kg. Since )\Enk,j )\Enk’[+1 forallkeNand j >/+1, we

obtain

(3.14) Aen, i = $0(8,8) for k > ko(d,8) and j > €+ 1.
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Let t > 8 be arbitrary. Then

(3.15) ‘e_tAEnk Up,, — e_tAouo‘Hsn,c
1

¢
—t)\ ; - J
< Z ’e t I, (wsnk’j)wsnk,j — e Ao (uo, wO,j>H0w0,j‘Hf"’“

=1
+ e~ Enk Uy, — E e Aeny, T Uy, wgnk)])wgnk7] .
N k
Now (3.14) implies that, for all k > ko,
2
(3.16) |e” Aep, Up, — E e Preny, T U, wenk71)wgnk,] .
oo
- E: (a+1)/2 —tA 2y~ 2
= (/\EWJ ) >‘6n ,J|u”k (wEnkvjN
j*£+1
2 2 2 2~
<0 Z >‘snk,] ng wEnkJ)| <4 |unk| e, <0°C,
j=L+1 -

where C := SUPpen |Un, |i1i"’€ . Note that C' < 0o by our assumptions (1) and (3).
Let j € [1..4] be arbitrary. Then

(3.17)  [e"Pemduy, (we, we, ;—e 0 (o0, wo.5) Howo 51y
< |€—t>\5"k,j (tn, — vnk)(wsnk,j)wﬁnk’ﬂfffw
e Penin,, (wep, ) (Wey, .5 = w0,3)| o
n Ie—t)\gnk,j (Vny (we, ) — <u07w07j>H0>w0,j|H1£"k

+ (e Pemd — e_t“'j)(w),wo,j)zﬂrﬂvog|Hfmc

< |umc — Uny ‘Hi’;k |w8nk 2J |H2"k ‘wEnkJ'Hf"k

+ |Unk|Hi1;k wenkvj|Hink : |w5nk7j - w07j|Hf"k
+ |vny (we,,, ) = (w0, wo,5) pro| - [wo,j] gyenx
+ |€7tAEnkaj _ e*t)\o,j| . |<u07w0’j>H0| . |w0,j|H16”k

v/2
€ny,nJ”

IN

Note that, for every v € [0, 00, |we, jlyene = Moreover, |wg,;
Y

|H1€"’€
Clwo;lmy and

—tA

sup |e”Pennd —eTt0d| 50 as k — oo.

te[B,00]
Hence, our assumptions and (3.17) show that

(318)  sup o Mmo g, (we, e, 5 — e

Uo,w01j>H0w07j ank — 0
t€[8,00( !
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as k — oo. Thus formulas (3.15), (3.16), (3.18) and the fact that § > 0 is
arbitrary imply that

sup e Aen Uy, — e toy, . —0 ask— o0
te(B,00] o
which contradicts (3.13). The theorem is proved. O

COROLLARY 3.8. Let (H®,(-, - )pe, Ac)eclo,e,] be a family which satisfies
condition (FSpec). Suppose (e,)n is a sequence in |0,eq] with €, — 0. Let
uo € HO be arbitrary and let (Un)n be a sequence such that u, € He" for n € N.
Suppose that

|, — uglgen — 0 as n — 0.

Then, for every (3 € ]0, oo,

sup |e*tA5" Up — e*tA0u0|H€n — 0 asn — oo.
te[B,00] 1
ProoOF. Use Theorem 3.7 with o = 0 and v,, = ug for all n € N. O

4. Nonlinear semiflows: convergence, compactness
and index continuation

In this section we will introduce an abstract nonlinear convergence condi-
tion (Conv) which is similar to a corresponding condition from [5]. This will
imply a number of singular convergence, compactness and Conley index contin-
uation results. Most proofs in this section are omitted, since they are identical
(mutatis mutandis) to the corresponding proofs in [5].

DEFINITION 4.1. Let €9 > 0 and r € N be arbitrary. For each 7 € [1..7] let
(H(i.), (-, '>H(i-> s Aic)eelo,c0) be a family satisfying condition (FSpec).

For ¢ € [0,e0], H® = X|_,4 H(Ei) is the product Hilbert space and A, =
Xi—q1 A; - is the product self-adjoint operator. Using the notation of Section 2,
we set, for o € R, Hg = Hqo(Ae). In particular, Hf = Xi_; H{, ;. This space
should not be confused with H (51).

Let « € [0, 1] be given and for every ¢ € [0, g¢] let A = Z@,—al HS , — He®
be the extension of A. to H®,. We say that the family (f.)ccp0,c,) of maps
satisfies condition (Conv) if the following properties are satisfied:

(1) fe:HS — He, for every € € [0, g].

(2) lim,_ o+ [e A< fo(u) — e—thOfo(u)|ng = 0 for every u € H) and every
t €10, 00].

(3) For every M € [0, 00| there is an L = Ly, € [0, oo such that

[fe(u) = fe(0)|me, < Llu —vlm;

[e"

for all € € [0,e0] and u, v € H satisfying |u|g=, [v[g: < M.
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(4) For every u € H? there is an &), € |0, o] such that

sup |f5(u)|H5a < 00.
e€[0,e]

The next result shows that the above condition (2) is valid uniformly for ¢
bounded away from zero.

PROPOSITION 4.2. Assume condition (Conv) and let 5 € )0, 00] be arbitrary.
Then for every u € HY

lim sup |67t25 fe(u) — e tAo fo(u)|m: =0
e—=0% ¢e[8,00]

PROOF. Let v = e‘ﬁgofo(u) € HY. For every t € [3,00] we have

le™ 4 fo(u) — e fo(u)|me
< em =D A (70 f(u) — 774 fo (w)) | s
4 |€*(t*ﬁ)gsv _ e*(t*ﬁ)govhqE
1
< \e‘ﬁAst(u) _ e_ﬁAofo(U)\Hls + |e—(t—ﬂ)Aav _ 6_(t_B)AO’U|Hf-

By a componentwise application of Theorem 3.6 we obtain

lim sup |e”%4cv — e‘sg0v|Hf =0,
e—0 s€[0,00[
so the assertion follows from condition (Conv) part (2) (with ¢ = 3). O

PROPOSITION 4.3. Let (H(Ei)7 (-, '>H(i.)aAi,s)se[0,so]7 i €[1..7], be as in De-
finition 4.1. Then there exists a constant C € |1, 00[ such that

lulgs < Clulgo  and  |u|go < Cluln:

for all w € HY and all € € ]0,e0]. Moreover, for every e € [0,g0] and every
ue HE,

(4.1) |€_ZETU|H15 < Cor™ Ve,
where Cy € ]0,00[ is as in Remark 3.3.

ProoF. This follows from the (FSpec) condition, formulas (2.12) and (2.15)
and Remark 3.3. g

In the sequel, if (H(Ei), (-, 0>H(e“,Ai,€)ae[O,80], i€ [1..7] and (f:)eeo,c,) are as
in Definition 4.1 then we will write, for every € € [0,&¢], me :== 75, to denote
the local semiflow on Hf generated by the abstract parabolic equation

(4.2) 0= —Acu+ fo(u)
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(cf. equation (2.16)) or, equivalently, the system
(43) Uz - _Avi,eu + fi,e(u)7 1 € [1 . T]

(cf. (2.19).)

For the rest of this section, unless otherwise specified, we assume that the
families (H(Ei), (-, ->H(ei),Ai75)€€[O,EO], i € [l..7], and (f:)ee[o,c,] are as in Defini-
tion 4.1.

We will now state a number of convergence, compactness and continuation
results. Using, in appropriate places, Proposition 4.2, Proposition 4.3 and ap-
plying componentwise Theorem 3.6, resp. Theorem 3.7, resp. Proposition 3.4,
the proofs of these results are completely analogous to the proofs of the corre-
sponding results from [5].

We begin by stating two singular convergence results for semiflows.

THEOREM 4.4. Let (¢,,)n be a sequence in |0,eq] with e, — 0. Let ug € HY
and (un)n be a sequence with u, € H;™ for everyn € N and

|un, — uolgen — 0 asn — oo.

Let b € 10, 00[ and suppose that u, e, t and umot are defined for alln € N andt €
[0,b]. Moreover suppose there exists an M' € [0, 00[ such that [u, 7., s|gen < M’
for allm € N and for all s € [0,b]. Then for every t € |0,b] and every sequence
(tn)n 0 ]0,b] converging to t

[tn e, b — uoﬂotn\Hlen —0 asn — oo.
THEOREM 4.5. Let (y,)n be a sequence in |0, e0] with e, — 0 and let (t,),

be a sequence in [0,00[ with t,, — to, for some ty € [0,00[. Let ug € HY and
(un)n be a sequence with u, € Hi™ for every n € N and

[un — uolgen — 0 asn — oo.

Assume ugmoty is defined. Then there exists an ng € N such that w,m. t, is
defined for all m > ng and

[tn e, b — umroto\an —0 asn — oo.

We also have the following admissibility (i.e. asymptotic compactness) re-
sults:

THEOREM 4.6. Let ¢ € [0,e9] be arbitrary. Then every closed and bounded
set in HY s strongly m.-admissible.
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THEOREM 4.7. Suppose k € ]0,00[, (en)n is a sequence in |0, o] with e, — 0,
(tn)n is a sequence in [0, oo with t, > K for everyn € N and (un)n is a sequence
with u, € H{" for every n € N. Assume that there exists a C" € |0,00[ such
that u,me, t, is defined and

[unre,, 8| gen < C"  for alln € N and for all s € [0,t,].

Then there exist a v € HY and a sequence (ny)i in N with nj, — 0o as k — 00
such that

|unk,7r€nktnk — U|ank — 0 ask— 0.

For € € ]0,e0] let Q.: Hf — H{ be the Hf-orthogonal projection of Hf
onto H.

We can now state the following Conley index continuation principle for sin-
gular families of abstract parabolic equations:

THEOREM 4.8. Let N be a closed and bounded isolating neighborhood of an
invariant set Kq relative to my. For e € ]0,¢e0] and for every n € 10, 00[ set

Ney:={u€ Hf |Qeuec N and |(I — Qc)uln: <7}

and K., = Inv, (N, ) i.e. K., is the largest n.-invariant set in N, ,. Then
for every n € ]0,00[ there exists an €° = €°(n) € |0,e0] such that for every
e € 10,e° the set N., is a strongly admissible isolating neighborhood of K. ,
relative to . and
h(me, Ke ) = h(mo, Ko).

Furthermore, for everyn > 0, the family (K ,)ee(0,cc(n) of invariant sets, where
Ko, = Ko, is upper semicontinuous at € = 0 with respect to the family | - |re of
norms i.e.

lim sup inf |w—u[g: =0.

e—0t yekK, , vEKo

REMARK 4.9. The family (K. ;)ccjo,e¢()) is asymptotically independent of 7

i.e. whenever 7; and 7y € ]0, 0o[ then there is an &’ € |0, min(£°(n1),&°(n2))] such
that K. ,, = K., for e €]0,¢'].

Finally, we have the following (co)homology index continuation principle:

THEOREM 4.10. Assume the hypotheses of Theorem 4.8 and for every n €
10, 00] let €°(n) € |0, 0] be as in that theorem. Let (P,<) be a finite poset. Let
(My0)pep be a <-ordered Morse decomposition of Ko relative to my. For each
p€ P, letV, C N be closed in Xo and such that My o = Invy,(V,) C Intyo(V}).
(Such sets V,, p € P, exist.) Fore € 10,¢9], for every n € 10,00 and p € P set
Mycn i =Invy (Vpen), where

Voem :={u€ Hi | Qeu €V, and |(I — Qc)uly: <n}.
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Then for every n € 10, 00| there is an € = £(n) € 10,e°(n)] such that for every
e € 0,6l and p € P, My, C Inty:(Vpen) and the family (M. r)pep is
a <-ordered Morse decomposition of K., relative to m. and the (co)homology
index braids of (mo, Ko, (Mpo)pep) and (me, Ke p, (Mp e n)pepr)), € € ]0,€], are
isomorphic and so they determine the same collection of C'-connection matrices.

REMARK 4.11. Again, for each p € P, the family (M, . ,)-c[0,z(;), Where
My0,n = My, is upper semicontinuous at ¢ = 0 with respect to the family |- |5
of norms and the family (M, . )zcjo,z(m) is asymptotically independent of 1.

5. An application to systems of parabolic equations
with large diffusion

In this section we verify the abstract conditions introduced in the previous
sections for the family (E.) of equations introduced in section 1. We thus obtain
singular convergence and singular compactness results with the ensuing Conley
index and index braid continuation principles for the corresponding family 7. of
semiflows.

5.1. Let N be a positive integer and £y be a positive real number. Let  be
a bounded smooth domain in RY and I' = 99.

For each € € ]0,&p], let d.: RY — R be a positive smooth function. For each
€ €10,&p] define
(5.1)  o1(e) :==min{d.(x) | z € C1Q} and o3(e) := max{d.(z) | z € C1Q}.

Assume that

(5.2) oi1(e) w00 ase—0
and
(5.3) sup{ngg €€ ]0,50]} < 0.
For each € € ]0, &), let V. € LP°(Q) and b, € L% (T") with
> 1, for N =1;
po§ >1, for N = 2;
>N/2, for N>3
and
>1, for N =1;
g § >1, for N = 2;

>N-—-1, forN>3
and assume that
1

(5.4) T

1
/Vada:—ﬂ/o and —/bgda—>b0 as e — 0.
Q [ Jr
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Here, dz is the N-Lebesgue measure and do is the surface measure on I'.
Let v: HY() — HY?(T) be the trace operator. For A € R and ¢ € ]0, 5]
define the bilinear form 7.: H'(Q) x H'(Q) — R by

(5.5) Te(u, v) :/QdEVqudx—l—/Q()\—l—Vg)uvdx—i—/FbE’y(u)v(v) do,

for u, v € HY(Q). It follows from [13] (cf. formula (29)) that for each ¢ € 0, &)
the bilinear form 7. is defined and continuous on H*(Q2) x H!(2). Moreover, [13,
Theorem 3.1] implies that there exist a A\g € ]0, 00[ and an ¢g € ]0, ] such that
for all A > A\g and for all € € ]0,¢¢], o1(¢) — Ag > 0 and

Te(u,u) > (o1(e) — Ao) /Q |Vu|? dz + (A — /\0)/Q lu|? de, ue HY(Q).

This implies that there exist Ao, & € ]0,00[ and an gj € ]0,&p] such that for all
A > g,

(5.6) Te(u,u) > filulf gy, we H'(Q), e €]0,e5).

For the rest of this paper, we will assume that A > X\g. For each ¢ € ]0, &)
the pair (7., (-, - )2(q)) defines an operator A : D(A.) — H® := L*(Q). Specif-
ically, let D(A.) be the set of all u € H*({) such that there is a w = w,, € L*()
with the property that

Te(u,v) = (w,v) 2(q)
for all v € HY(Q). Then w, is uniquely determined by u, the set D(A.) is
a dense linear subspace both of H'(Q) and of L?(f2), and the map

(5.7) A.:D(AL) — L2(Q), urs wy,

is a linear positive self-adjoint operator in (L?(Q), (-, -)r2(0)) with AZ! com-
pact.

REMARK 5.1. Let € € ]0,¢(] and A > Ag. It is proved in [13] that D(A.) is
the set of all u € H*(£2) such that — Div(d.Vu)+V.u € L?(Q) and d.0,u+b.u =
0inT'. Here, v is the exterior normal vector field on 9Q and d.d,u is the conormal
derivative of u in some generalized sense. The linear operator A is then given
by

Acu=—-Div(d.:Vu) + A+ Vo)u for u € D(A,).

Define

r
(58) wei=Vy+ ||Q|| bo + .

It follows from [13, Theorem 3.4] that x> 0. Let HY be the set of (equivalence
classes of) constant real functions on  and define Ag: H® — H° by

(5.9) Agu = pu, ueH.
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For € €]0,¢(] set H® = L?(Q) and let (-, -)ue = (-, - ) 12(n). Moreover, let
(-, -)mo be the restriction of (-, -) 20y to H® x H. Notice that H§ = H* for
all € € [0, p).

Recall that HE, := H,(A.) for ¢ € [0,e(] and o € R. Then, if € € ]0,¢p],
it follows that Hf = Hl( c) = H'(Q) and (-, -)u: = 7=(-, -). Furthermore,
HY =H° and (-, “)mo is the restriction of p(-, -)r2(q) to H° x HO.

PROPOSITION 5.2. With the notation introduced above, there exists an g9 €
10,e0] such that the family (H®, (-, - )i, Ac)cclo0,] Satisfies condition (FSpec).

PROOF. It is clear that (1), (2) and (3) of condition (FSpec) are satisfied for
all € €0, 5]

An application of (5.4), the definition of 7. and estimate (5.6) implies that
there exist an gg € ]0, (] and a constant C' € |1, oo[ such that

lulgs < Clulgo  and  |ulgo < Cluln;

for all u € HY and all ¢ € ]0,&0]. This proves that (H*, (-, “VHe» Ac)ceo,e0]
satisfies part (4) of condition (FSpec).

For every ¢ € ]0,e0] let (Ac;); be the repeated sequence of eigenvalues of
A, and (w, ;); be a corresponding He-orthonormal sequence of eigenfunctions.
By [13, Corollary 3.5] we may choose the eigenfunctions w, 1 to be nonnegative.
Notice that p is the eigenvalue of Ag.

Let (gn)n be a sequence in ]0, gg] with €, — 0. It follows from formulas (41)
and (42) in [13, Theorem 3.4] that

Ae,i— p asm—o00, and A, ; — oo asn— ooforallj>2.

Ens

Let 1q be (the equivalence class) of the constant function on Q equal 1 and
1r be (the equivalence class) of the constant function on I' equal 1 (the former
equivalence class is taken with respect to the N-dimensional Lebesgue measure
on €, while the latter is taken with respect to the surface measure on I'). It
follows that v(1q) = 1p. Define wo; == |Q|’1/219. It follows that that w1
is an eigenfunction of Ay corresponding to the eigenvalue p and |wog 1|go = 1.
Moreover, for any sequence (ng)r in N with ny — oo as k — oo it follows
from [13, Corollary 3.5] that

@ — 0 ask— oo.

|w5nk 1

In particular,
|we, 1 —wo,1lr2) — 0 ask — oo

Thus, by Hélder inequality, for every u € L?(Q),

<U,w5nk)1>L2(Q) — (u,wo,1)2() as k — oo.
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This implies that for every u € H®
(u, we,, 1o — (W, wo,1)mo  as k — oo.
Now we only need to prove that
|w8nk,1 — woJ'Hi"k —0 ask— oo.
For each k € N we have, by a simple calculation,

‘wsnk,l - w0,1|?{ink = Ten, (wsnk,l — Wo,1, Wey,, ;1 — wo,1)
=Te,, (We,, 1,We,, 1) — 27, (We, 1, W01) + Tz, (Wo,1,w0,1)

=Xe, 1 (Wey, 15 We,,, 1) 12(0) = 2Ae,,, 1(We,, 1, W0,1) L2()

+19Q|7* (/Q()\JFI/;nk)da:Jr/Fbgnk do>

—pu—2u+pu=0, ask— oco.
Hence part (5) of condition (FSpec) is satisfied. The proof is complete. O

5.2. Let N, &g, 2, pp and ¢g be as in subsection 5.1. Let » € N be arbitrary
and for each i € [1..7] and each € € ]0,&g], let d; ., V; . and b; . be functions
and V; o, b; o be constants such that all conditions of subsection 5.1 are satisfied.
Define the bilinear form 7. as in (5.5). Now choose Ao, i € ]0,00[ and an
ey € ]0,&p] such that for all A > Xy and all ¢ € [1..7], the estimate (5.6) is
satisfied by 7; ..

Let A > A\g. Let 7 € [1..r] be arbitrary. In the notation of subsection 5.1,
for e € [0, 0] let HE,) = H* and (-, -)ue, = (-, -)m=. For € € ]0,£0], define the
operator A; ., as A, where 7, in formula (5.7) is replaced by 7; .. Set

pi = Vio+ ||;|| bio+ A
and define the operator A4; ¢ as Ag in formula (5.9) (with u replaced by p;).

It follows from Proposition 5.2 that there is an gy € ]0,&(] such that the
family (H(Ei)v (- >H(Ei)a
In what follows let

Aje)eclo,eo]> @ € [1..7], is as in Definition 4.1.

2N

—_— if N > 3;
) N-2 B =
20 = 4 an arbitrary p* € 10,00[, if N =2;

00, ifN=1

and

2(N —1)

—_— if N > 3;

N-2° N 23

[\
=%
Il

an arbitrary p** € 10,00[, if N =2;
00, if N =1.
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By interpolation theory (cf. [16]) for every ¢ € [1..7], every 6 € [0,1] and every
€ € [0,&0] there is a continuous imbedding from H, , to H?(Q) with imbedding
constant C g € 0,00 independent of € € [0,e0] and ¢ € [1..7]. Furthermore,
there is a continuous imbedding from H?(2) into LP?-2(Q) with imbedding con-
stant Cs ¢ € |0, co[. Here,

1 1\
=(0—+(1-0)- .
Po. ( o " ( )2>
Moreover, for every p € [0,1] there is a continuous imbedding from H*/2(T) into
LPer(T') with imbedding constant C3 , € ]0, 00[. Here,

— i + (1 )} o
Pp,r = pQF P ) .
Finally, by [11], for every 6 € |1/2,1] there is a bounded linear trace operator
v = v9: H*(Q) — H~(/2/(T) with a bound Cy ¢ € ]0,00[. Now the continuity
of the functions 6 — pgp o and 0 — pag_1 r at @ = 1 implies the following result.

LEMMA 5.3. Let g2 € (1 —(1/2%))7 Y, 00 and g3 € J(1 — (1/2}))71, 00 be

arbitrary. Then there is a 0 € |1/2,1] such that
a3
@ —1 g3 —1

Set o = 0 and let C5 € |0, 0] (resp. Cg € ]0,00[) be a bound of the imbedding
LPa2(Q)) — LP2(Q) (resp. LP2e-1r(T') — LP3(T")). Then, whenever i € [1..r],
®;, € L2(Q), ¥; € LB(T), € € |0,&0] and h; € HE, . then ®;h; € LY(Q),
Wi(hi) € LM(T),

P2 = <pso and p3= < p2o—1,-

/ |[®ihi dv < C1,aC2,0C5|®|Loa (o) hal g, >
o :

and /|‘I’ﬂ(hi)|da < C1,0C1,0C3,20-1C06 Y| Las () | hi|
r

€ .
(i),

In particular, there is a unique f; . € H(Ei)’fa such that

fie(hi) :/Qq)ihi d$+/r‘1’ﬂ(hi)d0a hi € H{j 4

Moreowver,

|fielme, _, < Cr,a(|®ilLaz () + Wil Las (1))
where C77a = maX(CLaC’gyan,, CLOLC;;’QC&QO&*lCG).
We define the map fe: HS — R by

fe(h) =" fielhi), h=(h1,....h,) € HL.
=1

Then f. € H®

—x

and in the notation of Section 2, fi . = Ny o(fe) fori e [1..7].
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THEOREM 5.4. For eachi € [1..r] and each e € [0, 0], let ®; .: HY(Q,R") —
L%(Q) and V; .: HY/2(T,R") — L%(T") be maps satisfying the following assump-

tions:
(1) For all M € [0,00[ there is an L = Ly € [0, 00[ such that
(a) for all e € [0,&0] and all u, v € H'(Q,R") such that [u| g1 (o 7y,
[vlmorr) <M,
;e (u) — @ie(v)|La2 () < Llu—v|giarr
(b) for all £ € [0,20] and all u, v € HY?(T,R") with ] /20 mry s
vl g1z ey <M,
|Wie(u) = ;e(v)|pas(ry < Llu— 'U|H1/2(I‘,R““).
(2) For every u € H°,
1@ (u) — @i 0(u)|pazi) 0 ase— 0.
(3) For every u € H'?(I',R"),

|Wie(u) —Wio(u)|pesmry =0 ase— 0.

Let o € ]1/2,1] be as in Lemma 5.3. For i € [1..7], ¢ € [0,e0] and u € Hf
define, for h; € H(‘EZ.) o

fi,a(u)(hi)=/Q‘I’i,a(u)hidl“+/F‘I/i,a(’7(u))’7(hi)d0-

Moreover, we define the map fe(u): HS — R by
fe(u)(h) =Y fic@)(hi), h=(h,...,h,) € HS.
i=1

Then f.(u) € HE

—x

and in the notation of section 2, fi.(u) = Ay a(fe(u)) for
i € [1..7]. Finally, the family (f:)ccjo,,] of maps satisfies condition (Conv).

REMARK. By the definition of 2, and 2§ we may, for NV =1, 2, take ¢» and
gs arbitrary in ]1, ool.

PROOF OF THEOREM 5.4. Lemma 5.3 implies that the family (f:)ceo,c]
satisfies (1) of condition (Conv). Let M € [0,00[ be arbitrary and L = Ly,
be as in assumption (1). If i € [1..7], ¢ € [0,60] and u, v € Hf with |u|g:,
|v|gre < min(M/Cy1, M/(C1,1Cy1)) then u, v € HY(Q,R") with [ul g1, Rry s
|U|H1(Q,R"') < M and |7(U)|H1/2(F,Rv-)a |7(U)|H1/2(F,Rr) < M so

|fi,s(u) - fi,e(v)|Hia < 077a|¢)i,8(u) - ‘I)i,a(v)|L‘12 ()

+ C7.0lWic(v(w) = Wi (v(v)|Ls (1)
<Cra(L+ LCy1)|lu—vlgi(arry < Cra(L+ LCy1)Crilu —vlgs.
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This together with assumption (1) implies part (3) of condition (Conv). If ¢ €
[1..7] and u € HY then

|fie(Wlme < C7.a(|Pic(uw)|pe@rry + [Vie(y(w)| L@ rr)-

This together with assumptions (2) and (3) easily implies part (4) of condi-
tion (Conv).

Now let w € HY be arbitrary and (¢,,), be a sequence in |0, o] with ,, — 0.
Let ¢ € ]0, oo[ be arbitrary. We will show that
(5.10) lim [~ e £ (w) — ™ fo(w)|on =0,

n—oo

proving (2) of condition (Conv).

By the considerations in section 2 we only have to show that, for every
i € [1..7], every w € HY, every sequence (&), in ]0,&o] with &, — 0 and every
t €10, 00]
(5.11) lim e~ Aen i, (w) = e 0 fig(w)] sy | =0

n—oo T ’ (i),1
i

satisfies condition (FSpec). For n € N set u, = f; ., (w) and define v, € H;"
by

It follows from Proposition 5.2 that the family (H(E)7 (-, '>H(Ei)aAi,E)€€[0,€o]

onlh) = [ Biowhide+ [ Wiolw)i(h)do, i € HE
Q T
Finally, set u = f; o(w). Then
(5.12) [, — ’Un|nynia <C7a(|®i, (0) — @i 0(w)|Laz (@)
+ Wi e, (v(w)) = Wi o(y(w))|Las (1))

Notice that the right hand side of this estimate goes to zero as n — oo.
Let Cs € ]0,00[ be a bound for the imbedding H'(2) — H*(f2). Then, with
obvious notation, we obtain, for every j € N,

[V (Wi e, 5) — w(wio )| < 1Pio(w)|Lae @) Wie, ; — wio,lLe @)
+ W0 (7 (W) poa ()Y (Wi 5 — Wir0,5) Lo (ry < Clwie, j — Wi HEY
where
C 1= C505,4CsC1,1|®0(w)]| Loz (@) + C6C5,20—1C41,aCsC1,1 [ Wo ((w)) | Las (1 kr)-
Hence
(5.13) |on (Wi, ;) — u(wip, )| — 0 asn— oo.

Now, for all n € N,

(5.14) [nlgen < Cra(|Pi0(w)| e @rry + [Wio(v(w))|Les (ry)-
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Formulas (5.12)—(5.14) imply that the assumptions of Theorem 3.7 are satisfied.
An application of Theorem 3.7 implies (5.10). The proof is complete. g

Now assume the following

HYPOTHESIS 5.5. For i € [1..7r] and € € [0,e0], ie:Q2 X R"™ — R and
Vi I'XR" = R, (z,8) — @i c(x,9), (x,8) = ¥ (x,s), are functions such that
(1) there is a null set Ng in Q with p; - (z, -) € CH(R",R) for allz € Q\Ng;
(2) there is a null set Np in T' (rel. to the surface measure on T') with
VYie(x, -) € CYR™,R) for all z € T\ Nr;
(3) foralls e R™, @; o(-,s) and Dsp; (-, s) is measurable on ;
(4) foralls e R", ¢; o(-,s) and Dsip; (-, s) is measurable on T'.
Moreover, g2 € ](1 — (1/28))71,284[ and g3 € ](1 — (1/2%)) 71, 2%[ and
2¢ 27 2¢ 27
r2 = *QQQ y T3 = *FqS ) 52=£—17 ﬂ?»:l_ :
20 — @ 2f —q3 q2 q3

There is a constant C' € 0, 00] and functions ay € L™ (), by € L92(), a3 €
L™ (T"), by € L9(T") such that, for all € € [0, 0],

| Dsic(x,s)]| < Clay(z) + Isl|?2), for (z,s) € (2\ Nq) x R",
|pie(x,0)] <b2(), for x € Q\ Nq,

| Dstic(x,5)| < Clag(z) + |s]|*), for (z,5) € (T'\ Nr) x R",
|thie(2,0)| < b3(x), forz €T\ Nr.

Finally, as e — 07T,

|<Pi,s($a3) - 300(1‘75” - 07 fO?” (Z‘,S) S (Q \ NQ) X RT;
|wi,s(xas) - ¢0($,$)| - 07 fOT (x,s) S (F \ NF) x R".

THEOREM 5.6. Assume Hypothesis 5.5. For i € [1..r] and ¢ € [0,g0] and
u € HY(Q,R") (resp. u € HY2(D,R")) define ®; .(u)(x) = @i(x,u(z)) (resp.
U, (u)(z) = ¢ic(z,u(z))) for x € Q (resp. x €T).

Then ®;.: H'(Q,R") — L%=(Q,R) and ¥;.: H/*([,R") — L%(T,R) are
defined and satisfy the assumptions of Theorem 5.4.

PROOF. Use results and arguments in [7, Chapter 2]. O
Finally we obtain the following

COROLLARY 5.7. Fori € [1..r] and ¢ € [0,g0] let p;c:Q2 x R" — R and
Yie: I xR” = R, (z,8) — @i(x,s), (x,8) — i(z,s), be functions as in
Theorem 5.6. For ¢ € [0,¢0] and u € H(Q,R") (resp. u € HY/?(T,R")) define
D, (u)(x) = @iz, u(x)) (resp. U; (u)(z) = Yie(z,u(x))) for x € Q (resp.
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z €T) and let o € ]1/2,1] be as in Lemma 5.3. Fori € [1..7], ¢ € [0,&0] and
u € Hi define,

Fie(u)(h) = /Q B, . (u)h dz + /F W (v()y(h) do, by € HE, .

Moreover, we define the map f-(u): H, — R by
fe)(h) =" fic@)(hi), h=(h,...,h,) € HS.
i=1

Then f.(u) € HE

—Q

and in the notation of Section 2, f;.(u) = Ay).o(fe(w)) for
i € [1..7]. Finally, the family (f-)ccjo,e,) of maps satisfies condition (Conv).

Proor. This follows from Theorems 5.6 and 5.4. O

With the family (Hg, (-, ~>H(si),AZ-,E)€€[07€O], i € [1..7] as in this subsection
and the family (f:)ccjo,,] as in Corollary 5.7 consider, for every ¢ € [0,¢0],
the corresponding abstract parabolic equation (4.2) (or, equivalently, the sys-
tem (4.3)) and the corresponding local semiflow 7. on Hf.

If ¢ > 0 then Remark 5.1 shows that system (4.3) can be regarded as the
abstract formulation of the system (E.) of boundary value problems introduced
in Section 1.

If e = 0, then using the notation from the proof of Proposition 5.2 we ob-
tain from Corollary 5.7 and formula (2.22) with ¢; = 1 and v;; = 1Q]7%1q,
i € [1..7r], that system (4.3) is just the system (FEy) from section 1 of ordinary dif-
ferential equations on the r-dimensional linear subspace H!(Q, R") of H!(Q,R")
consisting of (equivalence classes) of constant functions.

We conclude that all convergence, compactness and index continuation re-
sults of section 4 hold in the present case.
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