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GRAPH APPROXIMATIONS
OF SET-VALUED MAPS UNDER CONSTRAINTS

Jaros law Mederski

Abstract. In the paper we study the existence of constrained graph ap-
proximations of set-valued maps with non-convex values. We prove, in

particular, that any open neighbourhood of the graph of a map satisfying

the so-called topological tangency assumptions contains a graph of con-
strained continuous single-valued map provided that the domain is finite-

dimensional.

1. Introduction

Let X, Y be metric spaces, ϕ:X ( Y be an upper semicontinuous set-valued
map with compact values. Let C ⊂ X × Y be a constraint set, i.e. we assume
that for any x ∈ X,

(1.1) ϕ(x) ∩ C(x) 6= ∅,

where C(x) := {y ∈ Y | (x, y) ∈ C}. The constraint set determines the set
valued map C( · ):X 3 x ( C(x) ∈ Y .

We shall address the constrained approximation problem. Namely, given an
open neighbourhood U of the graph Gr (ϕ) of ϕ, find a continuous map f :X → Y

such that Gr (f) ⊂ U ∩ C. Thus we are looking for U-approximation f of ϕ
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(i.e. Gr (f) ⊂ U) being a selection of the map C( · ) (i.e. f(x) ∈ C(x) for any
x ∈ X) simultaneously. If A ⊂ X, then a continuous map f :A → Y such that
Gr (f) ⊂ U ∩ C will be called U ∩ C-approximation (on A).

The natural motivation to consider the problem may be the following. If
X is a smooth manifold embedded in a Banach space Y , and for any x ∈ X,
C(x) := TxX is the tangent space of X at x, then C = TX is the tangent bundle.
Moreover, if ϕ is weakly tangent to X, i.e. condition (1.1) holds, and U is an open
neighbourhood of Gr (ϕ), then the question of the existence of U ∩ C-approxi-
mations concerns the availability of a vector field on X such that Gr (f) ⊂ U .
Therefore it seems that the existence of constrained graph approximations is
important for the study of differential inclusions on manifolds. More generally,
we can consider fiberwise spaces X and Y over a base space B and C is their
fiberwise product. Then U ∩ C-approximations coincides with fiberwise maps
over B being U-approximations of ϕ. Other examples of constraint sets will be
given below. Some applications will be given elsewhere (e.g. [20]).

Recall that in case of the lack of constraints, i.e. if C = X × Y , the problem
has been intensively studied by many authors (see [12] and references therein).
For example, a classical result due to Cellina ([9]), says that if Y is a normed
space and ϕ has convex values, then for any ε > 0, there is a B(Gr (ϕ), ε)-
approximation on X (1). Among many results concerning the approximability
of maps with not necessarily convex values (see [11], [7], [8], [14] and references
therein), we recall the following Kryszewski theorem that will be necessary for
our purposes ([13], comp. [23]): If Y ∈ LCn and ϕ(x) has UVn-property in Y

for any x ∈ X (see Section 3.1), then for any open neighbourhood U of the
graph Gr (ϕ), there is an open neighbourhood V ⊂ U of Gr (ϕ) such that any V-
approximation on A such that dim(X \A) ≤ n+1, extends to a U-approximation
on X.

If constraint set C is a proper subset of X × Y , Ben-El-Mechaiekh and
Kryszewski obtained in [3] the Cellina–Michael-type result, i.e. if Y is a Banach
space, ϕ has convex values and the map C( · ):X ( Y is lower semicontinuous
with closed and convex values, then for any ε > 0 there is a B(Gr (ϕ), ε) ∩ C-
approximation on X. In [17] similar results for set-valued maps with so-called
α-convex values, defined on the finite dimensional space X, are obtained.

If C( · ) is still lower semicontinuous with closed convex values, but ϕ(x) is
contractible or has UVn-property in Y for any x ∈ X, then constrained approx-
imation problem may have no solution (see Example 3.14).

(1) If values of the map ϕ are convex and compact, then there is a U-approximation for
any open neighbourhood U of Gr (ϕ).
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In the paper we provide conditions sufficient for the existence of constrained
graph approximation in general situation without assumptions concerning con-
vexity of values of ϕ and C( · ). For that reason, we introduce a condition (C)
describing the behavior of the set-valued map ϕ with regard to the constraint
set C and obtain Theorem 3.1 and Corollary 3.2. In Section 3.1 we provide the
fiberwise UV-property, which allows to generalize the above Kryszewski’s result
(Corollary 3.13). Section 3.2 is devoted to the proof of the approximation result.
Moreover, we study different variants of condition (C). In case if C is the fiber-
wise product of X and Y we obtain the existence of fiberwise U-approximations
(Corollary 3.18). In Section 3.4 we investigate the problem if sufficiently close
U ∩ C-approximations are homotopic.

2. Preliminaries

From now on by a space we mean a metric space and by a map a continuous
transformation of spaces. Given a space X and A ⊂ X, cl A stands for the
closure of A.

Let B a space. A fiberwise space over B (or just a space over B) is a pair
(X, p) consisting of a space X and a map p:X → B, called the projection (2).
B is called the base space of X. Note that if (X, p) is a space over B and
X0 ⊂ X, then the pair (X0, p0), where p0 := p|X0 :X0 → B is the restriction of
p to X0, is a subspace over B of (X, p). Similarly, given A ⊂ B, (XA, pA) :=
(p−1(A), p|p−1(A)) is the space over A. By a trivial space over B we mean the
product X×B with the usual projection πB :X×B → B onto B, i.e. πB(x, b) = b

for x ∈ X and b ∈ B (3).
Let (X, p) and (Y, q) be spaces over B. We say that a map f :X → Y is

a map over B if for each b ∈ B, f transforms the fiber Xb := p−1(b) into the
fiber Yb := q−1(b), i.e. q ◦ f = p (4). It is clear that f :X → Y is a map over
B if and only if the graph Gr (f) := {(x, f(x)) | x ∈ X} of f is a subset of the
fiberwise product X ×B Y := {(x, y) ∈ X × Y | p(x) = q(y)}.

By a homeomorphism (resp. an embedding, a closed embedding, a retraction)
over the base space B we understand a map over B being a homeomorphism
(resp. an embedding, a closed embedding, a retraction).

Given spaces X, Y , by a set-valued map ϕ from X into Y (written ϕ:X ( Y )
we mean a map assigning to any x ∈ X a nonempty (not necessarily closed)
subset ϕ(x) of Y and, by the graph of ϕ, the set Gr (ϕ) := {(x, y) ∈ X × Y |
y ∈ ϕ(x)}. Note that Gr (ϕ) may be regarded as a space over X with the usual

(2) If the projection p is recognized from the context, then we say simply that X is a space

over B.
(3) Sometimes it is more convenient to consider the product B × X as a trivial space

over B.
(4) Since we do not require p to be surjective, fibers may be empty.
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projection πX : Gr (ϕ) → X onto X. We say that a set-valued map ϕ is upper
semicontinuous (resp. lower semicontinuous) if for any closed (resp. open) set
U ⊂ Y , the preimage ϕ−1(U) := {x ∈ X : ϕ(x) ∩ U 6= ∅} is closed (resp.
open); ϕ is continuous if it is upper and lower semicontinuous. Recall that the
graph Gr (ϕ) of an upper semicontinuous map ϕ with closed values is closed; ϕ

is upper semicontinuous and has compact values if and only if for each x ∈ X

and a sequence (xn, yn) ∈ Gr (ϕ) such that xn → x, there exists a subsequence
(ynk

) such that ynk
→ y ∈ ϕ(x) (this means that a projection πX is a proper

map, i.e. for each compact K ⊂ X, π−1
X (K) is compact). A set-valued map

ϕ is lower semicontinuous if for given x ∈ X, y ∈ ϕ(x) and a sequence (xn)
convergent to x, there is a sequence yn ∈ ϕ(xn) such that yn → y. It is clear
that ϕ is lower semicontinuous if and only if the projection πX is open. Moreover
p:X → B is an open map if and only if p(X) is open in B and the set-valued
map B ⊃ p(X) 3 b ( p−1(b) ⊂ X is lower semicontinuous. Hence p:X → B is
an open map if and only if for any (x, b) ∈ X×B such that p(x) = b and for any
sequence {bn} ⊂ B such that bn → b, there is a sequence {xn} ⊂ X such that
xn → x and for almost all n, p(xn) = bn.

By a selection of ϕ we mean a map f :X → Y such that f(x) ∈ ϕ(x) for any
x ∈ X. Note that if (X, p), (Y, q) are spaces over B, then f :X → Y is a map
over B if and only if f is a selection of the set valued map ϕ(x) := q−1(p(x)),
x ∈ X.

Given a space X, by dim(X) we denote the covering dimension of X. Denote
by M the class of all closed pairs of (metric) spaces, i.e. (Z,Z0) ∈ M if Z is
a space and Z0 ⊂ Z is closed. The following subclass of M

Mc
n := {(Z,Z0) ∈M | dim(Z \ Z0) ≤ n + 1}, n ≥ 0,

will be of a special importance for us.
Now, for a reader’s convenience we shall recall some relevant concepts and

results obtained in [19].

Lemma 2.1. If (Z,Z0) ∈ Mc
n, then for any open cover W of the space Z,

there exists a sequence of closed subspaces Z0 ⊂ Z1 ⊂ . . . ⊂ Zn+2 = Z, such that
for i = 0, . . . , n + 1,

Zi+1 = Zi ∪
⋃

α∈Ii

Bα
i ,

where Ii is a set of indices, and for any α ∈ Ii, Bα
i is a closed set contained in

an element of the cover W. The sets {Bα
i ∩ (Z \Z0)}α∈Ii are pairwise separated

by open neighbourhoods (5).

(5) Subsets {Bi}i∈I of a space Z are pairwise separated by open neighbourhoods, if for
any i, i′ ∈ I, i 6= i′, there are open neighbourhoods U ⊃ Bi and V ⊃ Bi′ such that U ∩ V = ∅.
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Let C be a subclass ofM. We say that a space Y is an absolute neighbourhood
extensor (resp. absolute extensor) for the class C, written Y ∈ ANE(C) (resp. Y ∈
AE(C)), if for any pair (Z,Z0) ∈ C, any map f0:Z0 → Y admits a (continuous)
extension f :U → Y onto an open neighbourhood U of Z0 (resp. f :Z → Y ). It
is well-known that the class ANE(M) (resp. AE(M)) coincides with the class of
absolute neighbourhood retracts (resp. absolute retracts) ([5], [16]). It is clear
that ANE(M) ⊂ ANE(Mc

n) and AE(M) ⊂ AE(Mc
n) since Mc

n ⊂M.
Recall that for n ≥ 0 a space K is locally n-connected (written K ∈ LCn) if for

any y ∈ K, any open neighbourhood U of y in K contains an open neighbourhood
V of y in K such that for any 0 ≤ k ≤ n, every map f0:Sk → V extends to
f :Dk+1 → U , or equivalently, every map f0:Sk → V is homotopically trivial in
U (here and below Sk and Dk+1 stand for the unit sphere and the unit closed ball
in Rk+1 for k ≥ 0 and S−1 = ∅, D0 = {0}). A space K is n-connected (written
K ∈ Cn) if for all 0 ≤ k ≤ n, every map f0:Sk → K extends to f :Dk+1 → K.
In other words Cn = AE(Sn) where

Sn := {(Dk+1, Sk) | −1 ≤ k ≤ n}.

The classical Kuratowski–Dugundji extension theorem (see [16]) asserts that
for any integer n ≥ 0,

ANE(Mc
n) = LCn, AE(Mc

n) = LCn ∩ Cn.

In what follows, we recall the similar characterization of fiberwise absolute
(neighbourhood) extensors given in [19].

Let again C be a subclass of the class M of all closed pairs of spaces.

Definition 2.2. We say that a space (Y, q) over B is a (fiberwise) absolute
neighbourhood extensor over B for the class C, written (Y, q) ∈ ANEB(C), if for
every space (Z, s) over B, (Z,Z0) ∈ C and a map f0:Z0 → Y over B, there is an
open neighbourhood U of Z0 in Z and a map f :U → Y over B such that the
following diagram

Z0
f0 //

⊂   A
AA

AA
AA

Y
q // B

U

f

OO

s|U

??��������

is commutative; in other words f0 admits an extension to a map f :U → Y

over B. A space (Y, q) over B is an absolute extensor over B for the class C
(written (Y, q) ∈ AEB(C)) if for every space (Z, s) over B, (Z,Z0) ∈ C, any map
f0:Z0 → Y admits an extension f :Z → Y over B.

It is clear that AEB(M) ⊂ AEB(Mc
n) and ANEB(M) ⊂ ANEB(Mc

n). Sup-
pose that ϕ is a lower semicontinuous map. Following again the paper [19], if Y

is a Banach space, and the set-valued map ϕ has closed and convex values, then
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(Gr (ϕ), πX) ∈ AEX(M)). Moreover, if the family {ϕ(x) | x ∈ X} is equi-locally
n-connected (comp. [22]), i.e. if for any (x, y) ∈ Gr (ϕ), every open neighbourhood
U of y in Y contains an open neighbourhood V of y in Y such that for all x′ ∈ X

and k ≤ n, any map f0:Sk → ϕ(x′)∩V admits an extension f :Dk+1 → ϕ(x′)∩U ,
then (Gr (ϕ), πX) ∈ ANEX(Mc

n). Besides (Gr (ϕ), πX) ∈ AEX(Mc
n) if and only

if (Gr (ϕ), πX) ∈ ANEX(Mc
n) and ϕ(x) ∈ Cn for all x ∈ X. It is easy to obtain

the following fact.

Proposition 2.3. If (Y, q) ∈ ANEX(Mc
n), then q is an open map.

Given a space over B, (Y, q) and Y0 ⊂ Y . We say that a pair (Y, Y0) has a lift-
ing property over B with respect to the class Mc

n (written (Y, Y0) ∈ LPB(Mc
n)),

if for any pair (Z,Z0) ∈ Mc
n, where (Z, s) is a space over B, and for any map

g:Z → Y over B such that g(Z0) ⊂ Y0, there is a lifting over B, f :Z → Y0 of
the map g, i.e. f is a map over B such that f |Z0 = g|Z0 .

In the following result we characterize the class ANEB(Mc
n) in terms of

the lifting property over B. The equivalence of conditions (a) and (c) is given
in [19], and condition (b) can be obtained by the similar methods used in the
proof of Theorem 2.9 in [19]. For the completeness we provide the the proof of
the equivalence of (b) with (a) and (c) in Appendix.

Theorem 2.4. The following assertions are equivalent:

(a) (Y, q) ∈ ANEB(Mc
n),

(b) for any embedding over B of Y in an arbitrary space T over B (6), for
any continuous function ε:Y → (0,∞), there is an open neighbourhood
U of Y such that for any pair (Z,Z0) ∈ Mc

n, where (Z, s) is a space
over B, and for any map g:Z → U over B such that g(Z0) ⊂ Y , there is
a lifting f :Z → Y over B of the map g, such that d(f(z), g(z)) < ε(f(z))
for any z ∈ Z, where d is the given metric on T .

(c) for any embedding over B of Y into a space T over B, there is an open
neighbourhood U of Y in T such that (U, Y ) ∈ LPB(Mc

n).

3. Graph approximations of set-valued maps under constraints

The main result of this paper is the following.

Theorem 3.1. Let n ≥ 0, X, Y be metric spaces, ϕ:X ( Y be an up-
per semicontinuous set-valued map with compact values and C ⊂ X × Y such
that (C, πX) ∈ ANEX(Mc

n). Then for any open neighbourhood U of the graph

(6) We mean a map i: Y → T over B such that i transforms homeomorphically Y onto
i(Y ). Then we treat (Y, q) as a subspace over B of T .
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Gr (ϕ) there is an open neighbourhood V ⊂ U of Gr (ϕ) such that any V ∩ C-
approximation on A such that dim(X\A) ≤ n+1, extends to U∩C-approximation
on X, provided that the tangency condition is satisfied:

(C) for any x0 ∈ X and for any open neighbourhood U of ϕ(x0), there are
an open neighbourhood V ⊂ U of ϕ(x0) and an open neighbourhood
W of x0 such that for any x ∈ W , for any −1 ≤ k ≤ n, every map
f0:Sk → V ∩ C(x) admits an extension f :Dk+1 → U ∩ C(x).

The proof of will be performed in Section 3.2.
Now observe that we easily obtain an answer to the problem given in Intro-

duction. Indeed, taking A = ∅ in Theorem 3.1 we obtain the following corollary.

Corollary 3.2. Let n ≥ 0, X, Y be metric spaces, dim(X) ≤ n + 1,
ϕ:X ( Y be an upper semicontinuous set-valued map with compact values and
C ⊂ X × Y such that (C, πX) ∈ ANEX(Mc

n). If tangency condition (C) holds,
then for any open neighbourhood U of Gr (ϕ), there is a U ∩ C-approximation
on X.

Below we provide situations when (C, πX) ∈ ANEX(Mc
n) and tangency con-

dition (C) is satisfied.

Remark 3.3. (a) Let C( · ):X ( Y be a lower semicontinuous set-valued
map with closed and convex values in Banach space Y . In view of the Michael
selection theorem (see [21], [19]), (C, πX) ∈ AEX(M) ⊂ ANEX(Mc

n) for any
n ≥ 0. Moreover, if ϕ has convex values and ϕ(x) ∩ C(x) 6= ∅ for any x ∈ X,
then tangency condition (C) is satisfied. Indeed, any open neighbourhood U of
ϕ(x0) contains an open and convex neighbourhood V of ϕ(x0) and, by the lower
semicontinuity of C( · ), V ∩ C(x) is nonempty and convex for all x from some
open neighbourhood of x0. Thus Theorem 3.1 provides U ∩ C-approximations
in the convex situation.

(b) In case of lack of constraints Theorem 3.1 coincides with the Kryszewski
result given in Introduction. Indeed, if C = X ×Y , then (C, πX) ∈ ANEX(Mc

n)
if and only if Y ∈ ANE(Mc

n) = LCn (see [19]). Moreover, in this situation,
tangency condition (C) means that values of ϕ has UVn-property in Y (see
Section 3.1).

Observe that if condition (C) holds, then the assumption (1.1) is satisfied,
i.e. C is a constraint set, since if k = −1 then we obtain the non-emptiness of
U ∩ C(x) for any x ∈ X and open U ⊃ ϕ(x). In applications, usually ones
consider situations when X is a subset of a Banach space Y and C(x) denotes
the tangent space (or cone) at x ∈ X and assumption (1.1) is called (weak)
tangency of ϕ to X (e.g. [10]). Therefore we say that (C) is tangent condition.
Note that (C) contains a topological structure of values of ϕ and describes the
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local behavior of the map ϕ with respect to constraint set C. In Section 3.1 we
introduce some auxiliary concepts that will explain the role and the meaning of
assumption (C).

3.1. A fiberwise UV-property. Let (Y, q) be a space over the base B and
Y0 ⊂ Y . Following the paper [19], we say that the pair (Y, Y0) has the (fiberwise)
extension property over B for the class C (written (Y, Y0) ∈ EPB(C)) if for any
space (Z, s) over B, (Z,Z0) ∈ C such that s(Z) ⊂ q(Y0), any fiberwise map
f0:Z0 → Y0 over B admits an extension f :Z → Y over B, i.e. the following
diagram

Y0
q|Y0

""

⊂

��@
@@

@@
@@

@

Z0

f0

>>}}}}}}}}

⊂
  B

BB
BB

BB
B Y

q // B

Z

f
>>

s

<<

is commutative.

Definition 3.4. We say that a nonempty subset K ⊂ Y has a (fiberwise)
UV-property in Y over B for the class C (written K ∈ UVB(Y ; C)) if for any
open neighbourhood U of the set K in Y , there is an open neighbourhood V ⊂ U

of K such that (U, V ) ∈ EPB(C).

It is clear that if q is a surjection, then Y ∈ UVB(Y ; C) if and only if (Y, Y ) ∈
EPB(C) or, equivalently (Y, q) ∈ AE(C).

Remark 3.5. Observe that if ϕ:X ( Y is a set-valued map such that
Gr (ϕ) ∈ UVX(X × Y ; C), then for any open neighbourhood U of Gr (ϕ) there is
an open neighbourhood V of Gr (ϕ) such that any V-approximation on A such
that (X, A) ∈ C, extends to a U-approximation on X. In particular, if (X, ∅) ∈ C,
then for any open neighbourhood U of Gr (ϕ) there is a U-approximation on X

(comp. Corollary 3.13). We regard X × Y as a space over X with the usual
projection π:X × Y → X. Indeed, if f :A → Y is a V-approximation, then
f̂ :A → V given by the formula: f̂(x) = (x, f(x)) for any x ∈ A, is a well-defined
map over X, where (A, idX |A) is a space over X. Thus we obtain the conclusion.

In what follows, we investigate UV-property in the non-fiberwise situation,
i.e. when B is a singleton. In this case we write EP(C) = EPB(C), and UV(Y ; C)
= UVB(Y ; C).

It is clear that in view of the inclusions Sn ⊂Mc
n ⊂M, we have that

UV(Y ;M) ⊂ UV(Y ;Mc
n) ⊂ UV(Y ;Sn).



Graph Approximations of Set-Valued Maps under Constraints 369

UV-properties for the classes M and Sn are well-known in the literature.
Namely, in view of the Hyman theorem (see [15]), a compact set K is cell-like (i.e.
there is an embedding i:K → Y into an ANR Y such that i(K) is contractible in
each of its neighbourhoods) if and only if there is an embedding i:K → Y into
an ANRY such that i(K) ∈ UV(Y ;M). Hence, if Y ∈ ANR, then a compact
set K ⊂ Y is a cell-like set if and only if K ∈ UV(Y ;M). Moreover, if K is
a convex subset of a Banach space Y , then K ∈ UV(Y ;M).

Furthermore, the class of compact subsets of a given space Y having UVn-
property in Y , by the very definition, coincides with the class UV(Y ;Sn). We
write K ∈ UVn, if K ∈ UV(Y ;Sn) for some embedding of K into Y ∈ LCn. It
can be shown that if K ∈ UVn, then K ∈ UV(Y ;Sn) for any embedding of K

into Y ∈ LCn (it follows from [6, Lemma 2])
Recall that a compact set K has UVω-property in Y (written K ∈ UVω(Y ))

provided that K ∈ UV(Y ;Sn) for any n ≥ 0. Moreover, if a compact set K ∈
UVω(Y ), then K is acyclic with respect to Čech cohomology with coefficients
in any abelian group (see [18]). It is clear that Y ∈ LCn if and only if {y} ∈
UV(Y ;Sn) for any y ∈ Y .

The class UV(Y ;Sn) is substantially larger than the class UV(Y ;Mc
n). In-

deed, let Z denotes a set {0} ∪ {1/n | n = 1, 2, . . . } ⊂ R and

Y := {(tz, 1− t) | z ∈ Z, t ∈ [0, 1]} ⊂ R2.

Then {0} × [0, 1] ∈ UVω(Y ) ⊂ UV(Y ;Sn) and {0} × [0, 1] /∈ UV(Y ;Mc
0) ⊂

UV(Y ;Mc
n) (comp. the example in Section 4 in [13]). However, in case of

Y ∈ LCn, the above-mentioned classes coincide, i.e. UV(Y ;Sn) = UV(Y ;Mc
n)

(see Corollary 3.7).
From [16], Y ∈ LCn if and only if for any y ∈ Y , {y} ∈ UV(Y ;Mc

n),
and which was indicated in the Preliminaries, it is equivalent to the condition
Y ∈ ANE(Mc

n). If (Y, q) is a space over B, then the similar result holds (see
[19]): (Y, q) ∈ ANEB(Mc

n) if and only if {y} ∈ UVB(Y ;Mc
n) for any y ∈ Y .

The constraint set C ⊂ X × Y may be regarded as a space over X with the
usual projection πX :C → X.

Theorem 3.6. Let K be a subset of X × Y , (C, πX) ∈ ANEX(Mc
n) be

a space over X such that K ∩ C 6= ∅. If for any open neighbourhood U of K

there is an open neighbourhood V ⊂ U of K such that for any x ∈ πX(V ∩ C)

((U ∩ C)(x), (V ∩ C)(x)) ∈ EP(Sn),

then for any open neighbourhood U of K there is an open neighbourhood V ⊂ U

of K such that (U ∩ C, V ∩ C) ∈ EPX(Mc
n).

Proof. Suppose that Y is a normed space. We show that for any open
neighbourhood U of K and for any (continuous) function ε:U ∩ C → (0,∞),
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there are an open neighbourhood V ⊂ U of K and a function δ:V ∩C → (0,∞)
such that δ(x, y) ≤ ε(x, y) for all (x, y) ∈ V ∩ C, and if

U :=
⋃

(x,y)∈U∩C

B((x, y), ε(x, y)), V :=
⋃

(x,y)∈V ∩C

B((x, y), δ(x, y)),

then the following condition is satisfied:

(3.1) (U(x),V(x)) ∈ EP(Sn)

for any x ∈ W := πX(V ∩ C). Let U and ε be given as above. Then there is an
open neighbourhood V ⊂ U of K such that

(3.2) ((U ∩ C)(x), (V ∩ C)(x)) ∈ EP(Sn)

for any x ∈ W . Observe that (V ∩ C, πX) ∈ ANEX(Mc
n), since V ∩ C is

an open subset of C (see [19]). In view of Theorem 2.4, we can be find an
open neighbourhood U0 of V ∩ C such that condition (b) is satisfied. Moreover,
using a standard paracompactness argument and a partition of unity, we find
a (continuous) function δ:V ∩ C → (0,∞) such that

V =
⋃

(x,y)∈V ∩C

B((x, y), δ(x, y)) ⊂ U0.

Let 0 ≤ k ≤ n, x ∈ W and g:Sk → V(x). Now we show that g is homotopically
trivial in U(x). Notice that ĝ: {x} × Sk → V ⊂ U0, where ĝ(x, z) = g(z) for any
z ∈ Sk, is a map over X, and according to condition (b) of Theorem 2.4, there
is a lifting f̂ : {x} × Sk → V ∩ C over X such that, for each z ∈ Sk,

d(f̂(x, z), ĝ(x, z)) < ε(f̂(x, z)).

By condition (3.2), a map f :Sk → (V ∩ C)(x), given by the formula

f(z) := πY (f̂(x, z)) for z ∈ Sk,

is homotopically trivial in (U ∩ C)(x) ⊂ U(x).
Define a homotopy H:Sk × [0, 1] → Y such that

H(z, t) := tf(z) + (1− t)g(z) for any z ∈ Sk.

Observe that

‖H(z, t)− f(z)‖ ≤ ‖f(z)− g(z)‖ < ε(f̂(x, z)) = ε(x, f(z))

for any z ∈ Sk (7). Hence (x,H(z, t)) ∈ B((x, f(z)), ε(x, f(z))) ⊂ U and
H(z, t) ⊂ U(x) for any (z, t) ∈ Sk × [0, 1]. Therefore the map g is homotopically

(7) We consider a metric in X × Y given by the formula

d((x1, y1), (x2, y2)) = max{dX(x1, y1), dY (x2, y2)},
where dX and dY stand for metrics in X and Y respectively.
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trivial in U(x), hence there is an extension g′:Dk+1 → U(x) of the map g, which
completes proof of condition (3.1).

Let U be an open neighbourhood of K. Then (U∩C, πX) ∈ ANEX(Mc
n), and

taking into account condition (b) of Theorem 2.4, we find a function εn+1:U ∩
C → (0,∞) such that if

Un+1 :=
⋃

(x,y)∈U∩C

B((x, y), εn+1(x, y)),

then the following condition holds

(3.3) (Un+1, U ∩ C) ∈ LPX(Mc
n).

Hence we obtain a sequence of open neighbourhoods V := U0 ⊂ U1 ⊂ . . . ⊂
Un+1 := X × Y of K and a sequence of functions {εi:Ui ∩ C → (0,∞)}0≤i≤n+1

such that ε0(x, y) ≤ ε1(x, y) ≤ . . . ≤ εn+1(x, y) for any (x, y) ∈ U0 ∩ C and
assigning

Ui :=
⋃

(x,y)∈Ui∩C

B((x, y), εi(x, y)),

0 ≤ i ≤ n, the following condition is satisfied

(3.4) (Ui+1(x),Ui(x)) ∈ EP(Sn)

for any x ∈ W := πX(V ∩ C) and 0 ≤ i ≤ n.
Let (Z, s) be a space over B and Z0 its closed subset such that (Z,Z0) ∈Mc

n

and s(Z) ⊂ πX(V ∩ C) = W . Let f0:Z0 → V ∩ C be a map over X. Define
a map Gi:Z ( Y by the formula

Gi(z) := Ui(s(z)) = {y ∈ Y | (s(z), y) ∈ Ui}

for any z ∈ Z and 0 ≤ i ≤ n + 1. The above set-valued maps satisfies
the assumptions of Bielawski’s theorem [4, Theorem 1.1]. In fact, the graph
Gr (Gi) := G−1(Ui) is open, where G:Z × Y → X × Y is a map such that
G(z, y) := (s(z), y) for (z, y) ∈ Z × Y . Moreover, in view of (3.4), any map
g0:Si → Gi(z) extends to a map g:Di+1 → Gi+1(z) for any 0 ≤ i ≤ n, z ∈ Z.
Observe that a map πY ◦ f0 is a selection of the map G0, thus, in view of the
Bielawski’s theorem, there is an extension f̂ :Z → Y of πY ◦f0 such that f̂ is a se-
lection of Gn+1. Let g:Z → Un+1 be a map over X such that g(z) := (s(z), f̂(z))
for any z ∈ Z. Observe that g|Z0 = f0, and by the lifting property (3.3), we get
a map f :Z → U ∩C over X being an extension of f0, which completes the proof
in case Y is a normed space.

Now let Y be an arbitrary (metric) space. In view of the Arens–Eells theorem
(see [2]) there is a closed embedding iE :Y → E into normed space E. Let
i:X × Y → X × E be a closed embedding given as follows: i(x, y) := (x, iE(y))
for any (x, y) ∈ X × Y . Let K ′ := i(K) and C ′ := i(C). We show that for any
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open neighbourhood U ′ in X×E of K ′ there is an open neighbourhood V ′ ⊂ U ′

in X × E of K ′ such that

(3.5) ((U ′ ∩ C ′)(x), (V ′ ∩ C ′)(x)) ∈ EP(Sn).

for any x ∈ πX(V ′ ∩ C ′), where πX denotes the standard projection of X × E

on X, too. Let U ′ be an open neighbourhood in X ×E of K ′. Then, there is an
open neighbourhood V in X × Y of K such that

(3.6) ((U ′ ∩ C ′)(x), (i(V ) ∩ C ′)(x)) ∈ EP(Sn)

for any x ∈ W := πX(V ∩C) = πX(i(V )∩C ′). Since (U ′∩C ′, πX) ∈ ANEX(Mc
n)

and by condition (c) of Theorem 2.4, there is an open neighbourhood U ′′ of U ′∩C ′

such that

(3.7) (U ′′, U ′ ∩ C ′) ∈ LPX(Mc
n).

Using a partition of unity, we find a function ε:U ′ ∩ C ′ → (0,∞) such that

(3.8) B((x, y), ε(x, y)) ⊂ U ′′

for any (x, y) ∈ U ′ ∩ C ′. Observe that (i(V ) ∩ C ′, πX) ∈ ANEX(Mc
n), hence

for the function ε|i(V )∩C′ , we find an open neighbourhood V ′′ in X × E of
i(V ) ∩ C ′ satisfying condition (b) of Theorem 2.4. Let V ′ := V ′′ ∩ (W × E),
0 ≤ k ≤ n, x ∈ W = πX(V ′ ∩ C ′) and g:Sk → (V ′ ∩ C ′)(x) be a map. Then
ĝ: {x} × Sk → V ′′, where ĝ(x, z) = g(z) for any z ∈ Sk, is a map over X, hence
f̂ : {x} × Sk → i(V ) ∩ C ′ is a map over X such that

d(f̂(x, z), ĝ(x, z)) < ε(f̂(x, z)).

By condition (3.6), a map f :Sk → (i(V )∩C ′)(x) given by the formula: f(z) :=
πE(f̂(x, z)) for any z ∈ Sk, is homotopically trivial in (U ′ ∩ C ′)(x) ⊂ U ′′(x).

Similarly as above, we define a homotopy H:Sk × [0, 1] → E such that
H(z, t) := tf(z) + (1 − t)g(z) for any z ∈ Sk. Then, by condition (3.8), we get
the inclusions

(x,H(z, t)) ∈ B((x, f(z)), ε(x, f(z))) ⊂ U ′′,

and hence H(z, t) ⊂ U(x) for any (z, t) ∈ Sk × [0, 1]. Then g is homotopically
trivial in U ′′(x), and hence, there is an extension g′:Dk+1 → U ′′(x) of the map g.
By condition (3.7), we easily obtain a map g′′:Dk+1 → (U ′ ∩ C ′)(x) being an
extension of g. Therefore we has shown that condition (3.5) is satisfied.

Observe that in view of the first part of the proof, we obtain that for any
open neighbourhood U ′ in X × E of K ′, there is an open neighbourhood V ′ ⊂
U ′ in X × E of K ′ such that (U ′ ∩ C ′, V ′ ∩ C ′) ∈ EPX(Mc

n), where we put
K ′ := i(K) and C ′ := i(C). Let U be an open neighbourhood of K. Since
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(i(U) ∩ C ′, πX) ∈ ANEX(Mc
n) and by condition (c) of Theorem 2.4, there is an

open neighbourhood U ′ of i(U) ∩ C ′ such that

(U ′, i(U) ∩ C ′) ∈ LPX(Mc
n).

Let V ′ ⊂ U ′ be an open neighbourhood of K ′ such that (U ′ ∩ C ′, V ′ ∩ C ′) ∈
EPX(Mc

n). If V := i−1(V ′), then it is easy to check that (U ∩ C, V ∩ C) ∈
EPX(Mc

n), which completes the proof of the theorem. �

Corollary 3.7. Let Y ∈LCn and K be a subset of Y . Then K∈UV(Y ;Sn)
if and only if K ∈ UV(Y ;Mc

n).

Proof. Let K ∈ UV(Y ;Sn). In Theorem 3.6 we take X := {x0} and C :=
X × Y . Then (C, πX) ∈ ANEX(Mc

n), since Y ∈ LCn = ANE(Mc
n). Hence, if

K ∈ UV(Y ;Sn), then {x0}×K ∈ UV({x0}×Y ;Sn), and in view of Theorem 3.6,
we obtain that {x0} ×K ∈ UV({x0} × Y ;Mc

n). Thus K ∈ UV(Y ;Mc
n). �

Corollary 3.8. (C, πX) ∈ AEX(Mc
n) if and only if (C, πX) ∈ ANEX(Mc

n)
and C(x) ∈ Cn for every x ∈ X.

Proof. It is clear that if (C, πX) ∈ AEX(Mc
n), then (C, πX) ∈ ANEX(Mc

n)
and C(x) ∈ AE(Mc

n) ⊂ Cn for any x ∈ X. In order to prove the converse
implication, it sufficient to apply Theorem 3.6 to a set K := X × Y . �

3.2. Main results – proofs. As before, we assume that ϕ:X ( Y is an
upper semicontinuous set-valued map with compact values, C is a constraint set
(see (1.1)) and (C, πX) is a space over X.

Theorem 3.9. If πX :C → X is an open map, then the following conditions
are equivalent:

(A) for any x ∈ X and for any open neighbourhood U of {x}×ϕ(x), there is
an open neighbourhood V ⊂ U of {x}×ϕ(x) such that (U ∩C, V ∩C) ∈
EPX(Mc

n).
(B) for any open neighbourhood U of the graph Gr (ϕ) there is an open

neighbourhood V ⊂ U of the graph Gr (ϕ) such that (U ∩ C,V ∩ C) ∈
EPX(Mc

n).

Before we prove Theorem 3.9 we need the following lemmas.

Lemma 3.10. For any open neighbourhood U of Gr (ϕ), for any open covers
W and {Lx}x∈X of X such that x ∈ Lx for any x ∈ X, for any family {Vx}x∈X

of open subsets of Y such that ϕ(x) ⊂ Vx for any x ∈ X, there are an open
neighbourhood V ⊂ U of Gr (ϕ) and open cover W ′ of X and a refinement of W
such that:

(a) W ′ × V(W ′) ⊂ U for any W ′ ∈ W ′ (8)

(8) If V ⊂ X × Y and A ⊂ X, then we write V(A) := {y ∈ Y | (x, y) ∈ V, x ∈ A}.
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(b) for any W ′ ∈ W ′ there are W ∈ W and x ∈ W such that W ′ ⊂ W ∩Lx

and V(W ′) ⊂ Vx.

Proof. Let U be an open neighbourhood of Gr (ϕ) an let W, {Lx}x∈X and
{Vx}x∈X be given as above. Since ϕ is an upper semicontinuous set-valued map,
for every x ∈ X, there are open neighbourhoods L1

x of x and U1
x of ϕ(x) such

that

(3.9) ϕ(L1
x) ⊂ U1

x and L1
x × U1

x ⊂ U .

Moreover, we can assume that U1
x ⊂ Vx, the cover {L1

x}x∈X is a refinement of W
and L1

x ⊂ Lx for any x ∈ X. Since X is a paracompact space, there is a locally
finite cover {L2

x}x∈X of X being a refinement of {L1
x}x∈X , where L2

x ⊂ L1
x for

any x ∈ X. Let

U2(z) :=
⋂
{U1

x | x ∈ X and z ∈ L2
x}

for every z ∈ X. Taking into account the locally finiteness of the cover {L2
x}x∈X

we obtain that the set U2(z) is open in Y . Moreover, if z ∈ L2
x, then

ϕ(z) ⊂ ϕ(L2
x) ⊂ ϕ(L1

x) ⊂ U1
x .

Hence ϕ(z) ⊂ U2(z). Again, taking into account the locally finiteness of the
cover {L2

x}x∈X , a set

U2 :=
⋃

z∈X

{z} × U2(z)

is an open neighbourhood of Gr (ϕ). Moreover,

(3.10) U2(z) ⊂ U1
x for any x ∈ X, z ∈ L2

x.

Now we recall the following lemma (see [13, Lemma 3.2] or [1, Lemmas A.8
and A.10]): If ϕ is an upper semicontinuous set-valued map with compact values,
then for any open neighbourhood U of Gr (ϕ), there is an open neighbourhood
V ⊂ U of Gr (ϕ) and an open cover W of the space X such that V(U) ⊂ U(x)
for any U ∈ W and x ∈ U .

Applying the above lemma for the open neighbourhood U2 of Gr (ϕ) we find
an open neighbourhood V ⊂ U2 of Gr (ϕ) and an open cover W2 of X such that

(3.11) V(W 2) ⊂ U2(z) = U2(z) for any W 2 ∈ W2 and z ∈ W 2.

Finally, we put W ′ := {W 2∩L2
x | W 2 ∈ W2, x ∈ X, W 2∩L2

x 6= ∅}. Then W ′ is
an open cover of X and refines {L2

x}x∈X . Hence W ′ is a refinement of the cover
W. Moreover, by conditions (3.0)–(3.10) we obtain that for any z ∈ W 2 ∩ L2

x

the following inclusions hold:

(W 2∩L2
x)×V(W 2∩L2

x) ⊂ (W 2∩L2
x)×U2(z) ⊂ (W 2∩L2

x)×U1
x ⊂ L1

x×U1
x ⊂ U .
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Then condition (a) is satisfied. Moreover, W 2 ∩ L2
x ⊂ L1

x ⊂ Lx, x ∈ L1
x, the

cover {L1
x}x∈X is a refinement of W and

V(W 2 ∩ L2
x) ⊂ U1

x ⊂ Vx

for any x ∈ X. Therefore condition (b) holds. �

Lemma 3.11. Let πX :C → X be an open map and suppose that the following
condition is satisfied:

(∗) for any x ∈ X and for any open neighbourhood U of {x}×ϕ(x), there is
an open neighbourhood V ⊂ U of {x}×ϕ(x) such that (U ∩C, V ∩C) ∈
EPX(Mc

n).

Then for any open neighbourhood U of Gr (ϕ), for any open cover W of X, there
are an open neighbourhood V ⊂ U of Gr (ϕ) and an open cover W ′ of X which
refines W such that

(U ∩ C ∩ π−1
X (W ′),V ∩ C ∩ π−1

X (W ′)) ∈ EPX(Mc
n)

for any W ′ ∈ W ′.

Proof. Let U be an open neighbourhood of Gr (ϕ) and W be an open
cover X. Applying Lemma 3.10, we obtain an open neighbourhood U ′ ⊂ U of
Gr (ϕ) and an open cover W1, a refinement of W, such that

(3.12) W × U ′(W ) ⊂ U for every W ∈ W1.

In view of condition (∗), for any x ∈ X there are open neighbourhoods Lx of x

and Vx of ϕ(x) such that

(3.13) ((X × U ′(x)) ∩ C, (Lx × Vx) ∩ C) ∈ EPX(Mc
n).

Observe that by the openness of the map πX :C → X, we can assume that

Lx = πX((Lx × Vx) ∩ C)

for any x ∈ X. Again, applying Lemma 3.10,b we find an open cover W ′ and
an open neighbourhood V ⊂ U ′ of Gr (ϕ) such that for any W ′ ∈ W ′ there are
W ∈ W1 and x ∈ W such that W ′ ⊂ W ∩ Lx and

(3.14) V(W ′) ⊂ Vx.

Let W ′ ∈ W ′. We show that

(U ∩ C ∩ π−1
X (W ′),V ∩ C ∩ π−1

X (W ′)) ∈ EPX(Mc
n).

Let (Z, s) be a space over X such that s(Z) ⊂ W ′ = πX(V ∩ C ∩ π−1
X (W ′)), let

(Z,Z0) ∈ Mc
n and f0:Z0 → V ∩ C ∩ π−1

X (W ′) be a map over X. Observe that
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condition (3.14) implies that for some W ∈ W1 and x ∈ X we have the following
inclusions

s(Z) ⊂ W ′ ⊂ W ∩ Lx ⊂ Lx = πX(Lx × Vx ∩ C),

and

πY ◦ f0(Z0) ⊂ V(s(Z0)) ⊂ Vx.

Hence f0(Z0) ⊂ (Lx × Vx) ∩ C and, in view of (3.13), there is a map f :Z →
X × U ′(x) ∩ C over X being an extension of f0. Moreover from (3.12) we get
inclusions

f(Z) ⊂ s(Z)× U ′(x) ⊂ W × U ′(W ) ⊂ U .

Then we obtain that f(Z) ⊂ U ∩ C ∩ π−1
X (W ′), which completes the proof. �

Proof of Theorem 3.9. Let πX :C → X be an open map and suppose that
condition (A) is satisfied. Let U be an open neighbourhood of Gr (ϕ). Applying
Lemma 3.11, we obtain a sequence of neighbourhoods V0 := U ,V1, . . . ,Vn+2 of
Gr (ϕ) and a sequence of open covers W0 := {X},W1, . . . ,Wn+2 of X such that
Vk+1 ⊂ Vk, Wk+1 is a refinement of Wk and

(3.15) (Vk ∩ C ∩ π−1
X (W ),Vk+1 ∩ C ∩ π−1

X (W )) ∈ EPX(Mc
n)

for any W ∈ Wk+1 and k = 0, . . . , n + 1. Put V := Vn+2. Let (Z, s) be a space
over X, Z0 its closed subset such that (Z,Z0) ∈ Mc

n, f0:Z0 → V ∩ C be a map
over X. Applying Lemma 2.1 to the cover {s−1(W )}W∈Wn+2 , we find a sequence
of closed subspaces Z0 ⊂ Z1 ⊂ . . . ⊂ Zn+2 = Z having the properties enlisted in
this lemma.

For each i = 0, . . . , n + 2 we construct a map fi:Zi → Vn+2−i ∩ C over X

such that fi+1(z) = fi(z) for any i = 0, . . . , n + 1 and z ∈ Zi.
The map f0 is given. Suppose that for some i ∈ {0, . . . , n + 1}, a map fi

satisfying the above conditions is constructed. Let α ∈ Ii. Observe that

(Bα
i , Zi ∩Bα

i ) ∈Mc
n,

and s(Bα
i ) ⊂ W = πX(Vn+2−i ∩ C ∩ π−1

X (W )) for some W ∈ Wn+2−i. Hence,
according to condition (3.15), there is a map fα

i :Bα
i → Vn+1−i∩C over X being

an extension of fi|Zi∩Bα
i
. Now define a map fi+1 : Zi+1 → Vn+1−i ∩ C by the

formula:

fi+1(z) =

{
fi(z) if z ∈ Zi,

fα
i (z) if z ∈ Bα

i , α ∈ Ii.

Then fi+1 is a well-defined continuous map over X, since the family {Bα
i ∩ (Z \

Z0)}α∈Ii
is pairwise separated by open neighbourhoods. Moreover, fi+1(z) =

fi(z) for any z ∈ Zi. By induction, f := fn+2:Z → U ∩C is a required extension
of f0.
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Now suppose that condition (B) is satisfied. Let x ∈ X and U be an open
neighbourhood of {x} × ϕ(x). Since ϕ is an upper semicontinuous map with
compact values, there is an open neighbourhood W of x such that

W × ϕ(W ) ⊂ U.

Let W0 be an open neighbourhood of x such that cl W0 ⊂ W . Then

U := U ∪ ((X \ cl W0)× Y )

is an open neighbourhood of Gr (ϕ). By condition (B) we find an open neigh-
bourhood V ⊂ U of Gr (ϕ) such that

(3.16) (U ∩ C,V ∩ C) ∈ EPX(Mc
n).

Let V be an open neighbourhood of {x} × ϕ(x) such that V ⊂ U ∩ V and
πX(V ) ⊂ W0. We show that (U ∩C, V ∩C) ∈ EPX(Mc

n). Let (Z, s) be a space
over X, Z0 its closed subset such that (Z,Z0) ∈Mc

n and s(Z) ⊂ πX(V ∩C). Let
f0:Z0 → V ∩ C be a map over X. Then f0(Z0) ⊂ V ∩ C and in view of (3.16)
there is a map f :Z → U ∩ C over X being an extension of f0. Observe that

f(Z) ⊂ s(Z)× U(s(Z)) ⊂ W0 × U(W0) ⊂ U.

Then f(Z) ⊂ U ∩ C, and the proof is completed. �

Now we are going to prove Theorem 3.1.

Lemma 3.12. Let (C, πX) ∈ ANEX(Mc
n). Then tangency condition (C) is

equivalent to condition (A).

Proof. Observe that tangency condition (C) is equivalent to the following
condition:

• for any x0 ∈ X and for any open neighbourhood U of {x0} × ϕ(x0),
there is an open neighbourhood V ⊂ U of {x0} × ϕ(x0) such that

((U ∩ C)(x), (V ∩ C)(x)) ∈ EP(Sn) for any x ∈ πX(V ∩ C).

Hence, in view of Theorem 3.6, if (C, πX) ∈ ANEX(Mc
n), then tangency condi-

tion (C) implies condition (A) of Theorem 3.9.
Now, let condition (A) holds. Fix x0 ∈ X and let U be an open neighbour-

hood of ϕ(x0). Let U ′ := X × U . Then, by condition (A), there is an open
neighbourhood V ′ of {x0} × ϕ(x0) such that

(3.17) (U ′ ∩ C, V ′ ∩ C) ∈ EPX(Mc
n).

There are open neighbourhoods V ⊂ U of ϕ(x0) and W of x0 such that

πX((W × V ) ∩ C) = W and W × V ⊂ V ′.
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Let x ∈ W , (Z,Z0) ∈ Sn and let f0:Z0 → V ∩ C(x) be a map. Then f̂0: {x} ×
Z0 → (W × V ) ∩ C defined as follows: f̂0(x, z) := (x, f0(z)) for any z ∈ Z0, is
a map over X, where the projection s of {x}×Z is given by formula: s(x, z) := x.
Observe that ({x}×Z, {x}×Z0) ∈Mc

n and s({x}×Z) ⊂ πX(U). Then, taking
into account condition (3.17), there is an extension f̂ : {x}×Z → U ′ ∩C over X

of f̂0. Moreover, a map f :Z → U∩C(x) defined by formula: f(z) := πY (f̂(x, z))
for any z ∈ Z, is an extension of f0. Therefore condition (C) is satisfied. �

Proof of Theorem 3.1. By the Lemma 3.12, if (C, πX) ∈ ANEX(Mc
n),

then tangency condition (C) implies condition (A) of Theorem 3.9. In order to
complete the proof, observe that condition (B) implies the conclusion of Theo-
rem 3.1. Indeed, let U and V be such that

(3.18) (U ∩ C,V ∩ C) ∈ EPX(Mc
n).

Let f0:A → Y be a V ∩ C-approximation on A such that (X, A) ∈ Mc
n. Then

a map f̂0:X → V ∩C given by f̂(x) := (x, f(x)) for any x ∈ X, is a well-defined
map over X. By condition (3.18), there is an extension f̂ :X → U ∩C over X of
f0. Hence f := πY ◦ f̂ is a U ∩C-approximation on X being an extension of f0.�

3.3. Consequences of main results. The following result follows from
Theorem 3.9.

Corollary 3.13.

(a) Gr (ϕ) ∈ UVX(X ×Y ;Mc
n) if and only if ϕ(x) ∈ UV(Y ;Mc

n) for every
x ∈ X.

(b) If ϕ(x) ∈ UV(Y ;Mc
n) for any x ∈ X, then for any open neighbourhood

U of the graph Gr (ϕ), there is an open neighbourhood V ⊂ U of the
graph Gr (ϕ) such that for any subset A ⊂ X, dim(X \ A) ≤ n + 1,
every V-approximation on A extends to a U-approximation on X.

Proof. It is not difficult to check that if C = X × Y , then condition (A) is
equivalent to the following one: ϕ(x) ∈ UV(Y ;Mc

n) for any x ∈ X. Moreover,
the projection πX :X × Y → X is open. On the other hand, condition (B) is
equivalent to the following condition: Gr (ϕ) ∈ UVX(X × Y ;Mc

n). Therefore
(a) follows from Theorem 3.9. The assertion (b) is a direct consequence of (a)
(see Remark 3.5). �

Corollary 3.13 is a generalization of the Kryszewski result given in Intro-
duction. In fact, having the additional assumption Y ∈ LCn, in view of Corol-
lary 3.7, we obtain ϕ(x) ∈ UV(Y ;Sn) if an only if ϕ(x) ∈ UV(Y ;Mc

n) for any
x ∈ X. Hence if Y ∈ LCn, ϕ(x) ∈ UV(Y ;Sn), then for any open neighbour-
hood U of the graph Gr (ϕ), there is an open neighbourhood V ⊂ U of Gr (ϕ)
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such that any V-approximation on A such that dim(X \A) ≤ n + 1, extends to
a U-approximation on X.

Now observe that if tangency condition (C) is satisfied, then:

(D) for any x ∈ X and for any open neighbourhood U of ϕ(x), there is an
open neighbourhood V ⊂ U of ϕ(x) such that (U ∩ C(x), V ∩ C(x)) ∈
EP(Sn).

Contrary to (C) concerns a local behavior of ϕ with regard to constraint set C,
the above condition is a type of the pointwise tangency. The following exam-
ple shows that condition (D) is not sufficient to get the existence of U ∩ C-
approximations.

Example 3.14. Let X := [0, 1], Y := R2,

L = conv ({(0, 0), (1,−1)}) ∪ conv ({(1,−1), (1, 0)}),

and for any x ∈ X, ϕ(x) := L,

C(x) =

{
conv ({(0, 0), (1, 1− x)}) if x ∈ [0, 1),

(1, 0) if x = 1.

Then the map C( · ):X ( Y is lower semicontinuous with closed and convex
values (hence (C, πX) ∈ ANEX(Mc

n)) and ϕ is upper semicontinuous with con-
tractible values. For any x ∈ X, ϕ(x) ∩ C(x) is a singleton and any open
neighbourhood U of ϕ(x) contains an open neighbourhood V such that V ∩C(x)
is contractible. Therefore condition (D) is satisfied. Let U be an open neigh-
bourhood of Gr (ϕ). We find an open neighbourhood V ⊂ U of Gr (ϕ) such
that there are no V ∩ C-approximations. Indeed, given U ⊃ Gr (ϕ). There is
ε > 0 such that B(L, ε)∩ ([0, 1]× [0, 1]) has two path-connected components and
V := [0, 1]×B(L, ε) ⊂ U . Let f :X → Y be a V ∩C-approximation on X. Since

Gr (f) ⊂ V ∩ C ⊂ V ∩ ([0, 1]× [0, 1]× [0, 1])

then f(X) ⊂ B(L, ε) ∩ ([0, 1] × [0, 1]) and f(0), f(1) belong to different path-
connected components, which leads to contradiction.

However we shall show that if the strong tangency holds, i.e. if ϕ(x) ⊂ C(x)
for any x ∈ X (or equivalently, Gr (ϕ) ⊂ C), or if constraint set C is closed in
X × Y , then the pointwise tangency condition (D) is sufficient for the existence
of U ∩ C-approximations.

Lemma 3.15. Let Gr (ϕ) ⊂ C or C be a closed subset of X×Y . If (C, πX) ∈
ANEX(Mc

n), then the following conditions are equivalent:

(a) the pointwise tangency condition (D),
(b) ϕ(x) ∩ C(x) ∈ UVn for any x ∈ X,
(c) tangency condition (C).
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Proof. Let (C, πX) ∈ ANEX(Mc
n) and suppose that either Gr (ϕ) ⊂ C or

C is closed in X × Y .
(a) ⇒ (b). Suppose that Gr (ϕ) ⊂ C, then condition (D) is equivalent to the

following one: ϕ(x) = ϕ(x)∩C(x) ∈ UV(C(x);Sn) for any x ∈ X. Moreover, if C

is closed in X×Y , then for any x ∈ X the set C(x) is closed in Y . Hence for any
open neighbourhood U of ϕ(x) ∩ C(x) in C(x) there is an open neighbourhood
U ′ of ϕ(x) in Y such that U ′ ∩ C(x) = U . Now it is easy to see that if C is
closed in X × Y , then condition (D) is equivalent to the following condition:
ϕ(x) ∩ C(x) ∈ UV(C(x);Sn) for any x ∈ X. Since C(x) ∈ ANE(Mc

n) = LCn

and ϕ(x) ∩C(x) is compact, for any x ∈ X, ϕ(x) ∩C(x) ∈ UV(C(x);Sn) if and
only if ϕ(x) ∩ C(x) ∈ UVn.

(b) ⇒ (c). Fix x0 ∈ X and K := ϕ(x0). Let K ∩ C(x0) ∈ UVn. We show
that for any open neighbourhood U of {x0}×K, there is an open neighbourhood
V ⊂ U of {x0} ×K such that

(3.19) (U ∩ C, V ∩ C) ∈ EPX(Mc
n).

Assume that Y ∈ LCn. Then we obtain that K ∩ C(x0) ∈ UV(Y ;Sn) and, by
Corollary 3.7,

(3.20) K ∩ C(x0) ∈ UV(Y ;Mc
n).

Let U be an open neighbourhood of {x0}×K. Since (U ∩C, πX) ∈ ANEX(Mc
n),

in view of condition (c) from Theorem 2.4, there is an open neighbourhood U0

of U ∩ C such that

(3.21) (U0, U ∩ C) ∈ LPX(Mc
n).

Since K ∩ C(x0) is compact, there are open neighbourhoods U1 ⊃ K ∩ C(x0)
and W 3 x0 such that

(3.22) W × U1 ⊂ U0.

In view of (3.20) we get an open neighbourhood V1 ⊃ K ∩ C(x0) such that
(U1, V1) ∈ EP(Mc

n). Since K ⊂ C(x0) or C is a closed subset of X × Y , there is
an open neighbourhood V of {x0} ×K such that

V ∩ C ⊂ W × V1.

Let (Z, s) be a space over X and Z0 its closed subset such that (Z,Z0) ∈Mc
n and

s(Z) ⊂ πX(V ∩C). Let f0:Z0 → V ∩C be a map over X. Then πY ◦f0:Z0 → V1 is
a well-defined map. Since (U1, V1) ∈ EP(Mc

n), there is an extension f1:Z → U1

over X of πY ◦ f0. Taking into account condition (3.22), a map g:Z → U0 given
by the formula: g(z) = (s(z), f1(z)) for z ∈ Z, is a well-defined map over X.
Moreover, by condition (3.21), there is a lifting f :Z → U ∩ C over X such that
f(z) = g(z) = f0(z) for any z ∈ Z. Hence a map f is a required extension of f0.
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Now, let Y be a (metric) space. The Arens-Eells theorem implies that there is
a closed embedding iE :Y → E into a normed space E. Let i:X×Y → X×E be
a closed embedding defined as follows: i(x, y) := (x, iE(y)) for any (x, y) ∈ X×Y .
Let K ′ := iE(K) and C ′ := i(C). Hence, if {x0}×K ⊂ C, then {x0}×K ′ ⊂ C ′,
and if C is closed in X × Y , then C ′ is closed in X × E. Besides

K ′ ∩ C ′(x0) = iE(K ∩ C(x0)) ∈ UVn.

Since E ∈ LCn and in view of the first part of the proof of the implication (b) ⇒
(c), we get that for any open neighbourhood U ′ in X ×E of K ′ there is an open
neighbourhood V ′ ⊂ U ′ in X×E of K ′ such that (U ′∩C ′, V ′∩C ′) ∈ EPX(Mc

n).
Let U be an open neighbourhood of K. Since (i(U) ∩ C ′, πX) ∈ ANEX(Mc

n),
in view of condition (c) in Theorem 2.4, there is an open neighbourhood U ′ of
i(U) ∩ C ′ such that

(U ′, i(U) ∩ C ′) ∈ LPX(Mc
n).

Let V ′ ⊂ U ′ be an open neighbourhood of {x0}×K ′ such that (U ′∩C ′, V ′∩C ′) ∈
EPX(Mc

n). Put V := i−1(V ′). Then we easily check that (U ∩ C, V ∩ C) ∈
EPX(Mc

n), which completes the proof of condition (3.19). Since x0 was arbitrary
chosen, we obtain condition (A) of Theorem 3.9. Hence, in view of Lemma 3.12,
tangency condition (C) is satisfied. �

In view of Lemma 3.15 we obtain the following approximation result.

Theorem 3.16. Let (C, πX) ∈ ANEX(Mc
n) and one of the following condi-

tions is satisfied:

(a) ϕ(x) ⊂ C(x) and ϕ(x) ∈ UVn for any x ∈ X,
(b) C is closed subset of X × Y and ϕ(x) ∩ C(x) ∈ UVn for any x ∈ X.

Then, for any open neighbourhood U of the graph Gr (ϕ), there is an open neigh-
bourhood V ⊂ U of Gr (ϕ) such that any V ∩ C-approximation on A such that
dim(X \A) ≤ n + 1, extends to a U ∩ C-approximation on X.

Theorem 3.16 allows to obtain a following variant of Brodskii’s result ([6,
Theorem 3]).

Corollary 3.17. Let dim(X) ≤ n + 1, A be a closed subset of X, Y is
a complete space, ϕ:X ( Y is an upper semicontinuous map with compact
values such that ϕ(x) ∈ UVn for any x ∈ X. Let C( · ):X ( Y be a set-valued
map with closed values such that πX :C → X is locally n-soft, ϕ(x) ⊂ C(x) for
any x ∈ X, and ϕ(x) = C(x) is a singleton for any x ∈ A. Then for any open
neighbourhood U of the graph Gr (ϕ) there a U ∩ C-approximation f :X → Y

such that {f(x)} = ϕ(x) = C(x) for any x ∈ A.

Proof. Since πX :C → X is locally n-soft (see [6]), by the very definition,
(C, πX) ∈ ANEX(Mn), where Mn stands for a class of pairs (Z,Z0) ∈ M such
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that dim(X) ≤ n+1. Then πX :C → X is an open map, and hence the set-valued
map C( · ):X ( Y is a lower semicontinuous with closed values. The similar
arguments as in the proof of Theorem 2.4 in [19] (9) shows that for every space
(Z, s) over X, a family {{z} × {ϕ(s(z))} |z ∈ Z} is equi-locally n-connected. In
view of Theorem 2.4 in [19], we obtain that (C, πX) ∈ ANEX(Mc

n). Moreover,
ϕ(x) ⊂ C(x) for any x ∈ X, and (X, A) ∈ Mc

n. Thus the conclusion of the
Brodskĭı’s result follows from Theorem 3.16. �

Now suppose that (X, p) and (Y, q) are fiberwise spaces over B. We are going
to investigate a problem of the existence of graph approximations, provided that
constraint set C is a fiberwise product of X and Y , i.e. C = X ×B Y .

Let U be an open neighbourhood of Gr (ϕ), A be a subset of X. We say that
f :A → Y is a fiberwise U-approximation over B on A, if f is a V-approximation
being a fiberwise map over B, i.e. Gr (f) ⊂ V ∩ (X ×B Y ).

Corollary 3.18. Let (X, p), (Y, q) be spaces over B, (Y, q) ∈ ANEB(Mc
n)

and suppose that ϕ:X ( Y is upper semicontinuous with compact valued such
that ϕ(x) ∩ q−1(p(x)) ∈ UVn for any x ∈ X. Then, for any open neighbourhood
U of Gr (ϕ) there is an open neighbourhood V ⊂ U of Gr (ϕ) such that any
fiberwise V-approximation over B on A such that dim(X \ A) ≤ n + 1 extends
to a fiberwise U-approximation over B on X. In particular, if dim(X) ≤ n + 1,
then for any open neighbourhood U of Gr (ϕ) there is a fiberwise U-approximation
over B on X.

Proof. Let (Y, q)∈ANEB(Mc
n). We show that (X×BY, πX)∈ANEX(Mc

n),
where by the pair (X ×B Y, πX) we mean a subspace over X of the trivial space
(X×Y, πX). Let (Z,Z0) ∈Mc

n and let (Z, s) be a space over X, f0:Z0 → X×BY

be a map over X. Thus a map πY ◦f0:Z0 → Y is over B, where Z is a space over
B together with a projection p◦s:Z → B. Hence there is an extension f1:U → Y

over B to an open neighbourhood U of Z0. Define a map f :U → X×B Y by the
formula: f(z) := (s(z), f1(z)) for any z ∈ U . It is clear that f is a well-defined
map over X. Moreover, f is an extension over X of f0. Since C = X ×B Y

is a closed subset of X × Y , in view of Theorem 3.16, we easily obtain the
assertions. �

3.4. Homotopy properties of graph approximations of set-valued
maps under constraints. When studying the properties and homotopy in-
variants of set-valued maps, it is important to know homotopy properties of
approximations ([11], [13]). Therefore, in case of the presence of constraints, we
show that sufficiently close U ∩ C-approximations are homotopic.

Again we assume that ϕ:X ( Y is upper semicontinuous with compact
values and C ⊂ X × Y is a constraint set.

(9) It is sufficient to replace the classMc
n by the classMn in the proof of [19, Theorem 2.4].
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Theorem 3.19. Suppose that the projection πX :C → X is an open map and
condition (A) is satisfied. Then, for any open neighbourhood U of Gr (ϕ), there
is an open neighbourhood V ⊂ U of Gr (ϕ) such that the following condition is
satisfied:

(E) If dim(X \ A) ≤ n, f, g:X → Y are V ∩ C-approximations on X such
that h:A× [0, 1] → Y is a homotopy joining f |A with g|A and h( · , t) is
a V ∩C-approximation on A for any t ∈ [0, 1], then there is a homotopy
H:X × [0, 1] → Y joining f with g such that H|A×[0,1] = h and H( · , t)
is a U ∩ C-approximation on X for any t ∈ [0, 1].

Proof. For simplicity we use the notation X ′ := [0, 1]×X instead of X ×
[0, 1]. Let π: [0, 1]×X → X be a projection of [0, 1]×X on X, ϕ′: = ϕ◦π:X ′ → Y ,
and C ′ := [0, 1] × C. We show that condition according to (A) is satisfied for
the map ϕ′ and constraint set C ′. Namely:

(F) for any (t, x) ∈ [0, 1]×X and for any open neighbourhood U ′ of {(t, x)}×
ϕ(x) there is an open neighbourhood V ′ ⊂ U ′ of {(t, x)} × ϕ(x) such
that

(U ′ ∩ C ′, V ′ ∩ C ′) ∈ EPX′(Mc
n),

where (C ′, πX′) is a space over X ′ with the projection given by

πX′(t, x, y) = (t, x) for any (t, x, y) ∈ C ′.

Let (t, x) and U ′ be as above. Then there exists open neighbourhoods Ut of
t and U of {x}×ϕ(x) such that Ut×U ⊂ U ′. By condition (A) we find an open
neighbourhood V of {x} × ϕ(x) such that

(3.23) (U ∩ C, V ∩ C) ∈ EPX(Mc
n).

Let V ′ := Ut×V ⊃ {(t, x)}×ϕ(x). We show that (U ′∩C ′, V ′∩C ′) ∈ EPX′(Mc
n).

Let (Z,Z0) ∈ Mc
n, (Z, s) be a space over X ′ such that s(Z) ⊂ πX′(V ′ ∩ C ′).

Then we obtain that s[0,1](Z) ⊂ Ut and sX(Z) ⊂ V ∩ C, where s[0,1]:Z → [0, 1]
and sX :Z → X are maps such that s(z) = (s[0,1](z), sX(z)) for every z ∈ Z.
Let f0:Z0 → V ′ ∩ C ′ be a map over X ′. Similarly as above f

[0,1]
0 :Z0 → [0, 1]

and fC
0 :Z0 → C are maps such that f0(z) = (f [0,1]

0 (z), fC
0 (z)) for any z ∈ Z0.

Then fC
0 is a map over X such that fC

0 (Z0) ⊂ V ∩ C. In view of (3.23),
there is an extension fC :Z → U ∩ C over X of fC

0 . Observe that the map
f [0,1]:Z → Ut given by the formula: f [0,1](z) = s[0,1](z) for any z ∈ Z, is an
extension of f

[0,1]
0 . Finally, the map f :Z → Ut × (U ∩ C) ⊂ U ′ ∩ C ′ defined as

follows: f(z) := (f [0,1](z), fC(z)) for any z ∈ Z, is an extension over X ′ of f0,
which completes the proof of condition (F).

Let U be an open neighbourhood of Gr (ϕ). Then U ′ := [0, 1]×U is an open
neighbourhood of Gr (ϕ′) = [0, 1]×Gr (ϕ). Hence, in view of Theorem 3.9, there



384 J. Mederski

is an open neighbourhood V ′ ⊂ U ′ of Gr (ϕ′) such that

(3.24) (U ′ ∩ C ′,V ′ ∩ C ′) ∈ EPX′(Mc
n).

The compactness of [0, 1], implies the existence of an open neighbourhood V of
Gr (ϕ) such that [0, 1]× V ⊂ V ′.

Let (X, A) ∈Mc
n−1, f, g:X → Y be V ∩C-approximations over X such that

h: [0, 1] × A → Y is a homotopy joining f |A with g|A, and h(t, ·) is a V ∩ C-
approximation on A, for any t ∈ [0, 1]. Put A′ := {0, 1} × X ∪ [0, 1] × A.
Then (X ′, A′) ∈ Mc

n and let f0:A′ → V ′ ∩ C ′ be a map over X ′ defined as
follows: f0(t, x) = (t, x, h(t, x)) if (t, x) ∈ [0, 1] × A, and f0(0, x) = (0, x, f(x)),
f0(1, x) = (1, x, g(x)) for any x ∈ X. According to (3.24) there is an extension
f :X ′ → U ′∩C ′ over X ′ of the map f0. It is easy to check that H := πY ◦f :X ′ =
[0, 1]×X → Y is a required homotopy. �

Corollary 3.20. Suppose that dim(X) ≤ n, (C, πX) ∈ ANEX(Mc
n) and

tangency condition (C) is satisfied. Then for any open neighbourhood U of Gr (ϕ)
there is an open neighbourhood V ⊂ U of Gr (ϕ) such that for any V ∩ C-
approximations f , g:X → Y on X, there is a homotopy H:X×[0, 1] → Y joining
f with g such that H( · , t) is a U ∩ C-approximation on X for any t ∈ [0, 1].

Proof. Suppose that dim(X) ≤ n, (C, πX) ∈ ANEX(Mc
n) and tangency

condition (C) holds. Then the map πX :C → X is open and, in view of Lem-
ma 3.12, we obtain that condition (A) is satisfied. Hence, according to Theo-
rem 3.19, condition (E) holds. Thus for the pair (X, ∅) ∈ Mc

n−1 we obtain the
conclusion. �

Observe that under the assumptions of Corollary 3.20, in view of Theo-
rem 3.1, for any open neighbourhood U of Gr (ϕ) there is a U∩C-approximation.

4. Appendix

In Appendix we are going to provide the proof of Theorem 2.4.

Lemma 4.1.

(a) Let Y be a subset of a space T , and for any y ∈ Y , Vy is an open
neighbourhood of y in T . Then there is a continuous function ε:Y →
(0,∞), and for any y ∈ Y there is m(y) ∈ Y such that

B(y, ε(y)) ⊂ Vm(y).

(b) For any continuous function ε:Y → (0,∞) there is a continuous func-
tion δ:Y → (0,∞) such that for any y ∈ Y

st(B(y, δ(y)), {B(y′, δ(y′)) | y′ ∈ Y }) ⊂ B(y, ε(y)) (10).

(10) st(A,W) denotes the star of a set A in a cover W.
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Proof. (a) For any y ∈ Y there is εy > 0 such that B(y, εy) ⊂ Vy. In view
of the paracompactness of W0 :=

⋃
y∈Y B(y, εy/2) there exists a locally finite

open refinement W = {Wα}α∈A of the cover {B(y, εy/2)}y∈Y . Then for any
α ∈ A we fix yα such that Wα ⊂ B(yα, εyα

/2).
Again, in view of the paracompactness of W0, there is a partition of unity

{λα:W0 → [0, 1] | α ∈ A} such that supp(λα) ⊂ Wα for any α ∈ A. Then we
define a continuous function ε:Y → (0,∞) by the formula:

ε(y) :=
∑
α∈A

λα(y)εyα/2,

for any y ∈ Y . Note that for any y ∈ Y there is α such that y ∈ Wα and
ε(y) ≤ εyα

/2. Then

B(y, ε(y)) ⊂ B(y, εyα
/2) ⊂ B(yα, εyα

) ⊂ Vyα
.

Moreover, we obtain the following transformation Y 3 y 7→ m(y) := yα ∈ Y .
(b) Let ε:Y → (0,∞) be a continuous function and W be an open cover of⋃

y∈Y

(B(y, ε(y)/4) ∩ ε−1(ε(y)/2,∞))

being a star refinement of

{B(y, ε(y)/4) ∩ ε−1(ε(y)/2,∞) | y ∈ Y }.

For any y ∈ Y there is δy > 0 such that B(y, δy) is a subset of some Wy ∈ W. Let
W0 :=

⋃
y∈Y B(y, δy) and {λα:W0 → [0, 1] | α ∈ A} be a locally finite partition

of unity refined into a cover {B(y, δy) | y ∈ Y } of the paracompact space W0.
For any α ∈ A we fix yα ∈ Y such that

supp(λα) ⊂ B(yα, δyα
).

Let δ:Y → (0,∞) be defined as follows:

δ(y) :=
∑
α∈A

λα(y)δyα
/2,

for any y ∈ Y . The function δ is well-defined and continuous. Moreover, for any
y ∈ Y there is yα such that δ(y) ≤ δyα

/2, and thus

st(B(y, δ(y)), {B(y′, δ(y′)) | y′ ∈ Y }) ⊂ st(B(yα, δyα), {B(y′, δ(y′)) | y′ ∈ Y })
⊂ st(Wyα ,W) ⊂ B(y′, ε(y′)/4) ∩ ε−1(ε(y′)/2,∞).

In order to finish the proof note that y ∈ B(y′, ε(y′)/4) ∩ ε−1(ε(y′)/2,∞), and
if z ∈ B(y′, ε(y′)/4), then

d(z, y) ≤ d(z, y′) + d(y′, y) ≤ ε(y′)/4 + ε(y′)/4 = ε(y′)/2 < ε(y). �
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Theorem 4.2. The following conditions are equivalent:

(a) (Y, q) ∈ ANEB(Mc
n);

(b) for any y ∈ Y , any open neighbourhood U of y contains an open neigh-
bourhood V of y such that (U, V ) ∈ EPB(Mc

n);
(c) for any continuous function ε:Y → (0,∞) there is a continuous func-

tion δ:Y → (0,∞) such that δ(y) ≤ ε(y) and (B(y, ε(y)), B(y, δ(y))) ∈
EPB(Mc

n) for all y ∈ Y .

Proof. The equivalence of conditions (a) and (b) is proven in [19, Theo-
rem 2.6]. The implication (c) ⇒ (b) is straightforward. We show (b) ⇒ (c). Let
ε:Y → (0,∞) be a continuous function. For any y ∈ Y let

Wy := {y′ ∈ Y | B(y, ε(y)/2) ⊂ B(y′, ε(y′))},

and let δy > 0 be such that (B(y, ε(y)/2), B(y, δy)) ∈ EPB(Mc
n).

Let {λα:Y → [0, 1] | α ∈ A} be a locally finite partition of unity refined into
{Wy ∩B(y, δy/2) | y ∈ Y }. For any α ∈ A we fix yα ∈ Y such that

supp(λα) ⊂ Wyα ∩B(yα, δyα/2).

Let δ:Y → (0,∞) be defined as follows:

δ(y) :=
∑
α∈A

λα(y)δyα/2,

for any y ∈ Y . Note that the function δ is continuous and well-defined. More-
over, for any y ∈ Y there is yα such that δ(y) ≤ δyα

/2 and λα(y) 6= 0, and
thus B(y, δ(y)) ⊂ B(yα, δyα). Furthermore B(yα, ε(yα)/2) ⊂ B(y, ε(y)), which
completes the proof. �

Proof of Theorem 2.4. Since the implication (b) ⇒ (c) is clear it is suffi-
cient to show the implication (a) ⇒ (b). Recall that the proof of the equivalence
of conditions (a) and (c) is given in [19].

Let (Y, q) ∈ ANEB(Mc
n). We may assume that Y ⊂ T and q:T → B is

the projection of T such that q|Y is an open map (see Proposition 2.3). Let
ε:Y → (0,∞) be a continuous function. For any y ∈ Y let V ′

y be an open
neighbourhood of y in T such that

(4.1) V ′
y ∩ Y = {y′ ∈ Y | B(y, ε(y)/2) ⊂ B(y′, ε(y′))}.

In view of Lemma 4.1(a) there is a function ε0:Y → (0,∞) such that for any
y ∈ Y there is m(y) ∈ Y and the following inclusion holds

(4.2) B(y, ε0(y)) ⊂ B(m(y), ε(m(y))/2) ∩ V ′
m(y).

Applying conditions (c) of Theorem 4.2 and (b) of Lemma 4.1, for any i =
0, . . . , n+1 we find continuous functions εi:Y → (0,∞) and δi:Y → (0,∞) such
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that for any y ∈ Y if U i
y := B(y, εi(y)), V i

y := B(y, δi(y)), U i := {U i
y | y ∈ Y }

then the following conditions are satisfied:

(U i
y ∩ Y, V i

y ∩ Y ) ∈ EPB(Mc
n)(4.3)

st(U i
y,U i) ⊂ V i−1

y , if i ≥ 1.(4.4)

Since q|Y is an open map, then V n+1
y ∩ q−1(q(V n+1

y ∩ Y )) is an open neighbour-
hood of y in T . Thus

U :=
⋃

y∈Y

(V n+1
y ∩ q−1(q(V n+1

y ∩ Y )))

is an open neighbourhood of Y . Let (Z,Z0) ∈ Mc
n, where (Z, s) is a space over

B. Let g:Z → U be a map over B. For any y ∈ Y we assign

Wy := g−1(V n+1
y ∩ q−1(q(V n+1

y ∩ Y ))).

Note that {Wy}y∈Y is an open cover of Z. In view of Lemma 2.1 we obtain
a sequence of closed subspaces Z0 ⊂ Z1 ⊂ . . . ⊂ Zn+2 = Z satisfying the enlisted
conditions in the lemma with respect to the cover {Wy}y∈Y .

For any i = 0, . . . , n + 1 and for any α ∈ Ii, we choose a point y(i, α) ∈ Y

such that Bα
i ⊂ Wy(i,α).

For any i = 0, . . . , n + 2, we construct a map fi:Zi → Y over B satisfying
the following conditions for any i ≥ 1:

fi(z) = fi−1(z) for any z ∈ Zi−1,(4.5)

fi(Bα
i−1) ∪ V n+1

y(i−1,α) ⊂ Un+2−i
y(i−1,α) for any α ∈ Ii−1.(4.6)

Let f0 := g|Z0 . Suppose that for some i ∈ {0, . . . , n + 1}, we have constructed
maps {fk | k = 0, . . . , i} over B satisfying the above conditions. Let α ∈ Ii.
We claim that the inclusion fi(Zi ∩Bα

i ) ⊂ V n+1−i
y(i,α) holds. Indeed, if i = 0, then

the inclusion is clear. Let i ≥ 1 and I(i, α) := {(k, α′) | k = 0, . . . , i − 1, α′ ∈
Ik, Bα′

k ∩Bα
i 6= ∅}. Note that

fi(Zi ∩Bα
i ) ⊂ fi(Z0 ∩Bα

i ) ∪
i−1⋃
k=0

⋃
α′∈Ik

fi(Bα′

k ∩Bα
i )(4.7)

⊂ V n+1
y(i,α) ∪

⋃
(k,α′)∈I(i,α)

(fk+1(Bα′

k ) ∪ V n+1
y(k,α′)).

Let (k, α′) ∈ I(i, α). In view of (4.6) we obtain that

fk+1(Bα′

k ) ∪ V n+1
y(k,α′) ⊂ Un+1−k

y(k,α′) ⊂ Un+2−i
y(k,α′).

Since Bα′

k ∩ Bα
i 6= ∅, we get V n+1

y(k,α′) ∩ V n+1
y(i,α) 6= ∅ and V n+1

y(i,α) ∩ Un+2−i
y(k,α′) 6= ∅.

Therefore taking into account conditions (4.7) and (4.4) we obtain that

fi(Zi ∩Bα
i ) ⊂ st(V n+1

y(i,α),U
n+2−i) ⊂ st(V n+2−i

y(i,α) ,Un+2−i) ⊂ V n+1−i
y(i,α) .
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Since (Bα
i , Zi ∩Bα

i ) ∈Mc
n and

s(Bα
i ) ⊂ s(Wy(i,α)) = q(g(Wy(i,α))) ⊂ q(V n+1

y(i,α) ∩ Y ) ⊂ q(V n+1−i
y(i,α) ∩ Y ),

then in view of (4.3) there is a map fα
i :Bα

i → Un+1−i
y(i,α) ∩ Y over B being an

extension over B of the map fi|Zi∩Bα
i
. Now we can define a map fi+1:Zi+1 → Y

as follows:

fi+1(z) = fα
i (z), if z ∈ Bα

i and α ∈ Ii,

fi+1(z) = fi(z), if z ∈ Zi.

Observe that fi+1 is a continuous map over B, since sets {Bα
i ∩ (U \Z0)}α∈Ii

are
pairwise separated by open neighbourhoods. Moreover, fi+1 satisfies conditions
(4.5), (4.6). Thus f := fn+2:Z = Zn+2 → Y is a required extension over B

of f0. Note that if z ∈ Z \ Z0, then there are i and α ∈ Ii such that z ∈ Bα
i .

Hence in view of conditions (4.6) and (4.2) we obtain that

f(z) = fi+1(z) ∈ Un+1−i
y(i,α) ⊂ B(y0, ε(y0)/2) ∩ V ′

y0
,

where y0 := m(y(i, α)). Since f(z) ∈ Y , then by (4.1) we get that

B(y0, ε(y0)/2) ⊂ B(f(z), ε(f(z))).

Note that g(z) ∈ V n+1
y(i,α) ⊂ B(y0, ε(y0)/2) ∩ V ′

y0
. Then g(z) ∈ B(f(z), ε(f(z))),

which completes the proof. �
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