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A CRITICAL FRACTIONAL LAPLACE EQUATION
IN THE RESONANT CASE

Raffaella Servadei

Abstract. In this paper we complete the study of the following non-local
fractional equation involving critical nonlinearities(

(−∆)su− λu = |u|2∗−2u in Ω,

u = 0 in Rn \ Ω,

started in the recent papers [13], [17]–[19]. Here s ∈ (0, 1) is a fixed pa-

rameter, (−∆)s is the fractional Laplace operator, λ is a positive constant,

2∗ = 2n/(n − 2s) is the fractional critical Sobolev exponent and Ω is an
open bounded subset of Rn, n > 2s, with Lipschitz boundary. Aim of this

paper is to study this critical problem in the special case when n 6= 4s and λ

is an eigenvalue of the operator (−∆)s with homogeneous Dirichlet bound-
ary datum. In this setting we prove that this problem admits a non-trivial

solution, so that with the results obtained in [13], [17]–[19], we are able to

show that this critical problem admits a nontrivial solution provided

• n > 4s and λ > 0,

• n = 4s and λ > 0 is different from the eigenvalues of (−∆)s,
• 2s < n < 4s and λ > 0 is sufficiently large.

In this way we extend completely the famous result of Brezis and Nirenberg
(see [4], [5], [9], [23]) for the critical Laplace equation to the non-local setting

of the fractional Laplace equation.
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1. Introduction

The Yamabe problem for the Laplace operator (or, more generally, for uni-
formly elliptic operators) was widely studied in the literature (see, [10], [20], [22]
and references therein). Recently, also in the non-local framework many papers
concerning critical equationshas appeared, both for pure mathematical interest
and for the various applications in many fields (such as, e.g. optimization, finance,
phase transitions, stratified materials, anomalous diffusion, crystal dislocation,
soft thin films, semipermeable membranes, flame propagation, conservation laws,
ultra-relativisticlimits of quantum mechanics, quasi-geostrophic flows, multiple
scattering, minimal surfaces, materials science and water waves). In the non-
local framework, for instance, in [3], [21] the authors study a critical problem
driven by a non-local operator defined as the power of the Laplacian, while in
[13], [17]–[19] critical problems driven by the fractional Laplace operator (−∆)s

are considered.
Aim of this paper is to complete the study carried on in [13], [17]–[19], where

the existence of a nontrivial solution for the problem:

(1.1)

{
(−∆)su− λu = |u|2∗−2u in Ω,

u = 0 in Rn \ Ω,

was established in the special case when the parameter λ > 0 is different from
the eigenvalues of (−∆)s. Here s ∈ (0, 1) is fixed and −(−∆)s is the fractional
Laplace operator, which (up to normalization factors) may be defined as

(1.2) −(−∆)su(x) =
∫

Rn

u(x + y) + u(x− y)− 2u(x)
|y|n+2s

dy, x ∈ Rn,

the set Ω ⊂ Rn, n > 2s, is open, bounded and with Lipschitz boundary, λ > 0
and 2∗ = 2n/(n − 2s) is the fractional critical Sobolev exponent (notice that
when s = 1 the above exponent reduces to the classical critical Sobolev expo-
nent).

The homogeneous Dirichlet datum in (1.1) is given in Rn \Ω and not simply
on ∂Ω, as it happens in the classical case of the Laplacian, consistently with
the non-local nature of the operator (−∆)s. In the recent works [13], [17]–[19]
we proved that the famous result by Brezis and Nirenberg (see [4], [5], [9], [23])
for the Laplace equation continues to hold also in the nonlocal setting of (1.1),
provided λ is not an eigenvalue of (−∆)s.

With respect to the classical Brezis–Nirenberg result in these papers it re-
mains open the resonant case in dimension different from 4s, that is the case
when n 6= 4s and λ is an eigenvalue of the operator (−∆)s with homogeneous
Dirichlet boundary data. Aim of this paper is to consider (1.1) in this setting,
since we though that it is interesting to check what happens in this case in order



A Critical Fractional Laplace Equation in the Resonant Case 253

to verify if the classical result known for the Laplacian can be extended to the
non-local fractional framework. In this way the study of the critical fractional
Laplace problem is completed. The main result we obtain in the present paper
is the following:

Theorem 1.1. Let s ∈ (0, 1), n > 2s and Ω be an open bounded set of Rnwith
Lipschitz boundary. Moreover, let λ be an eigenvalue of (−∆)s with homogeneous
Dirichlet boundary data. Then, problem (1.1) admits a weaksolution u ∈ Hs(Rn),
which is not identically zero, and such that u = 0 almost everywhere in Rn \ Ω,
provided that either

(a) n > 4s, or
(b) 2s < n < 4s and λ is sufficiently large.

As a consequence of Theorem 1.1 and of [13, Theorem 1.2], [17, Theorem 4]
and [18, Theorem 1] we get the following existence result, which extends com-
pletely to the non-local fractional framework the well-known Brezis–Nirenberg
type results given in [4], [5], [9], [23] for the Laplace equation:

Theorem 1.2. Let s ∈ (0, 1), n > 2s and Ω be an open bounded set of Rnwith
Lipschitz boundary. Then, problem (1.1) admits a weaksolution u ∈ Hs(Rn),
which is not identically zero, and such that u = 0 almost everywhere in Rn \ Ω,
provided that either

(a) n > 4s and λ > 0, or
(b) n = 4s and λ > 0 is different from the eigenvalues of (−∆)s, or
(c) n < 4s and λ > 0 is sufficiently large.

Roughly speaking, Theorem 1.2 says that what happens in the non-local
framework is exactly what we know in the classing setting (see [4], [5], [9], [23]
and also [10], [20], [22] and references therein; of course the extension from the
local setting to the non-local one is not straightforward as we will see in the
course of the proofs).

We would like to note that, as it happens in the Laplacian case when n = 4,
also in the non-local framework there is a dimension (n = 4s) where resonance
creates problem. Also, when s = 1 (which corresponds to the Laplace case) these
two dimensions are the same.

In the classical setting of the Laplacian this fact was not underlined in the
original paper of Capozzi, Fortunato and Palmieri (see [5]), but it was noticed
by Zhang in [23]. For an explanation of this strange phenomenon see also [2]
and [8].

In order to prove Theorem 1.1 we mainly use the fact that problem (1.1) is
variational in nature and its weak formulation is given by
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(1.3)



∫
R2n

(u(x)− u(y))(ϕ(x)− ϕ(y))
|x− y|n+2s

dx dy − λ

∫
Ω

u(x)ϕ(x) dx

=
∫

Ω

|u(x)|2
∗−2u(x)ϕ(x) dx

for all ϕ ∈ Hs(Rn) with ϕ = 0 a.e. in Rn \ Ω,

u ∈ Hs(Rn) with u = 0 a.e. in Rn \ Ω.

Problem (1.3) represents the Euler-Lagrange of the functional Js,λ:X0 → R
defined as

(1.4) Js,λ(u) =
1
2

∫
R2n

|u(x)− u(y)|2

|x− y|n+2s
dx dy−λ

2

∫
Ω

|u(x)|2 dx− 1
2∗

∫
Ω

|u(x)|2
∗
dx,

where the functional space X0 is the Hilbert space defined as

X0 = {u ∈ Hs(Rn) : u = 0 a.e. in Rn \ Ω}

and endowed with the norm given by

(1.5) X0 3 v 7→ ‖v‖X0 =
( ∫

R2n

|v(x)− v(y)|2

|x− y|n+2s
dx dy

)1/2

.

For this see [15, Lemma 7], while for a general definition of X0 and its proper-
tieswe refer to [13]–[17] and [19]. Here Hs(Rn) is the usual fractional Sobolev
space (for this see, for instance, [7]), endowed with the so-called Gagliardo norm

(1.6) ‖g‖Hs(Rn) = ‖g‖L2(Rn) +
( ∫

R2n

|g(x)− g(y)|2

|x− y|n+2s
dx dy

)1/2

.

Thus, in looking for weak solutions of (1.1) (that is solutions of problem (1.3)) we
study the critical points of the functional Js,λ using classical minimax theorems,
namely the Linking Theorem (see, e.g. [1], [11], [12]). In order to apply such
critical points theorem to Js,λ we argue as in [13], [17], [18]. In particular, since
the functional Js,λ is not compact (due to the fact that Hs(Rn) is not compactly
embedded into the critical Lebesgue space L2∗(Rn)), the Palais–Smale condition
does not hold globally, but only in a suitable range related to the best constant
in the embedding Hs(Rn) ↪→ L2∗(Rn). For this reason, in order to apply the
minimax theorem, we need to estimate the critical level of Js,λ and, for proving
such a estimate, we need to construct an explicit solution of the following limiting
problem

(−∆)su = |u|2
∗−2u in Rn.

For more details on this see Subsection 2.1. The paper is organized as follows.
In Section 2 we will deal with the variational formulation of the problem. After
introducing some notations and recalling some preliminary results, we will dis-
cuss the geometric and compactness properties of the functional Js,λ. Section 3
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will be devoted to the estimate of the minimax critical level of Js,λ and to the
proof of Theorem 1.1.

2. The variational formulation of the problem

As we said in the Introduction, problem (1.1) has a variational structure.
Hence, in order to look for weak solutions of problem (1.1) we study the critical
points of the functional Js,λ using classical minimax theorems. First of all, note
that this functional is well defined thanks to [15, Lemma 8] and [17, Lemma 9].
Moreover, Js,λ is Fréchet differentiable in u ∈ X0 and for any ϕ ∈ X0

〈J ′
s,λ(u), ϕ〉 =

∫
R2n

(u(x)− u(y))(ϕ(x)− ϕ(y))
|x− y|n+2s

dx dy

− λ

∫
Ω

u(x)ϕ(x) dx−
∫

Ω

|u(x)|2
∗−2u(x)ϕ(x) dx.

Before proving Theorem 1.1 we need some notation and some preliminary
results.

2.1. Notations and preliminary results. In the sequel we will denote by
(λk,s)k∈N the sequence of eigenvalues of the operator (−∆)s, with homogeneous
Dirichlet boundary data, such that

0 < λ1,s < λ2,s ≤ . . . ≤ λk,s ≤ λk+1,s ≤ . . . and λk,s → +∞ as k → +∞.

Moreover, ek,s will be the eigenfunction corresponding to λk,s for any k ∈ N and

Pk+1, s := {u ∈ X0 such that 〈u, ej,s〉X0 = 0 for all j = 1, . . . , k},

where 〈 ·, · 〉X0 is the scalar product on X0 defined as

(2.1) 〈u, v〉X0 =
∫

R2n

(u(x)− u(y))(v(x)− v(y))
|x− y|n+2s

dx dy.

For a complete study of the eigenvalues and the eigenfunctions of (−∆)s (and,
more generally, of non-local integrodifferential operators) we refer to [16, Propo-
sition 9 and Appendix A]. Here we also need to introduce the best fractional
critical Sobolev constant Ss for the embedding of Hs(Rn) into L2∗(Rn) defined
as

(2.2)

Ss := inf
v∈Hs(Rn)\{0}

Ss(v),

Hs(Rn) \ {0} 3 v 7→ Ss(v) :=

∫
R2n

|v(x)− v(y)|2

|x− y|n+2s
dx dy( ∫

Rn

|v(x)|2
∗
dx

)2/2∗
.

With this, we can recall the following result obtained in [6, Theorem 1.1]:
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Proposition 2.1. The infimum in formula (2.2) is attained, that is

Ss = Ss(ũ),

where

(2.3) ũ(x) = κ(µ2 + |x− x0|2)−(n−2s)/2, x ∈ Rn

with κ ∈ R \ {0}, µ > 0 and x0 ∈ Rn fixed constants. Equivalently, the function
u defined as

(2.4) u(x) =
ũ(x)

‖ũ‖L2∗ (Rn)

is such that

(2.5) Ss = inf
v∈Hs(Rn)

‖v‖
L2∗ (Rn)=1

∫
R2n

|v(x)− v(y)|2

|x− y|n+2s
dx dy =

∫
R2n

|u(x)− u(y)|2

|x− y|n+2s
dx dy.

In the sequel we suppose that, up to a translation, x0 = 0 in (2.5). Arguing
as in [17, Section 4], we consider the function

(2.6) u∗(x) = u

(
x

S
1/(2s)
s

)
, x ∈ Rn,

which is an explicit solution of the limiting problem

(2.7) (−∆)su = |u|2
∗−2u in Rn

such that ‖u∗‖2∗

L2∗ (Rn)
= S

n/(2s)
s and also the functions

Uε(x) = ε−(n−2s)/2 u∗(x/ε), x ∈ Rn,(2.8)

uε(x) = η(x)Uε(x), x ∈ Rn,(2.9)

for any ε > 0. Here η ∈ C∞(Rn) is a function such that 0 ≤ η ≤ 1 inRn, η ≡ 1
in Bδ and η ≡ 0 in CB2δ, where Bδ = B(0, δ) and CBδ = Rn \ Bδ, with δ > 0
fixed so that B4δ ⊂ Ω.

Note that uε ∈ X0 and uε = 0 almost everywhere in Rn \ Ω. What is
important about uε is that this function satisfies some crucial estimates that we
recall here below (for a proof see [17, Propositions 21 and 22 and Subsection 4.2.1]
and [13, Proposition 7.2]):

Proposition 2.2. Let s ∈ (0, 1) and n > 2s. Then the following estimates
hold true: ∫

R2n

|uε(x)− uε(y)|2

|x− y|n+2s
dx dy ≤ Sn/(2s)

s +O(εn−2s),
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∫
Rn

|uε(x)|2 dx ≥


Csε

2s +O(εn−2s) if n > 4s,

Csε
2s| log ε|+O(ε2s) if n = 4s,

Csε
n−2s +O(ε2s) if n < 4s,∫

Rn

|uε(x)|2
∗
dx = Sn/(2s)

s +O(εn),∫
Rn

|uε(x)|2
∗−1 dx = O(ε(n−2s)/2),

and ∫
Rn

|uε(x)| dx = O(ε(n−2s)/2),

as ε → 0, for some positive constant Cs depending on s.

2.2. Geometric and compactness condition of the functional Js,λ. In
the present paper we are interested in problem (1.1), when the parameter λ is
an eigenvalue of (−∆)s, say when λ = λk,s for some k ∈ N. Without loss of
generality, we can assume that λk,s has multiplicity h ∈ N and that

(2.10) λk−1,s < λk,s = λk+1,s = . . . = λk+h−1,s < λk+h,s.

In order to prove Theorem 1.1 our strategy will consist in applying the Linking
Theorem (see [11], [12]) to the functional Js,λk, s

, that is Js,λ with λ = λk,s.
As it is well-known, the main ingredients of this minimax theorem are a suit-
able geometric structure and a compactness condition, namely the Palais–Smale
condition at level c ∈ R, given by:

every Palais–Smale sequence (uj)j∈N in X0 at level c ∈ R admits a sub-
sequence strongly convergent in X0.

We say that (uj)j∈N in X0 is a Palais–Smale sequence for Js,λ at level c ∈ R if

Js,λ(uj) → c and sup{|〈J ′
s,λ(uj), ϕ〉| : ϕ ∈ X0, ‖ϕ‖X0 = 1} → 0 as j → +∞.

By [18, Proposition 10] we know that the functional Js,λ satisfies the geometric
features required by the Linking Theorem, when λ ≥ λ1,s. Hence, in particular,
Js,λk,s

has the geometric structure of the Linking Theorem, that is the following
proposition is valid:

Proposition 2.3. There exist ρ > 0 and β > 0 such that

(a) for any u ∈ Pk+1,s with ‖u‖X0 = ρ it results that Js,λk, s
(u) ≥ β;

(b) Js,λk,s
(u) ≤ 0 for any u ∈ span{e1,s, . . . , ek, s};

(c) for any finite dimensional subspace F of X0, there exists R > ρ such
that

sup
u∈F

‖u‖X0≥R

Js, λk, s
(u) ≤ 0.
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In particular, we can construct F as follows:

(2.11) F = Fε := span{e1,s, . . . , ek,s} ⊕ span{z̃ε},

with z̃ε = zε/‖zε‖X0 , zε = uε −
k∑

i=1

(
∫
Ω

uε(x)ei, s(x) dx)ei,s and uε as in (2.9)

for ε > 0.

Moreover, by [17, Proposition 5] (which holds true for any λ > 0) and the
fact that λk,s ≥ λ1,s > 0 (see [16, Proposition 9a)]) the functional Js,λk,s

also
verifies the Palais–Smale condition up to a suitable threshold, i.e. the following
result holds true:

Proposition 2.4. Let c ∈ R be such that

(2.12) c <
s

n
Sn/(2s)

s ,

where Ss is the constant defined in (2.2). Then, the functional Js,λk,s
satisfies

the Palais–Smale condition at level c.

Roughly speaking, Proposition 2.4 says that the functional Js,λk,s
satisfies

the Palais–Smale condition only below a suitable threshold related to the frac-
tional critical Sobolev constant. Since this condition does not hold globally, in
order to apply the Linking Theorem to Js,λk,s

, we need to estimate the critical
level of this functional and show that it stays below the threshold where the
Palais–Smale condition is satisfied. This will be done in the next section.

3. Estimate of the minimax critical level

This section is devoted to the estimate of the minimax critical level of the
functional Js,λk,s

. Here, in some sense, we argue as in [13, Subsection 7.2] and
in [18, Section 7] even if, with respect to these papers, some differences arise,
due to the fact that here we consider the resonant case, that is the case when
λ is an eigenvalue of (−∆)s. In fact, here the estimates are more delicate: on
this we will be more precise in the sequel. The Linking critical level of Js,λk,s

is
given by

cε,λk, s
= inf

h∈Γ
max
u∈Q

Js,λk, s
(h(u)),

where

(3.1)
Γ = {h ∈ C(Q;X0) : h = id on ∂Q},
Q = (BR ∩ span{e1,s, . . . , ek,s})⊕ {rz̃ε : r ∈ (0, R)},

and R and z̃ε are as in Proposition 2.3. In order to estimate cε,λk,s
, we will use

the particular choice of F = Fε given in (2.11) (note that Q ⊂ Fε). We want to
show the following result
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Proposition 3.1. Let Ss be as in (2.2). Then,

cε,λk, s
<

s

n
Sn/(2s)

s

for ε sufficiently small, provided n > 4s or n < 4s and λk,s is large enough.

Proof. First of all, note thatby definition of cε,λk, s
for any h ∈ Γ

(3.2) cε,λk, s
≤ max

u∈Q
Js,λk, s

(h(u))

and so, in particular, taking h = id and using the fact that Q ⊂ Fε, we have

(3.3) cε,λk, s
≤ max

u∈Q
Js,λk, s

(u) ≤ max
u∈Fε

Js,λk, s
(u).

Since Fε is a linear space,

max
u∈Fε

Js,λk, s
(u) = max

u∈Fε
ζ 6=0

Js,λk,s

(
|ζ| · u

|ζ|

)
(3.4)

= max
u∈Fε
ζ>0

Js,λk,s
(ζu) ≤ max

u∈Fε
ζ≥0

Js,λk,s
(ζu).

Hence, (3.2)–(3.4) yield that

(3.5) cε,λk, s
≤ max

u∈Fε
ζ≥0

Js,λk, s
(ζu).

Then, in order to prove Proposition 3.1, by (3.5) it is enough to show that

(3.6) max
u∈Fε
ζ≥0

Js,λk, s
(ζu) <

s

n
Sn/(2s)

s .

Note that, by [17, Proposition 20], for any u ∈ X0 \ {0}

(3.7) max
ζ≥0

Js,λk, s
(ζu) =

s

n

(‖u‖X0 − λk,s‖u‖2
L2(Ω)

‖u‖2∗

L2∗ (Ω)

)n/(2s)

,

and that the right-hand side in (3.7) is scale invariant. Hence, as a consequence
of (3.7), relation (3.6) is equivalent to

(3.8) Mε := max
u∈Fε

‖u‖
L2∗ (Ω)=1

(‖u‖2
X0

− λk,s‖u‖2
L2(Ω)) < Ss,

so that, in order to prove Proposition 3.1, it is enough to show that (3.8) holds
true. Let us prove inequality (3.8). At this purpose, let us recall that, by [13,
Proposition 7.3)] Mε is achieved in some uM ∈ Fε, which can be written as
follows (1)

(3.9) uM = ṽ + tzε,

(1) Beware that uM , ev and t (and also v in Claim 2 below) depend on ε. For simplicity
we omit this dependence in the notation.
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where ṽ ∈ span{e1,s, . . . , ek,s}, t ≥ 0 and zε is as in Proposition 2.3, and such
that

(3.10) ‖uM‖L2∗ (Ω) = 1.

For now on we proceed by steps.

Claim 1. There exists a positive constant c such that t = tε ≤ c for ε > 0
small enough.

Proof. First of all, note that, by the Hőlder inequality and the properties
of uM , we can bound uM as follows

(3.11) ‖uM‖2
L2(Ω) ≤ |Ω|n/(2s)‖uM‖2

L2∗ (Ω) = |Ω|n/(2s).

Moreover, ṽ and zε are orthogonal in L2(Ω) and in X0, since the sequence
(ek, s)k∈N of eigenfunctions corresponding to λk is an orthonormal basis of L2(Ω)
and anorthogonal basis of X0 (see [16, Proposition 9f)]). As a consequence of
this, we get that

(3.12) ‖uM‖2
L2(Ω) = ‖ṽ‖2

L2(Ω) + t2ε‖zε‖2
L2(Ω) ≥ ‖ṽ‖2

L2(Ω).

By (3.11) and (3.12), we easily get that both ‖uM‖L2(Ω) and ‖ṽ‖L2(Ω) are
bounded uniformly in ε by a suitable c̃ > 0. Furthermore, by [18, Proposition 4]
we know that ei,s ∈ L∞(Ω) for any i ∈ N, so that also ṽ ∈ span{e1,s, . . . , ek,s}
does. Hence, ṽ ∈ L2∗(Ω), since Ω is bounded and, by the equivalence of the
norms in a finite dimensional space,we also have

(3.13) ‖ṽ‖L2∗ (Ω) ≤ c̃.

Also, by Proposition 2.2 and again [18, Proposition 4] we have∣∣∣∣ ∫
Ω

uε(x)ei,s(x) dx

∣∣∣∣ ≤ ‖uε‖L1(Ω)‖ei,s‖L∞(Ω) = O(ε(n−2s)/2)

as ε → 0. As a consequence, using the definition of zε and again Proposition 2.2,
we get

‖zε‖L2∗ (Ω) ≥‖uε‖L2∗ (Ω) −
k∑

i=1

∣∣∣∣ ∫
Ω

uε(x)ei,s(x) dx

∣∣∣∣‖ei,s‖L2∗ (Ω)

=S(n−2s)/(4s)
s +O(ε(n−2s)/2) ≥ S

(n−2s)/(4s)
s

2

for ε sufficiently small. Then, by (3.9), the fact that t = tε ≥ 0, (3.10) and
(3.13), we have

S
(n−2s)/(4s)
s tε

2
≤ tε‖zε‖L2∗ (Ω) ≤ ‖uM‖L2∗ (Ω) + ‖ṽ‖L2∗ (Ω) ≤ 1 + c̃,
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for ε small enough. Hence, tε is bounded for ε sufficiently small and this ends
the proof of Claim 1. �

Claim 2. The function uM ∈ Fε can be written as uM = v + Pkṽ + tũε,
where t ≥ 0,

v =
k−1∑
i=1

( ∫
Ω

(ṽ(x)− tuε(x))ei,s(x) dx

)
ei,s ∈ span{e1,s, . . . , ek−1,s},(3.14)

ũε = uε − Pkuε,(3.15)

and the map X0 3 w 7→ Pkw denotes the projection of w on the direction ek,s,
that is

Pkw =
( ∫

Ω

w(x)ek, s(x) dx

)
ek,s.

Moreover, there exists a positive constant κ, independent of ε, such that

(3.16)
∣∣∣∣ ∫

Ω

ũε(x) v(x) dx

∣∣∣∣ =
∣∣∣∣ ∫

Ω

uε(x) v(x) dx

∣∣∣∣ ≤ κ‖v‖L2(Ω)‖uε‖L1(Ω),

and

(3.17)
∣∣∣∣ ∫

R2n

(ũε(x)− ũε(y))(v(x)− v(y))
|x− y|n+2s

dx dy

∣∣∣∣ ≤ κ‖v‖L2(Ω)‖uε‖L1(Ω)

for any ε > 0.

Proof. By (3.9) and the definition of zε (as given in Proposition 2.3), it is
easily seen that

uM =
k∑

i=1

( ∫
Ω

ṽ(x)ei,s(x) dx

)
ei,s + t

(
uε −

k∑
i=1

( ∫
Ω

uε(x)ei,s(x) dx

)
ei, s

)

=
k−1∑
i=1

( ∫
Ω

(ṽ(x)− tuε(x))ei,s(x) dx

)
ei, s + Pkṽ + t(uε − Pkuε)

= v + Pkṽ + tũε,

with v and ũε as in (3.14) and (3.15), respectively.Let us start showing that
(3.16) holds true. For this, note that v and Pkuε are orthogonal in L2(Ω), so
that ∫

Ω

ũε(x) v(x) dx =
∫

Ω

(uε(x)− Pkuε) v(x) dx =
∫

Ω

uε(x) v(x) dx,

while the Hölder inequality and the equivalence of the norm in a finite dimen-
sional space give∣∣∣∣ ∫

Ω

ũε(x) v(x) dx

∣∣∣∣ =
∣∣∣∣ ∫

Ω

uε(x) v(x) dx

∣∣∣∣
≤‖uε‖L1(Ω)‖v‖L∞(Ω) ≤ κ‖uε‖L1(Ω)‖v‖L2(Ω)
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for a suitable κ > 0, independent of ε. Thus, (3.16) is proved. Now, let us show
(3.17). At this purpose, we write

(3.18) v =
k−1∑
i=1

viei,s

for some vi ∈ R, so that, again by [16, Proposition 9f)],

‖v‖2
L2(Ω) =

k−1∑
i=1

v2
i .

By (3.18), the fact that ei,s is an eigenfunction of (−∆)s with eigenvalue λi,s

and the definition of scalar product in X0 (see (2.1)), we have

〈ũε, v〉X0 =
k−1∑
i=1

vi〈ũε, ei,s〉X0

=
k−1∑
i=1

λi,svi

∫
Ω

ũε(x)ei,s(x) dx =
k−1∑
i=1

λi,svi

∫
Ω

uε(x)ei,s(x) dx,

also thanks to the definition of ũε and the orthogonality properties of ei,s. So,
by this and again the Hölder inequality, we get

〈ũε, v〉X0 | ≤
k−1∑
i=1

λi,s|vi| ‖uε‖L1(Ω)‖ei,s‖L∞(Ω) ≤ κ‖uε‖L1(Ω)‖v‖L2(Ω),

that is ∣∣∣∣ ∫
R2n

(ũε(x)− ũε(y))(v(x)− v(y))
|x− y|n+2s

dx dy

∣∣∣∣ ≤ κ‖v‖L2(Ω)‖uε‖L1(Ω)

for a suitable κ > 0 possibly depending on k, but independent of ε. Hence, (3.17)
is proved and this ends the proof of Claim 2. �

Now, we are ready to show the validity of (3.8), that is

(3.19) Mε =
∫

R2n

|uM (x)− uM (y)|2

|x− y|n+2s
dx dy − λk, s

∫
Ω

|uM (x)|2 dx < Ss.

In doing this, we have to take into account that uM = v + Pkṽ + tũε by Claim 2
and that, in particular, we have to estimate three different contributions coming
from v, Pkṽ and ũε. With respect to similar calculations carried on in [13, Sub-
section 7.2] and [18, Section 7], here we have to pay attention to the contribution
coming from v, due to the resonance occurring in this case. Let us show (3.19).
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By Claim 2 we have that

(3.20) Mε =
∫

R2n

|uM (x)− uM (y)|2

|x− y|n+2s
dx dy − λk,s

∫
Ω

|uM (x)|2 dx

=
∫

R2n

|v(x) + Pkṽ(x) + tũε(x)− v(y)− Pkṽ(y)− tũε(y)|2

|x− y|n+2s
dx dy

− λk,s

∫
Ω

|v(x) + Pkṽ(x) + tũε(x)|2 dx

= ‖v‖2
X0

+ ‖Pkṽ‖2
X0

+ t2‖ũε‖2
X0

+ 2t

∫
R2n

(ũε(x)− ũε(y))(v(x)− v(y))
|x− y|n+2s

dx dy

− λk,s(‖v‖2
L2(Ω) + ‖Pkṽ‖2

L2(Ω) + t2‖ũε‖2
L2(Ω))

− 2λk,st

∫
Ω

ũε(x) v(x) dx

= ‖v‖2
X0

+ t2‖ũε‖2
X0

+ 2t

∫
R2n

(ũε(x)− ũε(y))(v(x)− v(y))
|x− y|n+2s

dx dy

− λk,s(‖v‖2
L2(Ω) + t2‖ũε‖2

L2(Ω))− 2λk,st

∫
Ω

ũε(x) v(x) dx,

thanks to the orthogonality properties of v, Pkṽ and ũε and also to the definition
of λk,s. Now, note that by (3.15)

(3.21) ‖ũε‖2
X0

− λk,s‖ũε‖2
L2(Ω) = ‖uε − Pkuε‖2

X0
− λk,s‖uε − Pkuε‖2

L2(Ω)

= ‖uε‖2
X0

+ ‖Pkuε‖2
X0

− 2
∫

R2n

(uε(x)− uε(y))(Pkuε(x)− Pkuε(y)
|x− y|n+2s

dx dy

− λk,s(‖uε‖2
L2(Ω) + ‖Pkuε‖2

L2(Ω)) + 2λk, s

∫
Ω

uε(x) Pkuε(x) dx

= ‖uε‖2
X0

− λk, s‖uε‖2
L2(Ω)

− 2
∫

R2n

(uε(x)− uε(y))(Pkuε(x)− Pkuε(y))
|x− y|n+2s

dx dy

+ 2λk, s

∫
Ω

uε(x) Pkuε(x) dx

= ‖uε‖2
X0

− λk,s‖uε‖2
L2(Ω) − 2(‖Pkuε‖2

X0
− λk,s‖Pkuε‖2

L2(Ω))

= ‖uε‖2
X0

− λk,s ‖uε‖2
L2(Ω),

thanks to the definition of Pk. Then, combining (3.16), (3.17), (3.20), Claim 1
and (3.21), we get

(3.22) Mε = ‖v‖2
X0

+ t2‖ũε‖2
X0

+ 2t

∫
R2n

(ũε(x)− ũε(y))(v(x)− v(y)
)

|x− y|n+2s
dx dy

− λk, s(‖v‖2
L2(Ω) + t2‖ũε‖2

L2(Ω))− 2λk, st

∫
Ω

ũε(x) v(x) dx
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= ‖v‖2
X0

+ t2‖uε‖2
X0

+ 2t

∫
R2n

(ũε(x)− ũε(y))(v(x)− v(y)
)

|x− y|n+2s
dx dy

− λk,s(‖v‖2
L2(Ω) + t2‖uε‖2

L2(Ω))− 2λk,st

∫
Ω

ũε(x) v(x) dx

≤‖v‖2
X0

− λk,s‖v‖2
L2(Ω)

+ t2(‖uε‖2
X0

− λk,s‖uε‖2
L2(Ω)) + κ̃‖v‖L2(Ω)‖uε‖L1(Ω),

provided ε > 0 is sufficiently small and for some κ̃ > 0, independent of ε. Since
v ∈ span{e1,s, . . . , ek−1,s} and (2.10) holds true, by [13, Proposition 2.3] and
(3.22), we have

Mε ≤‖v‖2
X0

− λk,s‖v‖2
L2(Ω)(3.23)

+ t2(‖uε‖2
X0

− λk, s‖uε‖2
L2(Ω)) + κ̃‖v‖L2(Ω)‖uε‖L1(Ω)

≤ (λk−1, s − λk, s)‖v‖2
L2(Ω)

+ t2(‖uε‖2
X0

− λk, s‖uε‖2
L2(Ω)) + κ̃‖v‖L2(Ω)‖uε‖L1(Ω)

=(λk−1, s − λk, s)‖v‖2
L2(Ω)

+ Ss,λk,s
(uε)‖tuε‖2

L2∗ (Ω) + κ̃‖v‖L2(Ω)‖uε‖L1(Ω),

if ε is small enough, where Ss,λk,s
( ·) is the function defined as

(3.24) Hs(Rn) \ {0} 3 u 7→ Ss,λk,s
(u)

:=

∫
R2n

|u(x)− u(y)|2

|x− y|n+2s
dx dy − λk, s

∫
Rn

|u(x)|2 dx( ∫
Rn

|u(x)|2
∗
dx

)2/2∗
.

Now, note that by the convexity (2), the monotonicity properties of the inte-
grals, (3.9), Claim 1 and the fact that in span{e1,s, . . . , ek,s} all the norms are
equivalent, we have

(3.25) 1 = ‖uM‖2∗

L2∗ (Ω) =
∫

Ω

|uM (x)|2
∗
dx

≥
∫

Ω

|tuε(x)|2
∗
dx + 2∗

∫
Ω

(tuε(x))2
∗−1ṽ(x) dx

≥ ‖tuε‖2∗

L2∗ (Ω) − 2∗c 2∗−1‖uε‖2∗−1
L2∗−1(Ω)

‖ṽ‖L∞(Ω)

≥ ‖tuε‖2∗

L2∗ (Ω) − ĉ ‖uε‖2∗−1
L2∗−1(Ω)

‖ṽ‖L2(Ω),

for some positive constant ĉ, so that

(3.26) ‖tuε‖2∗

L2∗ (Ω) ≤ 1 + ĉ ‖uε‖2∗−1
L2∗−1(Ω)

‖ṽ‖L2(Ω)

(2) If f is a differentiable convex function, then f(y) ≥ f(x) + f ′(x)(y − x). Here we take

f(s) = s2∗ , x = tuε and y = uM = v + tuε.
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for ε sufficiently small. Moreover, by the Young inequality for any σ > 0 we have

(3.27) κ̃‖v‖L2(Ω)‖uε‖L1(Ω) ≤ σ‖v‖2
L2(Ω) +

κ̃2

4σ
‖uε‖2

L1(Ω)

for any ε > 0. Hence, (3.23), (3.25) and (3.27) give, for ε small enough

Mε =(λk−1,s − λk,s)‖v‖2
L2(Ω)(3.28)

+ Ss,λk,s
(uε)‖tuε‖2

L2∗ (Ω) + κ̃‖v‖L2(Ω)‖uε‖L1(Ω)

≤ (λk−1,s − λk,s)‖v‖2
L2(Ω)

+ Ss,λk,s
(uε)(1 + ĉ ‖uε‖2∗−1

L2∗−1(Ω)
‖ṽ‖L2(Ω))

+ σ‖v‖2
L2(Ω) +

κ̃2

4σ
‖uε‖2

L1(Ω)

=(λk−1,s − λk,s + σ)‖v‖2
L2(Ω)

+ Ss,λk, s
(uε)(1 +O(ε(n−2s)/2)) +O(εn−2s),

thanks to Proposition 2.2. Now, let us choose σ > 0 be such that σ < λk,s−λk−1,s

(this choice is admissible since λk,s − λk−1,s > 0 by (2.10)). Then, (3.28) yields

(3.29) Mε ≤ Ss,λk,s
(uε)(1 +O(ε(n−2s)/2)) +O(εn−2s)

as ε → 0. Now, let us distinguish the two different cases n > 4s and n < 4s.

Case 1. n > 4s. By Proposition 2.2 and by definition of Ss,λk,s
( ·) (see (3.24))

we get

Ss,λk,s
(uε) =

∫
R2n

|uε(x)− uε(y)|2

|x− y|n+2s
dx dy − λk, s

∫
Ω

|uε(x)|2 dx( ∫
Ω

|uε(x)|2
∗
dx

)2/2∗

≤ S
n/(2s)
s +O(εn−2s)− λk,sCsε

2s

(Sn/(2s)
s +O(εn))2/2∗

≤ Ss +O(εn−2s)− λk,sCsε
2,

as ε → 0. Thus, as a consequence of this and of (3.29) we deduce

Mε ≤ (Ss +O(εn−2s)− λk,sCsε
2)(1 +O(ε(n−2s)/2)) +O(εn−2s)

= Ss +O(εn−2s)− λk,sCsε
2 = Ss + ε2s(O(εn−4s)− λk,sCs) < Ss,

provided ε > 0 is sufficiently small. Hence, (3.19) holds true. This concludes the
proof of Proposition 3.1 in the case when n > 4s.

Case 2. n < 4s. Again by Proposition 2.2 and by definition of Ss,λk,s
( · ) we

have

Ss,λk,s
(uε) ≤

S
n/(2s)
s +O(εn−2s)− λk,sCsε

n−2s +O(ε2s)

(Sn/(2s)
s +O(εn))2/2∗

≤Ss +O(εn−2s)− λk,sC̃sε
n−2s +O(ε2s),
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as ε → 0. Thus, by this and (3.29) we deduce

Mε ≤ (Ss +O(εn−2s)− λk,sC̃sε
n−2s +O(ε2s))(1 +O(ε(n−2s)/2)) +O(εn−2s)

=Ss +O(εn−2s)− λk,sC̃sε
n−2s +O(ε2s)

=Ss + εn−2s(O(1)− λk,sC̃s) +O(ε2s) < Ss,

if λk,s is large enough, say λk,s > λs > 0 and provided ε > 0 is sufficiently small.
Thus, (3.19) is verified. Ultimately, the proof of Proposition 3.1 is concluded.�

Finally, we can prove Theorem 1.1 as an application of classical minimax
theorems.

Proof of Theorem 1.1. Now, Theorem 1.1 easily follows from the Linking
Theorem (see [11], [12]), thanks to Propositions 2.3, 2.4 and 3.1. �
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Università della Calabria

Ponte Pietro Bucci 31 B

87036 Arcavacata di Rende (Cosenza), ITALY

E-mail address: servadei@mat.unical.it

TMNA : Volume 43 – 2014 – No 1


