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LIMIT SETS IN IMPULSIVE SEMIDYNAMICAL SYSTEMS

Changming Ding

Abstract. In this paper, we establish several fundamental properties in
impulsive semidynamical systems. First, we formulate a counterpart of

the continuous dependence on the initial conditions for impulsive dyna-

mical systems, and also establish some equivalent properties. Second, we
present several theorems similar to the Poincaré–Bendixson theorem for

two-dimensional impulsive systems, i.e. if the omega limit set of a bounded

infinite trajectory (with an infinite number of impulses) contains no rest
points, then there exists an almost recurrent orbit in the limit set. Further,

if the omega limit set contains an interior point, then it is a chaotic set;

otherwise, if the limit set contains no interior points, then the limit set
contains a periodic orbit or a Cantor-type minimal set in which each orbit

is almost recurrent.

1. Introduction

The theory of impulsive differential equations now becomes an important
field of investigation, for example, see books [3], [17], [22]. The researches of im-
pulsive semidynamical systems began by Kaul [19], [20] and Rozhko [24], [25]. In
particular, Kaul associated a given impulsive semidynamical system with a di-
screte semidynamical system defined on the range of an impulsive set under an
impulsive function, thus Kaul established many important results about the li-
mit sets and recurrent properties. He also initiated the study of stabilities for
impulsive semidynamical system (see [21]). Later, Ciesielski [12], [13] presented
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several fundamental results for this theory, in fact he applied his section the-
ory of semiflow (see [11]) to obtain the continuities of some important functions
associated with impulsive semidynamical systems. Recently, Bonotto, Federson
and their collaborators also published a series of important papers on this sub-
ject (for instance, see [1], [8], [9] and references therein), they developed a list
of valued results in impulsive semidynamical systems, which are counterparts of
basic properties in dynamical systems.

It is obvious that the dynamical behavior of an impulsive semidynamical
system is much richer than that of the corresponding semidynamical system.
Actually, in the next section we will present a very simple planar system in
which there is highly irregular dynamical behavior (e.g. chaotic orbits in its
limit sets). Our first goal of this paper is to establish the counterpart of the con-
tinuous dependence on the initial conditions for impulsive dynamical systems. In
particular, we reformulate the quasi-continuous dependence property in [10], and
present some equivalent formulas. Next, we investigate the structure of omega
limit sets of infinite trajectories (with an infinite number of impulses). In [9], the
authors stated a version of the Poincaré–Bendixson theorem, their conditions
separate the omega limit set of a bounded orbit away from the impulsive set,
i.e., the bounded orbit only has a finite number of impulses, thus their conclusion
is a generalization of a result of Poincaré–Bendixson Theory. In this paper, we
show the existence of almost recurrent orbits in the omega limit set of an infinite
trajectory if the limit set contains no rest points, and also we present an exam-
ple with a limit set that is a minimal set and homeomorphic to the product of
a Cantor set and an interval, in which all the orbits are almost recurrent and not
periodic. This shows that our result can not be strengthened to the existence of
periodic orbits in a limit set. Further, if there exists an interior point in the limit
set, then it is a chaotic set; otherwise, it has a periodic orbit or a Cantor-type
minimal set in which each orbit is almost recurrent.

2. Basic notations and definitions

Let X = (X, d) be a metric space with metric d. Throughout the paper,
for A ⊂ X, A and ∂A denote the closure and boundary of A, respectively. Let
B(x, δ) = {y ∈ X : d(x, y) < δ} be the open ball with center x and radius δ > 0.
In addition, for A ⊂ X, the r-neighbourhood of A is denoted by N(A, r) =
{z ∈ X : d(z,A) < r} for r > 0, where d(z,A) = inf{d(z, p) : p ∈ A}. Here, with
no confusion, we use d for the distance between a point and a set. Similarly, we
also use d for the distance between two sets A and B, i.e. d(A,B) = inf{d(a, b) :
a ∈ A and b ∈ B}. Let R+ and Z+ be the sets of nonnegative real numbers and
nonnegative integers, respectively.
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A semidynamical system (or semiflow) on X is a triple (X,π,R+), where π
is a continuous mapping from X × R+ onto X satisfying the following axioms:

(1) π(x, 0) = x for each x ∈ X,
(2) π(π(x, t), s) = π(x, t+ s) for each x ∈ X and t, s ∈ R+.

Sometimes we denote a semidynamical system (X,π,R+) by (X,π). Replacing
R+ by R, we get the definition of a dynamical system. For brevity, we write
x · t = π(x, t), and also let A ·J = {x · t : x ∈ A, t ∈ J} for A ⊂ X and J ⊂ R+. If
either A or J is a singleton, i.e. A = {x} or J = {t}, then we simply write x·J and
A · t for {x} ·J and A · {t}, respectively. For any x ∈ X, the function πx:R+ → X
defined by πx(t) = π(x, t) is clearly continuous, and we call πx the trajectory
of x. The set x ·R+ is said to be the (positive) orbit of x, and sometimes denoted
by C+(x). The closure of C+(x) is denoted by K+(x), i.e. K+(x) = x · R+. For
t ≥ 0 and x ∈ X, we define F (x, t) = {y : y · t = x}. Similarly, for J ⊂ [0,+∞)
and D ⊂ X, let F (D,J) = {F (x, t) : x ∈ D and t ∈ J}. a point x ∈ X is called
a start point, if F (x, t) = ∅ for all t > 0. Note that for a semidynamical system
defined on a manifold, there exist no start points (see [5]). For the elementary
properties of dynamical and semidynamical systems, we refer to [5], [6], [14]
and [23].

Let Ω ⊂ X be an open set in X, and denote the boundary of Ω in X
by M = ∂Ω. Assume that M is a nonempty closed set. Let I:M → Ω be
a continuous function and I(M) = N . If x ∈M , we shall denote I(x) by x+ and
say that x jumps to x+. Meanwhile, I andM are said to be an impulsive function
and an impulsive set, respectively. For each x ∈ X, by M+(x) we mean the set
(x ·R+∩M)\{x}. In order to avoid the uninterrupted impulses, we assume that
when a trajectory πx intersects the impulsive set M , it instantaneously exits M ,
i.e. the points of M are isolated in every trajectory of the system (X,π). Indeed,
we suppose that for any x ∈M , there exists an εx > 0 such that

(2.1) F (x, (0, εx)) ∩M = ∅ and x · (0, εx) ∩M = ∅.

This condition was introduced by Kaul, see the condition (2.1) in [19]. Clearly,
it implies that M contains no rest points of (X,π), here by a rest point x of
(X,π) we mean that x · t = x for any t ≥ 0. Thus, we can define a function
φ:X → R+ ∪ {+∞} by

φ(x) =

{
s if x · s ∈M and x · t 6∈M for t ∈ (0, s),
∞ if M+(x) = ∅.

In general, the function φ:X → R+ ∪ {+∞} may not be continuous. However,
its continuity is crucial for the analysis of dynamics. Fortunately, some simple
conditions are given by Ciesielski in [12] to guarantee the continuity of φ.
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Assumption I. We assume throughout the paper that φ is a continuous
function on Ω.

Now, we define an impulsive semidynamical system (X,π; Ω,M, I) by por-
traying the orbit of each point in Ω. The impulsive trajectory of x ∈ Ω is an
Ω-valued function π̃x defined on the subset [0, s) of R+ (s may be +∞).
If M+(x) = ∅, then φ(x) = +∞, and we set π̃x(t) = x · t for all t ∈ R+. If

M+(x) 6= ∅, it is easy to see that there is a smallest positive number t0 such that
x · t0 = x1 ∈M and x · t 6∈M for 0 < t < t0. Thus, we define π̃x on [0, t0] by

π̃x(t) =

{
x · t if 0 ≤ t < t0,
x+1 if t = t0,

where x+1 = I(x1) and φ(x) = t0.
Since t0 < +∞, we continue the process by starting with x+1 . Similarly, if

M+(x+1 ) = ∅, i.e. φ(x
+
1 ) = +∞, we define π̃x(t) = x

+
1 · (t− t0) for t0 ≤ t < +∞.

Otherwise, let φ(x+1 ) = t1 and x
+
1 · t1 = x2 ∈ M , then we define π̃x(t) on

[t0, t0 + t1] by

π̃x(t) =

{
x+1 · (t− t0) if t0 ≤ t < t0 + t1,
x+2 if t = t0 + t1,

where x+2 = I(x2).
Thus, continuing inductively, the process above either ends after a finite

number of steps, whenever M+(x+n ) = ∅ for some n, or it continues infinitely, if
M+(x+n ) 6= ∅ for n = 1, 2, . . . , and π̃x is defined on the interval [0, T (x)), where
T (x) =

∞∑
i=0
ti.

We call {ti} the impulsive intervals of π̃x, and call
{
τn =

n∑
i=0
ti

∣∣∣∣n = 0, 1, . . .}
the impulsive times of π̃x. Obviously, this gives rise to either a finite or infinite
number of jumps at points {xn} for the trajectory π̃x. After setting each trajec-
tory π̃x for every point x in Ω, we let π̃(x, t) = π̃x(t) for x ∈ Ω and t ∈ [0, T (x)),
and then we get a discontinuous system (Ω, π̃) satisfying the following properties:

(i) π̃(x, 0) = x for x ∈ Ω,
(ii) π̃(π̃(x, t), s) = π̃(x, t + s) for x ∈ Ω and t, s ∈ [0, T (x)), such that
t+ s ∈ [0, T (x)).

We call (Ω, π̃), with π̃ as defined above, an impulsive semidynamical system
associated with (X,π). Also, for simplicity of exposition, in the remainder of this
paper we denote the trajectory π̃(x, t) by x∗t. Thus, (ii) reads (x∗t)∗s = x∗(t+s).
Let x ∈ Ω be given, if M+(x) = ∅, the trajectory π̃x is continuous; otherwise, it
has discontinuities at a finite or an infinite number of its impulsive points {x+n }.
At any such point, however, π̃x is continuous from the right. From the point of
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view of an impulsive semidynamical system, the trajectories that are of interest
are those with an infinite number of discontinuities and with [0,+∞) as the
interval of definition. We call them infinite trajectories. In this paper, we do not
deal with the Zeno orbits (see [17, Chapter 2]), i.e. we are mainly interested in
the case of T (x) = +∞.

Remark 2.1. Under the condition of (2.1), the points of M are isolated in
each orbit of the system (X,π), thus we can similarly define an impulsive semi-
dynamical system (X, π̃) on X, which admits (Ω, π̃) as a subsystem. However,
we are just interested in the system (Ω, π̃) for the following reasons. First, each
point in M of the system (X, π̃) is a start point from the point of view of an
impulsive semidynamical system. There is not much interesting dynamical be-
havior at the points of M , since those points jump away from M . Second, it
destroys the consistency with the classical theory, e.g. the closure of an invariant
set may not be invariant and a limit set may not be invariant, etc. Furthermore,
φ is not continuous on M , see [12].

Let x ∈ Ω, the orbit x∗R+ of x in the system (Ω, π̃) will be denoted by C̃+(x)
and its closure in Ω by K̃+(x), i.e. K̃+(x) = x ∗ R+∩Ω. Now, we introduce some
concepts (see [19], [20]) that will be used in the sequel.

Definition 2.2. A subset S of Ω is said to be positively invariant if for any
x ∈ S, C̃+(x) ⊂ S. Further, it is said to be invariant if it is positively invariant
and for any x ∈ S, t ∈ [0, T (x)) there exists a y ∈ S such that y ∗ t = x.

Definition 2.3. A point x in Ω is a rest point if x ∗ t = x for every t ∈ R+.
An orbit C̃+(x) is said to be periodic of period τ and order k if x ∗ R+ has k
components and τ is the least positive number such that x ∗ τ = x.

Clearly, a periodic orbit of (Ω, π̃) is an invariant closed set in Ω, and it is not
connected as long as k 6= 1. a point x ∈ Ω is a rest point of (Ω, π̃) if and only if
it is a rest point of (X,π).

Definition 2.4. Let x ∈ Ω and T (x) = +∞, the omega limit set of x in
(Ω, π̃) is defined by ω̃(x) = {y ∈ Ω : x ∗ tn → y for some tn → +∞}.

Equivalently, ω̃(x) = lim sup
n→+∞

{x+n ∗ [0, φ(x+n ))}. Thus, it is easy to see that

ω̃(x) is closed and positively invariant.
We end this section with a very simple impulsive semidynamical system de-

fined in the plane R2, however, there is highly irregular dynamical behavior (e.g.
chaotic trajectories) in this system.

Example 2.5. Let X = {(x, y) ∈ R2 : 0 ≤ x ≤ 1}. We define a dynamical
system on X by a differential system:

(2.2) ẋ = 0, ẏ = −1.
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This system is very simple, each orbit goes down straightly. Now, we set M =
{(x, 0)|0 ≤ x ≤ 1} and N = {(x, 1)|0 ≤ x ≤ 1}. Then, define the impulsive
function I:M → N as I(x, 0) = (λx(1 − x), 1), where λ ∈ (0, 4]. It is easy to
see that every trajectory with an initial point above M is an infinite trajectory.
Note that the unimodal map y = λx(1− x) on the interval [0, 1] is well studied,
we refer to [7], [15] for its dynamical behavior dependent on λ. In particular, if
λ = 4, it is chaotic on [0, 1], see [15, Example 8.9, p. 50]. Thus, this unimodal
map has dense periodic points in [0, 1], topological transitivity and sensitive
dependence on initial conditions. Correspondingly, if λ = 4, it is easy to check
that in the region S = [0, 1] × (0, 1], the impulsive system defined as above has
dense periodic orbits and topological transitivity, which also implies sensitive
dependence on initial conditions. Thus, S is a chaotic set. For the detail, see
Section 4 and [7], [15].

3. Dependence on the initial conditions

In this section, our goal is to establish a kind of continuous dependence
on the initial conditions for impulsive semidynamical systems. In the theory
of dynamical systems, the continuous dependence on the initial conditions is
a fundamental property, which is often applied to prove important dynamical
behavior about close orbits. We restate it for semidynamical systems according
to the famous book of Nemytskii and Stepanov [23, p. 327] as follows.

Continuous dependence on the initial conditions. Let (X,π) be a se-
midynamical system. For any x ∈ X, let two positive numbers T and ε be given,
there can be found a δ = δ(x, ε, T ) > 0 such that if d(x, y) < δ, then d(x·t, y·t) < ε
for all t ∈ [0, T ], in particular,

(3.1) B(x, δ) · [0, T ] ⊂ N(x · [0, T ], ε).

Obviously, it is an immediate conclusion from the continuity of π. Sometimes,
we call it CD property of a semiflow, for brevity. Of course, now this basic pro-
perty does not hold for our impulsive semidynamical system (Ω, π̃). To remedy
this case, for impulsive semidynamical systems in Rn, in [10] the authors pre-
sented an assumption of quasi-continuous dependence. For every x0 ∈ D ⊂ Rn,
there exists Jx0 ⊂ [0,+∞) such that [0,+∞) \ Jx0 is (finitely or infinitely) co-
untable and for every ε > 0, t ∈ Jx0 , there exists δ(ε, x0, t) > 0 such that if
||x0 − y|| < δ(ε, x0, t) and y ∈ D, then ||x0 ∗ t − y ∗ t|| < ε, where || · || is
the ordinary norm in Rn. In the following, we restate this dependence on initial
conditions for an impulsive semidynamical system (Ω, π̃) defined in the metric
space (X, d).



Limit Sets in Impulsive Semidynamical Systems 103

Assumption II. For every x ∈ Ω, let T(x) = {ti | i = 0, 1, . . . } be the set of
impulsive times for π̃x. For any ε > 0 and t ∈ Jx = [0, T (x)) \ T(x), there exists
a δ = δ(ε, x, t) > 0 such that if d(x, y) < δ and y ∈ Ω, then d(x ∗ t, y ∗ t) < ε.

Since Ω is an open set, if δ is small enough, it implies that y ∈ Ω. We are
now going to show that Assumption II is equivalent to the continuity of φ on Ω.
First, we present a lemma that is a new version of an important result proved
by Kaul in [21, Lemma 2.3]. One can see that our conclusion is consistent with
the right continuity of the system (Ω, π̃) at impulsive points.

Lemma 3.1. Let φ be continuous on Ω. Suppose that {xn} is a sequence
in Ω, convergent to a point y ∈ Ω. Then for any t ∈ [0, T (y)), there exists
a sequence of real positive numbers {εn}, εn → 0+, such that t+εn < T (xn) and
xn ∗ (t+ εn)→ y ∗ t.

Note that in this lemma and its proof, {xn} is not the n-th discontinuous
point of the trajectory π̃x. Actually, we will denote the i-th impulsive point of
the trajectory π̃xn by {x+n,i}.

Proof. If φ(y) = +∞, the continuity of φ implies that φ(xn) > t for any
fixed t ∈ [0,+∞) as long as n is sufficiently large. Consequently, xn ∗ t = xn · t
for large n. Then the result follows from the continuity of π with εn = 0. If
φ(y) < +∞, then we may assume that φ(xn) < +∞, since φ is continuous.
Now, we first consider the case 0 ≤ t < φ(y). Let ε ∈ (0, φ(y)− t). From the

continuity of φ, we conclude that φ(y)− ε < φ(xn) for large n, so t < φ(xn) and
xn ∗ t = xn · t, and also the continuity of π implies the result for εn = 0.
Next, for the case t = φ(y), then y ∗ t = y+1 . If φ(xn) ≥ φ(y), set εn =

φ(xn) − t ≥ 0. Because xn,1 = xn · φ(xn) → y1, and I is continuous, thus it
follows that x+n,1 = xn ∗ φ(xn) = xn ∗ (t + εn) → y

+
1 . If φ(xn) < φ(y), we set

εn = 0. Then, d(y ∗ t, xn ∗ t) = d(y+1 , x
+
n,1 · (t−φ(xn)))→ 0, since x

+
n,1 → y

+
1 and

t− φ(xn)→ 0.

Finally, we consider the case where t > φ(y), so t =
m−1∑
i=0
φ(y+i ) + t

′, 0 ≤ t′ <

φ(y+m), where y
+
0 = y and y

+
i+1 = y

+
i ∗ φ(y

+
i ) (i = 0, 1, . . . ,m− 1). Define {x

+
n,i}

inductively by x+n,i+1 = x
+
n,i ∗ φ(x

+
n,i). If tn =

m−1∑
i=0
φ(x+n,i), then it is easy to see

that x+n,m = xn ∗ tn → y+m as n → +∞. Indeed, for this fixed integer m, we
have x+n,i → y

+
i for each i = 1, . . . ,m. Note that tn → t− t′ as n → +∞. Now,

if t′ > 0, the reasoning is similar to the first case, we set εn = 0. If t′ = 0, it
is similar to the second case, for tn ≥ t we set εn = tn − t, and for tn < t set
εn = 0. Thus, similarly, it is easy to see that xn ∗ (t+ εn)→ y+m ∗ t′ = y ∗ t. The
proof is complete. �
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The conclusion in Lemma 3.1 is equivalent to the following statement. For
any ε > 0, σ > 0 and t ∈ [0, T (y)), there exists a δ = δ(y, ε, σ, t) > 0 such that if
d(x, y) < δ, then the inequality d(x ∗ (t+ θ), y ∗ t) < ε holds for some θ ∈ [0, σ)
( 0 ≤ t + θ < T (y) ). Clearly, if we adjust the definition of π̃(x, t) to make the
trajectory π̃x continuous from left at impulsive times, then we can set εn ≤ 0 and
εn → 0− in Lemma 3.1. Note that this result admits any t in [0, T (y)). However,
in Assumption II, it requires that t is not an impulsive time. Actually, in our
new definition of quasi-continuous dependence in the following, we also permit
that t is an impulsive time. Now, we show the equivalence between Assumption
II and the continuity of φ.

Theorem 3.2. Assumption II is equivalent to the continuity of φ on Ω.

Proof. Let φ be continuous on Ω. For x ∈ Ω, if M+(x) = ∅ (or φ(x) =
+∞), then we let Jx = [0,+∞). In this case, the standard CD property of
a semidynamical system works. Indeed, for each ε > 0 and t ∈ Jx = [0,+∞),
there exists a δ1 > 0 such that if d(x, y) < δ1, then φ(y) > t + 1, since φ is
continuous. Thus, by (3.1) it is easy to see that there is a δ < δ1 such that
B(x, δ) · [0, t] ⊂ Ω and if d(x, y) < δ, then d(x ∗ t, y ∗ t) = d(x · t, y · t) < ε.
IfM+(x) 6= ∅, by the definition of the trajectory x∗ t, we set Jx = [0, T (x))\

T(x), where T(x) is the set of impulsive times of x∗t. Let ε > 0 and t ∈ Jx. Since
t is not an impulsive time, without loss of generality, we suppose B(x∗ t, ε) ⊂ Ω.
Clearly, we only need to consider the case t > 0. Thus, by the continuity of π̃x at
time t, there exists a σ > 0 satisfying t−σ > 0 and x ∗ [t−σ, t+σ] ⊂ B(x ∗ t, ε).
Now, according to (3.1), one can find a positive number µ < ε so that B(x ∗

(t − σ), µ) ∗ [0, σ] ⊂ B(x ∗ t, ε). Thus by Lemma 3.1, there exists a δ > 0 such
that if d(y, x) < δ, then d(y ∗ (t − σ + θ), x ∗ (t − σ)) < µ for some θ ∈ [0, σ).
Since y ∗ t = (y ∗ (t− σ + θ)) ∗ (σ − θ) ∈ B(x ∗ (t− σ), µ) ∗ [0, σ], it follows that
y ∗ t ∈ B(x ∗ t, ε), i.e. d(y ∗ t, x ∗ t) < ε. It shows that Assumption II is true.
Conversely, suppose that Assumption II is true. For x ∈ Ω, if t0 = φ(x) <

+∞, let d(x1, x+1 ) = 4ρ > 0. Given an ε > 0 (ε < t0), without loss of generality,
we suppose that ε is so small that for every t ∈ [t0−ε, t0+ε], both d(x·t0, x·t) < ρ
and d(x+1 , x∗(t0+ε)) < ρ hold. Since the impulsive times T(x) of x∗t are isolated
in R+, we also assume (t0−ε, t0+ε)∩T(x) = {t0} (if necessary, take a smaller ε).
By the CD property of a semidynamical system, there exists a δ1 > 0 such

that if d(x, y) < δ1, then d(x · t, y · t) < ρ holds for all t ∈ [t0−ε, t0+ε]. It implies
that y · [t0 − ε, t0 + ε] ⊂ B(x1, 2ρ) for y ∈ B(x, δ1). Since the orbit segment
x · [0, t0 − ε] is compact and does not intersect M , the distance between them
is positive, i.e. d(x · [0, t0 − ε],M) = 2r > 0. By (3.1), there exists a δ2 > 0
such that B(x, δ2) · [0, t0 − ε] ⊂ N(x · [0, t0 − ε], r), i.e. for each y ∈ B(x, δ2), the
orbit segment y · [0, t0 − ε] is disjoint from M . Hence, it means φ(y) > t0 − ε for
y ∈ B(x, δ2).
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Now, since t0+ε is not an impulsive time, it follows from Assumption II that
there exists a δ3 > 0 such that if d(x, y) < δ3, then d(x∗ (t0+ε), y ∗ (t0+ε)) < ρ.
Thus, let δ = min{δ1, δ2, δ3}, and we assert that if d(x, y) < δ, then y ∗ (t0+ε) 6=
y · (t0 + ε).
Actually, it is easy to see that d(y · (t0+ ε), y ∗ (t0+ ε) ≥ d(x1, x+1 )− d(x1, y ·

(t0 + ε)) − d(x+1 , y ∗ (t0 + ε)) > 4ρ − 2ρ − 2ρ = 0. It is equivalent to that there
exists at least an impulse for the trajectory y ∗ t in the time interval [0, t0 + ε),
then it implies φ(y) < t0 + ε. So, we conclude that φ(y) ∈ (t0 − ε, t0 + ε) for
y ∈ B(x, δ), i.e. φ is continuous at x.
Finally, we consider the case t0 = φ(x) = +∞. Let any large T > 0 be given.

Since the compact set x · [0, T ] is disjoint from M , by (3.1) one can find a δ > 0
such that if d(x, y) < δ, then y ·[0, T ] does not intersectM , it implies φ(y) > T .�

In order to obtain a counterpart of continuous dependence on initial condi-
tions for an impulsive semidynamical system, we introduce a concept of a time
σ-reparametrization.

Definition 3.3. For a σ > 0, by a time σ-reparametrization we mean a ho-
meomorphism τ from R+ to R+ with τ(0) = 0 such that |τ(t) − t| < σ for all
t ≥ 0.

Quasi-continuous dependence. Let x ∈ Ω. For any ε > 0, σ > 0, and
a positive number T < T (x), there exists a δ > 0 such that if d(x, y) < δ, then
d(x ∗ t, y ∗ τy(t)) < ε holds for all t ∈ [0, T ], where τy is a σ-reparametrization.

It is easy to see that quasi-continuous dependence property is a generaliza-
tion of the standard continuous dependence property for dynamical systems to
impulsive dynamical systems. Actually, by letting σ = 0, the quasi-continuous
dependence property turns to the classical continuous dependence on initial con-
ditions. In the sequel, we sometimes denote the quasi-continuous dependence by
QCD property, for brevity.

Theorem 3.4. The QCD property is equivalent to the continuity of φ on Ω.

Proof. First, let φ be continuous on Ω, then Assumption II holds. By defi-
nition, for x ∈ Ω and a fixed T ∈ (0, T (x)), there exists a finite set {t0, . . . , tn}
satisfying 0 < t0 < . . . < tn < T , which is all impulsive times contained in
[0, T ] of the trajectory x ∗ t. Suppose that T is not an impulsive time, otherwise
we replace it by T + ν (< T (x)), where ν is a small positive number such that
(T , T + ν] ∩ T(x) = ∅.
Given an ε > 0 and a σ > 0, we assume that σ is sufficiently small so that

0 < t0−σ/2 < t0 < t0+σ/2 < t1−σ/2 < t1 < t1+σ/2 < . . . < tn−σ/2 < tn <
tn + σ/2 < T , meanwhile x ∗ [ti − σ/2, ti) ⊂ B(xi+1, ε/2) and x ∗ [ti, ti + σ/2] ⊂
B(x+i+1, ε/2) for each i = 0, . . . , n, where x

+
i+1 = x∗ ti and xi+1 = x

+
i ·(ti− ti−1).
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We assert that there exists a δ1 > 0 such that if d(x, y) < δ1, then d(x∗t, y∗t) < ε
for all t ∈ I = [0, t0 − σ/2] ∪ [t0 + σ/2, t1 − σ/2] ∪ . . . ∪ [tn + σ/2, T ]. Otherwise,
one can find two sequences {yn} and {τn} such that yn → x and τn ∈ I, and
d(x ∗ τn, yn ∗ τn) ≥ ε.
Without loss of generality, suppose τn → τ0 ∈ I. It implies that for large n,

τn lies in a fixed subinterval [α, β] of I, where [α, β] is a component of I. Thus,
for yn → x, by Assumption II, we have d(x ∗α, yn ∗α)→ 0. Now, it follows from
the continuity of π that

d(x ∗ τn, yn ∗ τn) = d((x ∗ α) ∗ (τn − α), (yn ∗ α) ∗ (τn − α))
= d((x ∗ α) · (τn − α), (yn ∗ α) · (τn − α))
→ d((x ∗ α) · (τ0 − α), (x ∗ α) · (τ0 − α)) = 0.

It is contradictory to d(x ∗ τn, yn ∗ τn) ≥ ε, so we obtain the conclusion:

(3.2) ∀ε > 0, ∃δ1 > 0, d(x, y) < δ1 ⇒ d(x ∗ t, y ∗ t) < ε (t ∈ I).

Consider Ii = (ti − σ/2, ti + σ/2) (i = 0, . . . , n). Since φ is continuous on Ω
and I is continuous on M , there is a δ2 ∈ (0, δ1) such that if y ∈ B(x, δ2), the
trajectory y ∗ t has just n + 1 impulsive times {τi : i = 0, . . . , n} in [0, T ] and
one in each Ii, i.e. τi ∈ Ii.
Clearly, by (3.1), y ∗ [ti − ε/2, τi) ⊂ N(x ∗ [ti − ε/2, ti), ε/2) holds as long as

d(y ∗ (ti− ε/2), x ∗ (ti− ε/2)) is small, further by the continuity of I it also leads
to y ∗ [τi, ti + σ/2] ⊂ N(x ∗ [ti, ti + σ/2], ε/2). Thus, by Assumption II, we take
a δ ∈ (0, δ2) such that for i = 0, . . . , n, both sup{d(p, q) : p ∈ x∗ [ti−σ/2, ti), q ∈
y∗[ti−ε/2, τi)} < ε and sup{d(p, q) : p ∈ x∗[ti, ti+σ/2], q ∈ y∗[τi, ti+ε/2]} < ε
hold. Then, for y ∈ B(x, δ), define a σ-reparametrization τy as follows.
If t ∈ I ∪ [T ,+∞), let τy(t) = t; if t ∈ Ii (i = 0, . . . , n), set

τy(t) =
1
σ
(2τi − 2ti + σ)

(
t− ti +

σ

2

)
+ ti −

σ

2
for t ∈ [ti − σ/2, ti),

τy(t) =
1
σ
(2ti + σ − 2τi)(t− ti) + τi for t ∈ [ti, ti + σ/2).

It is easy to see that τy is a σ-reparametrization for the trajectory y ∗ t such that
if d(x, y) < δ, then d(x ∗ t, y ∗ τy(t)) < ε holds for all t ∈ [0, T ]. So, the QCD
property is true.
Next, assume that the QCD property holds. Let x ∈ Ω and φ(x) = t0 < +∞.

Given an ε > 0, we denote d(x1, x+1 ) = 3r > 0 and d(x · [0, t0 − ε],M) = λ > 0.
Without loss of generality, suppose that ε is so small that x · [t0 − ε, t0 + ε] ⊂
B(x1, r) and x+1 ·[0, t0+ε] ⊂ B(x

+
1 , r). Thus, by the CD property of π, there exists

a δ1 > 0 such that if d(x, y) < δ1, then d(x · t, y · t) < min{λ, r} for t ∈ [0, t0+ ε].
It follows that y · [0, t0−ε] ⊂ N(x · [0, t0−ε], λ), i.e. y · [0, t0−ε]∩M = ∅. Clearly,
it implies that φ(y) > t0 − ε.
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Meanwhile, we have y · [t0 − ε, t0 + ε] ⊂ B(x1, 2r), since d(x · t, y · t) < r for
t ∈ [t0 − ε, t0 + ε]. According to the QCD property, there exist a δ2 > 0 and
a ε-reparametrization τy such that if d(x, y) < δ2, one has d(x∗t, y∗τy(t)) < r for
all t ∈ [0, t0+ε]. So, we obtain d(x+1 , y∗τy(t0)) < r. Now, we set δ = min{δ1, δ2}.
Then, for y ∈ B(x, δ), both y · [t0−ε, t0+ε] ⊂ B(x1, 2r) and y∗τy(t0) ∈ B(x+1 , r)
hold, it implies y ∗τy(t0) 6∈ y · [t0−ε, t0+ε]. Since |t0−τy(t0)| < ε, it follows that
there must be an impulsive time in [t0−ε, t0+ε] for y, i.e. t0−ε < φ(y) < t0+ε.�

4. Limit sets

In this section, our discussion is restricted in the impulsive system (Ω, π̃)
defined in the Euclidean plane, i.e. Ω is an open set in R2. Our goal is to de-
scribe the structure of an omega limit set for two-dimensional impulsive systems
and prove some theorems similar to the Poincaré–Bendixson theorem. Actually,
we show that if the omega limit set of a bounded trajectory does not contain
rest points, then it contains an almost recurrent orbit (see Definition 4.8). In
particular, if there exists an interior point in the limit set, then it is a chaotic set
(see Definition 4.5); otherwise, it has a periodic orbit or a Cantor-type minimal
set in which each orbit is almost recurrent. In the following, we first recall some
results of dynamics of one-dimensional system and prove that if an omega limit
set of an interval map contains an interior point, then it is a chaotic set. Next, we
apply those results to investigate the structure of a limit set ω̃(x) of an infinite
trajectory for two-dimensional impulsive systems.

4.1. Dynamics on an interval. In this subsection, we recall some results
of dynamics in one dimension that will be used in the sequel. We show that if an
omega limit set of an interval map contains an interior point, then it is a chaotic
set.
Let J be a compact interval in R and let f denote a continuous function

mapping J into J . For each natural number n, we let fn denote the nth iterate
of f . It is standard to think of f0 as the identity function. For a fixed point
x ∈ J , we denote the trajectory of f at x by γ(x) = {fn(x) : n = 0, 1, . . . }.
Sometimes we will view γ(x) as a set of points (the orbit of x) and sometimes
as a sequence; however, the context will always indicate which is meant. In the
case where γ(x) has a finite range, x is said to be an eventually periodic point. In
particular, if there is a positive integer k such that fk(x) = x, then f is said to
be periodic at x, and if k is the least natural number such that fk(x) = x, then x
is called a periodic point with period k. In the special case where k = 1, i.e. when
f(x) = x, x is called a fixed point of f . The omega limit set of f at x is denoted
by ω(x, f), and is the set of all numbers y ∈ J for which there exists a sequence
{fnk(x)} such that fnk(x)→ y as nk →∞, i.e. the set of accumulation points of
the orbit γ(x). a nonempty set A ⊂ J is called positively invariant if f(A) ⊂ A
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and invariant if f(A) = A. A nonempty invariant closed set is called minimal if
it contains no proper invariant closed subset. The existence of a minimal set in
a nonempty compact invariant set is actually valid for any dynamical systems
defined in a metric space X, for X = J we have the following stronger version
(see [7, p. 92]).

Lemma 4.1. Let f : J → J be a self map of a compact interval J . Then
any nonempty closed invariant set contains a minimal set. Further, any infinite
minimal set in J is a Cantor set, i.e. a closed subset of J which has no isolated
point and contains no interval.

Topological structure of ω(x, f) was investigated in depth by Agronsky et
al. [2], Block and Coppel [7]. It is well known that ω(x, f) for any x ∈ J is
non-empty, closed and invariant. The following result is a characteristic of the
omega limit set, see [2], [7].

Lemma 4.2. A non-empty subset Λ of J is an omega limit set for some
continuous self map of J if and only if either Λ is closed and nowhere dense or
Λ is a finite union of pairwise disjoint, closed subintervals {Ii}ni=1 which form

a cycle, that is Λ =
n⋃
i=1
Ii where Ii ∩ Ij = ∅ if i 6= j, with f(Ii−1) = Ii if

i = 2, . . . , n and f(In) = I1.

Clearly, if a limit set ω(x, f) has only finitely many points, then it contains
a periodic orbit. Generally speaking, a limit set always has some recurrent pro-
perty. In order to see some recurrent phenomena in ω(x, f), we recall the concept
of almost periodicity that is termed to be almost recurrence in [20].

Definition 4.3. We say that f is almost periodic at x if, for any ε > 0,
there exists a positive integer k = k(ε) such that d(f i+n(x), fn(x)) < ε for any
n ∈ Z+ and for some i with 0 < i ≤ k.

Proposition 4.4. For each x ∈ J , there exists an almost periodic orbit
contained in the omega limit set ω(x, f) of x.

The proof of above proposition is immediate, since ω(x, f) contains a compact
minimal set and each point in a compact minimal set is almost periodic (see [7]).
In Proposition 4.4, we do not have the existence of periodic orbits. Indeed, Block
and Coppel in [7, p. 149] presented an example taking the classical ‘middle-third’
Cantor set as a minimal set, which implies the nonexistence of periodic orbits
in it.
Now, we recall two important concepts in the theory of chaos. A continuous

map f :X → X, whereX is a metric space, is said to be (topologically) transitive,
if for any pair of nonempty open sets U and V inX, there exists a positive integer
k such that fk(U)∩V 6= ∅. It is well known that, in a complete metric space with
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no isolated points, transitivity is equivalent (via the Baire Category Theorem)
to the existence of a point with dense orbit, which in turn is equivalent to the
existence of a dense Gδ set of points each of which has a dense orbit (see [16,
p. 77]). The map f is said to possess sensitive dependence on initial conditions,
if there exists an ε > 0 for any x0 ∈ X and any open set U ⊂ X containing x0
there exists y0 ∈ U and k ∈ Z+ such that d(fk(x0), fk(y0)) > ε. We introduce
the definition of chaos according to Devaney [15] as follows.

Definition 4.5. A continuous map f :X → X, where X is a metric space,
is said to be chaotic (or X is said to be a chaotic set) provided

(a) f is transitive;
(b) The set of periodic points of f is dense in X;
(c) f has sensitive dependence on initial conditions.

Clearly, if fn is chaotic for some n ∈ Z+, also is f . Note that in [4], Banks et
al. showed that conditions (a) and (b) imply condition (c). Furthermore, Velle-
koop and Berglund [26] proved that for interval maps transitivity implies chaos,
i.e. if X = J and f : J → J is transitive, then it is chaotic.

Theorem 4.6. If ω(x, f) for x ∈ J contains an interior point, then ω(x, f)
is a chaotic set.

Proof. First, we consider the case ω(x, f) = I0, where I0 is a subinterval in
J . Obviously, I0 is invariant and fk(x) lies in the interior of I0 for some integer
k ≥ 0, so the orbit γ(fk(x)) is a dense orbit in I0. Thus, f is transitive in the
invariant set ω(x, f), which implies ω(x, f) is a chaotic set (see [26]). Next, by

Lemma 4.2, since ω(x, f) contains an interior point, we have ω(x, f) =
n⋃
i=1
Ii,

where each Ii is a subinterval and Ii ∩ Ij = ∅ if i 6= j, with f(Ii−1) = Ii if
i = 2, . . . , n and f(In) = I1. Thus, fn: I1 → I1 is a chaotic map on I1. Clearly,
it follows that f is chaotic on ω(x, f), or ω(x, f) is a chaotic set. �

4.2. Limit sets in (Ω, π̃). In this subsection, we discuss the structure of
the omega limit set of an infinite trajectory for the impulsive system (Ω, π̃)
defined in the Euclidean plane. By establishing a discrete semidynamical system
associated with (Ω, π̃), which was first proposed by Kaul [20], we apply the
results of Section 4.1 to obtain our main theorems about ω̃(x). Our investigation
is focused on an infinite trajectory π̃x, i.e. π̃x has an infinite number of impulsive
times and T (x) = +∞.

Let N̂ = {x ∈ N : π̃x is an infinite trajectory}, it is a subset of N . Define
Π: N̂ → M by letting Π(y) = y · φ(y) for each y ∈ N̂ . Since φ is continuous
on Ω, so is Π on N̂ . Now, given any x ∈ N̂ , x1 = x · φ(x) ∈ M , then we define
g: N̂ → N̂ by g(x) = I ◦ Π(x) = x+1 , consequently g is continuous on N̂ . As
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usual, we set g0 =identity, g1 = g and gn inductively for n > 1. Thus, we obtain
a discrete semidynamical system (N̂ , g,Z+), where g(x, n) = gn(x) = x+n and
x+0 = x. (N̂ , g,Z+) or simply (N̂ , g) is called the discrete semidynamical system
associated with the given impulsive system (Ω, π̃) (see [20]). The orbit of a point
x ∈ N̂ is denoted by Ĉ+(x) and its closure in N̂ by K̂+(x). A subset A in N̂
is minimal if for any q ∈ A, A = K̂+(q). We say that g is almost periodic at
p ∈ N̂ if, for any ε > 0, there exists a positive integer k = k(ε) such that for
any n ∈ Z+, d(p+i+n, p+n ) = d(gi+n(p), gn(p)) < ε for some i with 0 < i ≤ k. Note
that in the paper [20] by Kaul a function g fulfilling this property is said to be
almost recurrent at p.
For a subset A ⊂ N̂ , if A is closed in Ω and positively invariant under g, i.e.

g(A) ⊂ A, then we call A a regular set. Clearly, if N̂ is closed in Ω, then N̂ is
a regular set. In particular, for an x ∈ N̂ , if the closure of Ĉ+(x) in Ω coincides
with K̂+(x), then K̂+(x) is a regular set. If a set A in N̂ is a regular set, an
important property of A is that the restriction g|A:A→ A defines a sub-system
(A, g|A) of (N̂ , g) such that each limit set ω(x, g|A) (x ∈ A) in the system (A, g|A)
contains all limit points of Ĉ+(x) in Ω.
For x ∈ Ω, the trajectory π̃x is bounded if its orbit C̃+(x) ⊂ B(x, r) for some

r > 0, otherwise it is said to be unbounded. Let π̃x be a bounded trajectory, it is
easy to see that the limit set ω̃(x) is a nonempty closed set in Ω.
Before presenting the next result, we recall the concept of asymptotical sta-

bility from one side of a periodic orbit for a two-dimensional system. Let Γ be
a periodic orbit of a semidynamical system (R2, π). Clearly, Γ divides R2 into
two disjoint connected components U1 and U2. Then Γ is said to be stable from
one side in U1 if for any neighbourhood V of Γ, there exists a neighbourhood U
of Γ such that U ⊂ V and U ∩U1 is positively invariant. Further, Γ is said to be
asymptotically stable from one side in U1 if it is stable from one side in U1 and
there exists a neighbourhood W of Γ such that ω(x) ⊂ Γ for each x ∈ W ∩ U1.
We refer the reader to [14] for details, and also refer [18, Chapter 7] for the case
of differential dynamical systems.

Lemma 4.7. Let x ∈ N̂ and π̃x be bounded. Suppose that ω̃(x) contains no
rest points. Then K̂+(x) is a regular set.

Proof. For x ∈ N̂ , assume that π̃x is bounded and ω̃(x) contains no rest
points. We prove that the limit set of Ĉ+(x) in Ω lies in N̂ . Let x+nk → p, clearly
p ∈ N and p ∈ ω̃(x). By the condition (2.1) and the continuity of φ, we have
p 6∈ M . Since ω̃(x) contains no rest points, p is not a rest point. We show that
φ(p) < +∞.
Suppose to the contrary that φ(p) = +∞. Then p ∗ R+ = p · R+ lies in Ω.

First, if p · R+ is unbounded, i.e. for any r > 0, there exists a t > 0 such that
p · t 6∈ B(p, r + 1). From the CD property of π, it follows that for a sufficiently
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large nk, x+nk · [0, t) ⊂ Ω and d(p · t, x
+
nk
· t) < 1. Thus, x+nk · t 6∈ B(p, r), but

x+nk · t ∈ C̃
+(x). It is a contradiction, since C̃+(x) is a bounded set. Second, if

p · R+ is bounded, then ω(p) is a nonempty compact invariant set in R2. Since
a limit set is an invariant set and p ∈ ω̃(x), it follows that ω(p) ⊂ ω̃(x) ∪M .
Note that under the condition (2.1), there exist no rest points in M . Thus, ω(p)
contains no rest points. By the Poincaré–Bendixson theorem for two-dimensional
semiflows (see [14]), ω(p) is a periodic orbit Γ, and further the orbit p · R+ is
a spiral which tends to Γ as t → +∞. Consequently, Γ is asymptotically stable
from one side (see [14]). Thus, for large nk, we also have ω(x+nk) = ω(p) = Γ,
it implies φ(x+nk) = +∞, which is contradictory to x ∈ N̂ . Hence, we conclude
that φ(p) < +∞.
Let p1 = p · φ(p) ∈ M , by the continuity of φ and I, it is easy to see that

x+nk+1 → p
+
1 . Similarly, we have φ(p

+
1 ) <∞. Thus, by induction, it follows that

φ(p+n ) <∞ for each positive integer n ≥ 1. So, we obtain p ∈ N̂ . Now, let A be
the closure of Ĉ+(x) in Ω, then A = K̂+(x) ⊂ N̂ , i.e. K̂+(x) is a regular set.�

Definition 4.8 ([20]). We say that π̃ is almost recurrent at x ∈ Ω if, for
any ε > 0, there exists an L ∈ R+ such that for any t ∈ R+, the interval [0, L]
contains a real number τ with d(x, x ∗ (t+ τ)) < ε.

For a point x ∈ N̂ , some important relations between the dynamical behavior
of Ĉ+(x) and C̃+(x) were established by Kaul in [20], e.g. the following lemma
was proved in [20].

Lemma 4.9. Let x ∈ N̂ , K̂+(x) be compact. If g is almost periodic at x,
then π̃ is almost recurrent at x.

Theorem 4.10. Let x ∈ N̂ and π̃x be bounded. Suppose that ω̃(x) contains
no rest points. Then, there exists an almost recurrent orbit in ω̃(x).

Proof. Let A = K̂+(x), it is a bounded set, since π̃x is bounded. By Lemma
4.7, we see that A is a regular set in N̂ . Thus, A is a bounded closed set in Ω,
i.e. it is compact. Define g1 = g|A to be the restriction of g on A, then (A, g1)
is a sub-system of (N̂ , g). Since (A, g1) is a system defined on a compact space,
there exists a minimal set B in ω(x, g1) (see [7, p. 92]). Thus, each point in B is
almost periodic (see [7] and Corollary 5.4 in [20]). Now, the result follows from
Lemma 4.9. �

Definition 4.11. For an invariant set S ⊂ Ω, S is said to be a chaotic set
of (Ω, π̃), if it has the properties of density and transitivity, i.e. periodic orbits
of (Ω, π̃) are dense in S and there exists an x ∈ S such that C̃+(x) is dense in S.

Let S be an invariant set in Ω. The system (Ω, π̃) has sensitive dependence on
initial conditions on S if there exists a δ > 0 such that for any x ∈ S and for any



112 Ch. Ding

neighborhood U of x, there exist a y ∈ U and a t > 0 such that d(x∗ t, y ∗ t) > δ.
Similarly to the case of discrete systems, for an invariant set S ⊂ Ω, if S is not
a periodic orbit. Then density and transitivity imply sensitive dependence on
initial conditions on S, which is at the heart of chaos.

Proposition 4.12. Let an invariant set S ⊂ Ω be not a periodic orbit. If it
has the properties of density and transitivity, then (Ω, π̃) has sensitive dependence
on initial conditions on S.

Proof. Let C̃+(p1) and C̃+(p2) be two periodic orbits in S, then

d(C̃+(p1), C̃+(p2)) = 8δ > 0.

Let x ∈ S and any neighbourhood U of x be given. Then there exists a periodic
C̃+(p) in S \ B(x, 4δ). Indeed, one of C̃+(p1) and C̃+(p2) is a candidate. Now,
we choose two points y and q in U ∩ B(x, δ) such that C̃+(y) is a dense orbit
and C̃+(q) is a periodic orbit in S, respectively. Let τ > 0 be the period of
C̃+(q). By the QCD property, take a µ ∈ (0, δ) such that if z ∈ B(p, µ), then
d(p∗t, z∗hz(t)) < δ holds for t ∈ [0, 2τ ], where hz(t) is a time τ -reparametrization.
Now, there exists a T > τ such that y ∗ T ∈ B(p, µ). Clearly, one can find
a positive integer n such that nτ = T + η, where η ∈ [0, τ). Let y ∗ T = z,
then y ∗ (T + η) = z ∗ η = z ∗ hz(ν) for some ν ∈ [0, 2τ ], it follows y ∗ (T + η) ∈
N(C̃+(p), δ). Thus, it is easy to see that d(q∗nτ, y∗(T+η)) = d(q, y∗(T+η)) > 2δ.
Hence, either d(x ∗ nτ, y ∗ (T + η)) > δ or d(x ∗ nτ, q ∗ nτ) > δ. It means that δ
is a sensitivity constant. The proof is complete. �

Lemma 4.13. Let A be a closed invariant set in N̂ . If A has the properties
of density and transitivity in the system (N̂ , g), so does A+ =

⋃
{x · [0, φ(x)) :

x ∈ A} in the system (Ω, π̃). In particular, if A is a chaotic set in N̂ , then A+

is also a chaotic set in Ω.

Proof. Let x ∈ A be a periodic point of (N̂ , g), i.e.

Ĉ+(x) = {x, x+1 , . . . , x
+
n−1},
where gi(x) = x+i for i = 1, . . . , n− 1 and g

n(x) = x.

Clearly, C̃+(x) =
⋃
{x+i · [0, φ(x

+
i )) : i = 0, . . . , n − 1} is a periodic orbit of

(Ω, π̃), where x = x+0 . Now, by the definition of A
+, the density of periodic

orbits in A+ follows immediately from the density of periodic orbits in A. Next,
the transitivity of A is equivalent to the existence of a dense orbit [16, p. 77],
i.e. there exists an x in A such that K̂+(x) = A. It is easy to see that C̃+(x) is
a dense orbit in A+, then the transitivity of A+ follows. �

In the remainder of the paper, we deal with the limit set of an infinite trajec-
tory under a suitable assumption. For an infinite trajectory π̃x with x ∈ N̂ , we
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apply the theory of one-dimensional dynamics to get the characteristic of ω̃(x).
We suppose that ω̃(x) contains no rest points and the orbit C̃+(x) meets with
a component of N̂ . Since the image of a connected set under a continuous map
is still connected, it follows that if M is connected, then N = I(M) is also con-
nected. Thus in the case where C̃+(x) has nonempty intersection with a finite
number of components of N̂ , it is easy to see that among those components of N̂ ,
the orbit C̃+(x) goes to a fixed component periodically, then we may consider gk

for some positive integer k such that the orbit of x under gk lies in a component
of N̂ . Hence, for brevity, our discussion goes on under the following condition.

Assumption III. The set N̂ is an arc in Ω, i.e. it is a homeomorphic image
of the interval [0, 1].

Now, we present our main results of the paper under this assumption. Recall
the definition of topological conjugacy between two discrete dynamical systems
(see [7, p. 18]). Let f1:X → X and f2:Y → Y be continuous maps, where
X and Y are metric spaces. The systems (f1, X) and (f2, Y ) are said to be
topologically conjugate if there exists a homeomorphism h:X → Y such that
h ◦ f1(x) = f2 ◦ h(x) for every x ∈ X. Since N̂ is closed in Ω, it implies that N̂
is a regular set. Thus, the system (N̂ , g) is topologically conjugate to a discrete
system (J, f) on a compact interval J , and the results in Section 4.1 hold for
(N̂ , g). Clearly, x ∈ N̂ is periodic under g if and only if C̃+(x) is periodic under π̃.
Also, it is easy to see that ω̃(x) = ω(x, g)+ =

⋃
{p · [0, φ(p)) : p ∈ ω(x, g)} for

x ∈ N̂ .

Theorem 4.14. Let N̂ be an arc in Ω. For x ∈ N̂ , assume that ω̃(x) contains
no rest point.

(a) If ω̃(x) has an interior point, then the limit set ω̃(x) is a chaotic set.
(b) If ω̃(x) has no interior points, then ω̃(x) has either a periodic orbit or
a Cantor-type minimal set, in which every orbit is almost recurrent.

Proof. Since N̂ be an arc, φ is a bounded function on N̂ , it follows that
C̃+(x) for x ∈ N̂ is bounded. Let (N̂ , g) be the discrete semidynamical system
associated with the given impulsive system (Ω, π̃). For x ∈ N̂ , since N̂ is a regular
set, the limit set of Ĉ+(x) in Ω is equal to ω(x, g), which is an invariant closed
set in N̂ . Thus, we have ω̃(x) = ω(x, g)+ =

⋃
{p · [0, φ(p)) : p ∈ ω(x, g)}. Clearly,

it follows that ω̃(x) has an interior point in Ω if and only if ω(x, g) has an
interior point in N̂ . By Theorem 4.6, ω(x, g) is a chaotic set if it has an interior
point. It follows from Lemma 4.13 that ω̃(x) has the properties of sensitivity
and transitivity. Hence, ω̃(x) is a chaotic set and it has the property of sensitive
dependence on initial conditions by Proposition 4.12. Next, if ω̃(x) has no interior
points, then ω(x, g) has no interior points in N̂ . From Lemma 4.2, it follows that
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ω(x, g) is closed and nowhere dense. Clearly, ω(x, g) contains a minimal set A in
which every orbit is almost periodic. If A is finite, it is a periodic orbit. Thus,
A+ =

⋃
{p · [0, φ(p)) : p ∈ A} is a periodic orbit in ω̃(x). Otherwise, if A is

infinite, it is a Cantor set by Lemma 4.1. Now, the Cantor-type set A+ is also
a minimal set in (Ω, π̃) (see [20, Theorem 3.3]). Since A is almost periodic, it
follows from Lemma 4.9 that each orbit in A+ is almost recurrent. Finally, by the
continuity of φ and minimality of A, it is easy to see that A+ is homeomorphic
to the product of a Cantor set and an interval. �

Remark 4.15. Block and Coppel in [7, p. 149] presented an example taking
the classical ‘middle-third’ Cantor set C as a minimal set. Thus, it is easy to get
an impulsive system similar to Example 2.5 such that for an infinite trajectory
π̃x with x ∈ C, the limit set ω̃(x) is a minimal set with almost recurrent orbits,
which is homeomorphic to the product of a Cantor set and an interval. Hence,
ω̃(x) does not contain periodic orbits.
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