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POSITIVE SOLUTIONS
FOR GENERALIZED NONLINEAR LOGISTIC EQUATIONS

OF SUPERDIFFUSIVE TYPE

Antonio Iannizzotto — Nikolaos S. Papageorgiou

Abstract. We consider a generalized version of the p-logistic equation.

Using variational methods based on the critical point theory and truncation
techniques, we prove a bifurcation-type theorem for the equation. So, we

show that there is a critical value λ∗ > 0 of the parameter λ > 0 such that

the following holds: if λ > λ∗, then the problem has two positive solutions;
if λ = λ∗, then there is a positive solution; and finally, if 0 < λ < λ∗, then

there are no positive solutions.

1. Introduction

In this paper we study the following nonlinear elliptic Dirichlet problem:

(Pλ)


−∆pu = λf(z, u)− g(z, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

where Ω ⊂ RN (N ≥ 2) is a bounded domain with a C2 boundary ∂Ω, ∆p

denotes the p-Laplace differential operator defined by

∆pu = div(‖Du‖p−2Du) for all u ∈ W 1,p
0 (Ω) (1 < p < ∞)

and λ > 0 is a real parameter.
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When f(z, x) = xq−1 and g(z, x) = xr−1 with q > 1 and p < r < p∗ (p∗ =
Np/(N−p) if p < N , p∗ = ∞ if p ≥ N), we have the so-called p-logistic equation
(simply logistic equation when p = 2). Such equations are important, among
other things, in biological models (see M. E. Gurtin and R. C Mac Camy [7]).

There are three different types of p-logistic equations, depending on the value
of the exponent q with respect to p. Namely, we have:

(a) the subdiffusive case, when 1 < q < p < r;
(b) the equidiffusive case, when 1 < q = p < r;
(c) the superdiffusive case, when 1 < p < q < r.

The first two cases (subdiffusive and equidiffusive) are similar and differ essen-
tially from the superdiffusive case, which exhibits bifurcation-type phenomena
for large values of the parameter λ > 0.

In this paper, we are interested in the superdiffusive case, which was studied
by W. Dong and J. T. Chen [3] and S. Takeuchi [14], [15] (for p ≥ 2). However,
our formulation here is more general, since we do not restrict ourselves to the
particular reaction term of the form λxq−1 − xr−1 with 1 < p < q < r, as is the
case in the aforementioned works. We also recall the recent work of F. Brock,
L. Itturiaga and P. Ubilla [1], where the reaction term has the form λf(z, x),
being f : Ω × R → R a continuous function. However, their solution method
limits their considerations to the case of a (p − 1)-sublinear nonlinearity (see
hypothesis (H3) and the proofs of Lemmata 3.1 and 3.2). Related are also the
works of Z. Guo [6] and D. Motreanu, V. V. Motreanu and N. S. Papageorgiou
[11], [12].

In Z. Guo [6], f(z, x) = f(x) is C1, g(z, x) = 0 and 1 < p ≤ 2. Assuming
that f is strictly increasing and (p − 1)-sublinear, the author shows that there
is a critical value λ(p) of the parameter such that for all λ > λ(p) the prob-
lem has at least two positive solutions. In [11], the authors examine nonlinear
eigenvalue problems with the p-Laplacian and nonlinearities exhibiting a general
polynomial growth. They prove a multiplicity result (three solutions, of which
two of constant sign, one positive and the other negative) which is local in λ (for
small values of λ > 0). In [12], the authors consider equations with a nonsmooth
potential (hemivariational inequalities) and study the near resonant, resonant
and nonresonant cases.

In this paper, using minimax methods based on the critical point theory to-
gether with suitable truncation techniques, we prove a bifurcation-type theorem
for large values of the parameter λ > 0. Namely, under suitable assumptions
on the nonlinearities f and g, we will show that there is a critical value λ∗ > 0
such that the following holds: if λ > λ∗, then the problem (Pλ) has two positive
solutions; if λ = λ∗, then there is a positive solution; and finally, if 0 < λ < λ∗,
then there are no positive solutions.
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2. Mathematical background

Let X be a Banach space and X∗ be its topological dual. By 〈 · , · 〉 we denote
the duality brackets for the pair (X∗, X). Let ϕ ∈ C1(X) be a real functional.
A point x0 ∈ X is called a critical point of ϕ, if ϕ′(x0) = 0. A number c ∈ R
is called a critical value of ϕ, if there exists a critical point x0 ∈ X such that
ϕ(x0) = c. We say that ϕ satisfies the Palais–Smale condition if the following
holds:

(PS) every sequence (un) in X, such that (ϕ(un)) is bounded in R and
ϕ′(un) → 0 in X∗, admits a convergent subsequence.

The next result is known in the literature as the mountain pass theorem:

Theorem 2.1. If ϕ ∈ C1(X) satisfies (PS), x0, x1 ∈ X, 0 < r < ‖x1 − x0‖
are such that

max{ϕ(x0), ϕ(x1)} < inf
‖u−x0‖=r

ϕ(u) = ηr,

c = inf
γ∈Γ

max
0≤t≤1

ϕ(γ(t))

where Γ = {γ ∈ C([0, 1], R) : γ(i) = xi, i = 0, 1}, then, c ≥ ηr and c is a critical
value of ϕ.

In the analysis of problem (Pλ) we will use the Sobolev space W 1,p
0 (Ω) and

the Banach space

C1
0 (Ω) = {u ∈ C1(Ω) : u(z) = 0 for all z ∈ ∂Ω}.

Note that C1
0 (Ω) is an ordered Banach space with positive cone

C+ = {u ∈ C1
0 (Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

int(C+) =
{

u ∈ C1
0 (Ω) : u(z) > 0 for all z ∈ Ω,

∂u

∂n
(z) < 0 for all z ∈ ∂Ω

}
.

Here n denotes the outward unit normal to ∂Ω.
Let A:W 1,p

0 (Ω) → W−1,p′(Ω) (the topological dual of W 1,p
0 (Ω), with p′ =

p/(p− 1)) be the nonlinear mapping defined by

(2.1) 〈A(u), v〉 =
∫

Ω

‖Du‖p−2(Du,Dv)dz for all u, v ∈ W 1,p
0 (Ω).

Proposition 2.2. The mapping A defined by (2.1) is continuous, strictly
monotone (hence maximal monotone too), bounded and of type (S)+, that is, for
every sequence (un) in W 1,p

0 (Ω),

un ⇀ u in W 1,p
0 (Ω) and lim sup

n
〈A(un), un − u〉 ≤ 0
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imply that un → u in W 1,p
0 (Ω).

In what follows, by λ̂1 we denote the first eigenvalue of the negative p-
Laplacian in W 1,p

0 (Ω). It admits the following variational characterization:

(2.2) λ̂1 = inf
{‖Du‖p

p

‖u‖p
p

: u ∈ W 1,p
0 (Ω), u 6= 0

}
.

We know that λ̂1 > 0 and is simple and isolated. Moreover, the infimum in (2.2)
is attained in the eigenspace of λ̂1. It is clear from (2.2) that the elements of the
eigenspace of λ̂1 do not change sign. By û1 we denote the Lp-normalized positive
eigenfunction corresponding to λ̂1. From nonlinear regularity theory (see, for
example, N. S. Papageorgiou and S. Th. Kyritsi [13, p. 311–312]) we have that
û1 ∈ C+. Then, invoking the nonlinear maximum principle of J. L. Vázquez
[16], we conclude that û1 ∈ int(C+).

To produce a pair of positive solutions of (Pλ), we will need the follow-
ing strong comparison result which extends a similar result of M. Guedda and
L. Veron [5] (where σ = 0 and the hypotheses are more restrictive).

Proposition 2.3. If u1 ∈ C+, u2 ∈ int(C+) with u1 ≤ u2, β1, β2 ∈ L∞(Ω),
σ ≥ 0, p < θ < ∞ are such that

−∆pui + σuθ−1
i = βi in Ω (i = 1, 2)

and for every nonempty, compact subset K of Ω there is γK > 0 such that

(2.3) β2(z)− β1(z) ≥ γK for a.a. z ∈ K,

then u2 − u1 ∈ int(C+).

Proof. Let us define the coincidence set of u1 and u2 by

D = {z ∈ Ω : u1(z) = u2(z)}

and the common critical set by

E = {z ∈ Ω : Du1(z) = Du2(z) = 0}.

Claim. D ⊆ E.

Suppose that z0 ∈ D. Because u1 ≤ u2, we see that the function (u1 − u2)
attains its maximum at z0, therefore

(2.4) Du1(z0) = Du2(z0).

Reasoning by contradiction, suppose that Du2(z0) 6= 0. We can find an open
ball B0 centered at z0 such that B0 ⊆ Ω and

‖Du2(z)‖ > 0 for all z ∈ B0.
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We set y = u2−u1, so y ∈ C+. We are going to prove that y solves a convenient
elliptic equation with a positive reaction, so that we can apply the nonlinear
strong maximum principle of J. L. Vázquez [16]. From our assumptions we
know that

−
N∑

j=1

∂

∂zj

[
‖Du2‖p−2 ∂u2

∂zj
− ‖Du1‖p−2 ∂u1

∂zj

]
= β2 − β1 − σ(uθ−1

2 − uθ−1
1 ) in Ω.

An application of the mean value theorem yields the existence of tj ∈ [0, 1]
(depending on z ∈ Ω) such that

−
N∑

i,j=1

∂

∂zj

[
aij

(
∂u2

∂zi
− ∂u1

∂zi

)]
= β2 − β1 − σ(uθ−1

2 − uθ−1
1 ) in Ω,

where

aij=‖tjDu2 + (1− tj)Du1‖p−4

·
(

(p− 2)
(

tj
∂u2

∂zj
+ (1− tj)

∂u1

∂zj

)
+ δij‖tjDu2 + (1− tj)Du1‖2

)
.

If we define a quasilinear second-order differential operator in divergence form
by

(2.5) Lu =
N∑

i,j=1

∂

∂zj

[
aij

∂u

∂zi

]
,

we realize that y solves the auxiliary equation

(2.6) −Ly = β2 − β1 − σ(uθ−1
2 − uθ−1

1 ) in B0.

By (2.4) we have

aij(z0) = ‖Du2(z0)‖p−4

(
(p− 2)

∂u2

∂zj
(z0) + δij‖Du2(z0)‖2

)
and it is easily seen that there exists ν > 0 such that

N∑
i,j=1

aij(z0)ξiξj ≥ ν‖ξ‖2 for all ξ ∈ RN .

By choosing the ball B0 even smaller if necessary, we may assume that the
operator L is strictly elliptic. Besides, the right-hand side of (2.6) is positive
(see (2.3)). Then, invoking Theorem 4 of J. L. Vázquez [16], we infer that

u1(z) < u2(z) for all z ∈ B0.

But, recall that z0 ∈ D∩B0 and so u1(z0) = u2(z0), a contradiction. This proves
the Claim.
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Since by hypothesis u2 ∈ int(C+), we see that E is a compact subset of Ω
and D is a closed subset of E (see the Claim). It follows that D is compact. So,
we can find a domain Ω0 ⊂ Ω such that

D ⊂ Ω0 and Ω0 ⊂ Ω.

There exists ε ∈]0, 1[ such that

(2.7)
u1(z) + ε < u2(z) for all z ∈ ∂Ω0,

β1(z) + ε < β2(z) for a.a. z ∈ Ω0.

Also, we can choose δ ∈ ]0, ε[ such that

(2.8) σ|tθ−1 − sθ−1| ≤ ε for all t, s ∈
[
min
Ω0

u1,max
Ω0

u1 + 1
]

with |t− s| ≤ δ.

Then we have

−∆p(u1 + δ)(z) + σ[u1(z) + δ]θ−1 =−∆pu1(z) + σ [u1(z) + δ]θ−1

≤−∆pu1(z) + σu1(z)θ−1 + ε (see (2.8))

=β1(z) + ε < β2(z)

=−∆pu2(z) + σu2(z)θ−1 for all z∈Ω0.

From what stated above, the first inequality in (2.7) (recall that δ < ε) and the
weak comparison principle (see L. Damascelli [2]), it follows that

(2.9) u1(z) + δ ≤ u2(z) for all z ∈ Ω0.

Now recall that D ⊂ Ω0. This fact, combined with (2.9), implies that D = ∅
and so

u1(z) < u2(z) for all z ∈ Ω.

Consider any z1 ∈ ∂Ω. Since u2 ∈ int(C+), we can find an open connected subset
Ω1 of Ω such that z1 ∈ ∂Ω1 and δ > 0 such that

‖Du2(z)‖ > δfor all z ∈ Ω1.

As before, by choosing Ω1 smaller if necessary, we achieve that the operator L

(defined by (2.5)) is strictly elliptic and

(2.10) Ly ≥ 0 in Ω1

(recall y = u2−u1). Since y(z) > 0 for all z ∈ Ω1 and y(z1) = 0, then (2.10) and
the results of J. L. Vázquez [16] (see Theorem 2 and the comments concerning
its generalization) imply

∂y

∂n
(z1) < 0.

Since z1 ∈ ∂Ω was arbitrary, we conclude that y ∈ int(C+). �
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We conclude this section by introducing some notation: in what follows ‖u‖ =
‖Du‖p for all u ∈ W 1,p

0 (Ω) and by | · |N we denote the Lebesgue measure on RN .
Moreover, for every y ∈ R, we set

y± = max{±y, 0}.

Finally, for every h: Ω× R → R and u ∈ W 1,p
0 (Ω) we set

Nh(u)(z) = h(z, u(z)) for all z ∈ Ω.

3. Bifurcation theorem

In order to get a bifurcation result for problem (Pλ), we will assume the
following hypotheses on the reaction nonlinearities f and g:

(Hf ) f : Ω×R → R is a Carathéodory function (i.e. measurable in z ∈ Ω and
continuous in x ∈ R) such that f(z, 0) = 0 for almost all z ∈ Ω and
f(z, x) > 0 for almost all z ∈ Ω and all x > 0, and
(i) |f(z, x)| ≤ a(z) + c|x|r−1 for almost all z ∈ Ω and all x ∈ R

( a ∈ L∞(Ω)+, c > 0, p < r < p∗);
(ii) limx→∞ f(z, x)/xp−1 = ∞, limx→∞ f(z, x)/xθ−1 = 0 uniformly for

almost all z ∈ Ω and x 7→ f(z, x)/xθ−1 is nonincreasing in ]0,∞[
for almost all z ∈ Ω (θ > p);

(iii) limx→0+ f(z, x)/xp−1 = 0 uniformly for almost all z ∈ Ω;
(iv) for every ρ > 0, there exists γρ > 0 such that f(z, x) ≥ γρ for

almost all z ∈ Ω and all x ≥ ρ.

Remark 3.1. Hypothesis (Hf )(ii) implies that f is (p− 1)-superlinear, but
need not satisfy the Ambrosetti–Rabinowitz condition.

(Hg) g: Ω×R → R is a Carathéodory function (i.e. measurable in z ∈ Ω and
continuous in x ∈ R) such that g(z, 0) = 0 for almost all z ∈ Ω and
g(z, x) ≥ 0 for almost all z ∈ Ω and all x > 0, and
(i) |g(z, x)| ≤ a(z) + c|x|r−1 for almost all z ∈ Ω and all x ∈ R (a, c, r

as in (Hf )(i));
(ii) limx→∞ g(z, x)/xθ−1 > 0 uniformly for almost all z ∈ Ω and x 7→

g(z, x)/xp−1 is nondecreasing for almost all z ∈ Ω (θ as in (Hf )(ii));
(iii) limx→0+ g(z, x)/xp−1 ≤ η̂ uniformly for almost all z ∈ Ω (η̂ > 0);

(H0) for every ξ > 0 and every bounded interval I ⊂ R+ there exists σξ,I > 0
such that x 7→ λf(z, x)− g(z, x)+σξ,Ix

θ−1 is nondecreasing in [0, ξ] for
all λ ∈ I and almost all z ∈ Ω (θ as in (Hf )(ii)).

Remark 3.2. Since we are interested in positive solutions of (Pλ) and hy-
potheses (Hf )(ii)–(iv) and (Hg)(ii), (iii) concern the positive semiaxis [0,∞[,
without any loss of generality we may (and will) assume that f(z, x) = g(z, x) = 0
for almost all z ∈ Ω and all x ≤ 0.
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Our hypotheses are modeled on the superdiffusive p-logistic equation, but
incorporate this case in a more general setting, as the following examples show:

Example 3.3. The superdiffusive p-logistic equation corresponds to the fol-
lowing choices: set for all x ≥ 0

f(x) = xq−1, g(x) = xr−1 with p < q < r < p∗.

These functions satisfy hypotheses (Hf ), (Hg) and (H0) with θ = r.

Example 3.4. Set for all x ∈ R+

f(x) = xq−1

(
ln(1 + x) +

1
p

x

1 + x

)
, g(x) = xr−1 + ηxτ−1

with p < q, τ < r < p∗ and besides q + 1 < r and η > 0. The above functions
satisfy hypotheses (Hf ), (Hg) and (H0) with θ = r.

By a positive solution for problem (Pλ) we mean a function u ∈ int(C+) such
that∫

Ω

(‖Du‖p−2Du, Dv) dz− λ

∫
Ω

f(z, u)v dz +
∫

Ω

g(z, u)v dz for all v ∈ W 1,p
0 (Ω).

Let
S = {λ > 0 : (Pλ) has a positive solution}.

In the following propositions, we will investigate some properties of the set S.

Proposition 3.5. If hypotheses (Hf ) and (Hg) hold, then inf(S) > 0 (we
set inf(∅) = ∞).

Proof. By virtue of hypotheses (Hf )(ii) and (Hg)(ii), we see that we can
find λ0 > 0 such that

(3.1) λ0f(z, x)− g(z, x) ≤ λ̂1x
p−1 for a.a. z ∈ Ω, all x ≥ 0.

We will show that λ0 ≤ inf(S), arguing by contradiction. Let λ ∈ ]0, λ0[ and
suppose that (Pλ) has a positive solution uλ ∈ int(C+). Then

(3.2) A(uλ) = λNf (uλ)−Ng(uλ),

where A is given by (2.1) and Nf , Ng are the Nemytzki operators defined in
Section 2. We act on (3.2) with uλ and obtain

‖Duλ‖p
p =λ

∫
Ω

f(z, uλ)uλ dz −
∫

Ω

g(z, uλ)uλ dz

<λ0

∫
Ω

f(z, uλ)uλ dz −
∫

Ω

g(z, uλ)uλ dz (see (Hf ))

≤ λ̂1‖uλ‖p
p (see (3.1)).
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Besides, from (2.2) we have

λ̂1‖uλ‖p
p ≤ ‖Duλ‖p

p,

a contradiction. Hence, λ /∈ S and we have λ0 ≤ inf(S). �

Proposition 3.6. If hypotheses (Hf ), (Hg) and (H0) hold, then S 6= ∅.
Moreover, for all λ, µ ∈ R+, λ ∈ S and λ < µ imply µ ∈ S.

Proof. We set for all (z, x) ∈ Ω× R

F (z, x) =
∫ x

0

f(z, s) ds, G(z, x) =
∫ x

0

g(z, s) ds,

and, for a fixed λ > 0, we define the energy functional ϕλ:W 1,p
0 (Ω) → R by

putting

ϕλ(u) =
1
p
‖Du‖p

p − λ

∫
Ω

F (z, u) dz +
∫

Ω

G(z, u) dz for all u ∈ W 1,p
0 (Ω).

Obviously we have ϕλ ∈ C1(W 1,p
0 (Ω)). Also, exploiting the compact embedding

of W 1,p
0 (Ω) into Lr(Ω), we can easily check that ϕλ is sequentially weakly lower

semicontinuous.
From hypotheses (Hg)(i), (ii), we can find η, cη > 0 such that

(3.3) G(z, x) ≥ ηxθ − cη for a.a. z ∈ Ω and all x ≥ 0.

Fix ε ∈ ]0, η/λ[. By virtue of hypotheses (Hf )(i), (ii) we can find cε > 0 such
that

(3.4) F (z, x) ≤ εxθ + cε for a.a. z ∈ Ω and all x ≥ 0.

We have for all u ∈ W 1,p
0 (Ω)

ϕλ(u) =
1
p
‖Du‖p

p − λ

∫
Ω

F (z, u+) dz +
∫

Ω

G(z, u+) dz

≥1
p
‖Du‖p

p + (η − λε)‖u+‖θ
θ − c1

for some c1 > 0 (see (3.3) and (3.4)), hence we infer that the functional ϕλ is
coercive. So, by the Weierstrass theorem, there exists uλ ∈ W 1,p

0 (Ω) such that

(3.5) ϕλ(uλ) = inf
W 1,p

0 (Ω)
ϕλ = mλ.

We have, for λ > 0 big enough,

(3.6) mλ < 0.

Indeed, let u ∈ int(C+). We have F (z, u) > 0 almost everywhere in Ω and so,
for λ > 0 big enough,

ϕλ(u) < 0.
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From (3.5) and (3.6) it follows, for λ > 0 big enough, uλ 6= 0.
Also, from (3.5) we get, for λ > 0 big enough, ϕ′λ(uλ) = 0, that is,

(3.7) A(uλ) = λNf (uλ)−Ng(uλ).

We act on (3.7) with u−λ ∈ W 1,p
0 (Ω), obtaining ‖Du−λ ‖p = 0 (recall that f(z, x) =

g(z, x) = 0 for almost all z ∈ Ω and x ≤ 0). Hence uλ ≥ 0 in Ω and uλ 6= 0.
From (3.7) we have

−∆puλ = λf(z, uλ)− g(z, uλ) a.e. in Ω (see [13])

and nonlinear regularity theory implies that uλ ∈ C+ \ {0}. Now we apply
hypothesis (H0) with I = {λ} and ξ = ‖uλ‖∞ and find σ̂ > 0 such that

−∆puλ + σ̂uθ−1
λ = λf(z, uλ)− g(z, uλ) + σ̂uθ−1

λ ≥ 0 a.e. in Ω,

which, by the results of J. L. Vázquez [16], implies uλ ∈ int(C+). Therefore
S 6= ∅.

Next, suppose that λ ∈ S and µ > λ: we will show that µ ∈ S. Choose
τ ∈ ]0, 1[ such that λ = τθ−pµ (recall that θ > p). Since λ ∈ S, there exists
uλ ∈ int(C+) solution of (Pλ). Set u = τuλ ∈ int(C+). We have

(3.8) −∆pu = τp−1(−∆puλ) = τp−1[λf(z, uλ)− g(z, uλ)] a.e. in Ω.

Here we invoke our monotonicity assumptions. By hypothesis (Hf )(ii) we have

(3.9) τp−1λf(z, uλ) = µτθ−1f(z, uλ) ≤ µf(z, u) a.e. in Ω.

Besides, from (Hg)(ii) we have

(3.10) τp−1g(z, uλ) ≥ g(z, u) a.e. in Ω.

Using (3.9) and (3.10) in (3.8), we obtain

(3.11) −∆pu ≤ µf(z, u)− g(z, u) a.e. in Ω.

We consider problem (Pµ) and we truncate its reaction term as follows:

hµ(z, x) =

{
µf(z, u(z))− g(z, u(z)) if x ≤ u(z),

µf(z, x)− g(z, x) if x > u(z).

This is a Carathéodory function. We set

Hµ(z, x) =
∫ x

0

hµ(z, s) ds for all (z, x) ∈ Ω× R

and consider the functional ϕ̂µ ∈ C1(W 1,p
0 (Ω)) defined by

ϕ̂µ(u) =
1
p
‖Du‖p

p −
∫

Ω

Hµ(z, u) dz for all u ∈ W 1,p
0 (Ω).
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Recalling (3.3) and (3.4) with ε ∈ ]0, η/µ[, we easily get

(3.12) Hµ(z, x) ≤ (µε− η)xθ + c2 for a.a. z ∈ Ω, all x ≥ 0, for some c2 > 0.

Applying (3.12), we have for all u ∈ W 1,p
0 (Ω)

ϕ̂µ(u) =
1
p
‖Du‖p

p −
∫

Ω

Hµ(z, u+) dz ≥ 1
p
‖Du‖p

p + (η − µε)‖u+‖θ
θ − c3

(for some c3 > 0). Thus, we may conclude that ϕ̂µ is coercive. Clearly, it is
also sequentially weakly lower semicontinuous. So, by virtue of the Weierstrass
theorem, there exists uµ ∈ W 1,p

0 (Ω) such that

ϕ̂µ(uµ) = inf
W 1,p

0 (Ω)
ϕ̂µ,

which implies ϕ̂′µ(uµ) = 0, that is,

(3.13) A(uµ) = Nhµ(uµ).

On (3.13) we act with (u− uµ)+ ∈ W 1,p
0 (Ω), obtaining

〈A(uµ), (u− uµ)+〉 =
∫

Ω

hµ(z, uµ)(u− uµ)+ dz

=
∫

Ω

[µf(z, u)− g(z, u)](u− uµ)+ dz ≥ 〈A(u), (u− uµ)+〉

(see (3.11)). This implies

(3.14) 〈A(uµ)−A(u), (u− uµ)+〉 ≥ 0.

On the other hand, from the well-known inequalities

(‖x‖p−2x− ‖y‖p−2y, x− y) ≥

{
γ‖x− y‖p if p > 2,

γ‖x− y‖2(1 + ‖x‖+ ‖y‖)p−2 if 1 < p < 2,

which hold for some γ > 0 and for all x, y ∈ RN , we easily get

(3.15) 〈A(u)−A(uµ), (u− uµ)+〉

=
∫
{u>uµ}

(‖Du‖p−2u− ‖Duµ‖p−2Duµ, Du−Duµ) dz ≥ 0.

From (3.14) and (3.15) we deduce that |{u > uµ}|N = 0, that is, uµ ≥ u almost
every in Ω. Recalling the definition of hµ(z, x), (3.13) becomes

A(uµ) = µNf (uµ)−Ng(uµ),

so uµ ∈ int(C+) solves (Pµ) and µ ∈ S. �

Set λ∗ = inf(S).
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Proposition 3.7. If hypotheses (Hf ), (Hg) and (H0) hold and λ > λ∗, then
problem (Pλ) has at least two positive solutions.

Proof. Choose µ ∈ ]λ∗, λ[ ∩ S. Then, there exists uµ ∈ int(C+) a positive
solution of problem (Pµ), that is,

(3.16) −∆puµ = µf(z, uµ)− g(z, uµ) in Ω.

Arguing as in the proof of Proposition 3.6, we define

hλ(z, x) =

{
λf(z, uµ(z))− g(z, uµ(z)) if x ≤ uµ(z),

λf(z, x)− g(z, x) if x > uµ(z),

the potential function

Hλ(z, x) =
∫ x

0

hλ(z, s) ds for all (z, x) ∈ Ω× R

and the truncated functional

ϕ̂λ(u) =
1
p
‖Du‖p

p −
∫

Ω

Hλ(z, u) dz for all u ∈ W 1,p
0 (Ω).

Clearly, ϕ̂λ ∈ C1(W 1,p
0 (Ω)) and is sequentially weakly lower semicontinuous.

Moreover, from (Hf )(ii) and (Hg)(ii), we deduce the existence of η > 0, ε ∈
]0, η/λ[ and c4 > 0 such that

(3.17) Hλ(z, x) ≤ (ελ− η)xθ + c4 for a.a. z ∈ Ω and all x ≥ 0.

From (3.17) we get

ϕ̂λ(u) ≥ 1
p
‖Du‖p

p + (η − ελ)‖u+‖θ
θ − c5 for all u ∈ W 1,p

0 (Ω) (c5 > 0),

hence ϕ̂λ is coercive. By the Weierstrass theorem, there exists u0
λ ∈ W 1,p

0 (Ω)
such that

(3.18) ϕ̂λ(u0
λ) = inf

W 1,p
0 (Ω)

ϕ̂λ.

In particular,

(3.19) A(u0
λ) = Nhλ

(u0
λ).

Acting on (3.19) with (uµ − u0
λ)+ ∈ W 1,p

0 (Ω), we obtain as above that u0
λ ≥ uµ

almost everywhere in Ω. Thus, u0
λ > 0 and (3.19) becomes

(3.20) −∆pu
0
λ = λf(z, u0

λ)− g(z, u0
λ) in Ω.

Then, nonlinear regularity theory and the maximum principle of Vázquez imply
u0

λ ∈ int(C+), and so we have obtained a positive solution of (Pλ) (see (3.20)).

Claim. u0
λ − uµ ∈ int(C+).
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First, we use hypothesis (H0): there is σ̂ > 0 such that, for all λ′ ∈ ]λ∗, λ] and
almost all z ∈ Ω, the mapping x 7→ λ′f(z, x)− g(z, x) + σ̂xθ−1 is nondecreasing
in [0, ‖u0

λ‖∞]. We have

−∆puµ + σ̂uθ−1
µ =µf(z, uµ)− g(z, uµ) + σ̂uθ−1

µ (see (3.16))

<λf(z, uµ)− g(z, uµ) + σ̂uθ−1
µ (recall µ < λ and see (Hf ))

≤λf(z, u0
λ)− g(z, u0

λ) + σ̂(u0
λ)θ−1 (recall uµ ≤ u0

λ)

= −∆pu
0
λ + σ̂(u0

λ)θ−1 (see (3.20)).

We set for all z ∈ Ω

β̂1(z) = µf(z, uµ)− g(z, uµ) + σ̂uθ−1
µ ,

β(z) = λf(z, uµ)− g(z, uµ) + σ̂uθ−1
µ ,

β̂2(z) = λf(z, u0
λ)− g(z, u0

λ) + σ̂(u0
λ)θ−1.

Summarizing, we have uµ, u0
λ ∈ int(C+), σ̂ > 0, β̂1, β̂2 ∈ L∞(Ω) and

−∆uµ + σ̂uθ−1
µ = β̂1(z), −∆pu

0
λ + σ̂(u0

λ)θ−1 = β̂2(z) in Ω.

Moreover, let K ⊂ Ω be a compact set and set ρK = minK u0
λ > 0. By hypothesis

(Hf )(iv), there exists γK > 0 such that

f(z, x) ≥ γK for a.a. z ∈ Ω and all x ≥ ρK .

Thus, we have

β̂2(z)− β̂1(z) ≥ β(z)− β̂1(z) = (λ− µ)f(z, uµ) ≥ (λ− µ)γK

for almost all z ∈ K, so condition (2.3) is fulfilled. We apply Proposition 2.3 to
prove the Claim.

We set
V = {u ∈ W 1,p

0 (Ω) : u(z) ≥ uµ(z) for a.a. z ∈ Ω}.
Note that

(3.21) ϕ̂λ(u) = ϕλ(u)− ĉ for all u ∈ V ,

with

ĉ =
∫

Ω

[λf(z, uµ)uµ − g(z, uµ)uµ] dz −
∫

Ω

[λF (z, uµ)−G(z, uµ)] dz.

There exists δ > 0 such that, for all h ∈ C1
0 (Ω) with ‖h‖C1

0 (Ω) < δ,

(u0
λ − uµ) + h ∈ C+ (see the Claim).

By (3.18) and (3.21), u0
λ is a C1

0 (Ω)-local minimizer of ϕλ. We invoke Theo-
rem 1.1 of Garcia Azorero, Manfredi and Peral Alonso [4] to conclude that u0

λ is
a W 1,p

0 (Ω)-local minimizer of ϕλ.
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By virtue of hypotheses (Hf )(iii) and (Hg)(iii), given ε ∈ ]0, λ̂1/(λ + 1)[, we
can find δ̂ > 0 such that

(3.22) F (z, x) ≤ ε

p
|x|p and G(z, x) ≥ −ε

p
|x|p

for almost all z ∈ Ω and all |x| ≤ δ̂.
Let u ∈ C1

0 (Ω) be such that ‖u‖C1
0 (Ω) ≤ δ̂. Then,

ϕλ(u) ≥ 1
p
‖Du‖p

p − (λ + 1)
ε

p
‖u‖p

p ≥
1
p

[
1− ε(λ + 1)

λ̂1

]
‖Du‖p

p.

Thus we have

ϕλ(u) ≥ 0 = ϕλ(0) for all u ∈ C1
0 (Ω), ‖u‖C1

0 (Ω) ≤ δ̂,

that is 0 is a C1
0 (Ω)-local minimizer of ϕλ, hence a W 1,p

0 (Ω)-local minimizer of ϕλ

(see [4]).
Without any loss of generality, we may assume that ϕλ(u0

λ) ≥ 0 (the ar-
gument is similar if the reverse inequality holds). Moreover, we assume that
u0

λ is an isolated critical point of ϕλ (otherwise we have a whole sequence of
pairwise distinct positive solutions of (Pλ) and so we are done). Reasoning as
in D. Motreanu, V. V. Motreanu and N. S. Papageorgiou [10] (see the proof of
Proposition 6), we can find ρ ∈ ]0, ‖u0

λ‖[ such that

(3.23) ϕ(u0
λ) < inf

∂Bρ(u0
λ)

ϕλ = ηρ,

where ∂Bρ(u0
λ) = {u ∈ W 1,p

0 (Ω) : ‖u− u0
λ‖ = ρ}.

Recall that ϕλ is coercive (see the proof of Proposition 3.6). This implies that
ϕλ satisfies (PS). Indeed, if (un) is a sequence in W 1,p

0 (Ω) such that (ϕλ(un)) is
bounded in R and ϕ′λ(un) → 0 in W−1,p′(Ω), coercivity of ϕλ implies that (un)
is bounded. So, we may assume that there is u ∈ W 1,p

0 (Ω) such that

(3.24) un ⇀ u in W 1,p
0 (Ω) and un → u in Lr(Ω).

Set εn = ‖ϕ′λ(un)‖W−1,p′ (Ω). We have for all n ∈ N∣∣∣∣〈A(un), un−u〉−λ

∫
Ω

f(z, un)(un−u) dz+
∫

Ω

g(z, un)(un−u) dz

∣∣∣∣ ≤ εn‖un−u‖,

which implies
lim
n
〈A(un), un − u〉 = 0 (see (3.24)

which in turn gives un → u in W 1,p
0 (Ω) by the (S)+ property of the mapping A

(see Proposition 2.2).
This, together with (3.23), allows us to apply Theorem 2.1. So, we find

u1
λ ∈ W 1,p

0 (Ω) such that

(3.25) ϕλ(u1
λ) ≥ ηρ and ϕ′λ(u1

λ) = 0.
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From the inequality in (3.25) and (3.23) we see that u1
λ /∈ {0, u0

λ}. Also, from
the equality in (3.25) we have

A(u1
λ) = λNf (u1

λ)−Ng(u1
λ).

From this, reasoning as before, we deduce that u1
λ ≥ 0 in Ω and solves (Pλ).

Moreover, by nonlinear regularity theory we have u1
λ ∈ C+ \ {0}. Finally, using

hypothesis (H)0, we can find σ > 0 such that the mapping x 7→ λ′f(z, x) −
g(z, x) + σxθ−1 is nondecreasing in [0, ‖u1

λ‖∞] for almost all z ∈ Ω and all
λ′ ∈ ]λ∗, λ]. Then, we easily get

∆pu
1
λ ≤ σ(u1

λ)θ−1 in Ω.

By the results of J. L. Vázquez [16], recalling that θ > p, we finally get u1
λ ∈

int(C+). Thus, (Pλ) admits at least two positive solutions u0
λ and u1

λ. �

Next, we show that λ∗ ∈ S:

Proposition 3.8. If hypotheses (Hf ), (Hg) and (H0) hold, then problem
(Pλ∗) has at least one positive solution.

Proof. Let (λn) be a decreasing sequence in S such that λn → λ∗. Let
un ∈ int(C+) be the corresponding positive solutions for problems (Pλn

), for all
n ≥ 1. We have

(3.26) A(un) = λnNf (un)−Ng(un) for all n ≥ 1.

Hypotheses (Hg)(i), (ii) imply that we can find η > 0, c6 > 0 such that

(3.27) g(z, x)x ≥ ηxθ − c6 for a.a. z ∈ Ω and all x ≥ 0.

Similarly, chosen ε ∈ ]0, η/λ1[, hypotheses (Hf )(i), (ii) imply that we can find
c7 > 0 such that

(3.28) f(z, x)x ≤ ηxθ + c7 for a.a. z ∈ Ω and all x ≥ 0.

Acting on (3.26) with un and applying (3.27) and (3.28), we have

‖Dun‖p
p =λn

∫
Ω

f(z, un)un dz −
∫

Ω

g(z, un)un dz

≤ (λnε− η)‖un‖θ
θ + c8 (c8 > 0)

≤ c8 (recall that (λn) is decreasing).

Thus, (un) is bounded in W 1,p
0 (Ω). We may assume that there exists u∗ ∈

W 1,p
0 (Ω) such that

(3.29) un ⇀ u∗ in W 1,p
0 (Ω) and un → u∗ in Lr(Ω).
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Now we act on (3.26) with un − u∗ ∈ W 1,p
0 (Ω):

〈A(un), un − u∗〉 ≤(λn + 1)
∫

Ω

[a(z) + cur−1
n ]|un − u∗| dz (see (Hf )(i), (Hg)(i))

≤(λ1 + 1)[‖a‖∞ + c‖un‖r−1
r ]‖un − u∗‖r.

From (3.29) it follows lim supn〈A(un), un − u∗〉 ≤ 0, which, by (S)+ property
(see Proposition 2.2), implies that un → u∗ in W 1,p

0 (Ω).
Passing to the limit in (3.26) and using the above convergence, we have

A(u∗) = λ∗Nf (u∗)−Ng(u∗),

hence u∗ ∈ C+ and it solves (Pλ∗) (as before, via nonlinear regularity theory).

Claim. u∗ 6= 0.

We argue by contradiction. So, suppose that u∗ = 0. Set yn = un/‖un‖ for
all n ≥ 1. Then (yn) is a bounded sequence in W 1,p

0 (Ω) and we may assume that
there exists y ∈ W 1,p

0 (Ω) such that

(3.30) yn ⇀ y in W 1,p
0 (Ω) and yn → y in Lp(Ω).

From (3.26) we have

(3.31) A(yn) = λn
Nf (un)
‖un‖p−1

− Ng(un)
‖un‖p−1

for all n ≥ 1.

Hypotheses (Hf )(i), (iii) imply that, given ε > 0, we can find cε > 0 such that

(3.32) |f(z, x)| ≤ ε(x+)p−1 + cε(x+)r−1 for a.a. z ∈ Ω and all x ≥ 0.

Similarly, from hypotheses (Hg)(i), (iii) we see that we an find η > η̂ and c9 > 0
such that

(3.33) |g(z, x)| ≤ η(x+)p−1 + c9(x+)r−1 for a.a. z ∈ Ω and all x ≥ 0.

We return to (3.26). Invoking Theorem 7.1 of O. A. Ladyzhenskaya and
N. N. Ural’tseva [8, p. 286] and Theorem 1 of G. M. Lieberman [9] (see also
N. S. Papageorgiou and S. Th. Kyritsi [13, p. 311]), we can find α ∈ ]0, 1[ and
c10 > 0 such that

(3.34) un ∈ C1,α
0 (Ω) and ‖un‖C1,α

0 (Ω) ≤ c10 for all n ≥ 1.

Since C1,α
0 (Ω) is compactly embedded into C1

0 (Ω), we have

(3.35) un → 0 in C1
0 (Ω) (see (3.29) and recall that we are assuming u∗ = 0).

We have for all n ≥ 1 and almost all z ∈ Ω

|f(z, un)|
‖un‖p−1

≤ εup−1
n + cεu

r−1
n

‖un‖p−1
(see (3.32))

≤ c11y
p−1
n (c11 > 0),
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hence ∫
Ω

[
|f(z, un)|
‖un‖p−1

]p′

dz ≤ cp′

11‖yn‖p−1
p for all n ≥ 1.

So, the sequence (Nf (un)/‖un‖p−1) is bounded in Lp′(Ω) (see (3.30)). We may
assume that there exists v ∈ Lp′(Ω) such that

(3.36) Nf (un)/‖un‖p−1 ⇀ v in Lp′(Ω).

Reasoning as in D. Motreanu, V. V. Motreanu and N. S. Papageorgiou [10] (see
the proof of Proposition 8), we show that v = 0.

Indeed, we know from (Hf ) that v ≥ 0 in Ω. Arguing by contradiction, we
assume that there exists δ > 0 such that |E|N > 0, where

E = {z ∈ Ω : v(z) > δ}.

We choose ε ∈ ]0, δλ̂
−1/p′

1 |E|1/p′

N [ in (3.32). We have χE ∈ Lp(Ω), so by (3.36)
we get

(3.37) lim
n

∫
Ω

f(z, un)
‖un‖p−1

χE(z) dz =
∫

Ω

v(z)χE(z) dz.

From the definition of E we get

(3.38)
∫

Ω

v(z)χE(z) dz ≥ δ|E|N .

For all n ≥ 1 we have∫
Ω

f(z, un)
‖un‖p−1

χE(z) dz =
∫

E

f(z, un)
‖un‖p−1

dz

≤
∫

E

εup−1
n + cεu

r−1
n

‖un‖p−1
dz (see (3.32))

≤ ελ̂
1/p′

1 |E|1/p
N + c12‖un‖r−p (c12 > 0),

which implies

(3.39) lim
n

∫
Ω

f(z, un)
‖un‖p−1

χE(z) dz = ελ̂
1/p′

1 |E|1/p
N < δ|E|N (see (3.29)).

Clearly, (3.37)–(3.39) give a contradiction. So v = 0 in Ω.
By an analogous (though a little more sophisticated) argument, we deduce

that the sequence (Ng(un)/‖un‖p−1) is bounded in Lp′(Ω), and there exists
γ ∈ L∞(Ω) such that

(3.40)
Ng(un)
‖un‖p−1

⇀ γy in Lp′(Ω) and 0 ≤ γ(z) ≤ η̂ for a.a. z ∈ Ω.

Acting on (3.31) with yn − y ∈ W 1,p
0 (Ω), and passing to the limit as n →∞, we

obtain
lim sup

n
〈A(yn), yn − y〉 ≤ 0 (see (3.36) and (3.40)).
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Then,

(3.41) yn → y in W 1,p
0 (Ω)

(see Proposition 2.2). Finally, from (3.31), (3.36) and (3.40) we have

A(y) = −γyp−1,

which in turn implies

‖Dy‖p
p = −

∫
Ω

γ(z)yp−1 dz ≤ 0,

that is, y = 0, contradicting (3.41) as ‖yn‖ = 1 for all n ≥ 1. This proves the
Claim.

So u∗ ∈ C+ \ {0} and is a solution of (Pλ∗). With the aid of hypothesis
(H0) and the nonlinear maximum principle of J. L. Vázquez [16], we have u∗ ∈
int(C+), i.e. λ∗ ∈ S. �

Finally, summarizing the situation for problem (Pλ), we can state the fol-
lowing bifurcation-type theorem:

Theorem 3.9. If hypotheses (Hf ), (Hg) and (H0) hold, then there exists
λ∗ > 0 such that

(a) for all λ > λ∗, problem (Pλ) has at least two positive solutions;
(b) for λ = λ∗, problem (Pλ) has at least one positive solution;
(c) for all λ ∈ ]0, λ∗[, problem (Pλ) has no positive solutions.

Proof. Follows from Propositions 3.5–3.8. �

Remark 3.10. Theorem 3.9 extends the results of W. Dong, J. T. Chen [3]
and S. Takeuchi [14], [15].
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