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EXISTENCE OF MULTIPLE SOLUTIONS
OF SOME SECOND ORDER

IMPULSIVE DIFFERENTIAL EQUATIONS

Jing Xiao — Juan J. Nieto — Zhiguo Luo

Abstract. This paper uses critical point theory and variational methods

to investigate the multiple solutions of a boundary value problem for second

order impulsive differential equations. The conditions for the existence of
multiple solutions are established.

1. Introduction

Consider the following nonlinear boundary value problems for second order
impulsive differential equation:

(1.1)


(p(t)u′(t))′ + q(t)u(t) + f(t, u(t)) = 0, a.e. t ∈ J ′,

−∆u′(tj) = Ij(u(tj)), j = 1, . . . , n,

u(0) = 0, a1u(1) + u′(1) = 0,

where J = [0, 1], 0 = t0 < t1 < . . . < tn < tn+1 = 1, J ′ = J \ {t1, . . . , tn},
f ∈ C[J × R, R], p(t) ∈ C1[0, 1], q(t) ∈ C[0, 1], with 0 < m ≤ p(t) ≤ M ,
q(t) + p(t) ≤ 0 on J , the constant a1 > −m/p(1), ∆u′(tj) = u′(t+j )− u′(t−j ) for
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u′(t−j ) and u′(t+j ), respectively, the left and right limits of u′(t) at tj , j = 1, . . . , n,
1 ≤ n < +∞.

The theory of impulsive differential equations has been emerging as an impor-
tant area of investigation in recent years. Some classical tools such as coincidence
degree theory of Mawhin, fixed point theorems in cones, and the method of lower
and upper solutions have been used widely to get positive solutions of impulsive
differential equations. For the theory and classical results see the monographs
[1], [3], [12], [17]. Some recent development and applications of impulsive differ-
ential equations can been seen in [2], [5], [7], [9], [14], [16], [19], [20]. We point
out that in a second order differential equation u′′ = f(t, u, u′), one usually con-
siders impulses in the position u and the velocity u′. However, in the motion of
spacecraft one has to consider instantaneous impulses depending on the position
that result in jump discontinuities in velocity, but with no change in position [4].
The impulses only on the velocity occurs also in impulsive mechanics [10].

Recently, taking a Dirichlet problem with impulses as a model, Nieto and
O’Regan [8] have shown that the impulsive problem minimize some (energy)
functional, and the critical points of that functional are indeed solutions of the
impulsive problem. Inspired by the work [8], in this paper we use critical point
theory and variational methods to investigate the multiple solutions of (1.1). our
main results extend the study made in [8], [13], [15], [21] in the sense that we
deal with a class of problems that is not considered in those papers.

The rest of the paper is organized as follows: In Section 2, we give several
important lemmas. The main theorems are formulated and proved in Section 3.
And in Section 4, we give an example to demonstrate the application of our
results.

2. Preliminaries

We now state some celebrated results in nonlinear functional analysis and
critical point theory. Suppose that X is a Banach space (in particular a Hilbert
space) and ϕ:X → R is differentiable. We say that ϕ satisfies the Palais–Smale
condition if every sequence {uk} in the space X such that {ϕ(uk)} is bounded
and lim

k→∞
ϕ′(uk) = 0 contains a convergent subsequence.

Lemma 2.1 (Mountain Pass Theorem [6, Theorem 4.10]). Let ϕ∈C1(X, R).
Assume that there exist u0, u1 ∈ X and a bounded neighbourhood Ω of u0 such
that u1 is not in Ω and

inf
v∈∂Ω

ϕ(v) > max{ϕ(u0), ϕ(u1)}.

Then there exists a critical point u of ϕ i.e. ϕ′(u) = 0, with

ϕ(u) > max{ϕ(u0), ϕ(u1)}.
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Note that if either u0 or u1 is a critical point of ϕ then we obtain the existence
of at least two critical points for ϕ.

Lemma 2.2 ([19, Theorem 38.A]). For the functional F :M ⊆ X → R

with M not empty, min
u∈M

F (u) = a has a solution in case the following hold:

(a) X is a real reflexive Banach space,
(b) M is bounded and weak sequentially closed,
(c) F is weak sequentially lower semi-continuous on M , i.e. by definition,

for each sequence {uk} in M such that uk ⇀ u as k → ∞, we have
F (u) ≤ lim

k→∞
F (uk) holds.

Lemma 2.3 ([11, Theorem 9.12]). Let E be an infinite dimensional real Ba-
nach space and ϕ ∈ C1(E, R) be even, satisfying the Palais–Smale condition and
ϕ(0) = 0. If E = V ⊕ X, where V is finite dimensional, and ϕ satisfies the
following conditions:

(a) There exist constants ρ, σ > 0 such that ϕ|∂Bρ∩X ≥ σ,
(b) For each finite dimensional subspace V1 ⊂ E, there is an R = R(V1)

such that ϕ(u) ≤ 0 for every u ∈ V1 with ‖u‖ > R.

Then ϕ has an unbounded sequence of critical values.

Consider the Hilbert spaces H = {u ∈ H1(0, 1) : u(0) = 0} with the inner
product and norm

(u, v) =
∫ 1

0

p(t)(u′(t)v′(t) + u(t)v(t)) dt,

‖u‖ =
( ∫ 1

0

p(t)(|u′(t)|2 + |u(t)|2) dt

)1/2

.

Lemma 2.4. If u ∈ H, then

‖u‖0 ≤
1√
m
‖u‖, where ‖u‖0 = max

t∈[0,1]
|u(t)|.

Proof. The result is followed by the following inequalities:

|u(t)| ≤
∫ 1

0

|u′(t)| dt ≤
( ∫ 1

0

1
p(t)

dt

)1/2( ∫ 1

0

p(t)|u′(t)|2 dt

)1/2

≤ 1√
m
‖u‖. �

For u ∈ H, we have that u is absolutely continuous, and u′ ∈ L2(0, 1). In
this case, the one-sided derivatives u′(t−), u′(t+) may not exist. If u ∈ H2(0, 1),
then u and u′ are absolutely continuous, and u′′ ∈ L2(0, 1). Hence ∆u′(t) =
u′(t+) − u′(t−) = 0 for any t ∈ J . So by a classical solution of (1.1) we mean
a function u ∈ C(0, 1) satisfying the following conditions:

• For every j = 0, 1, . . . , n, uj = u|(tj ,tj+1) ∈ H2(tj , tj+1);
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• u satisfies the boundary condition of (1.1);
• u′(t−j ), u′(t+j ), j = 1, 2, . . . , n, exist and the impulsive conditions of (1.1)

hold;
• u satisfies the first equation of (1.1) for t ∈ J ′.

Take v ∈ H and multiply the first equation of (1.1) by v and integrate it
between 0 and 1:∫ 1

0

(p(t)u′)′v dt +
∫ 1

0

q(t)uv dt +
∫ 1

0

f(t, u)v dt = 0.

This leads to

(2.1)
∫ 1

0

[p(t)(u′v′ + uv)− (q(t) + p(t))uv − f(t, u)v] dt

=
n∑

j=1

p(tj)v(tj)Ij(u(tj))− a1p(1)u(1)v(1).

Thus, a weak solution for the impulsive problem (1.1) is a function u ∈ H such
that (2.1) holds for any v ∈ H.

Now, define G(t, u) =
∫ u

0
f(t, ξ) dξ. We consider the functional ϕ:H → R,

defined by

(2.2) ϕ(u) =
∫ 1

0

[
1
2
p(t)(|u′|2 + |u|2)− 1

2
(q(t) + p(t))u2 −G(t, u)

]
dt

−
n∑

j=1

p(tj)
∫ u(tj)

0

Ij(t) dt +
1
2
a1p(1)u2(1).

It is clear that ϕ is differentiable at any u ∈ H and

(2.3) ϕ′(u)(v) =
∫ 1

0

[p(t)(u′v′ + uv)− (q(t) + p(t))uv − f(t, u)v] dt

−
n∑

j=1

p(tj)v(tj)Ij(u(tj)) + a1p(1)u(1)v(1).

Hence, a critical point of ϕ, defined by (2.2), gives us a weak solution of (1.1).

Lemma 2.5. If u ∈ H is a weak solution of (1.1), then u is a classical
solution of (1.1).

Proof. The proof is similar to [3]. For integrity, we state it as follows.
If u ∈ H is a weak solution of (1.1), then by the definition of weak solution,
equation (2.1) holds for all v ∈ H. For j ∈ {1, . . . , n}, choose v ∈ H with
v(t) = 0 for every t ∈ [0, tj ] ∪ [tj+1, 1]. Then∫ tj+1

tj

[p(t)(u′v′ + uv)− (q(t) + p(t))uv − f(t, u)v] dt = 0.
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By the definition of weak derivative, the above equality implies

(p(t)u′(t))′ + q(t)u + f(t, u) = 0 for a.e. t ∈ (tj , tj+1).

Hence uj ∈ H2(tj , tj+1) and u satisfies the first equation of (1.1) almost every-
where on [0, 1]. Now multiplying by v ∈ H and integrating between 0 and 1, we
get

−
n∑

j=1

∆u′(tj)v(tj) =
n∑

j=1

Ij(u(tj))v(tj).

Hence, −∆u′(tj) = Ij(u(tj)), for every j = 1, . . . , n. So u satisfies the impulsive
conditions of (1.1). Similarly, u satisfies the boundary condition. Therefore, u

is a solution of problem (1.1). �

Let

a(u, v) =
∫ 1

0

[p(t)(u′v′ + uv)− (q(t) + p(t))uv] dt + a1p(1)u(1)v(1).

Then we have

Lemma 2.6. If a1 > −m/p(1), there exist constants β > α > 0 such that

(2.4) α‖u‖2 ≤ a(u, u) ≤ β‖u‖2, u ∈ H.

Proof. Firstly we proof the left part of (2.4):

a(u, u) =
∫ 1

0

[p(t)(|u′|2 + |u|2)− (q(t) + p(t))u2] dt + a1p(1)u2(1)

≥‖u‖2 + a1p(1)u2(1).

If a1 ≥ 0, then we have a(u, u) ≥ ‖u‖2. And if 0 > a1 > −m/p(1), then by
Lemma 2.4 we have a(u, u) ≥ (1 + a1p(1)/m)‖u‖2.

On the other hand, since p(t), q(t) are continuous in [0, 1], then there exists
a constant c1 > 0 such that p(t) + q(t) > −c1p(t). So, by Lemma 2.4, we have

a(u, u) =
∫ 1

0

[p(t)(|u′|2 + |u|2)− (q(t) + p(t))u2] dt + a1p(1)u2(1)

≤‖u‖2 + c1‖u‖2 + a1p(1)u2(1) ≤
(

1 + c1 + |a1|
M

m

)
‖u‖2. �

Lemma 2.7. The function ϕ:H → R defined by (2.2) is continuous, continu-
ously differentiable and weakly lower semi-continuous. Moreover, it satisfies the
Palais-Smale condition, if the following condition holds:

(H1) For all u ∈ H, µG(t, u) ≤ uf(t, u), and Ij(u)u ≥ µ
∫ u

0
Ij(s) ds, where

j = 1, . . . , n, µ > 2β/α (α, β are defined in Lemma 2.6).
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Proof. Using the continuity of f and Ij , j = 1, . . . , n, we obtain the con-
tinuity and differentiability of ϕ and ϕ′. To show that ϕ is weakly lower semi-
continuous, let uk weakly convergent to u in H. Then ‖u‖ ≤ lim

k→∞
‖uk‖, and

{uk} converges uniformly to u in C[0, 1]. So when k →∞, we have∫ 1

0

[
− 1

2
(q(t) + p(t))u2

k −G(t, uk)
]

dt−
n∑

j=1

p(tj)
∫ uk(tj)

0

Ij(t) dt +
1
2
a1p(1)u2

k(1)

→
∫ 1

0

[
− 1

2
(q(t) + p(t))u2 −G(t, u)

]
dt−

n∑
j=1

p(tj)
∫ u(tj)

0

Ij(t) dt +
1
2
a1p(1)u2(1).

We conclude that ϕ(u) ≤ lim
k→∞

ϕ(uk). Then ϕ is weakly lower semi-continuous.

To show that ϕ satisfies the Palais–Smale condition, let {ϕ(uk)} be a bounded
sequence such that lim

k→∞
ϕ′(uk) = 0. Now we show that ‖uk‖ is bounded. By

(2.3) we have

(2.5)
∫ 1

0

f(t, uk)uk dt =
∫ 1

0

[p(t)(|u′k|2 + |uk|2)− (q(t) + p(t))u2
k] dt

− ϕ′(uk)(uk)−
n∑

j=1

p(tj)uk(tj)Ij(uk(tj)) + a1p(1)u2
k(1).

From (2.4), (2.5) and condition (H1), we get

ϕ(uk) ≥ α

2
‖uk‖2 −

∫ 1

0

G(t, uk) dt−
n∑

j=1

p(tj)
∫ uk(tj)

0

Ij(t) dt(2.6)

≥ α

2
‖uk‖2 −

1
µ

∫ 1

0

ukf(t, uk) dt−
n∑

j=1

p(tj)
∫ uk(tj)

0

Ij(t) dt

≥
(

α

2
− β

µ

)
‖uk‖2 +

1
µ

ϕ′(uk)(uk)

≥
(

α

2
− β

µ

)
‖uk‖2 −

1
µ
‖ϕ′(uk)‖‖(uk)‖.

Since ϕ(uk) is bounded, by (2.6) we have ‖uk‖ is bounded.
Since H is a reflexive Banach space, there exists a subsequence of {uk} (for

simplicity denoted again by {uk}) such that {uk} weakly converges to some u

in H. Then the sequence {uk} converges uniformly to u in C[0, 1].
By (2.5), we have

(2.7) ‖uk‖2 =
∫ 1

0

[(q(t) + p(t))u2
k + f(t, uk)uk] dt + ϕ′(uk)(uk)

+
n∑

j=1

p(tj)uk(tj)Ij(uk(tj))− a1p(1)u2
k(1).
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So when k →∞, we have

‖uk‖2 →
∫ 1

0

[(q(t)+ p(t))u2 + f(t, u)u] dt+
n∑

j=1

p(tj)u(tj)Ij(u(tj))−a1p(1)u2(1).

Then ‖uk‖ converges in H.
Since H is a Hilbert space, and the sequence {uk} ∈ H satisfies uk ⇀ u,

then {uk} converges (strongly) to u, i.e. uk → u. ϕ satisfies the Palais–Smale
condition. �

3. Main results

For convenience and simplicity in the following discussions, we use the nota-
tions:

G0(t, u) = lim sup
u→0

G(t, u)
|u|µ

, I0(j) = lim sup
u→0

1
|u|µ

∫ u

0

Ij(t) dt,

G∞(t, u) = lim inf
u→∞

G(t, u)
|u|µ

, I∞(j) = lim inf
u→∞

1
|u|µ

∫ u

0

Ij(t) dt.

Theorem 3.1. Suppose (H1) and a1 > −m/p(1) hold. Then the BVP (1.1)
has at least two positive solutions if the following condition holds:

(H2) There exists δ, δj , γ, γj > 0 such that G0(t, u) ≤ δ, I0(j) ≤ δj and
G∞(t, u) ≥ γ, I∞(j) ≥ γj, where j = 1, . . . , n.

Proof. Firstly, we apply Lemma 2.2 to show that there exists T such that
the functional ϕ has a local minimum u0 ∈ BT = {u ∈ H : ‖u‖ < T}. For every
T > 0, since H is a Hilbert space, it is easy to deduce that BT is a bounded
and weak sequentially closed. Lemma 2.7 has shown that ϕ is weak sequentially
lower semi-continuous on BT . Besides, H is a reflexive Banach space, so by
Lemma 2.2 we can have this u0 such that ϕ(u0) = min{ϕ(u) : u∈BT }.

Now we will show that ϕ(u0) < inf{ϕ(u) : u ∈ ∂BT }, for some T = T0. In
fact, by (H2) we can choose T0, ε > 0 satisfying∫ u

0

Ij(t)dt ≤ δj |u|µ, G(t, u) ≤ δ|u|µ, for ‖u‖ ≤ T0,

α

2
T 2

0 −
(

δ +
n∑

j=1

δjp(tj)
)(

T0√
m

)µ

> ε.

For any u ∈ ∂BT0 , ‖u‖ = T0, we have

ϕ(u) =
∫ 1

0

[
1
2
p(t)(|u′|2 + |u|2)− 1

2
(q(t) + p(t))u2 −G(t, u)

]
dt

−
n∑

j=1

p(tj)
∫ u(tj)

0

Ij(t) dt +
1
2
a1p(1)u2(1)
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≥ α

2
‖u‖2 −

∫ 1

0

G(t, u) dt−
n∑

j=1

p(tj)
∫ u(tj)

0

Ij(t) dt

≥ α

2
‖u‖2 − δ

∫ 1

0

|u|µ dt−
n∑

j=1

δjp(tj)|u(tj)|µ

≥ α

2
‖u‖2 − δ‖u‖µ

(
√

m)µ
−

n∑
j=1

δjp(tj)‖u‖µ

(
√

m)µ

=
α

2
T 2

0 −
(

δ +
n∑

j=1

δjp(tj)
)(

T0√
m

)µ

> ε.

So ϕ(u) > ε for any u ∈ ∂BT0 . Besides, ϕ(u0) ≤ ϕ(0) = 0. Then ϕ(u) > ε >

ϕ(0) ≥ ϕ(u0) for any u ∈ ∂BT0 . So ϕ(u0) < inf{ϕ(u) : u ∈ ∂BT0}. Hence, ϕ has
a local minimum u0 ∈ BT0 = {u ∈ H : ‖u‖ < T0}.

Next, we will show that there exists u1 with ‖u1‖ > T0 such that ϕ(u1) <

inf{ϕ(u) : u ∈ ∂BT0}.
For the above T0, by (H2), we can choose a sufficiently large T1, such that

For all ‖u‖ ≥ T1 > T0 satisfying G(t, u) ≥ γ|u|µ and
∫ u

0
Ij(t) dt ≥ γj |u|µ. Then

for all ‖u‖ ≥ T1 > T0 we have

ϕ(u) =
∫ 1

0

[
1
2
p(t)(|u′|2 + |u|2)− 1

2
(q(t) + p(t))u2 −G(t, u)

]
dt

−
n∑

j=1

p(tj)
∫ u(tj)

0

Ij(t) dt +
1
2
a1p(1)u2(1)

≤ β

2
‖u‖2 −

∫ 1

0

G(t, u) dt−
n∑

j=1

γjp(tj)|u(tj)|µ

≤ β

2
‖u‖2 − γ

∫ 1

0

|u|µ dt−
n∑

j=1

γjp(tj)
(
‖u‖√

m

)µ

≤ β

2
‖u‖2 − γ‖u‖µ

(
√

m)µ
−

n∑
j=1

γjp(tj)
(
‖u‖√

m

)µ

.

Therefore, we can choose u1 with ‖u1‖ ≥ T1 sufficiently large such that ϕ(u1)<0.
Then we have max{ϕ(u0), ϕ(u1)} < inf{ϕ(u) : u ∈ ∂BT0}. And Lemma 2.7 has
shown that ϕ satisfies Palais–Smale condition. Hence, by Lemma 2.1 there exists
a critical point u∗. Therefore, u0 and u∗ are two critical points of ϕ, and they
are classical solutions of (1.1). �

Theorem 3.2. Suppose (H1), (H2) and a1 > −m/p(1) hold. Moreover,
f(t, u) and Ij(u) are odd about u. Then the BVP (1.1) has infinitely many
classical solutions.
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Proof. We will apply Lemma 2.3 to show this result. Firstly, ϕ is even,
since f(t, u) and Ij(u) are odd about u. Moreover, by Lemma 2.7, we know that
ϕ ∈ C1(H, R), ϕ(0) = 0, and ϕ satisfies the Palais–Smale condition. In the same
way as in Theorem 3.1, one can easily verify that the conditions (a) and (b) of
Lemma 2.3 are satisfied. According to Lemma 2.3, ϕ possesses infinitely many
critical points, i.e. the BVP (1.1) has infinitely many classical solutions. �

4. Example

To illustrate how our main results can be used in practice we present the
following example:

Example 4.1. Let b1 > 0, b(t) ∈ C[0, 1] with b(t) > 0. Consider the
following boundary value problem

(4.1)


(e−tu′(t))′ + e−tu(t) + b(t)u3 = 0 for all t ∈ [0, 1], t 6= 1,

−∆u′(t1) = b1u
3,

u(0) = 0, e−1u(1) + u′(1) = 0.

Conclusion. BVP (4.1) has infinitely many classical solutions.

Proof. Let p(t) = q(t) = e−t, p(t)− q(t) = 0, f(t, u) = b(t)u3, I(u) = b1u
3,

µ = 4, δ = (1/4) min{b(t) : t ∈ [0, 1]}, γ = (1/4)max{b(t) : t ∈ [0, 1]}. Then by
simple computation, the conditions in Theorem 3.2 are satisfied. Hence, by The-
orem 3.2, (4.1) has infinitely many classical solutions. The proof is completed.�
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