
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 37, 2011, 235–258

EXISTENCE OF PERIODIC SOLUTIONS
FOR p-LAPLACIAN NEUTRAL FUNCTIONAL EQUATION

WITH MULTIPLE DEVIATING ARGUMENTS

Tian Xiang — Rong Yuan

Abstract. By using the theory of coincidence degree and some refined
analysis techniques, we study a general kind of periodic solutions to p-

Laplacian neutral functional differential equation with multiple deviating

arguments. A general analysis method to tackle with such equations is
formed. Some new and universal results on the existence of periodic so-

lutions are obtained, meanwhile, some known results in the literatures are
improved. An example is provided as an application to our theorems.

1. Introduction

Throughout this paper, 1 < p < ∞ is a fixed real number. The conjugate
exponent of p is denoted by q, i.e. 1/p + 1/q = 1. Let ϕp: R → R be defined by
ϕp(u) = |u|p−2u. Then ϕp is a homeomorphism of R with the inverse ϕq. In
this paper, we study the existence of periodic solutions for p-Laplacian neutral
functional differential equation with multiple deviating arguments

(1.1) (ϕp((x(t)− cx(t− σ))′))′

= h(x′(t)) + f(x(t))x′(t) +
n∑

j=1

βj(t)g(x(t− τj(t))) + p(t),
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where f, g, h ∈ C(R, R); βj(t), τj(t) (j = 1, . . . , n), p(t) are continuous periodic
functions defined on R with period T > 0, σ, c ∈ R are constants such that
|c| 6= 1.

The problem of periodic solutions of ordinary differential equation was widely
studied, see [1]–[3], [9]. In recent years, there are many results about periodic
solutions for some types of second-order differential equations with deviating
arguments ( [6]–[8], [11], [13] and the references therein). For example, in [11],
the author considered a kind of Rayleigh equation with a deviating argument in
the following form

(1.2) x′′(t) + h(x′(t)) + g(x(t− τ(t)) = p(t),

where h, g, p and τ are real continuous functions defined on R, τ and p are
periodic with period 2π. Under the conditions that h(0) = 0,

∫ T

0
p(t) dt = 0 and

some other assumptions, the author studied the existence of periodic solution
of equation (1.2). In [7], the authors considered the following equation with
a deviating argument

(1.3) (x(t) + cx(t− r))′′ + h(x′(t)) + g(x(t− τ(t)) = p(t).

Also, the authors assumed that h(0) = 0 and
∫ T

0
p(t) dt = 0. By using Mawhin

continuation theorem, some results on the existence of periodic solutions are
obtained. But the corresponding problem of p-Laplacian differential equation
with multiple deviating arguments has been studied less often. The possible
reason for this is that the differential operator (ϕp(u))′ = (|u|p−2u)′ for p 6= 2
is no longer linear, therefore the coincidence degree can not be applied directly.
In [13], the authors studied the following equation

(1.4) (ϕp((x(t)− cx(t− σ))′))′ = f(x(t))x′(t) +
n∑

j=1

βj(t)g(x(t− τj(t))) + p(t),

in which the condition p =
∫ T

0
p(t) dt < 0 must be satisfied. That is, the result

can not be applied in the case of p =
∫ T

0
p(t) dt ≥ 0. Further, the condition

imposed on function g is that g(x) > 0 for all x ∈ R. Hence the result is far
from ideal. Moreover, clearly equations (1.2), (1.3) and (1.4) are special cases
of (1.1). Therefore, it is necessary and meaningful to study equation (1.1).

The primary purpose of this paper is to provide a general analysis technique
to deal with such equations as (1.1), and meanwhile , we establish some gen-
eral criteria to guarantee the existence of T -periodic solutions for equation (1.1)
by using coincidence degree theory. For example, our Theorem 3.11 covers the
corresponding theorem in [11] and the results in this article are also new when
h is bounded. Secondly, the methods used to estimate a priori bounds of pe-
riodic solution are different from the corresponding ones in [6], [7], [13]. We
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integrate some novel analysis techniques to estimate the priori bounds. Finally,
the significance of this paper is that the conditions

∫ T

0
p(t) dt = 0, h(0) = 0 and

the boundedness of h are not required, which are required assumptions of some
papers in the literature.

In the sequel, we will use the following notations.
The Lp-norm in Lp([0, T ], Rn) is defined by

‖x‖p =
( n∑

i=1

∫ T

0

|xi(t)|p dt

)1/p

.

The L∞-norm in L∞([0, T ], Rn) is

‖x‖∞ = max
1≤i≤n

‖xi‖∞,

where ‖xi‖∞ = ess supt∈[0,T ] |xi(t)|, (i = 1, . . . , n).

2. Some preliminary lemmas

For the moment, we make the following notations: T > 0 is a constant,
CT = {x ∈ C(R, R) | x(t + T ) = x(t)} with the norm ‖x‖∞ = maxt∈[0,T ] |x(t)|,
Z = {z = (x( · ), y( · ))T ∈ C(R, R2) | z(t + T ) = z(t)} with the norm ‖z‖ =
max{‖x‖∞, ‖y‖∞}, and X = {w = (u( · ), v( · ))T ∈ C1(R, R2) | w(t+T ) = w(t)}
with the norm ‖w‖1 = max{‖w‖∞, ‖w′‖∞}. Clearly, X, Z are Banach spaces.

We also define operators A and L in the following form, respectively:

A:CT → CT , (Ax)(t) = x(t)− cx(t− σ),

L:D(L) ⊂ X → Z, (Lz)(t) =
(

(Ax)′(t)
y′(t)

)
,

where z = (x( · ), y( · ))T .

Lemma 2.1 (see [7]). If |c| 6= 1, then A has a unique continuous bounded
inverse and satisfies the following properties:

(a)
∫ 2π

0

|(A−1x)(t)| dt ≤ 1
|1− |c||

∫ 2π

0

|x(t)| dt, for all x ∈ C2π;

(b) Ax′′ = (Ax)′′, for all x ∈ C2
2π := {x | x ∈ C2(R, R), x(t + 2π) = x(t)}.

In order to use coincidence degree theory to study the existence of T -periodic
solutions for (1.1), we rewrite (1.1) in the following form:

(2.1)


(Ax)′(t) = ϕq(y(t)) = |y(t)|q−2y(t),

y′(t) = h(x′(t)) + f(x(t))x′(t) +
n∑

j=1

βj(t)g(x(t− τj(t))) + p(t).
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One can easily know that if z(t) = (x(t), y(t))T is a T -periodic solution of (2.1),
then x(t) is a T -periodic solution of (1.1). By Lemma 2.1, we obtain that

KerL = R2 and Im L =
{

z ∈ Z :
∫ T

0

z(t) dt = 0
}

.

So L is a Fredholm operator with index zero.
Letting P :X → KerL and Q:Z → Im Q ⊂ R2 be defined by

Pw =
(

(Au)(0)
v(0)

)
, w ∈ X; Qz =

1
T

∫ T

0

z(s) ds, z ∈ Z,

we get Im P = KerL, Ker Q = Im L.
Letting Kp: ImL → D(L)∩KerP denote the inverse of LD(L)∩Ker P , we have

(2.2)
(Kpz)(t) =

(
(A−1Fx)(t)

(Fy)(t)

)
, z(t) = (x(t), y(t))T ,

(Fx)(t) =
∫ t

0

x(s) ds, (Fy)(t) =
∫ t

0

y(s) ds.

We introduce the nonlinear operator N :X → Z as follows:

(2.3) (Nz)(t) =

 ϕq(y(t))

h(x′(t)) + f(x(t))x′(t) +
n∑

j=1

βj(t)g(x(t− τj(t))) + p(t)

 .

Lemma 2.2. The nonlinear operator N :X → Z is L-compact on Ω, where
Ω is an open bounded subset of X.

Proof. From (2.2) and (2.3), we can easily see that QN(Ω)⊂R2 is bounded,
and N is continuous and bounded. A−1 is bounded due to Lemma 2.1. Us-
ing Ascoli–Arzela theorem, one can examine that Kp is completely continuous.
Hence QN(Ω) and Kp(I − Q)N(Ω) are relatively compact subset in Z and X,
respectively, i.e. N is L-compact on Ω. �

Lemma 2.3 (see [5]). Let g ∈ C0
T , τ ∈ C1

T and τ ′(t) < 1, for all t ∈ [0, T ].
Then g(µ(t)) ∈ C0

T and µ(t + T ) = µ(t) + T , for all t ∈ [0, T ], where µ(t) is the
inverse function of t− τ(t).

Let W = W 1,p([0, T ], Rn) be the Sobolev space.

Lemma 2.4 (see [12]). Suppose u ∈ W and u(0) = u(T ) = 0, then

‖u‖∞ ≤
(

T

2

)1/q

‖u′‖p, and ‖u‖p ≤
T

πp
‖u′‖p,

where

πp = 2
∫ (p−1)1/p

0

ds

(1− sp/(p− 1))1/p
=

2π(p− 1)1/p

p sin(π/p)
.
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Lemma 2.5 (see [4]). Let X and Z be two Banach spaces, L:D(L) ⊂ X → Z

be a Fredholm operator with index zero, Ω ⊂ X be an open bounded set, and
N : Ω → Z be L-compact and such that

(a) Lx 6= λNx for all (x, λ) ∈ [D(L) ∩ ∂Ω]× (0, 1);
(b) Nx 6∈ Im L for all x ∈ KerL ∩ ∂Ω;
(c) deg (JQN, Ω∩KerL, 0) 6= 0, where J : ImQ → KerL is an isomorphism.

Then the equation Lx = Nx has at least one solution in D(L) ∩ Ω.

3. Main results and their proofs

Throughout this paper, we assume τj ∈ C1
T and τ ′j(t) < 1, for all t ∈ [0, T ]

(j = 1, . . . , n). So the function t − τj(t) has a unique inverse denoted by µj(t)
(j = 1, . . . , n). We also denote

x =
1
T

∫ T

0

x(s)ds, x̃ =
1
T

∫ T

0

|x(s)|ds, for all x ∈ CT ,

Γ(t) =
n∑

j=1

βj(µj(t))
1− τ ′j(µj(t))

, Γ1(t) =
n∑

j=1

|βj(µj(t))|
1− τ ′j(µj(t))

.

In order to state our main results conveniently, we make some basic hypothe-
ses and notations.

(H1) Γ(t) > 0, for all t ∈ R.

There exist constants r1 ≥ 0, r2 > 0,r3 ≥ 0, r4 > 0, K1 ≥ 0, K2,K3 ∈ R and
D > 0 such that

(H2) |h(x)| ≤ r1TΓ|x|p−1 + K1TΓ, for all x ∈ R,
(H3) xg(x) > 0, for |x| > D, and g(x) < −K3 for x < −D and K3 ≥

TK1 + p/Γ; and also g(x) > K2 + r1r2x
p−1 for x > D, finally, we have

K2 + r1r2D
p−1 ≥ TK1 − p/Γ,

(H4) lim sup|x|→∞ |F (x)|/|x|p−1 ≤ r3, where F (x) =
∫ x

0
f(s) ds.

(H5) limx→−∞ |g(x)|/|x|p−1 = r1r4.

Further, we denote

α(z) =
(

T

2

)1/q

+ T (q−1)/p

(
max

{
1
r2

,
r1

r1r4 − z

})q−1

Sgn r1,

d(z) =
T

πp
+

(
T max

{
1
r2

,
r1

r1r4 − z

})q−1

Sgn r1,

m1(z) := m1(α, d, z) = min{α(z)T 1/p, d(z)},
m2(z) := m2(α, d, z) = min{T 1/qαp−1(z), dp−1(z)}.
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Finally, we set

Ap(α, d, z) = r1
(1 + |c|)
|1− |c||

TΓ
[
m1(α, d, z) + αT 1/p

∥∥∥∥Γ1

Γ

∥∥∥∥
∞

]
+

|c|
|1− |c||

(r3 + z)m2(α, d, z) + 2α‖Γ‖p

∥∥∥∥Γ1

Γ

∥∥∥∥
∞

(1 + |c|)
|1− |c||

(r1r4 + z)dp−1.

Now, let us begin with the main results.

Theorem 3.1. Suppose that the conditions (H1)–(H5) are fulfilled, then
equation (1.1) has at least one T -periodic solution if Ap(α(0), d(0), 0) < 1.

Proof. We set Ω1 = {z ∈ X : Lz = λNz, λ ∈ (0, 1)}. Then for each
z = (x(t), y(t))T ∈ Ω1, one can see that x(t) must satisfy the following equation:

(3.1)


(Ax)′(t) = λϕq(y(t)) = λ|y(t)|q−2y(t),

y′(t) = λh(x′(t)) + λf(x(t))x′(t)+λ
n∑

j=1

βj(t)g(x(t− τj(t))) + λp(t).

Let z(t) = (x(t), y(t))T be a T -periodic solution of (3.1) for some λ ∈ (0, 1). One
can know that x = x(t) is a T -periodic solution of the following equation:(

ϕp

(
1
λ

(Ax)′(t)
))′

= λh(x′(t))+λf(x(t))x′(t)+λ

n∑
j=1

βj(t)g(x(t−τj(t)))+λp(t),

i.e.

(3.2) (ϕp((Ax)′(t)))′ = λph(x′(t)) + λpf(x(t))x′(t)

+ λp
n∑

j=1

βj(t)g(x(t− τj(t))) + λpp(t).

Integrating both sides of (3.2) over [0, T ], we obtain

(3.3)
∫ T

0

h(x′(t)) dt +
∫ T

0

n∑
j=1

βj(t)g(x(t− τj(t))) dt + Tp = 0.

It is easy to see that∫ T

0

βj(t)g(x(t− τj(t))) dt =
∫ T−τj(T )

−τj(0)

βj(µj(s))
1− τ ′j(µj(s))

g(x(s)) ds

=
∫ T

0

βj(µj(s))
1− τ ′j(µj(s))

g(x(s)) ds (j = 1, . . . , n),

since βj(µj(t))/(1− τ ′j(µj(t))) ∈ CT (j = 1, . . . , n) in view of Lemma 2.3. Thus
we derive from (3.3) that

(3.4)
∫ T

0

[h(x′(t)) + Γ(t)g(x(t))] dt + Tp = 0.



p-Laplacian Neutral Functional Equation 241

By using integral mean value theorem, there exists a point ξ1 ∈ [0, T ] such that∫ T

0
Γ(t)g(x(t)) dt = TΓg(x(ξ1)). Therefore (3.4) becomes

(3.5) TΓg(x(ξ1)) = −
∫ T

0

h(x′(t)) dt− Tp.

Now, suppose that x(ξ1) > D, then from (3.5), (H2) and (H3), we deduce that

K2 + r1r2(x(ξ1))p−1 <g(x(ξ1)) = − 1
TΓ

∫ T

0

h(x′(t)) dt− p

Γ
(3.6)

≤ 1
TΓ

∫ T

0

|h(x′(t))| dt− p

Γ

≤
∫ T

0

[r1|x′(t)|p−1 + K1] dt− p

Γ

≤ r1T
1/p‖x′‖p−1

p + TK1 −
p

Γ
.

Case of r1 = 0. It follows from (H3) and (3.6) that

TK1 −
p

Γ
≤ K2 < TK1 −

p

Γ
,

which is a contradiction. Hence we get x(ξ1) ≤ D.
If x(ξ1) < −D, then we have from (H3) and (3.5) that

TK1 +
p

Γ
≤ K3 < −g(x(ξ1)) ≤ TK1 +

p

Γ
,

which is also a contradiction. Summing up the above arguments, we conclude
that

(3.7) |x(ξ1)| ≤ D, when r1 = 0.

Case of r1 > 0. On the one hand, we deduce from (3.6) that

(3.8) |x(ξ1)|p−1 <
T 1/p

r2
‖x′‖p−1

p +
(TK1 −K2)Γ− p

r1r2Γ
:=

T 1/p

r2
‖x′‖p−1

p + C1,

here and in the following, Ci denoting some appropriate constants, which are
independent of λ.

On the other hand, it is easy to check that Ap(α(z), d(z), z) is continuous on
(0, r1r4) with respect to z. Since Ap(α(0), d(0), 0) < 1, there exists a constant ε >

0 such that Ap(α(ε), d(ε), ε) < 1. For such a small ε > 0, in view of assumption
(H5), we find that there must be a constant ρ1 > D, which is independent of λ,
such that

(3.9)

|g(x)|
|x|p−1

> (r1r4 − ε) > 0 for x < −ρ1, r1 > 0,

|g(x)|
|x|p−1

< (r1r4 + ε) for x < −ρ1, r1 ≥ 0.
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If x(ξ1) < −ρ1, then from (3.9), (3.5) and (H2), we can derive that

(r1r4 − ε)|x(ξ1)|p−1 < |g(x(ξ1))| ≤ r1T
1/p‖x′‖p−1

p + TK1 +
|p|
Γ

,

i.e.

(3.10) |x(ξ1)|p−1 ≤ r1T
1/p

r1r4 − ε
‖x′‖p−1

p + C2.

From (3.7), (3.8) and (3.10), it is easy to see in either case of r1 = 0 or case of
r1 > 0 that

|x(ξ1)|p−1 ≤ max
{

Dp−1,
T 1/p

r2
‖x′‖p−1

p + C1,
r1T

1/p

r1r4 − ε
‖x′‖p−1

p + C2

}
≤ d1‖x′‖p−1

p + e1,

where d1 = max{T 1/p/r2, r1T
1/p/(r1r4 − ε)}, e1 = Dp−1 + C1 + C2. Without

loss of generality, we can assume that e1 > 0. Thus from the above inequality
we obtain

(3.11) |x(ξ1)| ≤ (d1‖x′‖p−1
p + e1)1/(p−1).

For the sake of concision and standing out the ideas, the following two lemmas
are formulated. The proof will be continued after the two lemmas.

Lemma 3.2. We have the following relations

‖x‖p ≤ d(ε)‖x′‖p + e‖x′‖2−p
p + ρ,(3.12)

‖x‖∞ ≤ α(ε)‖x′‖p + γ‖x′‖2−p
p + ρ,(3.13)

where e, γ, ρ are defined in the proof, which are independent of λ.

Proof. By elementary analysis, there is a constant δ > 0, which is indepen-
dent of λ, such that

(3.14) (1 + x)k < 1 + (1 + k)x, k ≥ 0, for all x ∈ (0, δ].

If ‖x′‖p = 0, then from (3.11) we have |x(ξ1)| < e
1

p−1
1 .

If ‖x′‖p > 0, then we know

(3.15) (d1‖x′‖p−1
p + e1)1/(p−1) = d

1/(p−1)
1 ‖x′‖p

(
1 +

e1

d1‖x′‖p−1
p

)1/(p−1)

.

If e1/(d1‖x′‖p−1
p ) > δ, then ‖x′‖p < (e1/(d1δ))1/(p−1). So from (3.11) we have

|x(ξ1)| < (e1/δ + e1)1/(p−1).
If e1/(d1‖x′‖p−1

p ) ≤ δ, then ‖x′‖p ≥ (e1/(d1δ))1/(p−1). Thus from (3.11),
(3.14) and (3.15), we derive that

(3.16) |x(ξ1)| < d
1/(p−1)
1 ‖x′‖p + d

(2−p)/(p−1)
1

pe1

p− 1
‖x′‖2−p

p .
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Now, for any fixed point ξ ∈ [0, T ], on the one hand, we have

‖x‖∞ ≤ |x(ξ)|+
∫ T

0

|x′(s)| ds ≤ |x(ξ)|+ T 1/q‖x′‖p.

On the other hand, putting u(t) = x(t + ξ) − x(ξ), then u(0) = u(T ) = 0 and
u ∈ W 1,p([0, T ], R). By Lemma 2.4, one can see

‖x‖p ≤
( ∫ T

0

(|u(t)|+ |x(ξ)|)p dt

)1/p

≤
( ∫ T

0

|u(t)|p dt

)1/p

+ T 1/p|x(ξ)|

≤ T

πp
‖u′‖p + T 1/p|x(ξ)| = T

πp
‖x′‖p + T 1/p|x(ξ)|

and

‖x‖∞ ≤ ‖u‖∞ + |x(ξ)| ≤
(

T

2

)1/q

‖x′‖p + |x(ξ)|.

From the above estimates, we sum up that

‖x‖p ≤
T

πp
‖x′‖p + T 1/p|x(ξ)|(3.17)

‖x‖∞ ≤
(

T

2

)1/q

‖x′‖p + |x(ξ)|.(3.18)

We denote ρ2 = max{ρ1, e
1/(p−1)
1 , (e1/δ + e1)1/p−1} and always assume that

‖x′‖p ≥ (e1/(d1δ))1/(p−1). Obviously, ρ2 is independent of λ. Thus from (3.7),
(3.16)–(3.18), we conclude in ether case of r1 = 0 or case of r1 > 0 that

‖x‖p ≤
(

T

πp
+ T 1/pdq−1

1

)
‖x′‖p + d

(2−p)/(p−1)
1 T 1/p pe1

p− 1
‖x′‖2−p

p + ρ

= d(ε)‖x′‖p + e‖x′‖2−p
p + ρ

‖x‖∞ <

[(
T

2

)1/q

+ d
1/(p−1)
1

]
‖x′‖p + d

(2−p)/(p−1)
1

pe1

p− 1
‖x′‖2−p

p + ρ

= α(ε)‖x′‖p + γ‖x′‖2−p
p + ρ,

where

e = d
(2−p)/(p−1)
1 T 1/p pe1

p− 1
, γ = d

(2−p)/(p−1)
1

pe1

p− 1
, ρ = max{ρ2T

1/p, ρ2}.

We state that d1 is understood as zero when r1 = 0. This completes the lemma.�

Lemma 3.3. There is a appropriate constant M > D, which is independent
of λ, such that

‖(x, y)‖1 = max{‖x‖∞, ‖y‖∞, ‖x′‖∞, ‖y′‖∞} < M.
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Proof. Multiplying the two sides of (3.2) by (Ax)(t) and integrating them
over [0, T ], we get

−
∫ T

0

|(Ax)′(t)|p dt = λp

∫ T

0

h(x′(t))[x(t)− cx(t− σ)] dt(3.19)

+ λp

∫ T

0

f(x(t))x′(t)[x(t)− cx(t− σ)] dt

+ λp

∫ T

0

n∑
j=1

βj(t)g(x(t− τj(t)))[x(t)− cx(t− σ)] dt

+ λp

∫ T

0

p(t)[x(t)− cx(t− σ)] dt.

In view of
∫ T

0
f(x(t))x′(t)x(t) dt = 0 and (b) of Lemma 2.1, we obtain from

(3.19) that

(3.20)
∫ T

0

|(Ax′)(t)|p dt = −λp

∫ T

0

h(x′(t))[x(t)− cx(t− σ)] dt

+ cλp

∫ T

0

f(x(t))x′(t)x(t− σ) dt

− λp

∫ T

0

n∑
j=1

βj(t)g(x(t− τj(t)))
[
x(t)− cx(t− σ)] dt

− λp

∫ T

0

p(t)[x(t)− cx(t− σ)
]

dt

≤
∣∣∣∣ ∫ T

0

h(x′(t))[x(t)− cx(t− σ)] dt

∣∣∣∣ + |c|
∣∣∣∣ ∫ T

0

f(x(t))x′(t)x(t− σ) dt

∣∣∣∣
+ (1 + |c|)‖x‖∞

[ n∑
j=1

∫ T

0

|βj(µj(s))|
1− τ ′j(µj(s))

g(x(s)) ds + T p̃

]

=
∣∣∣∣ ∫ T

0

h(x′(t))[x(t)− cx(t− σ)] dt

∣∣∣∣ + |c|
∣∣∣∣ ∫ T

0

f(x(t))x′(t)x(t− σ) dt

∣∣∣∣
+ (1 + |c|)‖x‖∞

[ ∫ T

0

Γ1(s)g(x(s)) ds + T p̃

]
.

On the one hand, from (H2) and (3.12), we have

∣∣∣∣ ∫ T

0

h(x′(t))x(t) dt

∣∣∣∣ ≤TΓ
(

r1

∫ T

0

|x′(t)|p−1|x(t)| dt + K1

∫ T

0

|x(t)| dt

)
≤TΓ(r1‖x′‖p−1

p ‖x‖p + K1T
1/q‖x‖p)

≤r1d(ε)TΓ‖x′‖p
p+C3‖x′‖p+C4‖x′‖p−1

p +C5‖x′‖2−p
p +C6.
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Hence, we get that

(3.21)
∣∣∣∣ ∫ T

0

h(x′(t))[x(t)− cx(t− σ)] dt

∣∣∣∣
≤

∣∣∣∣ ∫ T

0

h(x′(t))x(t) dt

∣∣∣∣ + |c|
∣∣∣∣ ∫ T

0

h(x′(t))x(t− σ) dt

∣∣∣∣
≤ (1 + |c|)r1d(ε)TΓ‖x′‖p

p + C7‖x′‖p + C8‖x′‖p−1
p + C9‖x′‖2−p

p +C10.

It follows from (3.13) that

(3.22) ‖x‖∞‖x′‖p−1
p ≤ α(ε)‖x′‖p

p + γ‖x′‖p + ρ‖x′‖p−1
p .

On the other hand, from (3.13), (3.22) and (H2), we have∣∣∣∣ ∫ T

0

h(x′(t))[x(t)− cx(t− σ)] dt

∣∣∣∣(3.23)

≤ (1 + |c|)TΓ(r1T
1/p‖x′‖p−1

p + K1)‖x‖∞
≤ (1 + |c|)r1α(ε)T (p+1)/pΓ‖x′‖p

p

+ C11‖x′‖p + C12‖x′‖p−1
p + C13‖x′‖2−p

p + C14.

Now set m1(ε) := m1(α(ε), d(ε), ε) = min{α(ε)T 1/p, d(ε)}. Combing (3.21) with
(3.23), we conclude that

(3.24)
∣∣∣∣ ∫ T

0

h(x′(t))[x(t)− cx(t− σ)] dt

∣∣∣∣ ≤ r1m1(ε)(1 + |c|)TΓ‖x′‖p
p

+ C15‖x′‖p + C16‖x′‖p−1
p + C17‖x′‖2−p

p + C18.

Let E1 = {t ∈ [0, T ] : x(t) > ρ}, E2 = {t ∈ [0, T ] : x(t) < −ρ} and E3 = {t ∈
[0, T ] : |x(t)| ≤ ρ}. Then from (3.4), we have that

(3.25)
( ∫

E1

+
∫

E2

+
∫

E3

)
Γ(t)g(x(t)) dt ≤

∫ T

0

|h(x′(t))| dt + T |p|.

As
∫

E1
|Γ(t)g(x(t))| dt =

∫
E1

Γ(t)g(x(t)) dt and from (3.9) we have∫
E2

|Γ(t)g(x(t))| dt < (r1r4 + ε)‖Γ‖p‖x‖p−1
p .

It follows from (3.25) that

(3.26)
∫

E1

|Γ(t)g(x(t))| dt

≤
∫

E2

|Γ(t)g(x(t))| dt +
∫

E3

|Γ(t)g(x(t))| dt +
∫ T

0

|h(x′(t))|dt + T |p|

< (r1r4 + ε)‖Γ‖p‖x‖p−1
p + gρTΓ +

∫ T

0

|h(x′(t))| dt + T |p|,
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where gρ = max|x|≤ρ |g(x)|. From (3.26), (3.5), (3.12) and (H2), we deduce that∫ T

0

Γ1(t)|g(x(t))| dt =
∫ T

0

Γ1(t)
Γ(t)

Γ(t)|g(x(t))| dt(3.27)

≤ 2
∥∥∥∥Γ1

Γ

∥∥∥∥
∞

( ∫
E2

+
∫

E3

)
Γ(t)|g(x(t))| dt

+
∥∥∥∥Γ1

Γ

∥∥∥∥
∞

∫ T

0

|h(x′(t))| dt +
∥∥∥∥Γ1

Γ

∥∥∥∥
∞

T |p|

≤
∥∥∥∥Γ1

Γ

∥∥∥∥
∞
{2[(r1r4 + ε)‖Γ‖p‖x‖p−1

p + gρTΓ]

+ TΓ[r1T
1/p‖x′‖p−1

p + TK1] + T |p|}

≤ 2
∥∥∥∥Γ1

Γ

∥∥∥∥
∞

(r1r4 + ε)‖Γ‖p(d(ε)‖x′‖p + e‖x′‖2−p
p + ρ)p−1

+ r1‖
∥∥∥∥Γ1

Γ

∥∥∥∥
∞

TΓT 1/p‖x′‖p−1
p + C19.

We consider two cases.
Case 1. If p ≥ 2, then we have

e‖x′‖2−p
p + ρ ≤ e

(
e1

d1δ

)(2−p)/(p−1)

+ ρ := e2.

Using the idea to prove (3.16), we know that there is δ1 > 0, which is independent
of λ, such that

(d(ε)‖x′‖p + e‖x′‖2−p
p + ρ)p−1 < dp−1(ε)‖x′‖p−1

p + pe2d
p−2(ε)‖x′‖p−2

p ,

when

‖x′‖p ≥ max
{(

e1

d1δ

)1/(p−1)

,
e2

d(ε)δ1

}
.

Case 2. If 1 < p < 2, then 0 < p−1 < 1. Applying the well-known inequality

(a + b)k ≤ ak + bk, for all a ≥ 0, b ≥ 0, 0 < k ≤ 1,

we get

(d(ε)‖x′‖p + e‖x′‖2−p
p + ρ)p−1 < dp−1(ε)‖x′‖p−1

p + ep−1‖x′‖(2−p)(p−1)
p + ρp−1.

Summing up Cases 1 and 2, when

‖x′‖p ≥ max
{(

e1

d1δ

)1/(p−1)

,
e2

d(ε)δ1

}
,

we conclude in either case of p ≥ 2 or case of 1 < p < 2 that

(3.28) (d(ε)‖x′‖p + e‖x′‖2−p
p + ρ)p−1

≤ dp−1(ε)‖x′‖p−1
p + C20‖x′‖p−2

p + C21‖x′‖(2−p)(p−1)
p + C22.
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Now, substituting (3.28) into (3.27), we obtain that

(3.29)
∫ T

0

Γ1(t)|g(x(t))| dt ≤
∥∥∥∥Γ1

Γ

∥∥∥∥
∞

[2‖Γ‖p(r1r4 + ε)dp−1(ε)

+ r1T
(p+1)/pΓ]‖x′‖p−1

p + C23‖x′‖p−2
p + C24‖x′‖(2−p)(p−1)

p + C25.

From assumption (H4), without loss of generality, we can assume that

(3.30) |F (x)| ≤ (r3 + ε)|x|p−1, for |x| > ρ.

As ∣∣∣∣ ∫ T

0

f(x(t))x′(t)x(t− σ) dt

∣∣∣∣(3.31)

=
∣∣∣∣ ∫ T

0

F (x(t))x′(t− σ) dt

∣∣∣∣ ≤ ∫ T

0

|F (x(t))x′(t− σ)| dt

=
∫

E1∪E2

|F (x(t))x′(t− σ)| dt +
∫

E3

|F (x(t))x′(t− σ)| dt,

from (3.12), (3.30), (3.31) and (3.28), we deduce that

(3.32) |c|
∣∣∣∣ ∫ T

0

f(x(t))x′(t)x(t− σ) dt

∣∣∣∣
≤ |c|(r3 + ε)

∫ T

0

|x(t)|p−1x′(t− σ)| dt + |c|Fρ

∫ T

0

|x′(t− σ)| dt

≤ |c|(r3 + ε)‖x‖p−1
p

( ∫ T−σ

−σ

|x′(t)|p dt

)1/p

+ |c|Fρ

∫ T−σ

−σ

|x′(t)| dt

≤ |c|(r3 + ε)‖x′‖p(d(ε)‖x′‖p + e‖x′‖2−p
p + ρ)p−1 + |c|FρT

1/q‖x′‖p,

≤ |c|(r3 + ε)dp−1(ε)‖x′‖p
p

+ C26‖x′‖p−1
p + C27‖x′‖(2−p)(p−1)+1

p + C28‖x′‖p,

where Fρ = max|x|≤ρ |F (x)|.
Similarly as the above proof, we can derive from (3.31) and (3.13) that

|c|
∣∣∣∣ ∫ T

0

f(x(t))x′(t)x(t− σ) dt

∣∣∣∣
≤ |c|(r3 + ε)T 1/q‖x′‖p(α(ε)‖x′‖p + γ‖x′‖2−p

p + ρ)p−1 + |c|FρT
1
q ‖x′‖p,

and when

‖x′‖p ≥ max
{(

e1

d1δ

)1/(p−1)

,
e′2

α(ε)δ1

}
, here e′2 = γ

(
e1

d1δ

)(2−p)/(p−1)

+ ρ,

we have

(α(ε)‖x′‖p + γ‖x′‖2−p
p + ρ)p−1 ≤ αp−1(ε)‖x′‖p−1

p

+ C29‖x′‖p−2
p + C30‖x′‖(2−p)(p−1)

p + C31.
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Thus, we obtain that

(3.33) |c|
∣∣∣∣ ∫ T

0

f(x(t))x′(t)x(t− σ) dt

∣∣∣∣ ≤ |c|(r3 + ε)αp−1(ε)T 1/q‖x′‖p
p

+ C32‖x′‖p−1
p + C33‖x′‖(2−p)(p−1)+1

p + C34‖x′‖p.

Let

m2(ε) := m2(α(ε), d(ε), ε) = min{T 1/qαp−1(ε), dp−1(ε)}.

Then when ‖x′‖p ≥ max{(e1/(d1δ))1/(p−1), e2/(d(ε)δ1), e′2/(α(ε)δ1)}, we con-
clude from (3.32) and (3.33) that

(3.34) |c|
∣∣∣∣ ∫ T

0

f(x(t))x′(t)x(t− σ) dt

∣∣∣∣ ≤ |c|(r3 + ε)m2(ε)‖x′‖p
p

+ C35‖x′‖p−1
p + C36‖x′‖(2−p)(p−1)+1

p + C37‖x′‖p.

Finally, substituting (3.13), (3.22), (3.24), (3.29) and (3.34) into (3.20), we sum
up that

(3.35)
∫ T

0

|(Ax′)(t)|p dt

≤r1m1(ε)(1 + |c|)TΓ‖x′‖p
p + C15‖x′‖p + C16‖x′‖p−1

p + C17‖x′‖2−p
p +C18

+ |c|(r3 + ε)m2(ε)‖x′‖p
p + C35‖x′‖p−1

p + C36‖x′‖(2−p)(p−1)+1
p

+ C37‖x′‖p + (1 + |c|)‖x‖∞
{∥∥∥∥Γ1

Γ

∥∥∥∥
∞

[2(r1r4 + ε)‖Γ‖pd
p−1(ε)

+ r1T
(p+1)/pΓ]‖x′‖p−1

p + C23‖x′‖p−2
p + C24‖x′‖(2−p)(p−1)

p +C25+T p̃

}
≤a0‖x′‖p

p+C38‖x′‖p−1
p +C39‖x′‖p−2

p +C40‖x′‖p+C41‖x′‖(2−p)(p−1)+1
p

+ C42‖x′‖p(2−p)
p + C43‖x′‖(2−p)(p−1)

p + C44‖x′‖2−p
p + C45,

where

a0 = r1(1 + |c|)TΓ
[
m1(ε) + α(ε)T 1/p

∥∥∥∥Γ1

Γ

∥∥∥∥
∞

]
+ |c|(r3 + ε)m2(ε)

+ 2α(ε)(1 + |c|)(r1r4 + ε)‖Γ‖p

∥∥∥∥Γ1

Γ

∥∥∥∥
∞

dp−1(ε).

By using the first part of Lemma 2.1, we have∫ T

0

|x′(t)|p dt =
∫ T

0

|(A−1Ax′)(t)|p dt ≤
∫ T

0
|(Ax)′(t)|p dt

|1− |c||
,

i.e.

(3.36)
∫ T

0

|(Ax)′(t)|p dt ≥ |1− |c||
∫ T

0

|x′(t)|p dt.
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It follows from (3.35) and (3.36) that

|1− |c||‖x′‖p
p ≤ a0‖x′‖p

p + C38‖x′‖p−1
p + C39‖x′‖p−2

p + C40‖x′‖p(3.37)

+ C41‖x′‖(2−p)(p−1)+1
p + C42‖x′‖p(2−p)

p

+ C43‖x′‖(2−p)(p−1)
p + C44‖x′‖2−p

p + C45.

Notice that a0 = |1 − |c||Ap(α(ε), d(ε), ε) < |1 − |c|| and p > 1. Hence (3.37)
implies that there is a constant M1 > 0 such that ‖x′‖p ≤ M1. Let

M2 = max
{(

e1

d1δ

)1/(p−1)

,
e2

d(ε)δ1
,

e′2
α(ε)δ1

,M1

}
.

Thus from (3.13) we have

‖x‖∞ ≤ α(ε)M2 + γM2−p
2 + ρ := R1.

By the first equation of (3.1), we have
∫ T

0
ϕq(y(t)) dt = 0, which implies that

there is a constant t0 ∈ [0, T ] such that y(t0) = 0. So ‖y‖∞ ≤
∫ T

0
|y′(t)| dt. It

follows from the second equation of (3.1) that

y′(t) = λh(x′(t)) + λf(x(t))x′(t) + λ
n∑

j=1

βj(t)g(x(t− τj(t))) + λp(t).

Therefore, we conclude that

‖y‖∞ ≤
∫ T

0

|h(x′(t))| dt +
∫ T

0

|f(x(t))x′(t)| dt

+
n∑

j=1

∫ T

0

|βj(t)g(x(t− τj(t)))| dt +
∫ T

0

|p(t)| dt

=
∫ T

0

|h(x′(t))| dt +
∫ T

0

|f(x(t))x′(t)| dt +
∫ T

0

Γ1(t)|g(x(t))| dt + T p̃

≤TΓ[r1T
1/p‖x′‖p−1

p + TK1] + fR1T
1/q‖x′‖p + gR1T‖Γ1‖∞ + T p̃

≤TΓ[r1T
1/pMp−1

2 + TK1] + fR1T
1/qM2 + gR1T‖Γ1‖∞ + T p̃ := R2,

where fR1 = max|x|≤R1 |f(x)|, gR1 = max|x|≤R1 |g(x)|. Now, again by the equa-
tion (3.1), we obtain that

‖x′‖∞ = ‖A−1(λϕq(y( · )))‖∞ ≤ ‖y‖q−1
∞

|1− |c||
≤ Rq−1

2

|1− |c||
:= R3.

and

‖y′‖∞ ≤ hR3 + fR1R3 + gR1

n∑
j=1

‖βj‖∞ + ‖p‖∞ := R4,

where hR3 = max|x|≤R3 |h(x)|. Now, let M ≥ max{R1, R2, R3, R4} + 1. Then
the lemma is proved. �
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Continuation of the proof of Theorem 3.1. Next, we shall illustrate
that all the conditions of Lemma 2.5 are satisfied. To this end, we put Ω =
{z = (x, y)T ∈ X : ‖(x, y)‖1 < M}, where M is derived from Lemma 3.3. Then
Lx 6= λNx for all (x, λ) ∈ [D(L)∩∂Ω]×(0, 1), i.e. the condition (a) of Lemma 2.5
is fulfilled. And for each z = (x, y)T ∈ ∂Ω ∩KerL, we have

QNz =
1
T

∫ T

0

 |y|q−2y

h(0) +
n∑

j=1

βj(t)g(x) + p(t)

 dt.

Notice that ∫ T

0

n∑
j=1

βj(t) dt =
n∑

j=1

∫ T−τj(T )

−τj(0)

βj(µj(s))
1− τ ′j(µj(s))

ds

=
∫ T

0

n∑
j=1

βj(µj(s))
1− τ ′j(µj(s))

ds = TΓ.

Hence

(3.38) QNz =
(

|y|q−2y

h(0) + Γg(x) + p

)
, z = (x, y)T ∈ ∂Ω ∩KerL.

We prove that QNz 6= 0, for all z ∈ ∂Ω ∩KerL. In fact, if QNz = 0, then from
(3.38) we have y = 0, x = M or x = −M . For the case of x = M , on the one
hand, it follows from (3.38) and (H2) that

(3.39) g(M) = −h(0)
Γ

− p

Γ
≤ TK1 −

p

Γ
,

on the other hand, notice that M > D, thus from (H3), we obtain

(3.40) g(M) > K2 + r1r2D
p−1.

Together with (3.39) and (3.40) yield that K2 + r1r2D
p−1 < TK1 − p/Γ, which

contradicts (H3). For the case of x = −M , we have from (3.38), (H2) and (H3)
that

(3.41) |g(−M)| = −g(−M) =
h(0)
Γ

+
p

Γ
≤ TK1 +

p

Γ
,

meanwhile, we also obtain from (H3) that

(3.42) |g(−M)| = −g(−M) > K3.

Clearly, (3.41) is incompatible with (3.42). Therefore, we sum up that QNz 6= 0,
i.e. Nz 6∈ Im L, for all z ∈ ∂Ω ∩ KerL. So the condition (b) of Lemma 2.5 is
fulfilled. It is remained to check that the condition (c) of Lemma 2.5 is also
fulfilled. To this purpose, we define the isomorphism J : Im Q → KerL as follows:

(3.43) J(x, y)T = (y, x)T .
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Let

(3.44) H(z, µ) = µz + (1− µ)JQNz, (z, µ) ∈ Ω× [0, 1].

Then for any (z, µ) ∈ (∂Ω∩KerL)× [0, 1], we have from (3.44), (3.43) and (3.38)
that

H(z, µ) =
(

µx + (1− µ)[h(0) + Γg(x) + p]
[µ + (1− µ)|y|q−2]y

)
,

for all (z, µ) ∈ (∂Ω ∩ KerL) × [0, 1]. If H(z, µ) = 0, then y = 0, x = M or
x = −M .

When x = M , it follows from (3.40) and (H3) that

(3.45) h(0)+Γg(M)+p > h(0)+Γ(K2+r1r2D
p−1)+p ≥ h(0)+TΓK1−p+p ≥ 0.

Similarly when x = −M , again by (H3), we obtain that

(3.46) h(0) + Γg(−M) + p ≤ TΓK1 + Γg(−M) + p ≤ Γg(−M) + K3Γ < 0.

From (3.45) and (3.46), one can easily deduce that H(z, µ) 6= 0, for all (z, µ) ∈
(∂Ω ∩ KerL) × [0, 1], which illustrates that H(z, µ) is a homotopic mapping.
Hence

deg {JQN, Ω ∩KerL, 0} = deg {H( · , 0),Ω ∩KerL, 0}
= deg {H( · , 1),Ω ∩KerL, 0} = deg {I,Ω ∩KerL, 0} 6= 0.

So the condition (c) of Lemma 2.5 is also satisfied. Recalling that we have proved
in Lemma 2.2 that N :X → Z is L-compact on Ω. By Lemma 2.5, we obtain that
the equation Lz = Nz has at least one solution z(t) = (x(t), y(t))T on Ω∩D(L),
i.e. equation (1.1) has at least one T -periodic solution x(t) on Ω ∩D(L). �

Corollary 3.4. In addition to the conditions (H1), (H2), (H4) and (H5),
we also suppose there exist constants r0 > 0, s > 0 and D1 > 0 such that

(a) xg(x) > 0, for |x| > D1, and g(x) < −K3 for x < −D1 and K3 ≥
TK1 + p/Γ; and also K2 + r1r2D

p−1
1 ≥ TK1 − p/Γ,

(b) limx→∞ g(x)/xp−1+s = r0, or limx→∞ g(x)/xp−1+s = ∞.

Then equation (1.1) has at least one T -periodic solution if Ap(α(0), d(0), 0) < 1.

Proof. Indeed, it follows from (b) that

lim
x→∞

g(x)−K2 − r1r2x
p−1

xp−1+s
>

r0

3
> 0,

which yields that there is a constant D > D1 such that

g(x)−K2 − r1r2x
p−1 >

r0

3
xp−1+s for x > D,

i.e. the hypothesis (H3) holds, thus the result follows from Theorem 3.1. �
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Now, we modify the assumptions (H3) and (H5) as follows.

(H3’) xg(x) > 0, for |x| > D, and g(x) > K3 for x > D and K3 ≥ TK1 +p/Γ;
and also g(x) < −K2 − r1r2|x|p−1 for x < −D, finally, we have K2 +
r1r2D

p−1 ≥ TK1 − p/Γ,
(H5’) limx→∞ |g(x)|/|x|p−1 = r1r4.

Similarly argument as in the proof of Theorem 3.1 and Corollary 3.4, we have
the following results.

Theorem 3.5. Suppose that the conditions (H1), (H2), (H3’), (H4) and
(H5’) are fulfilled, then equation (1.1) has at least one T -periodic solution if
Ap(α(0), d(0), 0) < 1.

Corollary 3.6. In addition to the conditions (H1), (H2), (H4) and (H5’),
we also suppose there exist constants r0 > 0, s > 0 and D1 > 0 such that

(a) xg(x) > 0 for |x| > D1, g(x) > K3 for x > D1 and K3 ≥ TK1 + p/Γ;
and also K2 + r1r2D

p−1
1 ≥ TK1 − p/Γ,

(b) limx→−∞ |g(x)|/|x|p−1+s = r0, or limx→−∞ |g(x)|/|x|p−1+s = ∞.

Then equation (1.1) has at least one T -periodic solution if Ap(α(0), d(0), 0) < 1.

Remark 3.7. If r1 = 0 and c = 0, then the condition Ap(α(0), d(0), 0) =
0 < 1 naturally holds, which illustrates that the assumptions (H1)–(H5) can
guarantee the existence of T -periodic solution for (1.1).

If h ≡ 0 and p = 0, then the assumption (H3) becomes the very simple form
as follows.

(H3’) xg(x) > 0 for |x| > D, g(x) < −K3 for x < −D and K3 ≥ 0; and also
g(x) > K2 for x > D, finally, we have K2 ≥ 0.

It is known that (H3’) is a usual and basic assumption in the related papers,
which shows that our hypothesis (H3) is not stringent but rational.

If only r1 = 0, then we have

Ap(α(0), d(0), 0)=
r3|c|

|1− |c||
m1(α(0), d(0), 0)=

r3|c|T p−1

|1− |c||
min

{
1

2(p−1)/q
,

1
πp−1

p

}
.

We point out that in such a special case we can use another analysis technique
to deal with it, which may be more refined than the method used in Theo-
rem 3.1. We would like to study a more large class of functions, precisely, we
relax assumption (H5) as follows:

(H5”) lim supx→−∞ |g(x)|/|x|p−1 ≤ r4, here r4 ≥ 0.

For convenience, we denote

Bp(z) =
T 1/q

|1− |c||

[
|c|(r3 + z) + 2(1 + |c|)TΓ

∥∥∥∥Γ1

Γ

∥∥∥∥
∞

(r4 + z)
]1/p

.

We derive the following result.
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Theorem 3.8. Assume that (H1)–(H4) and (H5”) are satisfied for r1 = 0,
then equation (1.1) has at least one T -periodic solution if Bp(0) < 1.

Proof. We can derive that there is a constant ρ > D, which is independent
of λ, such that

(3.47) ‖x‖∞ ≤ ρ +
∫ T

0

|x′(t)| dt := ρ + ‖x′‖.

It follows from (3.47) and (H2) that

(3.48)
∣∣∣∣ ∫ T

0

h(x′(t))[x(t)− cx(t− σ)] dt

∣∣∣∣ ≤ T 2K1(1 + |c|)Γ(ρ + ‖x′‖).

Again by (3.4) and (H2), we obtain that

(3.49)
∫ T

0

Γ(t)g(x(t)) dt ≤ T [TK1Γ− p].

We deduce from (3.47) and (H5”) that

(3.50)
∫

E2

Γ(t)|g(x(t))| dt < (r4 + ε)TΓ(ρ + ‖x′‖)p−1,

here and in the following, ε > 0 satisfying Bp(ε) < 1. As

(3.51) (ρ + ‖x′‖)p−1 < ‖x′‖p−1 + pρ‖x′‖p−2, when ‖x′‖ ≥ ρ

δ1
,

it follows from (3.50) and (3.51) that

(3.52)
∫

E2

Γ(t)|g(x(t))| dt < (r4 + ε)TΓ‖x′‖p−1 + pρ(r4 + ε)TΓ‖x′‖p−2.

One can deduce from (3.49) and (3.52) that

(3.53)
∫

E1

Γ(t)|g(x(t))| dt ≤ (r4 + ε)TΓ‖x′‖p−1 + pρ(r4 + ε)TΓ‖x′‖p−2 + C46.

We conclude from (3.52) and (3.53) that

(3.54)
∫ T

0

Γ(t)|g(x(t))| dt ≤ 2(r4 +ε)TΓ‖x′‖p−1 +2pρ(r4 +ε)TΓ‖x′‖p−2 +C47.

Thus, it follows from (3.54) that

(3.55)
∫ T

0

Γ1(t)|g(x(t))| dt

=
∫ T

0

Γ1(t)
Γ(t)

Γ(t)|g(x(t))| dt ≤
∥∥∥∥Γ1

Γ

∥∥∥∥
∞

∫ T

0

Γ(t)|g(x(t))| dt

≤ 2(r4 + ε)TΓ
∥∥∥∥Γ1

Γ

∥∥∥∥
∞
‖x′‖p−1 + 2pρ(r4 + ε)TΓ

∥∥∥∥Γ1

Γ

∥∥∥∥
∞
‖x′‖p−2 + C48.
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We obtain from (3.31) and (3.51)that

(3.56) |c|
∣∣∣∣ ∫ T

0

f(x(t))x′(t)x(t− σ) dt

∣∣∣∣
≤ |c|(r3 + ε)

∫ T

0

|x(t)|p−1|x′(t− σ)| dt + |c|Fρ

∫ T

0

|x′(t− σ)| dt

≤ |c|(r3 + ε)(ρ + ‖x′‖)p−1‖x′‖+ |c|Fρ‖x′‖
≤ |c|(r3 + ε)‖x′‖p + |c|(r3 + ε)pρ‖x′‖p−1 + |c|Fρ‖x′‖.

Summing up (3.47), (3.48), (3.55) and (3.56), we infer that

(3.57)
∫ T

0

|(Ax′)(t)|p dt ≤T 2K1(1 + |c|)Γ(ρ + ‖x′‖) + |c|(r3 + ε)‖x′‖p

+ |c|(r3 + ε)pρ‖x′‖p−1 + |c|Fρ‖x′‖

+ (1 + |c|)‖x‖∞
{

2(r4 + ε)TΓ
∥∥∥∥Γ1

Γ

∥∥∥∥
∞
‖x′‖p−1

+ 2pρ(r4 + ε)TΓ
∥∥∥∥Γ1

Γ

∥∥∥∥
∞
‖x′‖p−2 + C48 + T p̃

}
.

≤ b′0‖x′‖p + C49‖x′‖p−1 + C50‖x′‖p−2+C51‖x′‖+C52,

where b′0 = |c|(r3+ε)+2(1+|c|)TΓ‖Γ1/Γ‖∞(r4+ε). The first part of Lemma 2.1
implies that∫ T

0

|x′(t)| dt =
∫ T

0

|(A−1Ax′)(t)| dt(3.58)

≤
∫ T

0
|(Ax)′(t)| dt

|1− |c||
≤

T 1/q(
∫ T

0
|(Ax)′(t)|p dt)1/p

|1− |c||
.

Notice that 0 < 1/p < 1. Using the well-known inequality

(a + b)k ≤ ak + bk, for all a ≥ 0, b ≥ 0, 0 < k ≤ 1,

we deduce from (3.57) and (3.58) that

(3.59) ‖x′‖ ≤ T 1/q

|1− |c||
{b′0‖x′‖p + C49‖x′‖p−1 + C50‖x′‖p−2 + C51‖x′‖+ C52}1/p

≤ b0‖x′‖+ C53‖x′‖1/q + C54‖x′‖(p−2)/p + C55‖x′‖1/p + C56,

where

b0 =
T 1/q

|1− |c||

[
|c|(r3 + ε) + 2(1 + |c|)TΓ

∥∥∥∥Γ1

Γ

∥∥∥∥
∞

(r4 + ε)
]1/p

.

Notice that b0 = Bp(ε) < 1, p > 1 and q > 1. Hence (3.59) implies that there
is a constant M3 > 0 such that ‖x′‖ ≤ M3. Let M4 = max{ρ/δ1,M3}. The
remained proof follows along the lines of Theorem 3.1, and hence we omit it. �
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Remark 3.9. One can easily see that the analysis technique used in Theo-
rem 3.8 can not be applied in the case of Theorem 3.1.

We remark that the analysis technique can be applied in the following equa-
tion:

(3.60) (ϕp((x(t)− cx(t−σ))′))′ = h(x′(t))+f(x(t))x′(t)+ g(x(t− τ(t)))+p(t),

where h, f , g, p are defined in the same way as above, τ is only required to
be a continuous T -periodic function. In this situation, the hypotheses (H2) and
(H3) correspondingly become

(H2’) |h(x)| ≤ r1T |x|p−1 + K1T , for all x ∈ R,
(H3”) xg(x) > 0, for |x| > D, and g(x) < −K3 for x < −D and K3 ≥

TK1 + p; and also g(x) > K2 + r1r2x
p−1 for x > D, finally, we have

K2 + r1r2D
p−1 ≥ TK1 − p.

And Ap(α, d, z) becomes

A′p(α, d, z) = r1
(1 + |c|)
|1− |c||

T [m1(α, d, z) + αT 1/p]

+
|c|

|1− |c||
(r3 + z)m2(α, d, z) + 2T

(1 + |c|)
|1− |c||

(r1r4 + z)αp.

In the similar way as in the proof of Theorems 3.1, we have the following result.

Theorem 3.10. Assume that (H2’), (H3”), (H4) and (H5) hold, then equa-
tion (3.60) has at least one T -periodic solution if A′p(α(0), d(0), 0) < 1.

Proof. In this setting, (3.4) reduces to

(3.61)
∫ T

0

[h(x′(t)) + g(x(t− τ(t)))] dt + Tp = 0,

which implies that there is a ξ2 ∈ [0, T ] such that

(3.62) Tg(x(ξ2 − τ(ξ2))) = −
∫ T

0

h(x′(t)) dt− Tp.

Clearly, there are an integer number k and ξ′1 ∈ [0, T ] such that x(ξ1
′) = x(ξ2 −

τ(ξ2)− kT ) = x(ξ2 − τ(ξ2)), which yields (3.62) that

(3.63) Tg(x(ξ′1)) = −
∫ T

0

h(x′(t)) dt− Tp.

Now, let ξ1 be replaced by ξ′1 and Γ(t) = Γ1(t) ≡ 1 in Theorem 3.1. Once we
give a priori estimate on

∫ T

0
|g(x(t− τ(t)))(Ax)(t)| dt. Then the remained proof

follows along the lines of Theorem 3.1.
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To this end, we put E′
1 = {t ∈ [0, T ] : x(t − τ(t)) > ρ}, E′

2 = {t ∈ [0, T ] :
x(t− τ(t)) < −ρ} and E′

3 = {t ∈ [0, T ] : |x(t− τ(t))| ≤ ρ}. Then from (3.9) we
have

(3.64)
∫

E′
2

|g(x(t− τ(t)))| dt ≤ (r1r4 + ε)T‖x‖p−1
∞ .

We deduce from (3.61) and (3.64) that

(3.65)
∫

E′
1

|g(x(t− τ(t)))| dt ≤ (r1r4 + ε)T‖x‖p−1
∞ + r1T

(p+1)/p‖x′‖p−1
p + C57.

Thus, we obtain from (3.61), (3.64) and (3.65) that

(3.66)
∫ T

0

|g(x(t− τ(t)))| dt ≤ 2(r1r4 + ε)T‖x‖p−1
∞ + r1T

(p+1)/p‖x′‖p−1
p + C58.

From (3.13), (3.22), (3.66) and the ideas used to prove (3.28), when ‖x′‖p is
suitably large, we conclude that∫ T

0

|g(x(t − τ(t)))(Ax)(t)| dt

≤ (1 + |c|)α(ε)
[
2(r1r4 + ε)Tαp−1(ε) + r1T

(p+1)/p

]
‖x′‖p

p

+ C59‖x′‖p−1
p + C60‖x′‖p−2

p + C61‖x′‖p + C62‖x′‖(2−p)(p−1)+1
p

+ C63‖x′‖p(2−p)
p + C64‖x′‖(2−p)(p−1)

p + C65‖x′‖2−p
p + C66.

�

Together with the ideas used to prove Theorems 3.10 and 3.8, we have the
following result.

Theorem 3.11. Assume that (H2’), (H3”), (H4) and (H5”) hold for r1 = 0,
then equation (3.60) has at least one T -periodic solution if B′

p(0) < 1, where

B′
p(z) =

T 1/q

|1− |c||
[|c|(r3 + z) + 2T (1 + |c|)(r4 + z)]1/p.

Remark 3.12. If r3 = 0, then B′
p(0) = T (2r4)1/p/|1− |c||. Under the

conditions of Theorem 1 in [11], we have r4 = 0, thus B′
p(0) = 0 < 1 and all

the assumptions of Theorem 3.11 are satisfied. So Theorem 3.11 generalizes the
corresponding theorem in [11]. It should be pointed out that, in the the particular
case that f ≡ 0 and p = 2 in equation (3.60), another analysis method can deal
with it, see [7]. But it is not difficult to see that the analysis method is invalid
in either case of p 6= 2 or case of f 6≡ 0.
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4. An example

As an application, we consider the following equation

(4.1) (ϕ2((x(t)−2x(t−π))′))′ = h(x′(t))+f(x(t))x′(t)+β(t)g(x(t−τ(t)))+p(t),

where h(x) = r1x, f(x) = r3x sinx, β(t) = 1 + (4/5) sin t, τ(t) = (4/5) cos t,
p(t) = 4 sin t + 1 and

g(x) = r1r4

{
x3 if x ≥ 0,

x if x < 0.

We have T = 2π, p = 2, p = 1, c = 2,

F (x) = −r3x cos x + r3 sinx

and

Γ1(t) = Γ(t) =
1 + (4/5) sinµ(t)
1 + (4/5) sinµ(t)

= 1 > 0,

for all t ∈ [0, 2π], Γ = 1, ‖Γ1/Γ‖∞ = 1, ‖Γ‖2 =
√

2π, where µ(t) denotes the
inverse function of t− (4/5) cos t.

Corresponding to Theorem 3.1, we can choose K1 = 0, K2 ≥ 0, K3 ≥ 1 and
r2 = r4 = 1, then the assumptions (H1)–(H5) hold.

A simple calculation yields that

α(0) = (
√

2Sgn r1 + 1)
√

π, d(0) = 2(πSgn r1 + 1),

m1(α(0), d(0), 0) = m2(α(0), d(0), 0) = 2(πSgn r1 + 1)

and

Ap(α(0), d(0), 0) =6π[4πSgn r1 +
√

2π + 2]r1 + 4(πSgn r1 + 1)r3(4.2)

+ 12
√

2π(
√

2Sgn r1 + 1)(πSgn r1 + 1)r1.

According to (4.2), so long as we choose r1 ≥ 0, r3 ≥ 0, such that

[6π(4π +
√

2π + 2) + 12(2 +
√

2)π(π + 1)]r1 + 4(π + 1)r3 < 1.

Then all the hypotheses of Theorem 3.1 are satisfied, hence equation (4.1) has
at least one 2π-periodic solution.

Remark 4.1. Particularly, setting r1 = 0, then the above result can not
be obtained by the Theorem of [13], since, on the one hand, p = 1 > 0, on
the other hand, the condition g(x) > 0 is not satisfied, which indicates that
Theorem 3.1 is essentially new in such case. More importantly, the conditions
that

∫ T

0
p(t) dt = 0, h(0) = 0 and the boundedness of h in Theorem 3.1 are not

required.

Remark 4.2. Clearly, the case of xg(x) < 0 can be studied similarly.
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