Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 37, 2011, 1–35

LOCALIZED SINGULARITIES AND CONLEY INDEX

MARIA C. CARBINATTO — KRZYSZTOF P. RYBAKOWSKI

ABSTRACT. We establish some abstract convergence and Conley index continuation principles for families of singularly perturbed semilinear parabolic equations and apply them to reaction-diffusion equations with nonlinear boundary conditions and localized large diffusion. This extends and refines previous results of [9] and [1].

1. Introduction

Let Ω be a bounded smooth domain in \mathbb{R}^N and $\Omega_{0,i}$, $i \in [1..m]$ be smooth domains whose closures are pairwise disjoint and included in Ω . Let $\Omega_0 = \bigcup_{i=1}^m \Omega_{0,i}$, $\Gamma = \partial \Omega$ and $\Gamma_{0,i} = \partial \Omega_{0,i}$, $i \in [1..m]$. Set $\Omega_1 = \Omega \setminus \operatorname{Cl} \Omega_0$. For each $\varepsilon > 0$, consider the following parabolic problem

$$(\mathbf{E}_{\varepsilon}) \qquad \begin{cases} u_t - \operatorname{Div}(d_{\varepsilon}(x)\nabla u) + (\lambda + V_{\varepsilon}(x))u = \varphi_{\varepsilon}(x, u), & t > 0, \ x \in \Omega, \\ d_{\varepsilon}(x)\partial_{\nu}u + b_{\varepsilon}(x)u = \psi_{\varepsilon}(x, u), & t > 0, \ x \in \Gamma. \end{cases}$$

Here, $\lambda \in \mathbb{R}$ and ν is the exterior normal vector field on $\partial\Omega$. Moreover, $d_{\varepsilon} \ge m > 0$, V_{ε} and b_{ε} , resp. φ_{ε} and ψ_{ε} , are given functions on Ω , resp. $\Omega \times \mathbb{R}$ satisfying some regularity assumptions. We assume that, for $\varepsilon \to 0$, $V_{\varepsilon} \to V_0$, $b_{\varepsilon} \to b_0$, $\varphi_{\varepsilon} \to \varphi_0$, $\psi_{\varepsilon} \to \psi_0$ and $d_{\varepsilon}|_{\Omega_1} \to d_0$ (in some sense) while $d_{\varepsilon}|_{\Omega_0} \to \infty$.

©2011 Juliusz Schauder Center for Nonlinear Studies

²⁰¹⁰ Mathematics Subject Classification. Primary 37B30, 35B25; Secondary 35B40.

 $Key\ words\ and\ phrases.$ Conley index, homology index braids, localized large diffusion, singular perturbations.

The research of the first author was partially supported by grants CNPq 304590/2006-1 and FAPESP 08/53440-0.

Under some general conditions on the functions involved equation (E_{ε}) can be written abstractly as a semilinear problem

$$\dot{\mathbf{E}}_{\varepsilon}' \qquad \qquad \dot{u} + A_{\varepsilon} u = f_{\varepsilon}(u)$$

generating a local semiflow π_{ε} on $H^1(\Omega)$.

Consider the limit equation

$$(E_0) \begin{cases} u_t - \operatorname{Div}(d_0(x)\nabla u) + (\lambda + V_0(x))u = \varphi_0(x, u), & t > 0, x \in \Omega_1, \\ d_0(x)\partial_\nu u + b_0(x)u = \psi_0(x, u), & t > 0, x \in \Gamma, \\ \gamma_{0,i}(u) = u_{\Omega_{0,i}}, & \text{on } \Gamma_{0,i}, i \in [1..m], \\ \dot{u}_{\Omega_{0,i}} + |\Omega_{0,i}|^{-1} \int_{\Gamma_{0,i}} d_0(x)\partial_{\nu_{0,i}}u \, d\sigma \\ + (\lambda + \hat{c}_i)u_{\Omega_{0,i}} = |\Omega_{0,i}|^{-1} \int_{\Omega_{0,i}} \varphi_0(x, u_{\Omega_{0,i}}) \, dx, \quad t > 0, \, i \in [1..m], \end{cases}$$

where $\gamma_{0,i}$ is the trace operator on $\Gamma_{0,i}$, $\nu_{0,i}$ is the interior normal vector field on $\partial\Omega_{0,i}$, $u_{\Omega_{0,i}}$ is the value of u on $\Omega_{0,i}$ and $\hat{c}_i := |\Omega_{0,i}|^{-1} \int_{\Omega_{0,i}} V_0 dx$.

Equation (E_0) can similarly be written abstractly as a semilinear problem

$$\dot{\mathbf{(E'_0)}} \qquad \qquad \dot{u} + A_0 u = f_0(u)$$

generating a local semiflow π_0 on a closed subspace $H^1_{\Omega_0}(\Omega)$ of $H^1(\Omega)$. In the paper [9] the spectral convergence of the family $(A_{\varepsilon})_{\varepsilon>0}$ to A_0 for $\varepsilon \to 0$ is proved while the authors of [1] establish existence and upper semicontinuity results for global attractors of π_{ε} , $\varepsilon \geq 0$, under additional dissipativity conditions on the nonlinearities.

In this paper, we extend and refine these results. In particular, we prove that, as $\varepsilon \to 0$, the semiflows π_{ε} converge in a singular sense to the semiflow π_0 and we establish a singular compactness result for the family $\pi_{\varepsilon}, \varepsilon \ge 0$. As a consequence of these results, we obtain singular Conley index and homology index braid continuation principles for this family of semiflows.

In this paper we proceed as in [2] and keep the presentation of our results at an abstract level. In fact we only assume certain spectral convergence properties and compactness assumptions on a family of linear operators $(A_{\varepsilon})_{\varepsilon \geq 0}$ (see conditions (Spec) and (Comp) in Section 4). We also make an abstract convergence hypothesis (condition (Conv) in section 5) on a family of nonlinear operators $(f_{\varepsilon})_{\varepsilon \geq 0}$.

Our abstract approach permits applications to some other singular systems of reaction-diffusion equations. This will be treated in a subsequent publication.

2. Main results

In this section we will introduce some notation and state the main results of this paper.

Let N and m be a positive integers and $\tilde{\varepsilon}_0$ be a positive real number. Let Ω be a bounded smooth domain in \mathbb{R}^N and $\Omega_{0,i}$, $i \in [1..m]$ be smooth domains whose closures are pairwise disjoint and are included in Ω . Let $\Omega_0 = \bigcup_{i=1}^m \Omega_{0,i}$, $\Gamma = \partial \Omega$ and $\Gamma_{0,i} = \partial \Omega_{0,i}$, $i \in [1..m]$. Set $\Omega_1 = \Omega \setminus \operatorname{Cl} \Omega_0$.

For each $\varepsilon \in [0, \tilde{\varepsilon}_0]$, let $d_{\varepsilon}: \Omega \to \mathbb{R}$ be a smooth function such that

$$0 < m_0 \leq d_{\varepsilon}(x) \leq M_{\varepsilon}$$
 for all $x \in \Omega$,

where m_0 and M_{ε} , $\varepsilon \in [0, \tilde{\varepsilon}_0]$, are positive constants, and

$$d_{\varepsilon}(x) \to d_0(x)$$
 as $\varepsilon \to 0$ uniformly for $x \in \Omega_1$

and

 $d_{\varepsilon}(x) \to \infty$ as $\varepsilon \to 0$ uniformly on compact subsets of Ω_0 . Let $V_{\varepsilon} \in L^{q_0}(\Omega)$ and $b_{\varepsilon} \in L^{q_1}(\Gamma)$ be such that

$$|V_{\varepsilon}-V_0|_{L^{q_0}(\Omega)} \to 0 \quad \text{and} \quad |b_{\varepsilon}-b_0|_{L^{q_1}(\Gamma)} \to 0 \quad \text{as } \varepsilon \to 0,$$

where q_0 and q_1 are constants such that

$$q_0 \begin{cases} > 1 & \text{for } N = 1; \\ > 1 & \text{for } N = 2; \\ > N/2 & \text{for } N \ge 3 \end{cases} \quad \text{and} \quad q_1 \begin{cases} > 1 & \text{for } N = 1; \\ > 1 & \text{for } N = 2; \\ > N - 1 & \text{for } N \ge 3. \end{cases}$$

Now let $L^2_{\Omega_0}(\Omega)$ be the set of all functions in $L^2(\Omega)$ which are (almost everywhere) constant on each $\Omega_{0,i}$, $i \in [1..m]$. Set $H^1_{\Omega_0}(\Omega) = H^1(\Omega) \cap L^2_{\Omega_0}(\Omega)$. It follows that $H^1_{\Omega_0}(\Omega)$ (resp. $L^2_{\Omega_0}(\Omega)$) is a closed subspace of $H^1(\Omega)$ (resp. $L^2(\Omega)$).

Let $\gamma: H^1(\Omega) \to H^{1/2}(\Gamma)$ be the trace operator. For $\lambda \in \mathbb{R}$ and $\varepsilon \in [0, \tilde{\varepsilon}_0]$ define the bilinear form $\zeta_{\varepsilon}: H^1(\Omega) \times H^1(\Omega) \to \mathbb{R}$ by

$$\zeta_{\varepsilon}(u,v) = \int_{\Omega} d_{\varepsilon} \nabla u \nabla v \, dx + \int_{\Omega} (\lambda + V_{\varepsilon}) uv \, dx + \int_{\Gamma} b_{\varepsilon} \gamma(u) \gamma(v) \, d\sigma, \quad u, v \in H^{1}(\Omega).$$

Here, dx is the N-Lebesgue measure and $d\sigma$ is the surface measure on Γ .

It follows from results in [9] that ζ_{ε} is defined and continuous on $H^1(\Omega) \times H^1(\Omega)$. Furthermore, define the bilinear form $\zeta_0: H^1_{\Omega_0}(\Omega) \times H^1_{\Omega_0}(\Omega) \to \mathbb{R}$ by

$$\zeta_0(u,v) = \int_{\Omega_1} d_0 \nabla u \nabla v \, dx + \int_{\Omega} (\lambda + V_0) uv \, dx + \int_{\Gamma} b_0 \gamma(u) \gamma(v) \, d\sigma, \quad u, v \in H^1_{\Omega_0}(\Omega).$$

Results in [9] imply that ζ_0 is defined and continuous on $H^1_{\Omega_0}(\Omega) \times H^1_{\Omega_0}(\Omega)$. Moreover, there are an $\varepsilon_0 \in]0, \tilde{\varepsilon}_0]$, a $\tilde{\mu} \in]0, \infty[$ and a $\tilde{\lambda} \in \mathbb{R}$ such that for all $\lambda \geq \tilde{\lambda}$

$$\begin{split} \zeta_{\varepsilon}(u,u) &\geq \widetilde{\mu} |u|_{H^{1}(\Omega)}^{2}, \quad \varepsilon \in \left]0, \varepsilon_{0}\right], \ u \in H^{1}(\Omega) \\ \zeta_{0}(u,u) &\geq \widetilde{\mu} |u|_{H^{1}_{\Omega_{0}}(\Omega)}^{2}, \quad u \in H^{1}_{\Omega_{0}}(\Omega). \end{split}$$

For $\varepsilon \in [0, \varepsilon_0]$ the pair $(\zeta_{\varepsilon}, \langle \cdot, \cdot \rangle_{L^2(\Omega)})$ defines an operator $A_{\varepsilon}: D(A_{\varepsilon}) \to H^{\varepsilon} := L^2(\Omega)$. Specifically, let $D(A_{\varepsilon})$ be the set of all $u \in H^1(\Omega)$ such that there is a $w = w_u \in L^2(\Omega)$ with the property that

$$\zeta_{\varepsilon}(u,v) = \langle w,v \rangle_{L^2(\Omega)}$$

for all $v \in H^1(\Omega)$. Then w_u is uniquely determined by u, the set $D(A_{\varepsilon})$ is a dense linear subspace both of $H^1(\Omega)$ and of $L^2(\Omega)$, and the map

$$A_{\varepsilon}: D(A_{\varepsilon}) \to L^2(\Omega), \quad u \mapsto w_u$$

is a linear positive self-adjoint operator in $(L^2, \langle \cdot, \cdot \rangle_{L^2(\Omega)})$ with A_{ε}^{-1} compact.

Analogously, the pair $(\zeta_0, \langle \cdot, \cdot \rangle_{L^2_{\Omega_0}(\Omega)})$ defines a linear positive self-adjoint operator A_0 in $H^0 := L^2_{\Omega_0}(\Omega)$ with A_0^{-1} compact.

It is proved in [9] that, for $\varepsilon \in [0, \varepsilon_0]$, $D(A_{\varepsilon})$ is the set of all $u \in H^1(\Omega)$ such that $-\operatorname{Div}(d_{\varepsilon}\nabla u) + V_{\varepsilon}u \in L^2(\Omega)$ and $d_{\varepsilon}\partial_{\nu}u + b_{\varepsilon}u = 0$ in Γ . Here, ν is the exterior normal vector field on $\partial\Omega$ and $d_{\varepsilon}\partial_{\nu}u$ is the conormal derivative of u in some generalized sense. The linear operator A_{ε} is then given by

$$A_{\varepsilon}u = -\operatorname{Div}(d_{\varepsilon}\nabla u) + (\lambda + V_{\varepsilon})u$$

for $u \in D(A_{\varepsilon})$.

Moreover, $D(A_0)$ is the set of all $u \in H^1_{\Omega_0}(\Omega)$ such that $-\operatorname{Div}(d_0\nabla u) + V_0 u \in L^2(\Omega_1)$ with $d_0\partial_{\nu}u + b_0u = 0$ in Γ . The linear operator A_0 is then given by

$$A_0 u = (-\operatorname{Div}(d_0 \nabla u) + (\lambda + V_0)u)\chi_{\Omega_1} + \sum_{i=1}^m \left(|\Omega_{0,i}|^{-1} \int_{\Gamma_{0,i}} d_0 \partial_{\nu_{0,i}} u \, d\sigma + (\lambda + \widehat{c}_i)u_{\Omega_{0,i}} \right) \chi_{\Omega_{0,i}}, \quad u \in D(A_0).$$

Here, $\nu_{0,i}$ is the interior normal vector field on $\partial\Omega_{0,i}$, $u_{\Omega_{0,i}}$ is the constant value of u on $\Omega_{0,i}$, $\hat{c}_i := |\Omega_{0,i}|^{-1} \int_{\Omega_{0,i}} V_0 dx$, $i \in [1..m]$, and χ_B denotes the characteristic function of a given set B.

For $\varepsilon \in [0, \varepsilon_0]$ the operator A_{ε} is sectorial so it defines a family of fractional power operators $A_{\varepsilon}^{\beta} : D(A_{\varepsilon}^{\beta}) \to H^{\varepsilon}$, $\beta \in [0, \infty[$ and we write, for $\alpha \in [0, \infty[$, $H_{\alpha}^{\varepsilon} := D(A_{\varepsilon}^{\alpha/2})$. In particular, $H_0^{\varepsilon} = H^{\varepsilon}$. In a canonical way, H_{α}^{ε} is a Hilbert space and we set $H_{-\alpha}^{\varepsilon}$ to be the dual of H_{α}^{ε} .

Let

$$2_{\Omega}^{*} = \begin{cases} \frac{2N}{N-2} & \text{if } N \ge 3; \\ \text{an arbitrary } p^{*} \in]0, \infty[& \text{if } N = 2; \\ \infty & \text{if } N = 1 \end{cases}$$

and

$$2_{\Gamma}^{*} = \begin{cases} \frac{2(N-1)}{N-2} & \text{if } N \ge 3; \\ \text{an arbitrary } p^{**} \in]0, \infty[& \text{if } N = 2; \\ \infty & \text{if } N = 1. \end{cases}$$

Now assume the following

HYPOTHESIS 2.1. For $\varepsilon \in [0, \varepsilon_0]$, $\varphi_{\varepsilon}: \Omega \times \mathbb{R} \to \mathbb{R}$ and $\psi_{\varepsilon}: \Gamma \times \mathbb{R} \to \mathbb{R}$, $(x, s) \mapsto \varphi_{\varepsilon}(x, s), (x, s) \mapsto \psi_{\varepsilon}(x, s)$, are functions such that

- (a) there is a null set N_{Ω} in Ω with $\varphi_{\varepsilon}(x, \cdot) \in C^{1}(\mathbb{R}, \mathbb{R})$ for all $x \in \Omega \setminus N_{\Omega}$;
- (b) there is a null set N_{Γ} in Γ (rel. to the surface measure on Γ) with $\psi_{\varepsilon}(x, \cdot) \in C^1(\mathbb{R}, \mathbb{R})$ for all $x \in \Gamma \setminus N_{\Gamma}$;
- (c) for all $s \in \mathbb{R}$, $\varphi_{\varepsilon}(\cdot, s)$ and $\partial_s \varphi_{\varepsilon}(\cdot, s)$ is measurable on Ω ;
- (d) for all $s \in \mathbb{R}$, $\psi_{\varepsilon}(\cdot, s)$ and $\partial_s \psi_{\varepsilon}(\cdot, s)$ is measurable on Γ .

Moreover, $q_2 \in](1 - (1/2^*_{\Omega}))^{-1}, 2^*_{\Omega}[, q_3 \in](1 - (1/2^*_{\Gamma}))^{-1}, 2^*_{\Gamma}[$ and

$$r_2 = \frac{2^*_{\Omega} q_2}{2^*_{\Omega} - q_2}, \quad r_3 = \frac{2^*_{\Gamma} q_3}{2^*_{\Gamma} - q_3}, \quad \beta_2 = \frac{2^*_{\Omega}}{q_2} - 1, \quad \beta_3 = \frac{2^*_{\Gamma}}{q_3} - 1.$$

There is a constant $\widetilde{C} \in [0, \infty[$ and functions $a_2 \in L^{r_2}(\Omega), b_2 \in L^{q_2}(\Omega), a_3 \in L^{r_3}(\Gamma), b_3 \in L^{q_3}(\Gamma)$ such that, for all $\varepsilon \in [0, \varepsilon_0]$,

$$\begin{aligned} |\partial_s \varphi_{\varepsilon}(x,s)| &\leq \widetilde{C}(a_2(x) + |s|^{\beta_2}), \quad for \ (x,s) \in (\Omega \setminus N_{\Omega}) \times \mathbb{R}, \\ |\varphi_{\varepsilon}(x,0)| &\leq b_2(x), \qquad for \ x \in \Omega \setminus N_{\Omega}, \\ |\partial_s \psi_{\varepsilon}(x,s)| &\leq \widetilde{C}(a_3(x) + |s|^{\beta_3}), \quad for \ (x,s) \in (\Gamma \setminus N_{\Gamma}) \times \mathbb{R}, \\ |\psi_{\varepsilon}(x,0)| &\leq b_3(x), \qquad for \ x \in \Gamma \setminus N_{\Gamma}. \end{aligned}$$

Finally, as $\varepsilon \to 0^+$,

$$\begin{aligned} |\varphi_{\varepsilon}(x,s) - \varphi_{0}(x,s)| &\to 0, \quad for \ (x,s) \in (\Omega \setminus N_{\Omega}) \times \mathbb{R} \\ |\psi_{\varepsilon}(x,s) - \psi_{0}(x,s)| &\to 0, \quad for \ (x,s) \in (\Gamma \setminus N_{\Gamma}) \times \mathbb{R}. \end{aligned}$$

Under Hypothesis 2.1, there is an $\alpha \in [1/2, 1]$ such that whenever $\varepsilon \in [0, \varepsilon_0]$, $u \in H_1^{\varepsilon}$ and $h \in H_{\alpha}^{\varepsilon}$, the functions $x \mapsto \varphi_{\varepsilon}(x, u(x)) \cdot h(x)$ and $x \mapsto \psi_{\varepsilon}(x, \gamma(u)(x)) \cdot \gamma(h)(x)$ are integrable on Ω and Γ , respectively. (Cf. Section 8 below.) Defining

$$f_{\varepsilon}(u)(h) = \int_{\Omega} \varphi_{\varepsilon}(x, u(x)) \cdot h(x) \, dx + \int_{\Gamma} \psi_{\varepsilon}(x, \gamma(u)(x)) \cdot \gamma(h)(x) \, d\sigma$$

we obtain a locally Lipschitzian map $f_{\varepsilon}: H_1^{\varepsilon} \to H_{-\alpha}^{\varepsilon}$.

The linear isometry $A_{\varepsilon}: D(A_{\varepsilon}) = H_2^{\varepsilon} \to H_0^{\varepsilon}$ can be extended to a unique linear isometry $\widetilde{A}_{\varepsilon}: D(\widetilde{A}_{\varepsilon}) = H_{2-\alpha}^{\varepsilon} \to H_{-\alpha}^{\varepsilon}$. Moreover, $\widetilde{A}_{\varepsilon}$ is a positive selfadjoint operator on $H_{-\alpha}^{\varepsilon}$.

Therefore, we may consider the abstract parabolic equation

(2.1)
$$\dot{u} = A_{\varepsilon}u + f_{\varepsilon}(u)$$

on H_1^{ε} . This equation generates a local semiflow π_{ε} on H_1^{ε} .

For each $\varepsilon \in [0, \varepsilon_0]$, equation (2.1) is an abstract formulation of the following parabolic partial differential equation with localized large diffusion and nonlinear boundary conditions:

$$\begin{cases} u_t - \operatorname{Div}(d_{\varepsilon}(x)\nabla u) + (\lambda + V_{\varepsilon}(x))u = \varphi_{\varepsilon}(x, u), & t > 0, x \in \Omega, \\ d_{\varepsilon}(x)\partial_{\nu}u + b_{\varepsilon}(x)u = \psi_{\varepsilon}(x, u), & t > 0, x \in \partial\Omega. \end{cases}$$

For $\varepsilon = 0$, (2.1) is an abstract formulation of the following boundary value problem:

$$\begin{cases} u_t - \operatorname{Div}(d_0(x)\nabla u) + (\lambda + V_0(x))u = \varphi_0(x, u), & t > 0, \ x \in \Omega_1, \\ d_0(x)\partial_\nu u + b_0(x)u = \psi_0(x, u), & t > 0, \ x \in \Gamma, \\ \gamma_{0,i}(u) = u_{\Omega_{0,i}}, & \text{on } \Gamma_{0,i}, \ i \in [1..m], \\ \dot{u}_{\Omega_{0,i}} + |\Omega_{0,i}|^{-1} \int_{\Gamma_{0,i}} d_0(x)\partial_{\nu_{0,i}} u \, d\sigma + (\lambda + \hat{c}_i)u_{\Omega_{0,i}} \\ &= |\Omega_{0,i}|^{-1} \int_{\Omega_{0,i}} \varphi_0(x, u_{\Omega_{0,i}}) \, dx, & t > 0, \ i \in [1..m]. \end{cases}$$

Here, for $i \in [1..m]$, $\gamma_{0,i}$ is the trace operator on $\Gamma_{0,i}$.

It was proved in [9] that, as $\varepsilon \to 0$, the spectrum of A_{ε} converges to the spectrum of A_0 . Using this one can obtain results on convergence of $e^{-tA_{\varepsilon}}$ to e^{-tA_0} . Now by using the variation-of-constants formula one suspects that, in some sense, some families of solutions of π_{ε} converge to solutions of π_0 . This was proved in [1] for full bounded solutions under some additional dissipativeness conditions both on the linear and on the nonlinear problem, cf. [1, conditions S, D_{ε} and D_0]. This latter result also implies existence of global attractors of both π_{ε} and π_0 and their upper semicontinuity at $\varepsilon = 0$.

In this paper we extend and refine these results. More specifically, working first in an abstract setting, we establish in Sections 4, 5, 6 and 7 various singular convergence, compactness and Conley index continuation results for abstract families of equations of type (2.1). These abstract results imply the following main theorems of this paper:

THEOREM 2.2. Let $(\varepsilon_n)_n$ be a sequence in $]0, \varepsilon_0]$ with $\varepsilon_n \to 0$ and $(t_n)_n$ be a sequence in $[0, \infty[$ with $t_n \to t_0$, for some $t_0 \in [0, \infty[$. Let $u_0 \in H_1^0$ and $(u_n)_n$ be a sequence with $u_n \in H_1^{\varepsilon_n}$ for every $n \in \mathbb{N}$ and

$$|u_n - u_0|_{H_1^{\varepsilon_n}} \to 0 \quad as \ n \to \infty.$$

Assume $u_0\pi_0 t_0$ is defined. Then there exists an $n_0 \in \mathbb{N}$ such that $u_n\pi_{\varepsilon_n}t_n$ is defined for all $n \geq n_0$ and

$$|u_n \pi_{\varepsilon_n} t_n - u_0 \pi_0 t_0|_{H_1^{\varepsilon_n}} \to 0 \quad as \ n \to \infty.$$

THEOREM 2.3. Suppose $\kappa \in]0, \infty[$, $(\varepsilon_n)_n$ is a sequence in $]0, \varepsilon_0]$ with $\varepsilon_n \to 0$, $(t_n)_n$ is a sequence in $[0, \infty[$ with $t_n \geq \kappa$ for every $n \in \mathbb{N}$ and $(u_n)_n$ is a sequence with $u_n \in H_1^{\varepsilon_n}$ for every $n \in \mathbb{N}$. Assume that there exists a constant $C \in]0, \infty[$ such that $u_n \pi_{\varepsilon_n} t_n$ is defined and

$$|u_n \pi_{\varepsilon_n} s|_{H^{\varepsilon_n}} \leq C$$
 for all $n \in \mathbb{N}$ and for all $s \in [0, t_n]$.

Then there exist a $v \in H_1^0$ and a sequence $(n_k)_k$ in \mathbb{N} with $n_k \to \infty$ as $k \to \infty$ such that

$$|u_{n_k}\pi_{\varepsilon_{n_k}}t_{n_k}-v|_{H_{\epsilon}^{\varepsilon_{n_k}}}\to 0 \quad as \ k\to\infty.$$

THEOREM 2.4. For each $\varepsilon \in [0, \varepsilon_0]$, let I_{ε} be the identity map on H_1^{ε} and $Q_{\varepsilon}: H_1^{\varepsilon} \to H_1^{\varepsilon}$ be the H_1^{ε} -orthogonal projection of H_1^{ε} onto H_1^0 . Let N be a closed and bounded isolating neighbourhood of an invariant set K_0 relative to π_0 . For $\varepsilon \in [0, \varepsilon_0]$ and for every $\eta \in [0, \infty]$ set

$$N_{\varepsilon,\eta} := \{ u \in H_1^{\varepsilon} \mid Q_{\varepsilon} u \in N \text{ and } | (I_{\varepsilon} - Q_{\varepsilon}) u |_{H_1^{\varepsilon}} \le \eta \}$$

and $K_{\varepsilon,\eta} := \operatorname{Inv}_{\pi_{\varepsilon}}(N_{\varepsilon,\eta})$ i.e. $K_{\varepsilon,\eta}$ is the largest π_{ε} -invariant set in $N_{\varepsilon,\eta}$. Then for every $\eta \in]0, \infty[$ there exists an $\varepsilon^{c} = \varepsilon^{c}(\eta) \in]0, \varepsilon_{0}]$ such that for every $\varepsilon \in]0, \varepsilon^{c}]$ the set $N_{\varepsilon,\eta}$ is a strongly admissible isolating neighbourhood of $K_{\varepsilon,\eta}$ relative to π_{ε} and

$$h(\pi_{\varepsilon}, K_{\varepsilon, \eta}) = h(\pi_0, K_0)$$

Furthermore, for every $\eta > 0$, the family $(K_{\varepsilon,\eta})_{\varepsilon \in [0,\varepsilon^c(\eta)]}$ of invariant sets, where $K_{0,\eta} = K_0$, is upper semicontinuous at $\varepsilon = 0$ with respect to the family $|\cdot|_{H_1^{\varepsilon}}$ of norms i.e.

$$\lim_{\varepsilon \to 0^+} \sup_{w \in K_{\varepsilon,n}} \inf_{u \in K_0} |w - u|_{H_1^{\varepsilon}} = 0$$

The family $(K_{\varepsilon,\eta})_{\varepsilon\in[0,\varepsilon^c(\eta)]}$ is asymptotically independent of η i.e. whenever η_1 and $\eta_2 \in [0,\infty[$ then there is an $\varepsilon' \in [0,\min(\varepsilon^c(\eta_1),\varepsilon^c(\eta_2))]$ such that $K_{\varepsilon,\eta_1} = K_{\varepsilon,\eta_2}$ for $\varepsilon \in [0,\varepsilon']$.

THEOREM 2.5. Assume the hypotheses of Theorem 2.4 and for every $\eta \in]0, \infty[$ let $\varepsilon^{c}(\eta) \in]0, \varepsilon_{0}]$ be as in that theorem.

Let (P, \prec) be a finite poset and $(M_{p,0})_{p\in P}$ be a \prec -ordered Morse decomposition of K_0 relative to π_0 . For each $p \in P$, let $V_p \subset N$ be closed in X_0 and such that $M_{p,0} = \operatorname{Inv}_{\pi_0}(V_p) \subset \operatorname{Int}_{H_1^0}(V_p)$. (Such sets V_p , $p \in P$, exist.) For $\varepsilon \in [0, \varepsilon_0]$, for every $\eta \in [0, \infty[$ and $p \in P$ set $M_{p,\varepsilon,\eta} := \operatorname{Inv}_{\pi_\varepsilon}(V_{p,\varepsilon,\eta})$, where

$$V_{p,\varepsilon,\eta} := \{ u \in H_1^\varepsilon \mid Q_\varepsilon u \in V_p \text{ and } | (I_\varepsilon - Q_\varepsilon) u |_{H_1^\varepsilon} \le \eta \}.$$

Then for every $\eta \in [0,\infty[$ there is an $\tilde{\varepsilon} = \tilde{\varepsilon}(\eta) \in [0,\varepsilon^{c}(\eta)]$ such that for every $\varepsilon \in [0,\tilde{\varepsilon}]$ and $p \in P$, $M_{p,\varepsilon,\eta} \subset \operatorname{Int}_{H_{1}^{\varepsilon}}(V_{p,\varepsilon,\eta})$ and the family $(M_{p,\varepsilon,\eta})_{p\in P}$ is a \prec -ordered Morse decomposition of $K_{\varepsilon,\eta}$ relative to π_{ε} and the (co)homology

index braids of $(\pi_0, K_0, (M_{p,0})_{p \in P})$ and $(\pi_{\varepsilon}, K_{\varepsilon,\eta}, (M_{p,\varepsilon,\eta})_{p \in P})), \varepsilon \in [0, \tilde{\varepsilon}]$, are isomorphic and so they determine the same collection of C-connection matrices.

Again, for each $p \in P$, the family $(M_{p,\varepsilon,\eta})_{\varepsilon \in [0,\tilde{\varepsilon}(\eta)]}$, where $M_{p,0,\eta} = M_{p,0}$ is upper semicontinuous at $\varepsilon = 0$ with respect to the family $|\cdot|_{H_1^{\varepsilon}}$ of norms and the family $(M_{p,\varepsilon,\eta})_{\varepsilon \in [0,\tilde{\varepsilon}(\eta)]}$ is asymptotically independent of η .

The above theorems are proved in Section 8.

3. Preliminaries

Suppose H is an infinite dimensional linear space which is complete with respect to the scalar product $\langle \cdot, \cdot \rangle_H$ and let $A: D(A) \subset H \to H$ be a (densely defined) positive self-adjoint operator on $(H, \langle \cdot, \cdot \rangle_H)$ with $A^{-1}: H \to H$ compact. Let $(\lambda_j)_j$ be the repeated sequence of eigenvalues of A, i.e. the uniquely determined nondecreasing sequence $(\lambda_j)_j$ containing exactly the eigenvalues of Aand such that the number of occurrences of every eigenvalue of A in this sequence is equal to its multiplicity. Let $(w_j)_j$ be an H-orthonormal sequence of eigenvectors of A corresponding to $(\lambda_j)_j$. For $\alpha \in [0, \infty[$, let $H_\alpha = H_\alpha(A) = D(A^{\alpha/2})$. In particular,

$$H_0 = H.$$

Note that H_{α} is a Hilbert space under the scalar product

$$\langle u, v \rangle_{H_{\alpha}} = \langle A^{\alpha/2}u, A^{\alpha/2}v \rangle_{H}, \quad u, v \in H_{\alpha}.$$

For every $j \in \mathbb{N}$, $w_j \in H_{\alpha}$ and the sequence $(\lambda_j^{-\alpha/2}w_j)_j$ is H_{α} -orthonormal and H_{α} -complete. If $u \in H_{\alpha}$ we have

(3.1)
$$\left| u - \sum_{j=1}^{\kappa} \langle u, w_j \rangle_H w_j \right|_{H_{\alpha}} \to 0 \quad \text{as } k \to \infty$$

and so

(3.2)
$$|u|_{H_{\alpha}}^{2} = \sum_{j=1}^{\infty} \lambda_{j}^{\alpha} |\langle u, w_{j} \rangle_{H}|^{2}.$$

If $\alpha \in [0, \infty[$, let $H_{-\alpha} = H'_{\alpha}$ be the dual of H_{α} . It follows that $H_{-\alpha}$ is a Hilbert space under the dual scalar product

$$\langle u, v \rangle_{H_{-\alpha}} = \langle F_{\alpha}^{-1}v, F_{\alpha}^{-1}u \rangle_{H_{\alpha}}, \quad u, v \in H_{-\alpha},$$

where $F_{\alpha}: H_{\alpha} \to H_{-\alpha}, u \mapsto \langle \cdot, u \rangle_{H_{\alpha}}$, is the Fréchet–Riesz isomorphism.

Define the map $\psi_{\alpha}: H = H_0 \to H_{-\alpha}$ by $\psi_{\alpha}(u) = y$, where $y: H_{\alpha} \to \mathbb{K}$ is defined by

$$y(v) = \langle v, u \rangle_H, \quad v \in H_\alpha.$$

 ψ_{α} is an injection so that we can (and will) identify elements $u \in H$ with $\psi_{\alpha}(u) \in H_{-\alpha}$. We thus consider H as a linear subspace of $H_{-\alpha}$. With this identification,

the sequence $(\lambda_j^{\alpha/2} w_j)_j$ is $H_{-\alpha}$ -orthonormal and $H_{-\alpha}$ -complete. If $u \in H_{-\alpha}$ then

(3.3)
$$\left| u - \sum_{j=1}^{k} u(w_j) w_j \right|_{H_{-\alpha}} \to 0 \quad \text{as } k \to \infty$$

and so

(3.4)
$$|u|_{H_{-\alpha}}^2 = \sum_{j=1}^{\infty} \lambda_j^{-\alpha} |u(w_j)|^2.$$

For $\alpha \in]0, \infty[$ there is a unique continuous extension $\widetilde{A}^{-1} = \widetilde{A}_{\alpha}^{-1} \colon H_{-\alpha} \to H_{2-\alpha}$ of $A^{-1} \colon H \to H_2$. The map \widetilde{A}^{-1} is a bijective linear isometry. Let $\widetilde{A} \colon H_{2-\alpha} \to H_{-\alpha}$ be the inverse of \widetilde{A}^{-1} . Then \widetilde{A} is a positive densely defined self-adjoint operator on $H_{-\alpha}$. Moreover, for $\beta \in [0, \infty]$ the β -fractional power space $H_{\beta}(\widetilde{A})$ of \widetilde{A} is isomorphic (as a Hilbert space) to $H_{\beta-\alpha} = H_{\beta-\alpha}(A)$.

The linear semigroup $e^{-t\tilde{A}}: H_{-\alpha} \to H_{-\alpha}, t \in [0, \infty[$, is an extension of the semigroup $e^{-tA}: H \to H, t \in [0, \infty[$. Since, for every $j \in \mathbb{N}$ and $t \in [0, \infty[$,

$$e^{-tA}w_j = e^{-t\widetilde{A}}w_j = e^{-t\lambda_j}w_j$$

we conclude that, for every $u \in H$, every $\beta \in [0, \infty)$ and every $t \in (0, \infty)$

(3.5)
$$\left| e^{-tA}u - \sum_{j=1}^{k} e^{-t\lambda_j} \langle u, w_j \rangle_H w_j \right|_{H_\beta} \to 0 \quad \text{as } k \to \infty.$$

We also conclude that, for every $u \in H_{-\alpha}$, every $\beta \in [0, \infty[$ and every $t \in]0, \infty[$

(3.6)
$$\left| e^{-t\tilde{A}}u - \sum_{j=1}^{k} e^{-t\lambda_j}u(w_j)w_j \right|_{H_{\beta}} \to 0 \quad \text{as } k \to \infty.$$

4. Singular convergence of linear semiflows

In this section we introduce two abstract hypotheses, conditions (Spec) and (Comp), and we show that condition (Spec) enables us to prove some singular convergence results for linear semiflows.

First we introduce the following spectral convergence definition for a family of Hilbert spaces and linear operators.

DEFINITION 4.1. Given $\varepsilon_0 > 0$ we say that the family $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}}, A_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfies condition (Spec) if the following properties are satisfied:

(a) for every $\varepsilon \in [0, \varepsilon_0]$, $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}})$ is an infinite dimensional Hilbert space and $A_{\varepsilon}: D(A_{\varepsilon}) \subset H^{\varepsilon} \to H^{\varepsilon}$ is a densely defined positive selfadjoint operator on the space $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}})$ with $A_{\varepsilon}^{-1}: H^{\varepsilon} \to H^{\varepsilon}$ compact. For $\alpha \in \mathbb{R}$ write $H^{\varepsilon}_{\alpha} := H_{\alpha}(A_{\varepsilon})$. In particular, $H^{\varepsilon}_{0} = H^{\varepsilon}$;

- (b) for each $\varepsilon \in [0, \varepsilon_0]$, H^0 is a linear subspace of H^{ε} and H_1^0 is a linear subspace of H_1^{ε} ;
- (c) there exists a constant $C \in [1, \infty)$ such that

$$|u|_{H_1^{\varepsilon}} \leq C |u|_{H_1^0}$$
 and $|u|_{H_1^0} \leq C |u|_{H_1^{\varepsilon}}$

for all $u \in H_1^0$ and all $\varepsilon \in [0, \varepsilon_0]$;

(d) for every ε ∈]0, ε₀] let (λ_{ε,j})_j be the repeated sequence of eigenvalues of A_ε and (w_{ε,j})_j be a corresponding H^ε-orthonormal sequence of eigenfunctions. Furthermore, let (λ_{0,j})_j be the repeated sequence of eigenvalues of A₀.

Whenever $(\varepsilon_n)_n$ is a sequence in $[0, \varepsilon_0]$ with $\varepsilon_n \to 0$ then

(d1) $\lambda_{\varepsilon_n,j} \to \lambda_{0,j}$ as $n \to \infty$, for all $j \in \mathbb{N}$.

Moreover, there is a sequence $(n_k)_k$ in \mathbb{N} with $n_k \to \infty$ as $k \to \infty$ and there is an H^0 -orthonormal sequence of eigenfunctions $(w_{0,j})_j$ of A_0 corresponding to $(\lambda_{0,j})_j$ such that

- (d2) $|w_{\varepsilon_{n_k},j} w_{0,j}|_{H_i^{\varepsilon_{n_k}}} \to 0$ as $k \to \infty$, for all $j \in \mathbb{N}$;
- (d3) $\langle u, w_{\varepsilon_{n_k}, j} \rangle_{H^{\varepsilon_{n_k}}} \xrightarrow{1} \langle u, w_{0,j} \rangle_{H^0}$ as $k \to \infty$, for all $u \in H^0$ and all $j \in \mathbb{N}$.

We also require the following definition.

DEFINITION 4.2. Let the family $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}}, A_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfy condition (Spec). We say that $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}}, A_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfies condition (Comp) if whenever $(\varepsilon_n)_n$ is a sequence in $[0, \varepsilon_0]$ with $\varepsilon_n \to 0$ and $(\xi_n)_n$ is a sequence with $\xi_n \in H_1^{\varepsilon_n}$ for every $n \in \mathbb{N}$ and

$$\sup_{n\in\mathbb{N}}|\xi_n|_{H_1^{\varepsilon_n}}<\infty,$$

then there exist a $v \in H_1^0$ and a sequence $(n_k)_k$ in \mathbb{N} with $n_k \to \infty$ as $k \to \infty$ such that

$$|\xi_{n_k} - v|_{H^{\varepsilon_{n_k}}} \to 0 \quad \text{as } k \to \infty.$$

Now we will show that condition (Spec) allows us to obtain two singular convergence theorems for linear semiflows. We start with following preliminary result.

PROPOSITION 4.3. If $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}}, A_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfy condition (Spec), then for every $\varepsilon \in [0, \varepsilon_0]$, the subspace H_1^0 is closed in $(H_1^{\varepsilon}, |\cdot|_{H_1^{\varepsilon}})$.

PROOF. Let $\varepsilon \in [0, \varepsilon_0]$ and suppose $(u_n)_n$ is a sequence in H_1^0 with $|u_n - u|_{H_1^{\varepsilon}} \to 0$ as $n \to \infty$ for some $u \in H_1^{\varepsilon}$. Part (c) of condition (Spec) implies that

$$|u_n - u_m|_{H_1^0} \le C |u_n - u_m|_{H_1^{\varepsilon}},$$

so $(u_n)_n$ is a Cauchy sequence in the Banach space $(H_1^0, |\cdot|_{H_1^0})$. Therefore $(u_n)_n$ converges in H_1^0 to some v in H_1^0 . But part (c) of condition (Spec) implies that

$$|u_n - v|_{H_1^{\varepsilon}} \le C |u_n - v|_{H_1^0}$$

Hence u = v and thus $u \in H_1^0$. This proves the proposition.

REMARK 4.4. Note that, for $\alpha, t \in [0, \infty)$ and $\lambda \in [0, \infty)$

$$\lambda^{\alpha} e^{-\lambda t} \leq C(\alpha) t^{-\alpha}$$
 with $C(\alpha) = (\alpha/e)^{\alpha}$.

Let $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}}, A_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfy condition (Spec). Let $\alpha \in [0, \infty[, \varepsilon \in [0, \varepsilon_0]]$ and $r \in]0, \infty[$. Using the above estimate, we obtain for every $u \in H^{\varepsilon}_{-\alpha}$

$$|e^{-\tilde{A}_{\varepsilon}r}u|_{H_{1}^{\varepsilon}}^{2} = \sum_{j=1}^{\infty} \lambda_{\varepsilon,j}^{\alpha+1} (e^{-\lambda_{\varepsilon,j}r})^{2} \lambda_{\varepsilon,j}^{-\alpha} |u(w_{\varepsilon,j})|^{2}$$
$$= \sum_{j=1}^{\infty} ((\lambda_{\varepsilon,j})^{(\alpha+1)/2} e^{-\lambda_{\varepsilon,j}r})^{2} \lambda_{\varepsilon,j}^{-\alpha} |u(w_{\varepsilon,j})|^{2}$$
$$\leq (C((\alpha+1)/2)^{2} r^{-(\alpha+1)}) |u|_{H^{\varepsilon}}^{2}.$$

Consequently, we obtain for every $u \in H^{\varepsilon}_{-\alpha}$

(4.1)
$$|e^{-\tilde{A}_{\varepsilon}r}u|_{H_{1}^{\varepsilon}} \leq C_{0}r^{-(\alpha+1)/2}|u|_{H_{-\alpha}^{\varepsilon}},$$

where $C_0 = C((\alpha + 1)/2)$.

We shall need these estimates in the results to follow.

We now prove our first result on the convergence of the linear semiflows.

THEOREM 4.5. Let $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}}, A_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfy condition (Spec). Suppose $(\varepsilon_n)_n$ is a sequence in $[0, \varepsilon_0]$ with $\varepsilon_n \to 0$. Let $u_0 \in H_1^0$ and $(u_n)_n$ be a sequence such that, for every $n \in \mathbb{N}$, $u_n \in H_1^{\varepsilon_n}$ and

$$|u_n - u_0|_{H^{\varepsilon_n}} \to 0 \quad as \ n \to \infty.$$

Then

$$\sup_{t\in[0,\infty[} |e^{-tA_{\varepsilon_n}}u_n - e^{-tA_0}u_0|_{H_1^{\varepsilon_n}} \to 0 \quad as \ n \to \infty.$$

PROOF. Since $\lambda_{\varepsilon,j} > 0$ for all $\varepsilon \in [0, \varepsilon_0]$ and for all $j \in \mathbb{N}$, we have

$$|e^{-tA_{\varepsilon}}v|_{H_{1}^{\varepsilon}}^{2} = \sum_{j=1}^{\infty} (e^{-t\lambda_{\varepsilon,j}})^{2} \lambda_{\varepsilon,j} |\langle v, w_{\varepsilon,j} \rangle_{H^{\varepsilon}}|^{2} \leq \sum_{j=1}^{\infty} \lambda_{\varepsilon,j} |\langle v, w_{\varepsilon,j} \rangle_{H^{\varepsilon}}|^{2} = |v|_{H_{1}^{\varepsilon}}^{2},$$

for all $v \in H_1^{\varepsilon}$, $\varepsilon \in [0, \varepsilon_0]$ and $t \in [0, \infty[$. Thus we obtain, for all $n \in \mathbb{N}$ and all $t \in [0, \infty[$,

$$\begin{aligned} |e^{-tA_{\varepsilon_n}}u_n - e^{-tA_0}u_0|_{H_1^{\varepsilon_n}} &\leq |e^{-tA_{\varepsilon_n}}(u_n - u_0)|_{H_1^{\varepsilon_n}} + |e^{-tA_{\varepsilon_n}}u_0 - e^{-tA_0}u_0|_{H_1^{\varepsilon_n}} \\ &\leq |u_n - u_0|_{H_1^{\varepsilon_n}} + |e^{-tA_{\varepsilon_n}}u_0 - e^{-tA_0}u_0|_{H_1^{\varepsilon_n}}. \end{aligned}$$

Therefore we only have to prove that

(4.2)
$$\sup_{t \in [0,\infty[} |e^{-tA_{\varepsilon_n}}u_0 - e^{-tA_0}u_0|_{H_1^{\varepsilon_n}} \to 0 \quad \text{as } n \to \infty.$$

Suppose (4.2) is not true. Then there are a $\delta_0 > 0$ and a sequence $(n_k)_k$ in \mathbb{N} with $n_k \to \infty$ as $k \to \infty$ such that

(4.3)
$$\sup_{t \in [0,\infty[} \left| e^{-tA_{\varepsilon_{n_k}}} u_0 - e^{-tA_0} u_0 \right|_{H_1^{\varepsilon_{n_k}}} \ge \delta_0 \quad \text{for all } k \in \mathbb{N}.$$

Taking a further subsequence, if necessary, and using condition (Spec) we may also assume that there exists an H^0 -orthonormal sequence of eigenfunctions $(w_{0,j})_j$ corresponding to $(\lambda_{0,j})_j$ such that, for all $j \in \mathbb{N}$ and $u \in H^0$,

(4.4)
$$|w_{\varepsilon_{n_k},j} - w_{0,j}|_{H_1^{\varepsilon_{n_k}}} \to 0 \text{ and } \langle u, w_{\varepsilon_{n_k},j} \rangle_{H^{\varepsilon_{n_k}}} \to \langle u, w_{0,j} \rangle_{H^0}$$

as $k \to \infty$. For each $k \in \mathbb{N}$ and $j \in \mathbb{N}$, let $P_{k,j}: H^{\varepsilon_{n_k}} \to H^{\varepsilon_{n_k}}$ be the $H^{\varepsilon_{n_k}}$ -orthogonal projection of $H^{\varepsilon_{n_k}}$ onto the span of $\{w_{\varepsilon_{n_k},1},\ldots,w_{\varepsilon_{n_k},j-1}\}$ and let $P_{0,j}: H^0 \to H^0$ be the H^0 -orthogonal projection of H^0 onto the span of $\{w_{0,1},\ldots,w_{0,j-1}\}$.

Let $t \in [0, \infty)$ be arbitrary. Then for each $j \in \mathbb{N}$ and each $k \in \mathbb{N}$ we have

$$\begin{aligned} |e^{-tA_{\varepsilon_{n_k}}}u_0 - e^{-tA_0}u_0|_{H_1^{\varepsilon_{n_k}}} &\leq |P_{k,j}e^{-tA_{\varepsilon_{n_k}}}u_0 - P_{0,j}e^{-tA_0}u_0|_{H_1^{\varepsilon_{n_k}}} \\ &+ |(I - P_{k,j})e^{-tA_{\varepsilon_{n_k}}}u_0|_{H_1^{\varepsilon_{n_k}}} + |(I - P_{0,j})e^{-tA_0}u_0|_{H_1^{\varepsilon_{n_k}}}.\end{aligned}$$

Notice that for each $j \in \mathbb{N}$,

(4.5)
$$|P_{k,j}u_0 - P_{0,j}u_0|_{H_1^{\varepsilon_{n_k}}} \to 0 \quad \text{as } k \to \infty.$$

Indeed, for each $k \in \mathbb{N}$ we have

$$\begin{aligned} |P_{k,j}u_{0} - P_{0,j}u_{0}|_{H_{1}^{\varepsilon_{n_{k}}}} &= \left|\sum_{i=1}^{j-1} \langle u_{0}, w_{\varepsilon_{n_{k}},i} \rangle_{H^{\varepsilon_{n_{k}}}} w_{\varepsilon_{n_{k}},i} - \sum_{i=1}^{j-1} \langle u_{0}, w_{0,i} \rangle_{H^{0}} w_{0,i} \right|_{H_{1}^{\varepsilon_{n_{k}}}} \\ &\leq \sum_{i=1}^{j-1} |\langle u_{0}, w_{\varepsilon_{n_{k}},i} \rangle_{H^{\varepsilon_{n_{k}}}} | |w_{\varepsilon_{n_{k}},i} - w_{0,i}|_{H_{1}^{\varepsilon_{n_{k}}}} \\ &+ \sum_{i=1}^{j-1} |\langle u_{0}, w_{\varepsilon_{n_{k}},i} \rangle_{H^{\varepsilon_{n_{k}}}} - \langle u_{0}, w_{0,i} \rangle_{H^{0}} | |w_{0,i}|_{H_{1}^{\varepsilon_{n_{k}}}}. \end{aligned}$$

Condition (Spec) and (4.4) now imply (4.5).

Let $\delta > 0$ be arbitrary. By (3.1), $|(I - P_{0,j})u_0|_{H_1^0} \to 0$ as $j \to \infty$, so there is a $j_0 \in \mathbb{N}$ such that

$$|(I - P_{0,j_0})u_0|_{H^0_1} < \delta.$$

Since $|(I - P_{k,j})u_0 - (I - P_{0,j})u_0|_{H_1^{\varepsilon_{n_k}}} = |P_{k,j}u_0 - P_{0,j}u_0|_{H_1^{\varepsilon_{n_k}}}$ for all $j \in \mathbb{N}$ and for all $k \in \mathbb{N}$, it follows from (4.5) that there is a $k_0 \in \mathbb{N}$ such that

(4.6)
$$|(I - P_{k,j_0})u_0 - (I - P_{0,j_0})u_0|_{H_1^{\varepsilon_{n_k}}} < \delta \quad \text{for all } k \ge k_0.$$

Hence for all $k \geq k_0$,

$$(4.7) |(I - P_{k,j_0})e^{-tA_{\varepsilon_{n_k}}} u_0|_{H_1^{\varepsilon_{n_k}}} = |e^{-tA_{\varepsilon_{n_k}}}(I - P_{k,j_0})u_0|_{H_1^{\varepsilon_{n_k}}} \leq |(I - P_{k,j_0})u_0|_{H_1^{\varepsilon_{n_k}}} \leq \delta + |(I - P_{0,j_0})u_0|_{H_1^{\varepsilon_{n_k}}} \leq \delta + C|(I - P_{0,j_0})u_0|_{H_1^0} \leq (1 + C)\delta.$$

Moreover,

$$(4.8) \quad |(I - P_{0,j_0})e^{-tA_0}u_0|_{H_1^{\varepsilon_{n_k}}} \leq C|(I - P_{0,j_0})e^{-tA_0}u_0|_{H_1^0} = C|e^{-tA_0}(I - P_{0,j_0})u_0|_{H_1^0} \leq C|(I - P_{0,j_0})u_0|_{H_1^0} \leq C\delta.$$

We further have

$$\begin{split} |P_{k,j_0}e^{-tA_{\varepsilon_{n_k}}}u_0 - P_{0,j_0}e^{-tA_0}u_0|_{H_1^{\varepsilon_{n_k}}} \\ &\leq \sum_{i=1}^{j_0-1} |e^{-t\lambda_{\varepsilon_{n_k},i}}\langle u_0, w_{\varepsilon_{n_k},i}\rangle_{H^{\varepsilon_{n_k}}}w_{\varepsilon_{n_k},i} - e^{-t\lambda_{0,i}}\langle u_0, w_{0,i}\rangle_{H^0}w_{0,i}|_{H_1^{\varepsilon_{n_k}}} \\ &\leq \sum_{i=1}^{j_0-1} |e^{-t\lambda_{\varepsilon_{n_k},i}}\langle u_0, w_{\varepsilon_{n_k},i}\rangle_{H^{\varepsilon_{n_k}}}(w_{\varepsilon_{n_k},i} - w_{0,i})|_{H_1^{\varepsilon_{n_k}}} \\ &+ \sum_{i=1}^{j_0-1} |e^{-t\lambda_{\varepsilon_{n_k},i}}\langle u_0, w_{\varepsilon_{n_k},i}\rangle_{H^{\varepsilon_{n_k}}}w_{0,i} - e^{-t\lambda_{0,i}}\langle u_0, w_{0,i}\rangle_{H^0}w_{0,i}|_{H_1^{\varepsilon_{n_k}}} \\ &\leq \sum_{i=1}^{j_0-1} |\langle u_0, w_{\varepsilon_{n_k},i}\rangle_{H^{\varepsilon_{n_k}}} |w_{\varepsilon_{n_k},i} - w_{0,i}|_{H_1^{\varepsilon_{n_k}}} \\ &+ C\sum_{i=1}^{j_0-1} |e^{-t\lambda_{\varepsilon_{n_k},i}}\langle u_0, w_{\varepsilon_{n_k},i}\rangle_{H^{\varepsilon_{n_k}}} - e^{-t\lambda_{0,i}}\langle u_0, w_{0,i}\rangle_{H^0}||w_{0,i}|_{H_1^0}. \end{split}$$

Since, for every $i \in \mathbb{N}$,

$$\sup_{t\in[0,\infty[} |e^{-t\lambda_{\varepsilon_{n_k},i}} - e^{-t\lambda_{0,i}}| \to 0 \quad \text{as } k \to \infty,$$

it follows that

(4.9)
$$\sup_{t \in [0,\infty[} |P_{k,j_0}e^{-tA_{\varepsilon_{n_k}}}u_0 - P_{0,j_0}e^{-tA_0}u_0|_{H_1^{\varepsilon_{n_k}}} \to 0 \quad \text{as } k \to \infty.$$

Since $\delta > 0$ is arbitrary, (4.7), (4.8) and (4.9) imply that

(4.10)
$$\sup_{t\in[0,\infty[} |e^{-tA_{\varepsilon_{n_k}}}u_0 - e^{-tA_0}u_0|_{H_1^{\varepsilon_{n_k}}} \to 0 \quad \text{as } k \to \infty,$$

but this contradicts (4.3). The proof is complete.

We also require a second, more technical, theorem on the convergence of the linear semiflows.

THEOREM 4.6. Let $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}}, A_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfy condition (Spec). Suppose $(\varepsilon_n)_n$ is a sequence in $[0, \varepsilon_0]$ with $\varepsilon_n \to 0$. Let $\alpha \in [0, \infty[, u_0 \in H^0_{-\alpha}$ be arbitrary and let $(u_n)_n$ and $(v_n)_n$ be sequences such that u_n and $v_n \in H^{\varepsilon_n}_{-\alpha}$ for $n \in \mathbb{N}$. Suppose that

- (a) $|u_n v_n|_{H^{\varepsilon_n}} \to 0 \text{ as } n \to \infty.$
- (b) For all $j \in \mathbb{N}$, $v_n(w_{\varepsilon_n,j}) \to u_0(w_{0,j})$ as $n \to \infty$.
- (c) $\sup_{n \in \mathbb{N}} |v_n|_{H^{\varepsilon_n}_{-\alpha}} < \infty.$

For every $\varepsilon \in [0, \varepsilon_0]$, let $\widetilde{A}_{\varepsilon} = \widetilde{A}_{\varepsilon, -\alpha}$: $H_{2-\alpha}^{\varepsilon} \to H_{-\alpha}^{\varepsilon}$ be the extension of A_{ε} to $H_{-\alpha}^{\varepsilon}$. Then, for every $\beta \in]0, \infty[$,

$$\sup_{t\in [\beta,\infty[}|e^{-t\widetilde{A}_{\varepsilon_n}}u_n-e^{-t\widetilde{A}_0}u_0|_{H_1^{\varepsilon_n}}\to 0\quad as\;n\to\infty.$$

PROOF. Fix $\beta \in [0, \infty[$. Suppose the theorem is not true. Then there are a $\delta_0 > 0$ and a sequence $(n_k)_k$ in \mathbb{N} with $n_k \to \infty$ as $k \to \infty$ such that

(4.11)
$$\sup_{t\in[\beta,\infty[} |e^{-t\overline{A}_{\varepsilon_{n_k}}} u_{n_k} - e^{-t\widetilde{A}_0} u_0|_{H_1^{\varepsilon_{n_k}}} \ge \delta_0 \quad \text{for all } k \in \mathbb{N}.$$

Taking a further subsequence, if necessary, and using condition (Spec) we may also assume that there exists an H^0 -orthonormal sequence of eigenfunctions $(w_{0,j})_j$ corresponding to $(\lambda_{0,j})_j$ such that, for all $j \in \mathbb{N}$ and $u \in H^0$,

$$(4.12) |w_{\varepsilon_{n_k},j} - w_{0,j}|_{H_1^{\varepsilon_{n_k}}} \to 0 \quad \text{and} \quad \langle u, w_{\varepsilon_{n_k},j} \rangle_{H^{\varepsilon_{n_k}}} \to \langle u, w_{0,j} \rangle_{H^0}$$

as $k \to \infty$. Let $\delta > 0$ be arbitrary. By Remark 4.4 there is an $s_0 = s_0(\delta, \beta) > 0$ such that $s^{(\alpha+1)/2}e^{-st} < \delta$ for $s \ge s_0$ and $t \ge \beta$. Since $\lambda_{0,j} \to \infty$ as $j \to \infty$, there is a $j_0 = j_0(\delta, \beta) \in \mathbb{N}$ such that $\lambda_{0,j_0} > s_0$ for all $j \ge j_0$. Thus there is an $k_0 = k_0(\delta, \beta) \in \mathbb{N}$ such that $\lambda_{\varepsilon_{n_k}, j_0} > s_0$ for $k \ge k_0$. Therefore we obtain

(4.13)
$$\lambda_{\varepsilon_{n_k}, j} \ge s_0(\delta, \beta) \text{ for } k \ge k_0(\delta, \beta) \text{ and } j \ge j_0(\delta, \beta).$$

Formula (3.6) implies that, for all $\varepsilon \in [0, \varepsilon_0]$, all $t \in [0, \infty)$ and all $u \in H^{\varepsilon}_{-\alpha}$,

(4.14)
$$\left| e^{-t\widetilde{A}_{\varepsilon}} u - \sum_{j=1}^{k} e^{-t\lambda_{\varepsilon,j}} u(w_{\varepsilon,j}) w_{\varepsilon,j} \right|_{H_{1}^{\varepsilon}} \to 0 \quad \text{as } k \to \infty.$$

Let $t \geq \beta$ be arbitrary. Then

$$(4.15) \quad |e^{-t\tilde{A}_{\varepsilon_{n_k}}} u_{n_k} - e^{-t\tilde{A}_0} u_0|_{H_1^{\varepsilon_{n_k}}} \\ \leq \sum_{j=1}^{j_0-1} |e^{-t\lambda_{\varepsilon_{n_k},j}} u_{n_k}(w_{\varepsilon_{n_k},j}) w_{\varepsilon_{n_k},j} - e^{-t\lambda_{0,j}} u_0(w_{0,j}) w_{0,j}|_{H_1^{\varepsilon_{n_k}}}$$

Localized Singularities and Conley Index

$$+ \left| e^{-t\tilde{A}_{\varepsilon_{n_{k}}}} u_{n_{k}} - \sum_{j=1}^{j_{0}-1} e^{-t\lambda_{\varepsilon_{n_{k}},j}} u_{n_{k}}(w_{\varepsilon_{n_{k}},j}) w_{\varepsilon_{n_{k}},j} \right|_{H_{1}^{\varepsilon_{n_{k}}}} \\ + \left| e^{-t\tilde{A}_{0}} u_{0} - \sum_{j=1}^{j_{0}-1} e^{-t\lambda_{0,j}} u_{0}(w_{0,j}) w_{0,j} \right|_{H_{1}^{\varepsilon_{n_{k}}}}.$$

Now (4.13) implies that

$$(4.16) \qquad \left| e^{-t\widetilde{A}_{\varepsilon_{n_k}}} u_{n_k} - \sum_{j=1}^{j_0-1} e^{-t\lambda_{\varepsilon_{n_k},j}} u_{n_k}(w_{\varepsilon_{n_k},j}) w_{\varepsilon_{n_k},j} \right|_{H_1^{\varepsilon_{n_k}}}^2$$
$$= \sum_{j=j_0}^{\infty} (\lambda_{\varepsilon_{n_k},j}^{(\alpha+1)/2} e^{-t\lambda_{\varepsilon_{n_k},j}})^2 \lambda_{\varepsilon_{n_k},j}^{-\alpha} |u_{n_k}(w_{\varepsilon_{n_k},j})|^2$$
$$\leq \delta^2 \sum_{j=j_0}^{\infty} \lambda_{\varepsilon_{n_k},j}^{-\alpha} |u_{n_k}(w_{\varepsilon_{n_k},j})|^2 \leq \delta^2 |u_{n_k}|_{H_{-\alpha}^{\varepsilon_{n_k}}}^2 \leq \delta^2 \widetilde{C}^2,$$

where $\widetilde{C} := \sup_{k \in \mathbb{N}} |u_{n_k}|^2_{H^{\varepsilon_{n_k}}_{-\alpha}}$. Note that $\widetilde{C} < \infty$ by our assumptions (a) and (c). Analogously,

$$(4.17) \qquad \left| e^{-t\tilde{A}_{0}}u_{0} - \sum_{j=1}^{j_{0}-1} e^{-t\lambda_{0,j}}u_{0}(w_{0,j})w_{0,j} \right|_{H_{1}^{\varepsilon_{n_{k}}}}^{2} \\ \leq C^{2} \left| e^{-t\tilde{A}_{0}}u_{0} - \sum_{j=1}^{j_{0}-1} e^{-t\lambda_{0,j}}u_{0}(w_{0,j})w_{0,j} \right|_{H_{1}^{0}}^{2} \\ = C^{2} \sum_{j=j_{0}}^{\infty} (\lambda_{0,j}^{(\alpha+1)/2}e^{-t\lambda_{0,j}})^{2}\lambda_{0,j}^{-\alpha}|u_{0}(w_{0,j})|^{2} \\ \leq C^{2}\delta^{2} \sum_{j=j_{0}}^{\infty} \lambda_{0,j}^{-\alpha}|u_{0}(w_{0,j})|^{2} \leq C^{2}\delta^{2}|u_{0}|_{H_{-\alpha}^{0}}^{2}.$$

Let $j \in [1 \dots j_0 - 1]$ be arbitrary. Then

$$(4.18) |e^{-t\lambda_{\varepsilon_{n_{k}},j}}u_{n_{k}}(w_{\varepsilon_{n_{k}},j})w_{\varepsilon_{n_{k}},j} - e^{-t\lambda_{0,j}}u_{0}(w_{0,j})w_{0,j}|_{H_{1}^{\varepsilon_{n_{k}}}} \\ \leq |e^{-t\lambda_{\varepsilon_{n_{k}},j}}(u_{n_{k}} - v_{n_{k}})(w_{\varepsilon_{n_{k}},j})w_{\varepsilon_{n_{k}},j}|_{H_{1}^{\varepsilon_{n_{k}}}} \\ + |e^{-t\lambda_{\varepsilon_{n_{k}},j}}v_{n_{k}}(w_{\varepsilon_{n_{k}},j})(w_{\varepsilon_{n_{k}},j} - w_{0,j})|_{H_{1}^{\varepsilon_{n_{k}}}} \\ + |e^{-t\lambda_{\varepsilon_{n_{k}},j}}(v_{n_{k}}(w_{\varepsilon_{n_{k}},j}) - u_{0}(w_{0,j}))w_{0,j}|_{H_{1}^{\varepsilon_{n_{k}}}} \\ + |(e^{-t\lambda_{\varepsilon_{n_{k}},j}} - e^{-t\lambda_{0,j}})u_{0}(w_{0,j})w_{0,j}|_{H_{1}^{\varepsilon_{n_{k}}}} \\ \leq |u_{n_{k}} - v_{\varepsilon_{n_{k}},j}|_{H_{-\alpha}^{\varepsilon_{n_{k}}}}|w_{\varepsilon_{n_{k}},j}|_{H_{\alpha}^{\varepsilon_{n_{k}}}}|w_{\varepsilon_{n_{k}},j} - w_{0,j}|_{H_{1}^{\varepsilon_{n_{k}}}} \\ + |v_{n_{k}}|_{H_{-\alpha}^{\varepsilon_{n_{k}}}}|w_{\varepsilon_{n_{k}},j}|_{H_{\alpha}^{\varepsilon_{n_{k}}}} \cdot |w_{\varepsilon_{n_{k}},j} - w_{0,j}|_{H_{1}^{\varepsilon_{n_{k}}}}$$

M. C. Carbinatto — K. P. Rybakowski

$$+ |v_{n_k}(w_{\varepsilon_{n_k},j}) - u_0(w_{0,j})| \cdot |w_{0,j}|_{H_1^{\varepsilon_{n_k}}}$$

+ $|e^{-t\lambda_{\varepsilon_{n_k},j}} - e^{-t\lambda_{0,j}}| \cdot |u_0(w_{0,j})| \cdot |w_{0,j}|_{H_1^{\varepsilon_{n_k}}}$

Note that, for every $\gamma \in [0, \infty[, |w_{\varepsilon_{n_k}, j}|_{H_{\gamma}^{\varepsilon_{n_k}}} = \lambda_{\varepsilon_{n_k}, j}^{\gamma/2}$. Moreover, $|w_{0, j}|_{H_1^{\varepsilon_{n_k}}} \leq C|w_{0, j}|_{H_1^0}$ and

$$\sup_{e \in [\beta,\infty[} |e^{-t\lambda_{\varepsilon_{n_k},j}} - e^{-t\lambda_{0,j}}| \to 0 \quad \text{as } k \to \infty.$$

Hence, our assumptions and (4.18) show that

(4.19)
$$\sup_{t\in[\beta,\infty[}|e^{-t\lambda_{\varepsilon_{n_k},j}}u_{n_k}(w_{\varepsilon_{n_k},j})w_{\varepsilon_{n_k},j} - e^{-t\lambda_{0,j}}u_0(w_{0,j})w_{0,j}|_{H_1^{\varepsilon_{n_k}}} \to 0$$

as $k \to \infty$. Thus formulas (4.15)–(4.17), (4.19) and the fact that $\delta > 0$ is arbitrary imply that

$$\sup_{t\in[\beta,\infty[} |e^{-t\tilde{A}_{\varepsilon_{n_k}}} u_{n_k} - e^{-t\tilde{A}_0} u_0|_{H_1^{\varepsilon_{n_k}}} \to 0 \quad \text{as } k \to \infty$$

which contradicts (4.11). The theorem is proved.

COROLLARY 4.7. Let $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}}, A_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfy condition (Spec). Suppose $(\varepsilon_n)_n$ is a sequence in $[0, \varepsilon_0]$ with $\varepsilon_n \to 0$. Let $u_0 \in H^0$ be arbitrary and let $(u_n)_n$ be a sequence such that $u_n \in H^{\varepsilon_n}$ for $n \in \mathbb{N}$. Suppose that

$$|u_n - u_0|_{H^{\varepsilon_n}} \to 0 \quad as \ n \to \infty.$$

Then, for every $\beta \in [0, \infty[$,

$$\sup_{t\in[\beta,\infty[} |e^{-tA_{\varepsilon_n}}u_n - e^{-tA_0}u_0|_{H_1^{\varepsilon_n}} \to 0 \quad as \ n \to \infty.$$

PROOF. Use Theorem 4.6 with $\alpha = 0$ and $v_n = u_0$ for all $n \in \mathbb{N}$.

5. Singular convergence of nonlinear semiflows

We now introduce a natural condition on a family of nonlinearities, condition (Conv), and we show that conditions (Spec) and (Conv) imply a general singular convergence theorem for semiflows.

DEFINITION 5.1. Let $\varepsilon_0 > 0$ be arbitrary and $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}}, A_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ be a family satisfying condition (Spec). Let $\alpha \in [0, 1]$ be given and for every $\varepsilon \in [0, \varepsilon_0]$ let $\widetilde{A}_{\varepsilon} = \widetilde{A}_{\varepsilon, -\alpha} : H^{\varepsilon}_{2-\alpha} \to H^{\varepsilon}_{-\alpha}$ be the extension of A_{ε} to $H^{\varepsilon}_{-\alpha}$. We say that the family $(f_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ of maps satisfies condition (Conv) if the following properties are satisfied:

- (a) $f_{\varepsilon}: H_1^{\varepsilon} \to H_{-\alpha}^{\varepsilon}$ for every $\varepsilon \in [0, \varepsilon_0]$.
- (b) $\lim_{\varepsilon \to 0^+} |e^{-t\tilde{A}_{\varepsilon}} f_{\varepsilon}(u) e^{-t\tilde{A}_0} f_0(u)|_{H_1^{\varepsilon}} = 0$ for every $u \in H_1^0$ and every $t \in]0, \infty[$.

(c) For every $M \in [0, \infty)$ there is an $L = L_M \in [0, \infty)$ such that

$$|f_{\varepsilon}(u) - f_{\varepsilon}(v)|_{H^{\varepsilon}_{-\alpha}} \le L|u - v|_{H^{\varepsilon}_{1}}$$

for all $\varepsilon \in [0, \varepsilon_0]$ and $u, v \in H_1^{\varepsilon}$ satisfying $|u|_{H_1^{\varepsilon}}, |v|_{H_1^{\varepsilon}} \leq M$.

(d) For every $u \in H_1^0$ there is an $\varepsilon'_0 \in [0, \varepsilon_0]$ such that

$$\sup_{\varepsilon \in [0,\varepsilon_0']} |f_{\varepsilon}(u)|_{H^{\varepsilon}_{-\alpha}} < \infty$$

The next result shows that the above condition (b) is valid uniformly for t bounded away from zero.

PROPOSITION 5.2. Assume condition (Conv) and let $\beta \in [0, \infty]$ be arbitrary. Then, for every $u \in H_1^0$,

$$\lim_{\varepsilon \to 0^+} \sup_{t \in [\beta,\infty[} |e^{-t\widetilde{A}_{\varepsilon}} f_{\varepsilon}(u) - e^{-t\widetilde{A}_0} f_0(u)|_{H_1^{\varepsilon}} = 0$$

PROOF. Let $v = e^{-\beta \tilde{A}_0} f_0(u) \in H_1^0$. For every $t \in [\beta, \infty]$ we have

$$\begin{aligned} |e^{-t\widetilde{A}_{\varepsilon}}f_{\varepsilon}(u) - e^{-t\widetilde{A}_{0}}f_{0}(u)|_{H_{1}^{\varepsilon}} \\ &\leq |e^{-(t-\beta)\widetilde{A}_{\varepsilon}}(e^{-\beta\widetilde{A}_{\varepsilon}}f_{\varepsilon}(u) - e^{-\beta\widetilde{A}_{0}}f_{0}(u))|_{H_{1}^{\varepsilon}} + |e^{-(t-\beta)\widetilde{A}_{\varepsilon}}v - e^{-(t-\beta)\widetilde{A}_{0}}v|_{H_{1}^{\varepsilon}} \\ &\leq |e^{-\beta\widetilde{A}_{\varepsilon}}f_{\varepsilon}(u) - e^{-\beta\widetilde{A}_{0}}f_{0}(u)|_{H_{1}^{\varepsilon}} + |e^{-(t-\beta)\widetilde{A}_{\varepsilon}}v - e^{-(t-\beta)\widetilde{A}_{0}}v|_{H_{1}^{\varepsilon}} \end{aligned}$$

Since, by Theorem 4.5

$$\lim_{\varepsilon \to 0} \sup_{s \in [0,\infty[} |e^{-s\tilde{A}_{\varepsilon}}v - e^{-s\tilde{A}_{0}}v|_{H_{1}^{\varepsilon}} = 0,$$

the assertion follows from condition (Conv) part (b) (with $t = \beta$).

For the rest of the paper, if $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}}, A_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfies condition (Spec) and $(f_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfies condition (Conv) then we will write, for every $\varepsilon \in [0, \varepsilon_0]$, $\pi_{\varepsilon} := \pi_{A_{\varepsilon}, f_{\varepsilon}}$ to denote the local semiflow on H_1^{ε} generated by the abstract parabolic equation

(5.1)
$$\dot{u} = -\tilde{A}_{\varepsilon}u + f_{\varepsilon}(u).$$

To prove the theorems of this section we will need the following auxiliary result.

LEMMA 5.3. Suppose that $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}}, A_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfies condition (Spec) and $(f_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfies condition (Conv). For every $\overline{u} \in H_1^0$ there exist a $\delta > 0$ and a $\tau > 0$ such that for every $a_0 \in H_1^0$ with $|a_0 - \overline{u}|_{H_1^0} \leq \delta$, $a_0 \pi_0 s$, $s \in [0, \tau]$, is defined and whenever $(\varepsilon_n)_n$ is a sequence in $[0, \varepsilon_0]$ with $\varepsilon_n \to 0$ and $(a_n)_n$ is a sequence with $a_n \in H_1^{\varepsilon_n}$ for every $n \in \mathbb{N}$ and

$$|a_n - a_0|_{H_1^{\varepsilon_n}} \to 0 \quad as \ n \to \infty,$$

then there is an $n_0 \in \mathbb{N}$ such that $a_n \pi_{\varepsilon_n} s$, $s \in [0, \tau]$, is defined for $n \geq n_0$. Moreover there exists an $M' \in [0, \infty[$ such that $|a_n \pi_{\varepsilon_n} s|_{H_1^{\varepsilon_n}} \leq M'$ for all $n \geq n_0$ and for all $s \in [0, \tau]$.

PROOF. Let $\overline{u} \in H_1^0$ be arbitrary and $C_1 \in]0, \infty[$ be such that $|\overline{u}|_{H_1^0} \leq C_1$. Let C be as in part (c) of condition (Spec), set

(5.2)
$$M' := 3C_1 + 3CC_1$$

and let $L := L_{M'}$ be as in Definition 5.1 with M replaced by M'.

Part (d) of Definition 5.1 implies that there is an $\varepsilon'_0 \in [0, \varepsilon_0]$ such that

$$C_2 = \sup_{\varepsilon \in [0, \varepsilon'_0]} |f_{\varepsilon}(\overline{u})|_{H^{\varepsilon}} < \infty$$

Now choose τ and $\delta \in \left]0,\infty\right[$ such that

(5.3)
$$2(1-\alpha)^{-1}C_0L\tau^{(1-\alpha)/2} \le 1/2,$$

(5.4)
$$2(1-\alpha)^{-1}C_0\tau^{(1-\alpha)/2}(2LC_1+C_2) \le C_1/4,$$

$$(5.5) 2C\delta \le C_1/4$$

and

(5.6)
$$C|e^{-tA_0}\overline{u} - \overline{u}|_{H^0_1} \le C_1/4 \quad \text{for } t \in [0,\tau],$$

where the constant C_0 is as in Remark 4.4.

For every $\varepsilon \in [0, \varepsilon'_0]$ and $a \in H_1^{\varepsilon}$ with

$$(5.7) |a - \overline{u}|_{H_1^{\varepsilon}} \le C_1,$$

define

$$S_{\varepsilon,a} := \{ u \mid u: [0,\tau] \to H_1^{\varepsilon} \text{ is continuous}$$

and $|u(t) - a|_{H_1^{\varepsilon}} \le C_1 \text{ for all } t \in [0,\tau] \}.$

For $u \in S_{\varepsilon,a}$ define the map $T_{\varepsilon,a}(u): [0,\tau] \to H_1^{\varepsilon}$ by

$$T_{\varepsilon,a}(u)(t) := e^{-t\tilde{A}_{\varepsilon}}a + \int_{0}^{t} e^{-(t-s)\tilde{A}_{\varepsilon}} f_{\varepsilon}(u(s)) \, ds$$
$$= e^{-tA_{\varepsilon}}a + \int_{0}^{t} e^{-(t-s)\tilde{A}_{\varepsilon}} f_{\varepsilon}(u(s)) \, ds.$$

The map $T_{\varepsilon,a}(u)$ is continuous. Moreover, whenever $u \in S_{\varepsilon,a}$, then, for all $t \in [0, \tau]$,

$$|u(t)|_{H_1^{\varepsilon}} \le C_1 + |a|_{H_1^{\varepsilon}} \le C_1 + C_1 + |\overline{u}|_{H_1^{\varepsilon}} \le 2C_1 + C_1 C \le M',$$

where the last inequality follows from (5.2). Thus for all $u, v \in S_{\varepsilon,a}$ arbitrary and for all $t \in [0, \tau]$, we have, by (4.1),

(5.8)
$$|T_{\varepsilon,a}(u)(t) - T_{\varepsilon,a}(v)(t)|_{H_{1}^{\varepsilon}} = \left| \int_{0}^{t} e^{-(t-s)\widetilde{A}_{\varepsilon}} (f_{\varepsilon}(u(s)) - f_{\varepsilon}(v(s))) \, ds \right|_{H_{1}^{\varepsilon}} \\ \leq C_{0} \int_{0}^{t} (t-s)^{-(\alpha+1)/2} |f_{\varepsilon}(u(s)) - f_{\varepsilon}(v(s))|_{H_{-\alpha}^{\varepsilon}} \, ds \\ \leq C_{0} L \int_{0}^{t} (t-s)^{-(\alpha+1)/2} \, ds \sup_{s \in [0,\tau]} |u(s) - v(s)|_{H_{1}^{\varepsilon}} \\ = 2(1-\alpha)^{-1} C_{0} L \tau^{(1-\alpha)/2} \sup_{s \in [0,\tau]} |u(s) - v(s)|_{H_{1}^{\varepsilon}} \\ \leq 1/2 \sup_{s \in [0,\tau]} |u(s) - v(s)|_{H_{1}^{\varepsilon}}.$$

The last inequality follows from (5.3). Moreover, for all $u \in S_{\varepsilon,a}$ and $t \in [0, \tau]$,

$$|T_{\varepsilon,a}(u)(t) - a|_{H_1^{\varepsilon}} \le |e^{-tA_{\varepsilon}}a - a|_{H_1^{\varepsilon}} + \left| \int_0^t e^{-(t-s)\widetilde{A}_{\varepsilon}} f_{\varepsilon}(u(s)) \, ds \right|_{H_1^{\varepsilon}}.$$

Since for $\varepsilon \in [0, \varepsilon_0']$ and $s \in [0, \tau]$ we have

$$\begin{split} |f_{\varepsilon}(u(s))|_{H^{\varepsilon}_{-\alpha}} &\leq |f_{\varepsilon}(u(s)) - f_{\varepsilon}(a)|_{H^{\varepsilon}_{-\alpha}} + |f_{\varepsilon}(a)|_{H^{\varepsilon}_{-\alpha}} \\ &\leq L|u(s) - a|_{H^{\varepsilon}_{1}} + |f_{\varepsilon}(a) - f_{\varepsilon}(\overline{u})|_{H^{\varepsilon}_{-\alpha}} + |f_{\varepsilon}(\overline{u})|_{H^{\varepsilon}_{-\alpha}} \\ &\leq LC_{1} + LC_{1} + C_{2} = 2LC_{1} + C_{2}, \end{split}$$

we obtain, by (4.1),

$$\left| \int_{0}^{t} e^{-(t-s)\widetilde{A}_{\varepsilon}} f_{\varepsilon}(u(s)) \, ds \right|_{H_{1}^{\varepsilon}} \leq C_{0} \int_{0}^{t} (t-s)^{-(\alpha+1)/2} |f_{\varepsilon}(u(s))|_{H_{-\alpha}^{\varepsilon}} \, ds$$
$$\leq 2(1-\alpha)^{-1} C_{0} \tau^{(1-\alpha)/2} (2LC_{1}+C_{2}) \leq C_{1}/4.$$

In the previous computation we used the fact that $|a|_{H_1^{\varepsilon}} \leq C_1 + |\overline{u}|_{H_1^{\varepsilon}} \leq C_1 + CC_1 \leq M'$ and $|\overline{u}|_{H_1^{\varepsilon}} \leq M'$. If $\tilde{a}_0 \in H_1^0$ satisfies $|\tilde{a}_0 - \overline{u}|_{H_1^0} \leq \delta$, then

$$\begin{split} |e^{-tA_{\varepsilon}}a - a|_{H_{1}^{\varepsilon}} \leq & |e^{-tA_{\varepsilon}}a - e^{-tA_{0}}\widetilde{a}_{0}|_{H_{1}^{\varepsilon}} + |e^{-tA_{0}}\widetilde{a}_{0} - e^{-tA_{0}}\overline{u}|_{H_{1}^{\varepsilon}} \\ &+ |e^{-tA_{0}}\overline{u} - \overline{u}|_{H_{1}^{\varepsilon}} + |\overline{u} - \widetilde{a}_{0}|_{H_{1}^{\varepsilon}} + |a - \widetilde{a}_{0}|_{H_{1}^{\varepsilon}} \\ \leq & |e^{-tA_{\varepsilon}}a - e^{-tA_{0}}\widetilde{a}_{0}|_{H_{1}^{\varepsilon}} + C|e^{-tA_{0}}\widetilde{a}_{0} - e^{-tA_{0}}\overline{u}|_{H_{1}^{0}} \\ &+ C|e^{-tA_{0}}\overline{u} - \overline{u}|_{H_{1}^{0}} + C|\overline{u} - \widetilde{a}_{0}|_{H_{1}^{0}} + |a - \widetilde{a}_{0}|_{H_{1}^{\varepsilon}} \\ \leq & |e^{-tA_{\varepsilon}}a - e^{-tA_{0}}\widetilde{a}_{0}|_{H_{1}^{\varepsilon}} + |a - \widetilde{a}_{0}|_{H_{1}^{\varepsilon}} + C|e^{-tA_{0}}\overline{u} - \overline{u}|_{H_{1}^{0}} + 2C\delta \\ \leq & |e^{-tA_{\varepsilon}}a - e^{-tA_{0}}\widetilde{a}_{0}|_{H_{1}^{\varepsilon}} + |a - \widetilde{a}_{0}|_{H_{1}^{\varepsilon}} + C_{1}/2, \end{split}$$

where the last inequality follows from (5.5) and (5.6).

Thus putting things together, we obtain for all $\varepsilon \in [0, \varepsilon'_0]$, all $a \in H_1^{\varepsilon}$ satisfying (5.7) and all $\tilde{a}_0 \in H_1^0$ with $|\tilde{a}_0 - \overline{u}|_{H_1^0} \leq \delta$

(5.9)
$$|T_{\varepsilon,a}(u)(t) - a|_{H_1^{\varepsilon}} \leq 3C_1/4 + |e^{-tA_{\varepsilon}}a - e^{-tA_0}\widetilde{a}_0|_{H_1^{\varepsilon}} + |a - \widetilde{a}_0|_{H_1^{\varepsilon}}$$

 $u \in S_{\varepsilon,a}, t \in [0,\tau].$

In particular, for all $a \in H_1^0$ satisfying $|a - \overline{u}|_{H_1^0} \leq \delta$ and all $u \in S_{0,a}$ we have

 $|T_{0,a}(u)(t) - a|_{H^0_1} \le 3C_1/4 \le C_1$ for all $t \in [0, \tau]$.

Hence we conclude that $T_{0,a}(S_{0,a}) \subset S_{0,a}$ and so, by Banach Fixed Point Theorem, there is a unique fixed point of $T_{0,a}$ in $S_{0,a}$. In particular $a \pi_0 s$ is defined for all $s \in [0, \tau]$.

Now let $(\varepsilon_n)_n$ be a sequence in $]0, \varepsilon_0]$ with $\varepsilon_n \to 0$. Suppose $a_0 \in H_1^0$ satisfies $|a_0 - \overline{u}|_{H_1^0} \leq \delta$ and $(a_n)_n$ is a sequence with $a_n \in H_1^{\varepsilon_n}$ for every $n \in \mathbb{N}$ and $|a_n - a_0|_{H_1^{\varepsilon_n}} \to 0$. By what we just proved, it follows that $a_0 \pi_0 s$ is defined for all $s \in [0, \tau]$.

Theorem 4.5 implies that there is an $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$

(5.10)
$$\sup_{t \in [0,\tau]} |e^{-tA_{\varepsilon_n}} a_n - e^{-tA_0} a_0|_{H_1^{\varepsilon_n}} + |a_n - a_0|_{H_1^{\varepsilon_n}} \le C_1/4.$$

Thus, it follows from (5.9) that $T_{\varepsilon_n,a_n}(S_{\varepsilon_n,a_n}) \subset S_{\varepsilon_n,a_n}$ for all $n \ge n_0$. Hence T_{ε_n,a_n} has a fixed point in S_{ε_n,a_n} . In particular $a_n \pi_{\varepsilon_n} s$ is defined for all $s \in [0, \tau]$ and for all $n \ge n_0$.

Moreover, (5.9) and (5.10) imply that, for $s \in [0, \tau]$ and $n \ge n_0$,

$$|a_n \pi_{\varepsilon_n} s|_{H_1^{\varepsilon_n}} \le |a_n \pi_{\varepsilon_n} s - a_n|_{H_1^{\varepsilon_n}} + |a_n - \overline{u}|_{H_1^{\varepsilon_n}} + |\overline{u}|_{H_1^{\varepsilon_n}} \le 2C_1 + CC_1 \le M'.$$

The lemma is proved.

We can now state our first singular convergence result for semiflows.

THEOREM 5.4. Suppose that the family $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}}, A_{\varepsilon})_{\varepsilon \in [0,\varepsilon_0]}$ satisfies condition (Spec), and the family $(f_{\varepsilon})_{\varepsilon \in [0,\varepsilon_0]}$ satisfies condition (Conv). Let $(\varepsilon_n)_n$ be a sequence in $]0, \varepsilon_0]$ with $\varepsilon_n \to 0$. Let $u_0 \in H_1^0$ and $(u_n)_n$ be a sequence with $u_n \in H_1^{\varepsilon_n}$ for every $n \in \mathbb{N}$ and

$$|u_n - u_0|_{H^{\varepsilon_n}} \to 0 \quad as \ n \to \infty.$$

Let $b \in [0, \infty[$ and suppose that $u_n \pi_{\varepsilon_n} t$ and $u \pi_0 t$ are defined for all $n \in \mathbb{N}$ and $t \in [0, b]$. Moreover suppose there exists an $M' \in [0, \infty[$ such that $|u_n \pi_{\varepsilon_n} s|_{H_1^{\varepsilon_n}} \leq M'$ for all $n \in \mathbb{N}$ and for all $s \in [0, b]$. Then for every $t \in [0, b]$ and every sequence $(t_n)_n$ in [0, b] converging to t

$$|u_n \pi_{\varepsilon_n} t_n - u_0 \pi_0 t_n|_{H_1^{\varepsilon_n}} \to 0 \quad as \ n \to \infty.$$

PROOF. For every $t \in [0, b]$ we have, by the variation-of-constants formula,

$$u_n \pi_{\varepsilon_n} t - u_0 \pi_0 t = e^{-tA_{\varepsilon_n}} u_n - e^{-tA_0} u_0 + \int_0^t e^{-(t-s)\widetilde{A}_{\varepsilon_n}} (f_{\varepsilon_n}(u_n \pi_{\varepsilon_n} s) - f_{\varepsilon_n}(u_0 \pi_0 s)) ds + \int_0^t (e^{-(t-s)\widetilde{A}_{\varepsilon_n}} f_{\varepsilon_n}(u_0 \pi_0 s) - e^{-(t-s)\widetilde{A}_0} f_0(u_0 \pi_0 s)) ds$$

Define the function $g_n: [0, b] \times [0, b] \to \mathbb{R}$ as follows: If 0 < s < t then set

$$g_n(t,s) = |e^{-(t-s)\tilde{A}_{\varepsilon_n}} f_{\varepsilon_n}(u_0\pi_0 s) - e^{-(t-s)\tilde{A}_0} f_0(u_0\pi_0 s)|_{H_1^{\varepsilon_n}}$$

and set $g_n(t,s) = 0$ otherwise. The function g_n restricted to the set of (s,t) with 0 < s < t is continuous. Thus g_n is measurable on $[0,b] \times [0,b]$. By Fubini's theorem the function

$$c_n(t) := \int_0^b g_n(t,s) \, ds = \int_0^t g_n(t,s) \, ds$$

is almost everywhere defined and measurable on [0, b]. Set

$$a_n(t) := |e^{-tA_{\varepsilon_n}}u_n - e^{-tA_0}u_0|_{H_1^{\varepsilon_n}} + c_n(t) \text{ for } t \in [0,b].$$

It follows that a_n is measurable on [0, b]. Using (4.1) we obtain for 0 < s < t

(5.11)
$$|g_n(t,s)| \leq C_2 C_0 (t-s)^{-(\alpha+1)/2} + C C_2 C_0 (t-s)^{-(\alpha+1)/2}$$
$$=: C_3 (t-s)^{-(\alpha+1)/2}$$

and so for $t \in [0, b]$

$$a_n(t) \le M' + C|u_0|_{H_1^0} + 2C_3(1-\alpha)^{-1}b^{(1-\alpha)/2} =: C_4,$$

where

$$C_{2} := \max\bigg\{\sup_{s \in [0,b]} \sup_{n \in \mathbb{N}} |f_{\varepsilon_{n}}(u_{0}\pi_{0}s)|_{H^{\varepsilon_{n}}_{-\alpha}}, \sup_{s \in [0,b]} |f_{0}(u_{0}\pi_{0}s)|_{H^{0}_{-\alpha}}\bigg\}.$$

Notice that condition (Conv) implies that $C_2 < \infty$. Now let $t \in [0, b]$ be arbitrary and $(t_n)_n$ be any sequence in [0, b] converging to 0. If 0 < s < t then $0 < s < t_n$ for all n large enough and so, by Proposition 5.2 $g_n(t_n, s) \to 0$ as $n \to \infty$. If 0 < t < s, then $0 < t_n < s$ for all n large enough and so $g_n(t_n, s) = 0$ for such n. Again $g_n(t_n, s) \to 0$ as $n \to \infty$. Thus (5.11) and the dominated convergence theorem imply that

$$c_n(t_n) \to 0 \quad \text{as } n \to \infty.$$

Thus, using Corollary 4.7 we obtain

(5.12)
$$a_n(t_n) \to 0, \text{ as } n \to \infty.$$

Notice that $\widetilde{M} := \sup_{s \in [0,b]} |u_0 \pi_0 s|_{H_1^0} < \infty$. Hence $|u_0 \pi_0 s|_{H_1^{\varepsilon_n}} \leq C\widetilde{M}$ for all $s \in [0,b]$. Set $M'' := \max\{M', C\widetilde{M}\}$ and let $L := L_{M''}$ be as in Definition 5.1 with M replaced by M''. We have, for all $r \in [0,b]$

$$\begin{split} u_n \pi_{\varepsilon_n} r - u_0 \pi_0 r|_{H_1^{\varepsilon_n}} &\leq |e^{-rA_{\varepsilon_n}} u_n - e^{-rA_0} u_0|_{H_1^{\varepsilon_n}} \\ &+ \int_0^r |e^{-(r-s)\tilde{A}_{\varepsilon_n}} (f_{\varepsilon_n} (u_n \pi_{\varepsilon_n} s) - f_{\varepsilon_n} (u_0 \pi_0 s))|_{H_1^{\varepsilon_n}} \, ds \\ &+ \int_0^r |(e^{-(r-s)\tilde{A}_{\varepsilon_n}} f_{\varepsilon_n} (u_0 \pi_0 s) - e^{-(r-s)\tilde{A}_0} f_0 (u_0 \pi_0 s))|_{H_1^{\varepsilon_n}} \, ds \\ &\leq a_n(r) + C_0 \int_0^r (r-s)^{-(\alpha+1)/2} |f_{\varepsilon_n} (u_n \pi_{\varepsilon_n} s) - f_{\varepsilon_n} (u_0 \pi_0 s))|_{H_{-\alpha}^{\varepsilon_n}} \, ds \\ &\leq a_n(r) + C_0 L \int_0^r (r-s)^{-(\alpha+1)/2} |u_n \pi_{\varepsilon_n} s - u_0 \pi_0 s|_{H_1^{\varepsilon_n}} \, ds. \end{split}$$

An application of Henry's Inequality [7, Lemma 7.1.1] implies that

$$|u_n \pi_{\varepsilon_n} r - u_0 \pi_0 r|_{H_1^{\varepsilon_n}} \le a_n(r) + \int_0^r \rho(r-s) a_n(s) \, ds \quad \text{for } r \in [0,b],$$

where

$$\rho(x) := \sum_{n=1}^{\infty} \frac{(C_0 L \Gamma(\beta))^n}{\Gamma(n\beta)} x^{n\beta-1}$$

with $\beta := (1 - \alpha)/2$.

The function $\rho:]0, \infty[\to]0, \infty[$ is well defined and continuous on $]0, \infty[$ and it satisfies the estimate

$$\rho(x) \le C_5 x^{-(\alpha+1)/2} + C_5 \quad \text{for } x \in [0, b].$$

Let t and $(t_n)_n$ be as above. Fix a $\delta_0 \in]0, t[$ and let $\delta \in]0, \delta_0/2[$ be arbitrary. There is an $n_0 = n_0(\delta) \in \mathbb{N}$ such that $|t_n - t| < \delta$ for $n \ge n_0$. Therefore for all such $n \in \mathbb{N}$ and all $s \in [0, t - 2\delta]$ it follows that $t_n - s > \delta$ so $\rho(t_n - s) \le C_5 \delta^{-(\alpha+1)/2} + C_5$. Thus

$$\rho(t_n - s)a_n(s) \le C_6 \quad \text{for } s \in]0, t - 2\delta].$$

Therefore (5.12) (with $t_n \equiv s$) and the dominated convergence theorem show that

$$\int_{0}^{t-2\delta} \rho(t_n - s) a_n(s) \, ds \to 0 \quad \text{as } n \to \infty.$$

On the other hand,

$$\int_{t-2\delta}^{t_n} \rho(t_n - s) a_n(s) \, ds \le C_7(\delta^{(1-\alpha)/2} + \delta).$$

Since $\delta \in [0, \delta_0/2[$ is arbitrary, it follows that

$$\int_0^{t_n} \rho(t_n - s) a_n(s) \, ds \to 0 \quad \text{as } n \to \infty.$$

Consequently,

$$u_n \pi_{\varepsilon_n} t_n - u_0 \pi_0 t_n |_{H_1^{\varepsilon_n}} \to 0 \quad \text{as } n \to \infty.$$

The theorem is proved.

Our second convergence result reads as follows:

THEOREM 5.5. Suppose that the family $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}}, A_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfies condition (Spec) and the family $(f_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfies condition (Conv). Let $(\varepsilon_n)_n$ be a sequence in $]0, \varepsilon_0]$ with $\varepsilon_n \to 0$ and let $(t_n)_n$ be a sequence in $[0, \infty[$ with $t_n \to 0$. Let $u_0 \in H_1^0$ and $(u_n)_n$ be a sequence with $u_n \in H_1^{\varepsilon_n}$ for every $n \in \mathbb{N}$ and

$$|u_n - u_0|_{H_1^{\varepsilon_n}} \to 0 \quad as \ n \to \infty.$$

Then there exists an $n_0 \in \mathbb{N}$ such that $u_0 \pi_0 t_n$ and $u_n \pi_{\varepsilon_n} t_n$ are defined for all $n \geq n_0$ and

$$|u_n \pi_{\varepsilon_n} t_n - u_0 \pi_0 t_n|_{H_1^{\varepsilon_n}} \to 0 \quad as \ n \to \infty.$$

PROOF. Set $\overline{u} := u_0$ in Lemma 5.3 and let $\tau > 0$ be as in that lemma. It follows from Lemma 5.3 that $u_0 \pi_0 s$, $s \in [0, \tau]$, is defined and there is an $n_0 \in \mathbb{N}$ such that $u_n \pi_{\varepsilon_n} s$, $s \in [0, \tau]$, is defined for $n \ge n_0$. Moreover there exists a $M' \ge 0$ such that $|u_n \pi_{\varepsilon_n} s|_{H_1^{\varepsilon_n}} \le M'$ for all $n \ge n_0$ and for all $s \in [0, \tau]$.

Since $t_n \to 0$ as $n \to \infty$, we may assume that $t_n \in [0, \tau]$ for all $n \in \mathbb{N}$. For every $t \in [0, \tau]$ we have

$$u_n \pi_{\varepsilon_n} t - u_0 = e^{-tA_{\varepsilon_n}} u_n - u_0 + \int_0^t e^{-(t-s)\widetilde{A}_{\varepsilon_n}} f_{\varepsilon_n}(u_n \pi_{\varepsilon_n} s) \, ds.$$

Notice that $\widetilde{M} := \sup_{s \in [0,b]} |u_0 \pi_0 s|_{H_1^0} < \infty$. Hence $|u_0 \pi_0 s|_{H_1^{\varepsilon_n}} \leq C\widetilde{M}$ for all $s \in [0,\tau]$. Set $M'' := \max\{M', C\widetilde{M}\}$ and let $L := L_{M''}$ be as in Definition 5.1 with M replaced by M''. It follows that for all $n \geq n_0$ and for every $s \in [0,\tau]$

$$\begin{aligned} |f_{\varepsilon_n}(u_n\pi_{\varepsilon_n}s)|_{H^{\varepsilon_n}_{-\alpha}} &\leq |f_{\varepsilon_n}(u_n\pi_{\varepsilon_n}s) - f_{\varepsilon_n}(u_0)|_{H^{\varepsilon_n}_{-\alpha}} + |f_{\varepsilon_n}(u_0)|_{H^{\varepsilon_n}_{-\alpha}} \\ &\leq L|u_n\pi_{\varepsilon_n}s - u_0|_{H^{\varepsilon_n}_1} + |f_{\varepsilon_n}(u_0)|_{H^{\varepsilon_n}_{-\alpha}} \\ &\leq L(M' + C|u_0|_{H^0_1}) + |f_{\varepsilon_n}(u_0)|_{H^{\varepsilon_n}_{-\alpha}}. \end{aligned}$$

Part (d) of condition (Conv) now implies

$$|f_{\varepsilon_n}(u_n\pi_{\varepsilon_n}s)|_{H^{\varepsilon_n}_{-\alpha}} \leq \widetilde{C}, \quad \text{for all } s \in [0,\tau] \text{ and for all } n \geq n_0,$$

for some positive constant \widetilde{C} . Therefore for all $n \ge n_0$

$$\begin{aligned} |u_n \pi_{\varepsilon_n} t_n - u_0 \pi_0 t_n|_{H_1^{\varepsilon_n}} &\leq |u_n \pi_{\varepsilon_n} t_n - u_0|_{H_1^{\varepsilon_n}} + C|u_0 \pi_0 t_n - u_0|_{H_1^0} \\ &\leq |e^{-t_n A_{\varepsilon_n}} u_n - e^{-t_n A_0} u_0|_{H_1^{\varepsilon_n}} + C|e^{-t_n A_0} u_0 - u_0|_{H_1^0} \\ &+ C_0 \widetilde{C} \int_0^{t_n} (t_n - s)^{-(\alpha+1)/2} ds + C|u_0 \pi_0 t_n - u_0|_{H_1^0}. \end{aligned}$$

Since $|e^{-t_n A_0}u_0 - u_0|_{H_1^0} \to 0$ and $|u_0 \pi_0 t_n - u_0|_{H_1^0} \to 0$ as $n \to \infty$, an application of Theorem 4.5 completes the proof.

Theorem 5.4 and Theorem 5.5 imply the following corollary.

COROLLARY 5.6. Let $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}}, A_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfy condition (Spec) and $(f_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfy condition (Conv). Then for every $\overline{u} \in H_1^0$ there exist a $\delta > 0$ and a $\tau > 0$ such that for every $a_0 \in H_1^0$ with $|a_0 - \overline{u}|_{H_1^0} \leq \delta$, $a_0 \pi_0 s$, $s \in [0, \tau]$, is defined and whenever $(\varepsilon_n)_n$ is a sequence in $[0, \varepsilon_0]$ with $\varepsilon_n \to 0$ and $(a_n)_n$ is a sequence with $a_n \in H_1^{\varepsilon_n}$ for every $n \in \mathbb{N}$ and

$$|a_n - a_0|_{H_1^{\varepsilon_n}} \to 0 \quad as \ n \to \infty,$$

then there is an $n_0 \in \mathbb{N}$ such that $a_n \pi_{\varepsilon_n} s, s \in [0, \tau]$, is defined for $n \ge n_0$ and

$$\sup_{s \in [0,\tau]} |a_n \pi_{\varepsilon_n} s - a_0 \pi_0 s|_{H_1^{\varepsilon_n}} \to 0 \quad as \ n \to \infty.$$

PROOF. Lemma 5.3 implies that for every $\overline{u} \in H_1^0$ there exist a $\delta > 0$ and a $\tau > 0$ such that for every $a_0 \in H_1^0$ with $|a_0 - \overline{u}|_{H_1^0} \leq \delta$, $a_0\pi_0 s$, $s \in [0, \tau]$, is defined and whenever $(\varepsilon_n)_n$ is a sequence in $]0, \varepsilon_0]$ with $\varepsilon_n \to 0$ and $(a_n)_n$ is a sequence with $a_n \in H_1^{\varepsilon_n}$ for every $n \in \mathbb{N}$ and

$$|a_n - a_0|_{H_1^{\varepsilon_n}} \to 0 \quad \text{as } n \to \infty,$$

then there is an $n_0 \in \mathbb{N}$ such that $a_n \pi_{\varepsilon_n} s$, $s \in [0, \tau]$, is defined for $n \geq n_0$. Moreover there exists a $M' \geq 0$ such that $|a_n \pi_{\varepsilon_n} s|_{H_1^{\varepsilon_n}} \leq M'$ for all $n \geq n_0$ and for all $s \in [0, \tau]$.

To complete the proof of the corollary we need to show that

$$\sup_{s \in [0,\tau]} |a_n \pi_{\varepsilon_n} s - a_0 \pi_0 s|_{H_1^{\varepsilon_n}} \to 0 \quad \text{as } n \to \infty.$$

Suppose this is not true. Then there are a $\delta_0 > 0$ and a sequence $(n_k)_k$ in \mathbb{N} with $n_k \to \infty$ as $k \to \infty$ such that

$$\sup_{s \in [0,\tau]} |a_{n_k} \pi_{\varepsilon_{n_k}} s - a_0 \pi_0 s|_{H_1^{\varepsilon_{n_k}}} \ge \delta_0 \quad \text{for all } k \in \mathbb{N}.$$

Thus for each $k \in \mathbb{N}$ there exists an $s_k \in [0, \tau]$ such that

$$(5.13) |a_{n_k}\pi_{\varepsilon_{n_k}}s_k - a_0\pi_0s_k|_{H^{\varepsilon_{n_k}}} \ge \delta_0.$$

Without loss of generality we can assume that there is an $s_0 \in [0, \tau]$ such that $s_k \to s_0$ as $k \to \infty$. If $s_0 = 0$, it follows from Theorem 5.5 that $|a_{n_k} \pi_{\varepsilon_{n_k}} s_k - a_0 \pi_0 s_k|_{H_1^{\varepsilon_{n_k}}} \to 0$ as $k \to \infty$ which contradicts (5.13). If $s_0 > 0$, then Theorem 5.4 implies that $|a_{n_k} \pi_{\varepsilon_{n_k}} s_k - a_0 \pi_0 s_k|_{H_1^{\varepsilon_{n_k}}} \to 0$ as $k \to \infty$ which again contradicts (5.13).

We conclude this section proving our main convergence result for semiflows.

THEOREM 5.7. Suppose that the family $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}}, A_{\varepsilon})_{\varepsilon \in [0,\varepsilon_0]}$ satisfies condition (Spec) and the family $(f_{\varepsilon})_{\varepsilon \in [0,\varepsilon_0]}$ satisfies condition (Conv). Let $(\varepsilon_n)_n$ be a sequence in $]0, \varepsilon_0]$ with $\varepsilon_n \to 0$ and let $(t_n)_n$ be a sequence in $[0, \infty[$ with $t_n \to t_0$, for some $t_0 \in [0, \infty[$. Let $u_0 \in H_1^0$ and $(u_n)_n$ be a sequence with $u_n \in H_1^{\varepsilon_n}$ for every $n \in \mathbb{N}$ and

$$|u_n - u_0|_{H^{\varepsilon_n}} \to 0 \quad as \ n \to \infty.$$

Assume $u_0\pi_0 t_0$ is defined. Then there exists an $n_0 \in \mathbb{N}$ such that $u_n\pi_{\varepsilon_n}t_n$ is defined for all $n \geq n_0$ and

$$|u_n\pi_{\varepsilon_n}t_n - u_0\pi_0t_0|_{H_1^{\varepsilon_n}} \to 0 \quad as \ n \to \infty.$$

PROOF. Since $u_0 \pi_0 t_0$ is defined, there is a $b > t_0, b \in [0, \infty)$, such that $u_0 \pi_0 t$ is defined for all $t \in [0, b]$. Define

$$I := \{ t \in [0, b[\mid \text{there exists an } n_0 \in \mathbb{N} \text{ such that } u_n \pi_{\varepsilon_n} t \text{ is defined for } n \ge n_0 \\ \text{and} \sup_{s \in [0, t]} |u_n \pi_{\varepsilon_n} s - u_0 \pi_0 s|_{H_1^{\varepsilon_n}} \to 0 \text{ as } n \to \infty \}.$$

It is clear that $0 \in I$. Furthermore if $0 \le t' < t$ and $t \in I$, then $t' \in I$. Let

$$\overline{t} := \sup I.$$

It follows that $\overline{t} \leq b$ and so $[0, \overline{t}] \subset I$. An application of Corollary 5.6 with $\overline{u} := u_0$ shows that $\overline{t} > 0$. We claim that $\overline{t} = b$. Suppose, on the contrary, that $\overline{t} < b$. It follows that $\overline{u} := u_0 \pi_0 \overline{t}$ is defined. Let $\delta > 0$ and $\tau > 0$ be as in Corollary 5.6 with respect to this choice of \overline{u} .

Choose $t \in \mathbb{R}$ with $0 < t < \overline{t} < t + \tau$ and $|u_0 \pi_0 t - u_0 \pi_0 \overline{t}|_{H_1^0} < \delta$. We have that $t \in I$ so there exists an $n_0 \in \mathbb{N}$ such that $u_n \pi_{\varepsilon_n} t$ is defined for all $n \ge n_0$ and

(5.14)
$$\sup_{s \in [0,t]} |u_n \pi_{\varepsilon_n} s - u_0 \pi_0 s|_{H_1^{\varepsilon_n}} \to 0 \quad \text{as } n \to \infty.$$

Set $\tilde{u}_n := u_n \pi_{\varepsilon_n} t$ and $\tilde{u} := u_0 \pi_0 t$. Applying Corollary 5.6 with a_n replaced by \tilde{u}_n and a_0 replaced by \tilde{u} we thus have that $\tilde{u}\pi_0\tau$ is defined and we obtain the existence of an $n_1 \ge n_0$ such that $\tilde{u}_n \pi_{\varepsilon_n} \tau$ is defined for all $n \ge n_1$ and

(5.15)
$$\sup_{s \in [0,\tau]} |\widetilde{u}_n \pi_{\varepsilon_n} s - \widetilde{u} \pi_0 s|_{H_1^{\varepsilon_n}} \to 0 \quad \text{as } n \to \infty.$$

Formulas (5.14) and (5.15) imply that $u_0\pi_0(t+\tau)$ is defined, $u_n\pi_{\varepsilon_n}(t+\tau)$ is also defined for all $n \ge n_1$ and

$$\sup_{e \in [0,t+\tau]} |u_n \pi_{\varepsilon_n} s - u_0 \pi_0 s|_{H_1^{\varepsilon_n}} \to 0 \quad \text{as } n \to \infty.$$

Thus $t + \tau \in I$, but $t + \tau > \overline{t}$, a contradiction, which proves that $\overline{t} = b$.

Since $t_0 \in [0, b]$, it follows that there is a $t \in [0, b]$ with $t_0 < t$ and $t_n < t$ for all n large enough. In particular $u_0 \pi_0 t_n$ and $u_n \pi_{\varepsilon_n} t_n$ are defined for all n large enough and

$$|u_n \pi_{\varepsilon_n} t_n - u_0 \pi_0 t_n|_{H_1^{\varepsilon_n}} \to 0 \quad \text{as } n \to \infty.$$

Since

$$|u_0\pi_0t_n - u_0\pi_0t_0|_{H_1^{\varepsilon_n}} \le C|u_0\pi_0t_n - u_0\pi_0t_0|_{H_1^0}$$

and $|u_0\pi_0t_n - u_0\pi_0t_0|_{H_1^0} \to 0$ as $n \to \infty$, the theorem follows.

6. Singular compactness

In this section we shall prove that under the abstract compactness hypothesis, condition (Comp), on the family $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}}, A_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ the corresponding family of semiflows satisfies a singular compactness property. This property, together with the singular convergence result obtained in the previous section, is crucial for establishing the singular continuation principle for Conley index and for (co)homology index braid.

We start with the following result.

THEOREM 6.1. Suppose that the family $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}}, A_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfies condition (Spec) and the family $(f_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfies condition (Conv). Let $\varepsilon \in$ $[0, \varepsilon_0]$ be arbitrary. Then every closed and bounded set in H_1^{ε} is strongly π_{ε} admissible.

PROOF. Let N be a closed and bounded set in H_1^{ε} and let M > 0 such that for all $u \in N$ we have $|u|_{H_1^{\varepsilon}} \leq M$. Let $L := L_M$ be as in Definition 5.1. Let $u_0 \in N$. Hence for all $u \in N$

$$\begin{split} |f_{\varepsilon}(u)|_{H^{\varepsilon}_{-\alpha}} &\leq |f_{\varepsilon}(u) - f_{\varepsilon}(u_0)|_{H^{\varepsilon}_{-\alpha}} + |f_{\varepsilon}(u_0)|_{H^{\varepsilon}_{-\alpha}} \\ &\leq L|u - u_0|_{H^{\varepsilon}_1} + |f_{\varepsilon}(u_0)|_{H^{\varepsilon}_{-\alpha}} \leq 2ML + |f_{\varepsilon}(u_0)|_{H^{\varepsilon}_{-\alpha}}. \end{split}$$

Now the result follows from [11, Theorem III 4.4].

We can now state the following singular compactness theorem.

THEOREM 6.2. Suppose that the family $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}}, A_{\varepsilon})_{\varepsilon \in [0,\varepsilon_0]}$ satisfies conditions (Spec) and (Comp) and the family $(f_{\varepsilon})_{\varepsilon \in [0,\varepsilon_0]}$ satisfies (Conv). Suppose $\kappa \in]0, \infty[$, $(\varepsilon_n)_n$ is a sequence in $]0, \varepsilon_0]$ with $\varepsilon_n \to 0$, $(t_n)_n$ is a sequence in $[0, \infty[$ with $t_n \geq \kappa$ for every $n \in \mathbb{N}$ and $(u_n)_n$ is a sequence with $u_n \in H_1^{\varepsilon_n}$ for every $n \in \mathbb{N}$. Assume that there exists a constant $C'' \in]0, \infty[$ such that $u_n \pi_{\varepsilon_n} t_n$ is defined and

$$|u_n \pi_{\varepsilon_n} s|_{H_1^{\varepsilon_n}} \leq C''$$
 for all $n \in \mathbb{N}$ and for all $s \in [0, t_n]$.

Then there exist a $v \in H_1^0$ and a sequence $(n_k)_k$ in \mathbb{N} with $n_k \to \infty$ as $k \to \infty$ such that

$$|u_{n_k}\pi_{\varepsilon_{n_k}}t_{n_k}-v|_{H_1^{\varepsilon_{n_k}}}\to 0 \quad as \ k\to\infty.$$

26

PROOF. Set $\xi_n = u_n \pi_{\varepsilon_n} (t_n - \kappa)$ for $n \in \mathbb{N}$. Hence

$$|\xi_n|_{H_1^{\varepsilon_n}} \leq C''$$
 for all $n \in \mathbb{N}$.

Condition (Comp) implies that there exist a $\tilde{v} \in H_1^0$ and a sequence $(n_k)_k$ in \mathbb{N} with $n_k \to \infty$ as $k \to \infty$ such that

$$|\xi_{n_k} - \widetilde{v}|_{H^{\varepsilon_{n_k}}} \to 0 \quad \text{as } k \to \infty.$$

We claim that $\tilde{v}\pi_0\kappa$ is defined. Suppose our claim is not true. Let $\beta \in [0,\infty[$ be such that $CC'' < \beta$ and $|\tilde{v}|_{H_1^0} < \beta$. By Theorem 6.1 with $\varepsilon = 0$ and $N = \{u \in H_1^0 \mid |u|_{H_1^0} \leq \beta\}$, there exists a $t_0 \in [0,\kappa[$ such that $\tilde{v}\pi_0t_0$ is defined and $|\tilde{v}\pi_0t_0|_{H_1^0} > \beta$. Condition (Spec) implies that

(6.1)
$$|\widetilde{v}\pi_0 t_0|_{H_1^{\varepsilon}} \ge \beta/C > C'', \quad \varepsilon \in [0, \varepsilon_0].$$

It follows that there exists a $k_0 \in \mathbb{N}$ such that $\tilde{v}\pi_0 s$ and $\xi_{n_k}\pi_{\varepsilon_{n_k}} s$ are defined for all $s \in [0, t_0]$, for all $k \geq k_0$ and

 $|\xi_{n_k}\pi_{\varepsilon_{n_k}}s|_{H_1^{\varepsilon_{n_k}}} \le C'' \quad \text{for all } s \in [0, t_0] \text{ and for all } k \ge k_0.$

Hence Theorem 5.4 implies that

$$|\xi_{n_k}\pi_{\varepsilon_{n_k}}t_0 - \widetilde{v}\pi_0t_0|_{H^{\varepsilon_{n_k}}} \to 0 \quad \text{as } k \to \infty.$$

This together with formula (6.1) implies that

$$\left|\xi_{n_k}\pi_{\varepsilon_{n_k}}t_0\right|_{H^{\varepsilon_{n_k}}} > C''$$
 for all $k \in \mathbb{N}$ large enough

which is a contradiction. Thus $\tilde{v}\pi_0\kappa$ is defined. Another application of Theorem 5.4 shows that

$$|\xi_{n_k}\pi_{\varepsilon_{n_k}}\kappa - \widetilde{v}\pi_0\kappa|_{H_1^{\varepsilon_{n_k}}} \to 0 \quad \text{as } k \to \infty.$$

Set $v := \tilde{v}\pi_0 \kappa \in H_1^0$. Since $\xi_{n_k}\pi_{\varepsilon_{n_k}}\kappa = u_{n_k}\pi_{\varepsilon_{n_k}}t_{n_k}$ for all $k \in \mathbb{N}$, the proof is complete.

Recall that Proposition 4.3 implies that for every $\varepsilon \in [0, \varepsilon_0]$, the set H_1^0 is a closed subspace of H_1^{ε} . For each $\varepsilon \in [0, \varepsilon_0]$, let $Q_{\varepsilon}: H_1^{\varepsilon} \to H_1^{\varepsilon}$ be the H_1^{ε} orthogonal projection of H_1^{ε} onto H_1^0 .

Theorem 6.2 easily implies the following corollary:

COROLLARY 6.3. Let $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}}, A_{\varepsilon})_{\varepsilon \in [0,\varepsilon_0]}$ satisfy conditions (Spec) and (Comp) and suppose the family of maps $(f_{\varepsilon})_{\varepsilon \in [0,\varepsilon_0]}$ satisfies condition (Conv). Suppose $N \subset H_1^0$ is a closed and bounded set and $(\varepsilon_n)_n$ is a sequence in $[0,\varepsilon_0]$ with $\varepsilon_n \to 0$. Let $\eta > 0$ be arbitrary and define

$$N_n = N_{n,\eta} := \{ u \in H_1^{\varepsilon_n} \mid Q_{\varepsilon_n} u \in N \text{ and } | (I - Q_{\varepsilon_n}) u |_{H_1^{\varepsilon_n}} \le \eta \}.$$

Suppose $(t_n)_n$ is a sequence in $[0, \infty[$ with $t_n \to \infty$ and $(u_n)_n$ is a sequence with $u_n \in H_1^{\varepsilon_n}$ for every $n \in \mathbb{N}$ and

$$u_n \pi_{\varepsilon_n} [0, t_n] \subset N_n \quad for \ all \ n \in \mathbb{N}.$$

Then there exist a $v \in N$ and a sequence $(n_k)_k$ in \mathbb{N} with $n_k \to \infty$ as $k \to \infty$ such that

$$|u_{n_k}\pi_{\varepsilon_{n_k}}t_{n_k}-v|_{H_1^{\varepsilon_{n_k}}}\to 0 \quad as \ k\to\infty.$$

7. Singular continuation principle for the Conley index and for (co)homology index braids

In this section, under the conditions (Spec), (Conv) and (Comp), we obtain a singular continuation principle for the Conley index and for (co)homology index braids for the class of abstract parabolic equations described in (5.1).

This section is not self-contained, in particular, we use some results established in the papers [3], [4], [5]. We will also assume that the reader is familiar with the Conley index theory for semiflows on (not necessarily locally compact) metric spaces, as expounded in [10] or [11].

Let $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}}, A_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfy conditions (Spec) and (Comp) and suppose the family of maps $(f_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfies condition (Conv).

Set $X_0 := H_1^0$. For every $\varepsilon \in [0, \varepsilon_0]$, define $Y_{\varepsilon} := (I - Q_{\varepsilon})H_1^{\varepsilon}$ and endow Y_{ε} with the norm $|\cdot|_{H_1^{\varepsilon}}$ restricted to Y_{ε} . Define on $Z_{\varepsilon} = X_0 \times Y_{\varepsilon}$ the following norm:

$$||(u,v)||_{\varepsilon} := \max\{|u|_{H_1^0}, |v|_{H_1^{\varepsilon}}\} \text{ for } (u,v) \in Z_{\varepsilon}.$$

We will denote by Γ_{ε} the metric on Z_{ε} induced by the norm $|| \cdot ||_{\varepsilon}$. For each $\varepsilon \in [0, \varepsilon_0]$, define $\theta_{\varepsilon} := 0$.

Let $\Psi_{\varepsilon}: H_1^{\varepsilon} \to Z_{\varepsilon}$ be the linear map defined by

$$\Psi_{\varepsilon}(w) := (Q_{\varepsilon}w, (I - Q_{\varepsilon})w) \quad \text{for } w \in H_1^{\varepsilon}.$$

It follows that Ψ_{ε} is a bijective linear map and its inverse map is given by

$$\Psi_{\varepsilon}^{-1}(u,v) = u + v \text{ for } (u,v) \in Z_{\varepsilon}.$$

Moreover both Ψ_{ε} and Ψ_{ε}^{-1} are continuous maps. This fact is a consequence of the following inequalities:

(7.1)
$$\|\Psi_{\varepsilon}(w)\|_{\varepsilon} \le C|w|_{H_1^{\varepsilon}} \quad \text{for } w \in H_1^{\varepsilon},$$

(7.2)
$$|\Psi_{\varepsilon}^{-1}(u,v)|_{H_{1}^{\varepsilon}} \leq (1+C^{2})^{1/2}||(u,v)||_{\varepsilon} \text{ for } (u,v) \in Z_{\varepsilon},$$

where the constant $C \in [1, \infty)$ was defined in hypothesis (Spec).

Given $(u, v) \in Z_{\varepsilon}$ and $t \in [0, \infty]$ define

$$(u,v)\widetilde{\pi}_{\varepsilon}t := \Psi_{\varepsilon}(\Psi_{\varepsilon}^{-1}(u,v)\pi_{\varepsilon}t)$$

whenever $\Psi_{\varepsilon}^{-1}(u, v)\pi_{\varepsilon}t$ is defined. It follows that $\tilde{\pi}_{\varepsilon}$ is a local semiflow on Z_{ε} , the *conjugate to* π_{ε} *via* Ψ_{ε} . Theorem 5.7 and inequalities (7.1) and (7.2) immediately imply the following

COROLLARY 7.1. Under the above hypotheses the family $(\tilde{\pi}_{\varepsilon})_{\varepsilon \in]0,\varepsilon_0]}$ converges singularly to π_0 .

Theorem 6.1, Corollary 6.3 and inequalities (7.1) and (7.2) imply the following:

COROLLARY 7.2. Let N be a closed and bounded subset of X_0 . Then for every $\eta > 0$ the set N is singularly strongly admissible with respect to η and the family $(\tilde{\pi}_{\varepsilon})_{\varepsilon \in [0,\varepsilon_0]}$, where $\tilde{\pi}_0 = \pi_0$.

We can now prove the following Conley index continuation principle for singular families of abstract parabolic equations:

THEOREM 7.3. Let N be a closed and bounded isolating neighbourhood of an invariant set K_0 relative to π_0 . For $\varepsilon \in [0, \varepsilon_0]$ and for every $\eta \in [0, \infty[$ set

$$N_{\varepsilon,\eta} := \{ u \in H_1^{\varepsilon} \mid Q_{\varepsilon} u \in N \text{ and } | (I - Q_{\varepsilon}) u |_{H_1^{\varepsilon}} \le \eta \}$$

and $K_{\varepsilon,\eta} := \operatorname{Inv}_{\pi_{\varepsilon}}(N_{\varepsilon,\eta})$ i.e. $K_{\varepsilon,\eta}$ is the largest π_{ε} -invariant set in $N_{\varepsilon,\eta}$. Then for every $\eta \in]0, \infty[$ there exists an $\varepsilon^{c} = \varepsilon^{c}(\eta) \in]0, \varepsilon_{0}]$ such that for every $\varepsilon \in]0, \varepsilon^{c}]$ the set $N_{\varepsilon,\eta}$ is a strongly admissible isolating neighbourhood of $K_{\varepsilon,\eta}$ relative to π_{ε} and

$$h(\pi_{\varepsilon}, K_{\varepsilon, \eta}) = h(\pi_0, K_0).$$

Furthermore, for every $\eta > 0$, the family $(K_{\varepsilon,\eta})_{\varepsilon \in [0,\varepsilon^c(\eta)]}$ of invariant sets, where $K_{0,\eta} = K_0$, is upper semicontinuous at $\varepsilon = 0$ with respect to the family $|\cdot|_{H_1^{\varepsilon}}$ of norms i.e.

$$\lim_{\varepsilon \to 0^+} \sup_{w \in K_{\varepsilon,\eta}} \inf_{u \in K_0} |w - u|_{H_1^{\varepsilon}} = 0$$

PROOF. The isomorphism Ψ_{ε} conjugates the local semiflow π_{ε} to the local semiflow $\tilde{\pi}_{\varepsilon}$. Thus whenever S is a strongly admissible isolating neighbourhood with respect to π_{ε} , then $\Psi_{\varepsilon}(S)$ is a strongly admissible isolating neighbourhood with respect to $\tilde{\pi}_{\varepsilon}$ and

$$h(\pi_{\varepsilon}, S) = h(\widetilde{\pi}_{\varepsilon}, \Psi_{\varepsilon}(S)).$$

Corollaries 7.1 and 7.2 imply that the family of semiflows $(\tilde{\pi}_{\varepsilon})_{\varepsilon \in [0,\varepsilon_0]}$ and the set N satisfy the hypotheses of [3, Theorem 4.1]. Notice also that any closed ball in Y_{ε} is contractible. Hence [3, Theorem 4.1] and [3, Corollary 4.11] completes the proof.

REMARK 7.4. The family $(K_{\varepsilon,\eta})_{\varepsilon\in]0,\varepsilon^{c}(\eta)]}$ is asymptotically independent of η i.e. whenever η_{1} and $\eta_{2} \in]0, \infty[$ then there is an $\varepsilon' \in]0, \min(\varepsilon^{c}(\eta_{1}), \varepsilon^{c}(\eta_{2}))]$ such that $K_{\varepsilon,\eta_{1}} = K_{\varepsilon,\eta_{2}}$ for $\varepsilon \in]0, \varepsilon']$. We also prove the following (co)homology index continuation principle:

THEOREM 7.5. Assume the hypotheses of Theorem 7.3 and for every $\eta \in [0, \infty[$ let $\varepsilon^{c}(\eta) \in [0, \varepsilon_{0}]$ be as in that theorem. Let (P, \prec) be a finite poset. Let $(M_{p,0})_{p\in P}$ be a \prec -ordered Morse decomposition of K_{0} relative to π_{0} . For each $p \in P$, let $V_{p} \subset N$ be closed in X_{0} and such that $M_{p,0} = \operatorname{Inv}_{\pi_{0}}(V_{p}) \subset \operatorname{Int}_{H_{1}^{0}}(V_{p})$. (Such sets $V_{p}, p \in P$, exist.) For $\varepsilon \in [0, \varepsilon_{0}]$, for every $\eta \in [0, \infty[$ and $p \in P$ set $M_{p,\varepsilon,\eta} := \operatorname{Inv}_{\pi_{\varepsilon}}(V_{p,\varepsilon,\eta})$, where

$$V_{p,\varepsilon,\eta} := \{ u \in H_1^\varepsilon \mid Q_\varepsilon u \in V_p \text{ and } | (I - Q_\varepsilon)u|_{H_1^\varepsilon} \le \eta \}.$$

Then for every $\eta \in [0, \infty[$ there is an $\tilde{\varepsilon} = \tilde{\varepsilon}(\eta) \in [0, \varepsilon^{c}(\eta)]$ such that for every $\varepsilon \in [0, \tilde{\varepsilon}]$ and $p \in P$, $M_{p,\varepsilon,\eta} \subset \operatorname{Int}_{H_{1}^{\varepsilon}}(V_{p,\varepsilon,\eta})$ and the family $(M_{p,\varepsilon,\eta})_{p\in P}$ is a \prec -ordered Morse decomposition of $K_{\varepsilon,\eta}$ relative to π_{ε} and the (co)homology index braids of $(\pi_{0}, K_{0}, (M_{p,0})_{p\in P})$ and $(\pi_{\varepsilon}, K_{\varepsilon,\eta}, (M_{p,\varepsilon,\eta})_{p\in P})), \varepsilon \in [0, \tilde{\varepsilon}]$, are isomorphic and so they determine the same collection of C-connection matrices.

PROOF. Since the isomorphism Ψ_{ε} conjugates the local semiflow π_{ε} to the local semiflow $\tilde{\pi}_{\varepsilon}$, using [5, Proposition 2.7], it follows that whenever S is a strongly admissible isolating neighbourhood with respect to π_{ε} and $(M_p)_{p \in P}$ is a \prec -ordered Morse decomposition of S relative to π_{ε} , then $\Psi_{\varepsilon}(S)$ is a strongly admissible isolating neighbourhood with respect to $\tilde{\pi}_{\varepsilon}$ and $(\Psi_{\varepsilon}(M_p))_{p \in P}$ is a \prec -ordered Morse decomposition of S relative to $\tilde{\pi}_{\varepsilon}$ and the (co)homology index braids of $(\pi_{\varepsilon}, S, (M_p)_{p \in P})$ and $(\tilde{\pi}_{\varepsilon}, \Psi_{\varepsilon}(S), (\Psi_{\varepsilon}(M_p))_{p \in P})), \varepsilon \in [0, \varepsilon_0]$, are isomorphic.

Corollaries 7.1 and 7.2 imply that the family of semiflows $(\tilde{\pi}_{\varepsilon})_{\varepsilon \in [0,\varepsilon_0]}$ and the set N satisfy the hypotheses of [4, Theorem 3.10]. Since any closed ball in Y_{ε} is contractible, an application of [4, Theorem 3.10] completes the proof.

REMARK 7.6. Again, for each $p \in P$, the family $(M_{p,\varepsilon,\eta})_{\varepsilon \in [0,\tilde{\varepsilon}(\eta)]}$, where $M_{p,0,\eta} = M_{p,0}$ is upper semicontinuous at $\varepsilon = 0$ with respect to the family $|\cdot|_{H_1^{\varepsilon}}$ of norms and the family $(M_{p,\varepsilon,\eta})_{\varepsilon \in [0,\tilde{\varepsilon}(\eta)]}$ is asymptotically independent of η .

8. Application to parabolic problems with localized large diffusion

Now let $\varepsilon_0 \in [0, \infty[$ and the operators $A_{\varepsilon}, \varepsilon \in [0, \varepsilon_0]$, be as in section 2.

For $\varepsilon \in [0, \varepsilon_0[$ set $H^{\varepsilon} = L^2(\Omega)$ and $\langle \cdot, \cdot \rangle_{H^{\varepsilon}} = \langle \cdot, \cdot \rangle_{L^2(\Omega)}$. Moreover, write $H^0 = L^2_{\Omega_0}(\Omega)$ and $\langle \cdot, \cdot \rangle_{H^0} = \langle \cdot, \cdot \rangle_{L^2(\Omega)}$. Notice that $H^{\varepsilon}_0 = H^{\varepsilon}$ for all $\varepsilon \in [0, \varepsilon_0]$. For $\varepsilon \in [0, \varepsilon_0]$ and $\alpha \in \mathbb{R}$ write $H^{\varepsilon}_{\alpha} = H_{\alpha}(A_{\varepsilon})$. Then, if $\varepsilon \in [0, \varepsilon_0]$, it follows that $H^{\varepsilon}_1 = H_1(A_{\varepsilon}) = H^1(\Omega)$ and $\langle \cdot, \cdot \rangle_{H^{\varepsilon}_1} = \zeta_{\varepsilon}(\cdot, \cdot)$. Furthermore,

 $H_1^0 = H_{\Omega_0}^1(\Omega)$ and $\langle \cdot, \cdot \rangle_{H_1^0} = \zeta_0(\cdot, \cdot).$

In particular, if $u \in H_1^0$, then, for all $\varepsilon \in [0, \varepsilon_0]$,

$$|u|_{H_1^{\varepsilon}} = |u|_{H_1^0}$$

It is now easy to conclude that parts (a), (b) and (c) of Condition (Spec) are satisfied. Moreover, the following result holds:

PROPOSITION 8.1. The above family $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}}, A_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfies conditions (Spec) and (Comp).

PROOF. [9, Theorem 5.1] implies that part (d) of Condition (Spec) also holds. Condition (Comp) follows from [9, Theorem 4.4]. \Box

By interpolation theory (cf. [12]) for every $\theta \in [0, 1]$ and every $\varepsilon \in [0, \varepsilon_0]$ there is a continuous imbedding from H^{ε}_{θ} to $H^{\theta}(\Omega)$ with imbedding constant $C_{1,\theta} \in [0,\infty[$ independent of $\varepsilon \in [0,\varepsilon_0]$. Furthermore, there is a continuous imbedding from $H^{\theta}(\Omega)$ into $L^{p_{\theta,\Omega}}(\Omega)$ with imbedding constant $C_{2,\theta} \in [0,\infty[$. Here,

$$p_{\theta,\Omega} = \left(\theta \frac{1}{2_{\Omega}^*} + (1-\theta)\frac{1}{2}\right)^{-1}.$$

Moreover, for every $\rho \in [0, 1]$ there is a continuous imbedding from $H^{\rho/2}(\Gamma)$ into $L^{p_{\rho,\Gamma}}(\Gamma)$ with imbedding constant $C_{3,\rho} \in [0, \infty[$. Here,

$$p_{\rho,\Gamma} = \left(\rho \frac{1}{2_{\Gamma}^*} + (1-\rho)\frac{1}{2}\right)^{-1}$$

Finally, by [8], for every $\theta \in [1/2, 1]$ there is a bounded linear trace operator $\gamma = \gamma_{\theta}: H^{\theta}(\Omega) \to H^{\theta-(1/2)}(\Gamma)$ with a bound $C_{4,\theta} \in [0, \infty[$. Now the continuity of the functions $\theta \mapsto p_{\theta,\Omega}$ and $\theta \mapsto p_{2\theta-1,\Gamma}$ at $\theta = 1$ implies the following result.

LEMMA 8.2. Let $q_2 \in [(1 - (1/2^*_{\Omega}))^{-1}, \infty[$ and $q_3 \in [(1 - (1/2^*_{\Gamma}))^{-1}, \infty[$ be arbitrary. Then there is a $\theta \in [1/2, 1[$ such that

$$p_2 = \frac{q_2}{q_2 - 1} < p_{\theta,\Omega} \quad and \quad p_3 = \frac{q_3}{q_3 - 1} < p_{2\theta - 1,\Gamma}.$$

Set $\alpha = \theta$ and let $C_5 \in [0, \infty[$ (resp. $C_6 \in [0, \infty[$) be a bound of the imbedding $L^{p_{\alpha,\Omega}}(\Omega) \to L^{p_2}(\Omega)$ (resp. $L^{p_{2\alpha-1,\Gamma}}(\Gamma) \to L^{p_3}(\Gamma)$). Then, whenever $\Phi \in L^{q_2}(\Omega)$, $\Psi \in L^{q_3}(\Gamma)$, $\varepsilon \in [0, \varepsilon_0]$ and $h \in H^{\varepsilon}_{\alpha}$, then $\Phi \cdot h \in L^1(\Omega)$, $\Psi \cdot \gamma(h) \in L^1(\Gamma)$,

$$\int_{\Omega} |\Phi \cdot h| \, dx \le C_{1,\alpha} C_{2,\alpha} C_5 |\Phi|_{L^{q_2}(\Omega)} |h|_{H^{\varepsilon}_{\alpha}},$$

and

$$\int_{\Gamma} |\Psi \cdot \gamma(h)| \, d\sigma \le C_{1,\alpha} C_{4,\alpha} C_{3,2\alpha-1} C_6 |\Psi|_{L^{q_3}(\Gamma)} |h|_{H^{\varepsilon}_{\alpha}}.$$

In particular, there is a unique $f_{\varepsilon} \in H_{-\alpha}^{\varepsilon}$ such that

$$f_{\varepsilon}(h) = \int_{\Omega} \Phi \cdot h \, dx + \int_{\Gamma} \Psi \cdot \gamma(h) \, d\sigma, \quad h \in H_{\alpha}^{\varepsilon}.$$

Moreover,

$$|f_{\varepsilon}|_{H^{\varepsilon}_{-\alpha}} \leq C_{7,\alpha}(|\Phi|_{L^{q_2}(\Omega)} + |\Psi|_{L^{q_3}(\Gamma)})$$

where $C_{7,\alpha} = \max(C_{1,\alpha}C_{2,\alpha}C_5, C_{1,\alpha}C_{4,\alpha}C_{3,2\alpha-1}C_6).$

The next two theorems describe how to obtain a family of maps that satisfies hypothesis (Conv).

THEOREM 8.3. For $\varepsilon \in [0, \varepsilon_0]$, let $\Phi_{\varepsilon}: H^1(\Omega) \to L^{q_2}(\Omega)$ and $\Psi_{\varepsilon}: H^{1/2}(\Gamma) \to L^{q_3}(\Gamma)$ be maps satisfying the following assumptions:

(a) For all $M \in [0, \infty[$ there is an $L = L_M \in [0, \infty[$ such that (a1) for all $\varepsilon \in [0, \varepsilon_0]$ and all $u, v \in H^1(\Omega)$ with $|u|_{H^1(\Omega)}, |v|_{H^1(\Omega)} \leq M$,

 $|\Phi_{\varepsilon}(u) - \Phi_{\varepsilon}(v)|_{L^{q_2}(\Omega)} \le L|u - v|_{H^1(\Omega)}$

(a2) for all $\varepsilon \in [0, \varepsilon_0]$ and all $u, v \in H^{1/2}(\Gamma)$ with $|u|_{H^{1/2}(\Gamma)}, |v|_{H^{1/2}(\Gamma)} \leq M$,

$$|\Psi_{\varepsilon}(u) - \Psi_{\varepsilon}(v)|_{L^{q_3}(\Gamma)} \le L|u - v|_{H^{1/2}(\Gamma)}.$$

(b) For every $u \in H^1_{\Omega_0}(\Omega)$,

$$|\Phi_{\varepsilon}(u) - \Phi_0(u)|_{L^{q_2}(\Omega)} \to 0 \quad as \ \varepsilon \to 0^+.$$

(c) For every $u \in H^{1/2}(\Gamma)$,

$$|\Psi_{\varepsilon}(u) - \Psi_0(u)|_{L^{q_3}(\Gamma)} \to 0 \quad as \ \varepsilon \to 0^+.$$

Let $\alpha \in [1/2, 1[$ be as in Lemma 8.2. For $\varepsilon \in [0, \varepsilon_0]$ and $u \in H_1^{\varepsilon}$ define, for $h \in H_{\alpha}^{\varepsilon}$,

$$f_{\varepsilon}(u)(h) = \int_{\Omega} \Phi_{\varepsilon}(u) \cdot h \, dx + \int_{\Gamma} \Psi_{\varepsilon}(\gamma(u)) \cdot \gamma(h) \, d\sigma.$$

Then $f_{\varepsilon}(u) \in H^{\varepsilon}_{-\alpha}$ and the family $(f_{\varepsilon})_{\varepsilon \in [0,\varepsilon_0]}$ of maps satisfies condition (Conv).

REMARK 8.4. By the definition of 2^*_{Ω} and 2^*_{Γ} we may, for N = 1, 2, take q_2 and q_3 arbitrary in $]1, \infty[$.

PROOF OF THEOREM 8.3. Lemma 8.2 implies that the family $(f_{\varepsilon})_{\varepsilon \in [0,\varepsilon_0]}$ satisfies (a) of condition (Conv). Let $M \in [0,\infty[$ be arbitrary and $L = L_M$ be as in assumption (a). If $\varepsilon \in [0,\varepsilon_0]$ and $u, v \in H_1^{\varepsilon}$ with $|u|_{H_1^{\varepsilon}}, |v|_{H_1^{\varepsilon}} \leq M/C_{1,1}$ then $u, v \in H^1(\Omega)$ with $|u|_{H^1(\Omega)}, |v|_{H^1(\Omega)} \leq M$ so

$$\begin{aligned} |f_{\varepsilon}(u) - f_{\varepsilon}(v)|_{H^{\varepsilon}_{-\alpha}} &\leq C_{7,\alpha}(|\Phi_{\varepsilon}(u) - \Phi_{\varepsilon}(v)|_{L^{q_2}(\Omega)} + |\Psi_{\varepsilon}(\gamma(u)) - \Psi_{\varepsilon}(\gamma(v))|_{L^{q_3}(\Gamma)}) \\ &\leq C_{7,\alpha}(L + LC_{4,1})|u - v|_{H^1(\Omega)} \leq C_{7,\alpha}(L + LC_{4,1})C_{1,1}|u - v|_{H^{\varepsilon}_{1}}. \end{aligned}$$

This together with assumption (a) implies part (c) of condition (Conv). If $u \in H_1^0$ then

 $|f_{\varepsilon}(u)|_{H^{\varepsilon}_{-\alpha}} \leq C_{7,\alpha}(|\Phi_{\varepsilon}(u)|_{L^{q_2}(\Omega)} + |\Psi_{\varepsilon}(\gamma(u))|_{L^{q_3}(\Gamma)}).$

This together with assumptions (b) and (c) easily implies part (d) of condition (Conv).

Now let $w \in H_1^0$ be arbitrary and $(\varepsilon_n)_n$ be a sequence in $]0, \varepsilon_0]$ with $\varepsilon_n \to 0$. Let $t \in]0, \infty[$ be arbitrary. We will show that

(8.1)
$$\lim_{n \to \infty} |e^{-t\tilde{A}_{\varepsilon_n}} f_{\varepsilon_n}(w) - e^{-t\tilde{A}_0} f_0(w)|_{H_1^{\varepsilon_n}} = 0,$$

proving (b) of condition (Conv).

It follows from Proposition 8.1 that the families $(H^{\varepsilon}, \langle \cdot, \cdot \rangle_{H^{\varepsilon}})_{\varepsilon \in [0, \varepsilon_0]}$ and $(A_{\varepsilon})_{\varepsilon \in [0, \varepsilon_0]}$ satisfy condition (Spec). For $n \in \mathbb{N}$ set $u_n = f_{\varepsilon_n}(w)$ and define $v_n \in H^{\varepsilon_n}_{-\alpha}$ by

$$v_n(h) = \int_{\Omega} \Phi_0(w) \cdot h \, dx + \int_{\Gamma} \Psi_0(\gamma(w)) \cdot \gamma(h) \, d\sigma, \quad h \in H_{\alpha}^{\varepsilon_n}.$$

Finally, set $u = f_0(w)$. Then

$$|u_n - v_n|_{H^{\varepsilon_n}_{-\alpha}} \le C_{7,\alpha}(|\Phi_{\varepsilon_n}(w) - \Phi_0(w)|_{L^{q_2}(\Omega)} + |\Psi_{\varepsilon_n}(\gamma(w)) - \Psi_0(\gamma(w))|_{L^{q_3}(\Gamma)})$$

Notice that the right hand side of this estimate goes to zero as $n \to \infty$. Thus assumption (a) of Theorem 4.6 is satisfied.

Let $C_8 \in [0,\infty[$ be a bound for the imbedding $H^1(\Omega) \to H^{\alpha}(\Omega)$. Then, for every $j \in \mathbb{N}$,

$$\begin{aligned} |v_n(w_{\varepsilon_n,j}) - u(w_{0,j})| &\leq |\Phi_0(w)|_{L^{q_2}(\Omega)} |w_{\varepsilon_n,j} - w_{0,j}|_{L^{p_2}(\Omega)} \\ &+ |\Psi_0(\gamma(w))|_{L^{q_3}(\Gamma)} |\gamma(w_{\varepsilon_n,j} - w_{0,j})|_{L^{p_3}(\Gamma)} \leq \widetilde{C} |w_{\varepsilon_n,j} - w_{0,j}|_{H_1^{\varepsilon_n}}, \end{aligned}$$

where $\widetilde{C} := C_5 C_{2,\alpha} C_8 C_{1,1} |\Phi_0(w)|_{L^{q_2}(\Omega)} + C_6 C_{3,2\alpha-1} C_{4,\alpha} C_8 C_{1,1} |\Psi_0(\gamma(w))|_{L^{q_3}(\Gamma)}$. Hence $|v_n(w_{\varepsilon_{n,j}}) - u(w_{0,j})| \to 0$ as $n \to \infty$. Thus assumption (b) of Theorem 4.6 is satisfied.

Now, for all $n \in \mathbb{N}$,

$$|v_n|_{H^{\varepsilon_n}_{-\alpha}} \le C_{7,\alpha}(|\Phi_0(w)|_{L^{p_2}(\Omega)} + |\Psi_0(\gamma(w))|_{L^{p_3}(\Gamma)}).$$

Thus assumption (c) of Theorem 4.6 is satisfied. Now (8.1) follows from Theorem 4.6. $\hfill \Box$

THEOREM 8.4. Assume Hypothesis 2.1. For $\varepsilon \in [0, \varepsilon_0]$ and $u \in H^1(\Omega)$ (resp. $u \in H^{1/2}(\Gamma)$) define $\Phi_{\varepsilon}(u)(x) = \varphi_{\varepsilon}(x, u(x))$ (resp. $\Psi_{\varepsilon}(u)(x) = \psi_{\varepsilon}(x, u(x))$) for $x \in \Omega$ (resp. $x \in \Gamma$). Then Φ_{ε} : $H^1(\Omega) \to L^{q_2}(\Omega)$ and Ψ_{ε} : $H^{1/2}(\Gamma) \to L^{q_3}(\Gamma)$ are defined and satisfy the assumptions of Theorem 8.3.

PROOF. Use results and arguments in [6, Chapter 2]. \Box

Finally we obtain the following

COROLLARY 8.5. For $\varepsilon \in [0, \varepsilon_0]$ let $\varphi_{\varepsilon}: \Omega \times \mathbb{R} \to \mathbb{R}$ and $\psi_{\varepsilon}: \Gamma \times \mathbb{R} \to \mathbb{R}$, $(x, s) \mapsto \varphi_{\varepsilon}(x, s), (x, s) \mapsto \psi_{\varepsilon}(x, s),$ be functions as in Theorem 8.4. For $\varepsilon \in [0, \varepsilon_0]$ and $u \in H^1(\Omega)$ (resp. $u \in H^{1/2}(\Gamma)$) define $\Phi_{\varepsilon}(u)(x) = \varphi_{\varepsilon}(x, u(x))$ (resp. $\Psi_{\varepsilon}(u)(x) = \psi_{\varepsilon}(x, u(x))$) for $x \in \Omega$ (resp. $x \in \Gamma$) and let $\alpha \in [1/2, 1]$ be as in Lemma 8.2. For $\varepsilon \in [0, \varepsilon_0]$ and $u \in H_1^{\varepsilon}$ define, for $h \in H_{\alpha}^{\varepsilon}$,

$$f_{\varepsilon}(u)(h) = \int_{\Omega} \Phi_{\varepsilon}(u) \cdot h \, dx + \int_{\Gamma} \Psi_{\varepsilon}(\gamma(u)) \cdot \gamma(h) \, d\sigma.$$

Then $f_{\varepsilon}(u) \in H^{\varepsilon}_{-\alpha}$ and the family $(f_{\varepsilon})_{\varepsilon \in [0,\varepsilon_0]}$ of maps satisfies condition (Conv).

PROOF. This follows from Theorems 8.4 and 8.3.

We can now prove the results stated in Section 2.

PROOF OF THEOREM 2.2. The theorem follows from Proposition 8.1, Corollary 8.5 and Theorem 5.7. $\hfill \Box$

PROOF OF THEOREM 2.3. The theorem follows from Proposition 8.1, Corollary 8.5 and Corollary 6.3. $\hfill \Box$

PROOF OF THEOREM 2.4. Proposition 8.1, Corollary 8.5, Theorem 7.3 and Remark 7.4 imply the theorem. $\hfill \Box$

PROOF OF THEOREM 2.5. Proposition 8.1, Corollary 8.5, Theorem 7.5 and Remark 7.6 imply the theorem. $\hfill \Box$

References

- J. M. ARRIETA, A. N. CARVALHO AND A. RODRÍGUEZ-BERNAL, Parabolic problems with nonlinear boundary conditions and critical nonlinearities, J. Differential Equations 156 (1999), 376–406.
- [2] M. C. CARBINATTO AND K. P. RYBAKOWSKI, On convergence, admissibility and attractors for damped wave equations on squeezed domains, Proc. Roy. Soc. Edinburgh 132A (2002), 765–791.
- [3] _____, On a general Conley index continuation principle for singular perturbation problems, Ergodic Theory Dynam. Systems **22** (2002), 729–755.
- [4] _____, Continuation of the connection matrix in singular perturbation problems, Ergodic Theory Dynam. Systems 26 (2006), 1021–1059.
- [5] _____, Continuation of the connection matrix for singularly perturbed hyperbolic equations, Fund. Math. 196 (2007), 253–273.
- [6] D. G. DE FIGUEIREDO, The Ekeland Variational Principle with Applications and Detours, Springer-Verlag, Berlin, 1989.
- [7] D. HENRY, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer–Verlag, NY, 1981.
- [8] J. L. LIONS AND E. MAGENES, Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, Berlin, 1972.
- [9] A. RODRIGUEZ-BERNAL, Localized spatial homogenization and large diffusion, SIAM J. Math. Anal. 29 (1998), 1361–1380.

- [10] K. P. RYBAKOWSKI, On the homotopy index for infinite-dimensional semiflows, Trans. Amer. Math. Soc. 269 (1982), 351–382.
- [11] _____, The Homotopy Index and Partial Differential Equations, Springer–Verlag, Berlin, 1987.
- [12] H. TRIEBEL, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Publishing Company, Amsterdam, 1978.

Manuscript received October 18, 2010

MARIA C. CARBINATTO Departamento de Matemática ICMC-USP, Caixa Postal 668, 13.560-970 São Carlos SP, BRAZIL *E-mail address*: mdccarbi@icmc.usp.br

KRZYSZTOF P. RYBAKOWSKI Universität Rostock Institut für Mathematik Ulmenstraße 69 Haus 3 18057 Rostock, GERMANY

 $E\text{-}mail\ address:\ krzysztof.rybakowski@uni-rostock.de$

TMNA: Volume 37 – 2011 – N° 1