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MATRIX LYAPUNOV INEQUALITIES FOR ORDINARY

AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Antonio Cañada — Salvador Villegas

Abstract. This paper is devoted to the study of Lp Lyapunov-type in-
equalities for linear systems of equations with Neumann boundary condi-

tions and for any constant p ≥ 1. We consider ordinary and elliptic prob-

lems. The results obtained in the linear case are combined with Schauder
fixed point theorem to provide new results about the existence and unique-

ness of solutions for resonant nonlinear problems. The proof uses in a fun-

damental way the nontrivial relation between the best Lyapunov constants
and the minimum value of some especial minimization problems.

1. Introduction

Let us consider the linear Neumann boundary problem:

(1.1) u′′(x) + a(x)u(x) = 0, x ∈ (0, L), u′(0) = u′(L) = 0

and let 1 ≤ p ≤ ∞ be given. If function a satisfies

(1.2) a ∈ Lp(0, L) \ {0},
∫ L

0

a(x) dx ≥ 0,

Lp-Lyapunov inequality provides optimal necessary conditions for boundary va-

lue problem (1.1) to have nontrivial solutions, given in terms of the Lp norm,
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‖ · ‖p, of the function a+, where a+(x) = max{a(x), 0} (see [12] and [14] for the

case p = 1 and [4], [31] for the case 1 < p ≤ ∞).

In particular, under the restriction (1.2) for p = 1, L1-Lyapunov inequality

may be used to prove that (1.1) has only the trivial solution if function a satisfies

(1.3)

∫ L

0

a+(x) dx ≤ 4

L
.

In a similar way, under (1.2) for p = ∞, L∞-Lyapunov inequality may be used

to prove that (1.1) has only the trivial solution if function a satisfies

(1.4) a+ ≺ π2/L2,

where for c, d ∈ L1(0, L), we write c ≺ d if c(x) ≤ d(x) for almost every x ∈ [0, L]

and c(x) < d(x) on a set of positive measure. Moreover, (1.3) and (1.4) are,

respectively, optimal L1 and L∞ restrictions (see Remark 2.4 below).

If p = ∞, assumptions (1.2) and (1.4) are a nonuniform nonresonance con-

dition with respect to the two first eigenvalues λ0 = 0 and λ1 = π2/L2 of the

eigenvalue problem:

(1.5) u′′(x) + λu(x) = 0, x ∈ (0, L), u′(0) = u′(L) = 0

(see [23]) while if p = 1, (1.3) was first introduced by Lyapunov under Dirichlet

boundary conditions (see [12], chapter XI, for some generalizations and historic

references and [7] for L1-Lyapunov inequality at higher eigenvalues).

It is clear that (1.3) and (1.4) are not related. A natural link between them

arises if Lp−Lyapunov inequalities, for 1 < p <∞, are considered and then one

examines what happens if p→ 1+ and p→∞ ([4]). One of the main applications

of Lyapunov inequalities is its use in the study of nonlinear resonant problems.

Different authors have generalized the L∞-Lyapunov inequality (1.2)–(1.4)

to vector differential equations of the form

(1.6) u′′(x) +A(x)u(x) = 0, x ∈ (0, L)

where A( · ) is a real and continuous n × n symmetric matrix valued function,

together with different boundary conditions. These L∞ generalizations have been

given not only at the two first eigenvalues but also at higher eigenvalues of (1.5)

and they have been used in the study of resonant nonlinear problems ([1], [3],

[16], [19], [30]). Also, some abstract versions for semilinear equations in Hilbert

spaces and applications to elliptic problems and semilinear wave equations have

been given in [2], [11], [21] and [22]. In spite of its interest in the study of

different questions such as stability theory, the calculation of lower bounds on

eigenvalue problems, etc. ([10], [12], [31]), the use of L∞-Lyapunov inequalities in

the study of nonlinear resonant problems only allows a weak interaction between

the nonlinear term and the spectrum of the linear part. For example, using

the L∞-Lyapunov inequalities showed in [16] for the periodic boundary value
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problem (see also [1] and [3]), it may be proved that if there exist real symmetric

matrices P and Q with eigenvalues p1 ≤ . . . ≤ pn and q1 ≤ . . . ≤ qn, respectively,

such that

(1.7) P ≤ G′′(u) ≤ Q, for all u ∈ Rn

and such that

(1.8)

n⋃
i=1

[pi, qi] ∩ {k2 : k ∈ N ∪ {0}} = ∅,

then, for each continuous and 2π−periodic function h, the periodic problem:

(1.9)
u′′(x) +G′(u(x)) = h(x), x ∈ (0, 2π),

u(0)− u(2π) = u′(0)− u′(2π) = 0,

has a unique solution. Here G : Rn → R is a C2-mapping and the relation

C ≤ D between n×n matrices means that D−C is positive semi-definite. Now,

by using the variational characterization of the eigenvalues of a real symmetric

matrix, it may be easily deduced that (1.7) and (1.8) imply that the eigenvalues

g1(u) ≤ . . . ≤ gn(u) of the matrix G′′(u), satisfy

(1.10) pi ≤ gi(u) ≤ qi, for all u ∈ Rn.

Consequently each continuous function gi(u), 1 ≤ i ≤ n, must fulfil

(1.11) gi(Rn) ∩ {k2 : k ∈ N ∪ {0}} = ∅.

To the best of our knowledge, we do not know any previous work on Lp Lyapunov

inequalities when 1 ≤ p < ∞ for systems of the type (1.6) under Neumann

boundary conditions. Really, if the restrictions on the matrix A(x) are of Lp

type, with 1 ≤ p < ∞, it seems difficult to use the ideas contained in the

mentioned papers to get new results on problems at resonance.

In the second section of this paper we provide for each p, with 1 ≤ p ≤ ∞,
optimal necessary conditions for boundary value problem

(1.12) u′′(x) +A(x)u(x) = 0, x ∈ (0, L), u′(0) = u′(L) = 0,

to have nontrivial solutions. These conditions are given in terms of the Lp norm

of appropriate functions bii(x), 1 ≤ i ≤ n, related to A(x) through the inequality

A(x) ≤ B(x), for all x ∈ [0, L], where B(x) is a diagonal matrix with entries

given by bii(x), 1 ≤ i ≤ n. In particular, we can use different Lpi
criteria for

each 1 ≤ i ≤ n and this confers a great generality on our results. Even in the

case pi = ∞, 1 ≤ i ≤ n, our method of proof is different from those given in

previous works. In fact, we begin Section 2 with a lemma inspired from [16] and

[19], where the authors studied the periodic problem. The proof that we give

for this lemma suggest the way for the case when 1 ≤ p < ∞, where we use in

a fundamental way some previous results which have been proved in [4] and [5].
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They relate, for ordinary and elliptic problems, the best Lyapunov constants to

the minimum value of some especial minimization problems. If 1 < p <∞, this

minimum value plays the same role as, respectively, the constants 4/L (if p = 1)

and π2/L2 (if p =∞) in (1.3) and (1.4) (see Lemma 2.3 below).

It is clear from the proofs given here for Neumann problem, that one can deal

with other situations such as Dirichlet, periodic or mixed boundary conditions

(see [6] for scalar equations and [8] for periodic conservative systems). Systems

like (1.6) have been considered also in [9] and [10], where the matrix A(x) is not

necessarily symmetric and with boundary conditions either of Dirichlet type or of

antiperiodic type. The authors establish sufficient conditions for the positivity of

the corresponding lower eigenvalue. These conditions involve L1 restrictions on

the spectral radius of some appropriate matrices which are calculated by using

the matrix A(x). It is easy to check that, even in the scalar case, these conditions

are independent from classical L1−Lyapunov inequality (1.3) and therefore, for

the ordinary case, they are also independent from our results in this paper. Also,

in a series of papers, W.T. Reid ([26], [27], [28]) made an extension of (1.3) for

the Dirichlet problem, but he always considered p = 1 (see Remark 2.9 below).

Lastly, in [8] the authors study the periodic case and Tang and Zhang in [29]

consider L1 Lyapunov inequalities for linear Hamiltonian systems.

In Section 3 we deal with elliptic systems of the form

(1.13) ∆u(x) +A(x)u(x) = 0, x ∈ Ω,
∂u(x)

∂n
= 0, x ∈ ∂Ω

where Ω is a bounded and regular domain in RN and ∂
∂n is the outer normal

derivative on ∂Ω. Here the relation between p and the dimension N may be

important (see Lemma 3.1). To our knowledge, there are no previous work

on Lp-Lyapunov inequalities for elliptic systems if p 6= ∞ (see [2] and [15],

Section 5, for the case p =∞). Finally, we show some applications to nonlinear

resonant problems. In particular, and for Neumann boundary conditions, we

obtain a generalization for systems of equations of the main result given in [24]

where the author treated the scalar case and where they use in the proof the

duality method of Clarke and Ekeland (see Theorem 3.7 below).

2. Ordinary boundary value problems

This section will be concerned with boundary value problems of the form

(1.12). We begin with a preliminar lemma on L∞−Lyapunov inequalities for

(1.12), inspired from [16] and [19], where the authors studied periodic bound-

ary conditions. Our proof suggests the way to obtain optimal Lp−Lyapunov

inequalities for system (1.12) in the case 1 ≤ p <∞.

Lemma 2.1. Let A( · ) be a real n×n symmetric matrix valued function with

elements defined and continuous on [0, L]. Suppose there exist diagonal matrix
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functions P (x) and Q(x) with continuous respective entries δkk(x), 1 ≤ k ≤ n

and µkk(x), 1 ≤ k ≤ n, and eigenvalues λp(k), 1 ≤ k ≤ n, of the eigenvalue

problem (1.5) such that

(2.1) P (x) ≤ A(x) ≤ Q(x), for all x ∈ [0, L]

and

(2.2) λp(k) < δkk(x) ≤ µkk(x) < λp(k)+1, for all x ∈ [0, L], 1 ≤ k ≤ n.

Then (1.12) has only the trivial solution.

Proof. Let us denote by H1(0, L) the usual Sobolev space. If u = (u1, . . . ,

un) ∈ (H1(0, L))n, is a nontrivial solution of (1.12), then

(2.3)

∫ L

0

〈u′(x), v′(x)〉 dx =

∫ L

0

〈A(x)u(x), v(x)〉 dx for all v ∈ (H1(0, L))n,

where 〈 · , · 〉 is the usual scalar product in Rn. The eigenvalues of (1.5) are given

by λj = j2π2/L2, where j is an arbitrary nonnegative integer number. If ϕj is

the corresponding eigenfunction to λj , let us introduce the space H = H1× . . .×
Hk × . . . ×Hn, where for each 1 ≤ k ≤ n, Hk is the span of the eigenfunctions

ϕ0, ϕ1, . . . , ϕp(k). It is trivial that we can choose ψ = (ψ1, . . . , ψn) ∈ H satisfying

(2.4) uk + ψk ∈ H⊥k , 1 ≤ k ≤ n.

In fact, for 1 ≤ k ≤ n, 0 ≤ m ≤ p(k),

(2.5) ψk =

p(k)∑
m=0

ckmϕm, ckm = −

∫ L

0

uk(x)ϕm(x) dx∫ L

0

ϕ2
m(x) dx

.

The main ideas to get a contradiction with the fact that u is a nontrivial

solution of (1.12) are the following two inequalities. The first one is a consequence

of the variational characterization of the eigenvalues of (1.5). The second one is

a trivial consequence of the definition of the subspace Hk.

(2.6)

∫ L

0

((uk + ψk)′(x))2 dx ≥λp(k)+1

∫ L

0

((uk + ψk)(x))2 dx,∫ L

0

(ψk)′(x))2 dx ≤λp(k)

∫ L

0

((ψk)(x))2 dx,

for 1 ≤ k ≤ n. Now, from (2.3) we have

(2.7)

∫ L

0

〈(u+ ψ)′(x), (u+ ψ)′(x)〉 dx =

∫ L

0

〈A(x)(u+ ψ)(x), (u+ ψ)(x)〉 dx

+

∫ L

0

〈ψ′(x), ψ′(x)〉 dx−
∫ L

0

〈A(x)ψ(x), ψ(x)〉 dx
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By using (2.1) and (2.2) we deduce∫ L

0

〈ψ′(x), ψ′(x)〉 dx −
∫ L

0

〈A(x)ψ(x), ψ(x)〉 dx

≤
∫ L

0

〈ψ′(x), ψ′(x)〉 dx−
∫ L

0

〈P (x)ψ(x), ψ(x)〉 dx

=

n∑
k=1

∫ L

0

[(ψ′k(x))2 − δkk(x)(ψk(x))2] dx

≤
n∑

k=1

∫ L

0

(λp(k) − δkk(x))(ψk(x))2 dx ≤ 0.

Consequently,

(2.8)

∫ L

0

〈(u+ ψ)′(x), (u+ ψ)′(x)〉 dx ≤
∫ L

0

〈A(x)(u+ ψ)(x), (u+ ψ)(x)〉 dx.

Also, from (2.1), (2.4), (2.6) and (2.8) we obtain

n∑
k=1

∫ L

0

λp(k)+1(uk + ψk)2(x) dx ≤
n∑

k=1

∫ L

0

(uk + ψk)′2(x) dx(2.9)

=

∫ L

0

〈(u+ ψ)′(x), (u+ ψ)′(x)〉 dx

≤
∫ L

0

〈A(x)(u+ ψ)(x), (u+ ψ)(x)〉 dx

≤
∫ L

0

〈Q(x)(u+ ψ)(x), (u+ ψ)(x)〉 dx

=

n∑
k=1

∫ L

0

µkk(x)(uk + ψk)2(x) dx.

It follows, again from (2.2), that

(2.10) u+ ψ ≡ 0.

But if u+ψ ≡ 0, then u = φ = (φ1, . . . , φn) for some nontrivial φ ∈ H. Therefore,

n∑
k=1

∫ L

0

λp(k)(φk)2(x) dx ≥
n∑

k=1

∫ L

0

(φk)′2(x) dx(2.11)

=

∫ L

0

〈φ′(x), φ′(x)〉 dx =

∫ L

0

〈A(x)φ(x), φ(x)〉 dx

≥
∫ L

0

〈P (x)φ(x), φ(x)〉 dx =

n∑
k=1

∫ L

0

δkk(x)(φk)2(x) dx.

Now, (2.2) implies that uk = φk ≡ 0, 1 ≤ k ≤ n, which is a contradiction with

the fact that u is nontrivial. �
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Remark 2.2. It is clear from the previous proof that if the matrix functions

P (x) and Q(x) are constant functions P and Q, then it is not necessary to assume

that they are, in addition, diagonal matrices. In fact, to carry out the proof,

it is sufficient to assume that they are symmetric matrices and such that if δk,

1 ≤ k ≤ n and µk, 1 ≤ k ≤ n denote the eigenvalues of P and Q respectively,

then

(2.12) λp(k) < δk ≤ µk < λp(k)+1, 1 ≤ k ≤ n.

We collect now some results which have been proved in [4], section 2. Really,

if we are treating with Lyapunov inequalities for scalar ordinary problems and

1 ≤ p < ∞, the constant βp defined in the next lemma, plays the same role as

β∞ = λ1, in the L∞-Lyapunov inequality (1.2)–(1.4).

Lemma 2.3 ([4]). If 1 ≤ p ≤ ∞ is a given number, let us define the set Xp

and the functional Ip as

(2.13)

X1 =

{
v ∈ H1(0, L) : max

x∈[0,L]
v(x) + min

x∈[0,L]
v(x) = 0

}
,

I1 : X1 \ {0} → R, I1(v) =
1

‖v‖2∞

∫ L

0

v′2,

Xp =

{
v ∈ H1(0, L) :

∫ L

0

|v|2/(p−1)v = 0

}
, if 1 < p <∞,

Ip : Xp \ {0} → R, Ip(v) =

∫ L

0

v′2(∫ L

0

|v|2p/(p−1)

)(p−1)/p
, if 1 < p <∞,

X∞ =

{
v ∈ H1(0, L) :

∫ L

0

v = 0

}
,

I∞ : X∞ \ {0} → R, I∞(v) =

∫ L

0

v′2∫ L

0

v2

If

(2.14) βp ≡ min
Xp\{0}

Ip, 1 ≤ p ≤ ∞,

and for some p ∈ [1,∞], function a satisfies (1.2) and ‖a+‖p < βp, then (1.1)

has only the trivial solution.

Remark 2.4. It is possible to obtain an explicit expression for βp, as a func-

tion of p and L (see [4]). In particular, β1 = 4/L, β∞ = π2/L2 and β1 is attained

in a function v ∈ X1 \ {0} if and only there exists a nonzero constant c such
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that v(x) = c(x − L/2), for all x ∈ [0, L]. Finally and in relation to Lyapunov

inequalities, the constant βp is optimal in the following sense (see [4]): if

Σp =

{
a ∈ Lp(0, L) \ {0} :

∫ L

0

a(x) dx ≥ 0 and (1.1) has nontrivial solutions

}
then β1 ≡ inf

a∈Σ1

‖a+‖1, βp ≡ min
a∈Σp

‖a+‖p, 1 < p ≤ ∞.

We return to system (1.12). From now on, we assume that the matrix func-

tion A( · ) ∈ Λ where Λ is defined as

(Λ) The set of real n× n symmetric matrix valued function A( · ), with con-

tinuous element functions aij(x), 1 ≤ i, j ≤ n, x ∈ [0, L], such that (1.12)

has not nontrivial constant solutions and∫ L

0

〈A(x)k, k〉 dx ≥ 0, for all k ∈ Rn.

The main result of this section is the following:

Theorem 2.5. Let A( · ) ∈ Λ be such that there exist a diagonal matrix B(x)

with continuous entries bii(x), and pi ∈ [1,∞], 1 ≤ i ≤ n, satisfying

(2.15)

A(x) ≤ B(x), for all x ∈ [0, L],

‖b+ii‖pi
< βpi

, if pi ∈ (1,∞],

‖b+ii‖pi
≤ βpi

, if pi = 1.

Then (1.12) has only the trivial solution.

Proof. If u ∈ (H1(0, L))n is any nontrivial solution of (1.12), we have∫ L

0

〈u′(x), v′(x)〉 =

∫ L

0

〈A(x)u(x), v(x)〉, for all v ∈ (H1(0, L))n.

In particular, we have

(2.16)

∫ L

0

〈u′(x), u′(x)〉 =

∫ L

0

〈A(x)u(x), u(x)〉,∫ L

0

〈A(x)u(x), k〉 =

∫ L

0

〈A(x)k, u(x)〉 = 0, for all k ∈ Rn

Therefore, for each k ∈ Rn, we have∫ L

0

〈(u(x) + k)′, (u(x) + k)′〉 =

∫ L

0

〈u′(x), u′(x)〉 =

∫ L

0

〈A(x)u(x), u(x)〉

≤
∫ L

0

〈A(x)u(x), u(x)〉+

∫ L

0

〈A(x)u(x), k〉

+

∫ L

0

〈A(x)k, u(x)〉+

∫ L

0

〈A(x)k, k〉

=

∫ L

0

〈A(x)(u(x) + k), u(x) + k〉 ≤
∫ L

0

〈B(x)(u(x) + k), u(x) + k〉.
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If u = (ui), then for each i, 1 ≤ i ≤ n, we choose ki ∈ R satisfying ui + ki ∈ Xpi
,

the set defined in Lemma 2.3. By using previous inequality, Lemma 2.3 and

Hölder inequality, we obtain

(2.17)

n∑
i=1

βpi
‖(ui + ki)

2‖pi/(pi−1) ≤
n∑

i=1

∫ L

0

(ui(x) + ki)
′2

≤
n∑

i=1

∫ L

0

b+ii(x)(ui(x) + ki)
2 ≤

n∑
i=1

‖b+ii‖pi
‖(ui + ki)

2‖pi/(pi−1),

where pi/(pi − 1) =∞, if pi = 1 and pi/(pi − 1) = 1, if pi =∞. Therefore from

(2.15) we have

(2.18)

n∑
i=1

(βpi − ‖b+ii‖pi)‖(ui + ki)
2‖pi/(pi−1) ≤ 0.

On the other hand, since u is a nontrivial function, u + k is also a nontrivial

function. Indeed, if u + k is identically zero, we deduce that (1.12) has the

nontrivial and constant solution −k which is a contradiction with the hypothesis

A( · ) ∈ Λ.

Now, if u + k is nontrivial, some component, say, uj + kj is nontrivial. If

pj ∈ (1,∞], then (βpj
−‖b+jj‖pj

)‖(uj +kj)
2‖pj/(pj−1) is strictly positive and from

(2.15), all the other summands in (2.18) are nonnegative. This is a contradiction.

If pj = 1, since β1 is only attained in nontrivial functions of the form v(x) =

c(x− L/2), and v′(0) 6= 0, we have

βpj
‖(uj + kj)

2‖pj/(pj−1) <

∫ L

0

(uj(x) + kj)
′2.

Then (2.17) and (2.18) are both strict inequalities and this is again a contradic-

tion. �

Remark 2.6. Previous Theorem is optimal in the following sense. For any

given positive numbers γi, 1 ≤ i ≤ n, such that at least one of them, say γj ,

satisfies

(2.19) γj > βper
pj
, for some pj ∈ [1,∞],

there exists a diagonal n × n matrix A( · ) ∈ Λ with continuous entries aii(x),

1 ≤ i ≤ n, satisfying ‖a+
ii‖pi

< γi, 1 ≤ i ≤ n and such that the bound-

ary value problem (1.12) has nontrivial solutions. To see this, if γj satisfies

(2.19), then there exists some continuous function a(x), not identically zero,

with
∫ L

0
a(x) dx ≥ 0, and ‖a+‖pj

< γj , such that the scalar problem

w′′(x) + a(x)w(x) = 0, x ∈ (0, L), w′(0) = w′(L) = 0,
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has nontrivial solutions (see the remark after Lemma 2.3). Then, to get our

purpose, it is sufficient to take ajj(x) = a(x) and aii(x) = δ ∈ R+, if i 6= j, with

δ sufficiently small.

As an application of Theorem 2.5 we have the following corollary.

Corollary 2.7. Let A( · ) ∈ Λ and, for each x ∈ [0, L], let us denote by ρ(x)

the spectral radius of the matrix A(x). If the function ρ( · ) satisfies one of the

following conditions:

(a) ‖ρ+‖1 ≤ β1,

(b) there is some p ∈ (1,∞] such that ‖ρ+‖p < βp.

Then the unique solution of (1.12) is the trivial one.

Proof. It is trivial, taking into account the previous theorem and the in-

equality

(2.20) A(x) ≤ ρ(x)In, for all x ∈ [0, L],

where In is the n× n identity matrix. �

Remark 2.8. The authors introduced in [16] and [19] similar conditions for

periodic problems and pi = ∞, 1 ≤ i ≤ n. Our method of proof, where we

strongly use the minimization problems considered in Lemma 2.3, does possible

the consideration of the cases p ∈ [1,∞), which to the best of our knowledge

are new. In particular, if p ∈ [1,∞), the function ρ(x) may cross an arbitrary

number of eigenvalues of the problem (1.5). Also, by using our methods one can

deal with other boundary conditions and more general second order equations

(see, for the scalar case, Remark 5 in [4] and Theorem 2.1 in [6]).

Remark 2.9. In this remark we show some relations between previous corol-

lary and some results contained in [26], [27] and [28] for Dirichlet boundary

conditions. If A( · ) satisfies:

(H) A(x), x ∈ [0, L] is a continuous and positive semi-definite matrix function

such that detA(x) 6= 0 for some x ∈ [0, L] and

(2.21)

∫ L

0

traceA(x) dx ≤ β1,

then there exists no nontrivial solution of (1.12). Here detA(x) means

the determinant of the matrix A(x).

In fact, taking into account that for each x ∈ [0, L], ρ(x) is an eigenvalue of the

matrix A(x) and that in this case all the eigenvalues of A(x), λ1(x), . . . , λn(x)

are nonnegative, we have ρ(x) ≤
n∑

i=1

λi(x) = traceA(x) (see [17] for this last



Matrix Lyapunov Inequalities 319

relation). Therefore, from (2.21) we obtain

(2.22) ‖ρ+‖1 =

∫ L

0

ρ(x) dx ≤ β1.

Previous remark shows that, if we want to have a criterion implying that

(1.12) has only the trivial solution, then (2.22) is better than (2.21).

Remark 2.10. As in the scalar case, it may be seen that for Dirichlet bound-

ary conditions, hypothesis (H) is not necessary. However, for Neumann boundary

conditions, a restriction like (H) is natural (see Remarks 4 and 5 in [4]). In fact,

for Dirichlet boundary conditions the set Λ must be replaced by

(ΛD) The set of real n× n symmetric matrix valued function A(·), with con-

tinuous element functions aij(x), 1 ≤ i, j ≤ n, x ∈ [0, L].

Then a similar theorem to Theorem 2.5 is true, replacing Λ by ΛD (let us remark

that the Lp Lyapunov constants for Dirichlet and Neumann boundary problems

are the same for each 1 ≤ p ≤ ∞; see, for example [4])). But in the case of

Dirichlet conditions, the proof of such theorem is trivial if a previous result of

Morse is used (see [13, p. 73], and [25, p. 66]). However, it can be easily checked

that this Morse’s result is not true for Neumann conditions: take, for example

0 < ε < π2/L2. Then for each 0 ≤ l1 < l2 ≤ L, the problem

u′′(x) + εu(x) = 0, x ∈ (l1, l2), u′(l1) = u′(l2) = 0

has only the trivial solution. However

u′′(x) = 0, x ∈ (l1, l2), u′(l1) = u′(l2) = 0

has nontrivial constant solutions.

In Corollary 3.5 of the next section it is shown how, for elliptic systems,

we can obtain optimal conditions without the help of the spectral radius of the

matrix A(x). Obviously that Corollary is also applicable to ordinary problems

as (1.12).

3. Elliptic systems

This section will be concerned with linear boundary value problems of the

form

(3.1) ∆u(x) +A(x)u(x) = 0, x ∈ Ω,
∂u(x)

∂n
= 0, x ∈ ∂Ω,

Here Ω ⊂ RN , N ≥ 2 is a bounded and regular domain, ∂/∂n is the outer normal

derivative on ∂Ω and A ∈ Λ∗, where Λ∗ is defined as
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(Λ∗) The set of real n× n symmetric matrix valued function A( · ), with con-

tinuous element functions aij(x), 1 ≤ i, j ≤ n, x ∈ Ω, such that (3.1)

has not nontrivial constant solutions and

(3.2)

∫
Ω

〈A(x)k, k〉 dx ≥ 0, for all k ∈ Rn.

In (3.1), u ∈ (H1(Ω))n, the usual Sobolev space.

As in the ordinary case, we now collect some results which have been proved

in [5].

Lemma 3.1 ([5]). If 1 ≤ N/2 < p ≤ ∞ is a given number, let us define the

set Xp and the functional Ip as

(3.3)

Xp =

{
v ∈ H1(Ω) :

∫
Ω

|v|2/(p−1)v = 0

}
, if

N

2
< p <∞,

Ip : Xp \ {0} → R, Ip(v) =

∫
Ω

|∇v|2(∫
Ω

|v|2p/(p−1)

)(p−1)/p
, if

N

2
< p <∞,

X∞ =

{
v ∈ H1(Ω) :

∫
Ω

v = 0

}
,

I∞ : X∞ \ {0} → R, I∞(v) =

∫
Ω

|∇v|2∫
Ω

v2

If

(3.4) βp ≡ min
Xp\{0}

Ip,
N

2
< p ≤ ∞,

and a given function a satisfies

(3.5) a ∈ Lp(Ω,R) \ {0},
∫

Ω

a ≥ 0, ‖a+‖p < βp,

then the scalar problem

(3.6) ∆u(x) + a(x)u(x) = 0, x ∈ Ω,
∂u(x)

∂n
= 0, x ∈ ∂Ω,

has only the trivial solution.

Remark 3.2. As in the ordinary case, β∞ = λ1, the first strictly positive

eigenvalue of the Neumann eigenvalue problem in the domain Ω. Consequently,

it seems difficult to obtain explicit expressions for βp, as a function of p,Ω and N ,

at least for general domains. Finally, the constant βp is optimal in the following

sense: if N/2 < p ≤ ∞ and

Σ∗p =

{
a ∈ Lp(Ω) \ {0} :

∫
Ω

a(x) dx ≥ 0 and (3.1) has nontrivial solutions

}
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then βp ≡ mina∈Σ∗
p
‖a+‖p, N/2 < p ≤ ∞.

Next result may be proved by using the same ideas as in Theorem 2.5.

Theorem 3.3. Let A( · ) ∈ Λ∗ be such that there exist a diagonal matrix

B(x) with continuous entries bii(x) and numbers pi ∈ (N/2,∞], 1 ≤ i ≤ n,

which fulfil

(3.7) A(x) ≤ B(x), for all x ∈ Ω, ‖b+ii‖pi
< βpi

, 1 ≤ i ≤ n.

Then, the vector boundary value problem (3.1) has only the trivial solution.

Remark 3.4. As in the ordinary case, the previous Theorem is optimal

in the sense of Remark 2.6 (see Theorem 2.1 in [5]). Moreover, by using the

previous Theorem, it is possible to obtain a corollary similar to Corollary 2.7,

which involves the spectral radius ρ(x) of the matrix A(x) and the norm ‖ρ+‖p.
The unique difference with the ordinary case is that, for elliptic systems, p ∈
(N/2,∞].

In the next corollary and in order to show how our Theorem 3.3 can be used

without the help of the spectral radius of the matrix A(x), we consider the case

of a system with two equations.

Corollary 3.5. Let the matrix A(x) be given by

(3.8) A(x) =

(
a11(x) a12(x)

a12(x) a22(x)

)
where

(H1) aij ∈ C(Ω) for 1 ≤ i, j ≤ 2,

a11(x) ≥ 0, a22(x) ≥ 0, a11(x)a22(x) ≥ a2
12(x), for all x ∈ Ω,

det A(x) 6= 0, for some x ∈ Ω.

In addition, let us assume that there exist p1, p2 ∈ (N/2,∞] such that

(3.9) ‖a11‖p1
< βp1

,

∥∥∥∥a22 +
a2

12

βp1
− ‖a11‖p1

∥∥∥∥
p2

< βp2
.

Then the unique solution of (3.1) is the trivial one.

Proof. It is trivial to see that (H1) implies that the eigenvalues of the

matrix A(x) are both nonnegative, which implies that A(x) is positive semi-

definite. Also, since detA(x) 6= 0, for some x ∈ Ω, A( · ) ∈ Λ∗. Moreover, it

is easy to check that for a given diagonal matrix B(x), with continuous entries

bii(x), 1 ≤ i ≤ 2, the relation

(3.10) A(x) ≤ B(x), for all x ∈ Ω
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is satisfied if and only if, for all x ∈ Ω, we have

(3.11)
b11(x) ≥ a11(x), b22(x) ≥ a22(x),

(b11(x)− a11(x))(b22(x)− a22(x)) ≥ a2
12(x).

In our case, if we choose

(3.12) b11(x) = a11(x) + γ, b22(x) = a22(x) +
a2

12(x)

γ
,

where γ is any constant such that

0 < γ < βp1
− ‖a11‖p1

,(
1

γ
− 1

βp1 − ‖a11‖p1

)
‖a2

12‖p2 < βp2 − ‖a22 +
a2

12

βp1 − ‖a11‖p1

‖p2 ,

then all conditions of Theorem 3.3 are fulfilled and consequently (3.1) has only

the trivial solution. �

Remark 3.6. Previous corollary may be seen as a perturbation result in the

following sense: let us assume that we have an uncoupled system of the type

(3.13)
∆u1(x) + a11(x)u1(x) = 0, x ∈ Ω;

∂u1(x)

∂n
= 0, x ∈ ∂Ω,

∆u2(x) + a22(x)u2(x) = 0, x ∈ Ω;
∂u2(x)

∂n
= 0, x ∈ ∂Ω,

where

(3.14)
aii ∈ C(Ω), 1 ≤ i ≤ 2, a11(x) ≥ δ > 0, a22(x) ≥ δ, for all x ∈ Ω,

∃ p1, p2 ∈ (N/2,∞] : ‖a11‖p1
< βp1

, ‖a22‖p2
< βp2

.

Then it is clear from the scalar results (see Remark 3.2) that the unique solution

of (3.13) is the trivial one (see Corollary 6.1 in [5]). Now, we can use Corollary

3.5 to ensure the permanence of the uniqueness property (with respect to the

existence of solutions) of the coupled system (3.1), for any function a12 ∈ C(Ω)

with L∞−norm sufficiently small. Here we have considered that the functions

aii(x), 1 ≤ i ≤ 2, are fixed and that the uncoupled system is perturbed by the

function a12(x). But it is clear that we may consider, for example, a11(x), a12(x)

fixed and a22(x) as the perturbation. Some of these results may be generalized

to systems with n equations. For example, if we have an uncoupled system of

the type

(3.15)

∆ui(x) + aii(x)ui(x) = 0, x ∈ Ω;

∂ui(x)

∂n
= 0, x ∈ ∂Ω, 1 ≤ i ≤ n,

where

(3.16)
aii ∈ C(Ω), 1 ≤ i ≤ n, aii(x) ≥ δ > 0, 1 ≤ i ≤ n, for all x ∈ Ω,

∃ pi ∈ (N/2,∞] : ‖aii‖pi
< βpi

, 1 ≤ i ≤ n,
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then we can use Theorem 3.3 to ensure the permanence of the uniqueness prop-

erty (with respect to the existence of solutions) of the coupled system (3.1), for

any functions aij = aji ∈ C(Ω), 1 ≤ i 6= j ≤ n with L∞-norm sufficiently small.

The proof is similar to the case of two equations and it is based on Theorem 3.3.

The unique difference is that now, the matrix B(x) is given by bii(x) = aii(x)+ε,

1 ≤ i ≤ n with ε sufficiently small. It is easily deduced that if the L∞-norm of

the functions aij = aji, 1 ≤ i 6= j ≤ n are sufficiently small, then the matrix

B(x)−A(x) is positive definite for all x ∈ Ω.

Next we give some new results on the existence and uniqueness of solutions of

nonlinear resonant problems. We prefer to deal with systems of P.D.E. (similar

results can be proved for ordinary differential systems; in this last case it is

possible to choose the constants pi ∈ [1,∞], 1 ≤ i ≤ n). In particular, next

theorem is a generalization, for systems of equations, of the main result given

in [24] for the Neumann problem. Moreover, it is a generalization (at the two

first eigenvalues of (1.5)) of some results given in [2] and [15] where the authors

take all the constants pi =∞, 1 ≤ i ≤ n.

In the proof, the basic idea is to combine the results obtained in the linear

case with Schauder’s fixed point theorem.

Theorem 3.7. Let Ω ⊂ RN (N ≥ 2) be a bounded and regular domain and

G : Ω× Rn → R, (x, u)→ G(x, u) satisfying:

(a) u→ G(x, u) is of class C2(Rn,R) for every x ∈ Ω,

x→ G(x, u) is continuous on Ω for every u ∈ Rn.

(b) There exist continuous matrix functions A( · ), B( · ), with B(x) diagonal

and with entries bii(x) and pi ∈ (N/2,∞], 1 ≤ i ≤ n such that

(3.17)


A(x) ≤ Guu(x, u) ≤ B(x) in Ω× Rn,

‖b+ii‖pi
< βpi

for 1 ≤ i ≤ n,∫
Ω

〈A(x)k, k〉 dx > 0 for all k ∈ Rn \ {0}.

Then system

(3.18)

∆u(x) +Gu(x, u(x)) = 0 for x ∈ Ω,

∂u(x)

∂n
= 0 for x ∈ ∂Ω,

has a unique solution.

Proof. We first prove uniqueness. Let v and w be two solutions of (3.18).

Then, the function u = v − w is a solution of the problem

(3.19) ∆u(x) + C(x)u(x) = 0, x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω,
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where

C(x) =

∫ 1

0

Guu(x,w(x) + θu(x)) dθ

(see [18, p. 103] for the mean value theorem for the vectorial function Gu(x, u)).

Hence A(x) ≤ C(x) ≤ B(x) and we deduce that C(x) satisfies all the hypotheses

of Theorem 3.3. Consequently, u ≡ 0.

Next we prove existence. First, we write (3.18) in the equivalent form

(3.20)

∆u(x) +D(x, u(x))u(x) +Gu(x, 0) = 0 in Ω,
∂u

∂n
= 0 on ∂Ω,

where the function D : Ω× Rn →M(R) is defined by

D(x, z) =

∫ 1

0

Guu(x, θz) dθ.

Here M(R) denotes the set of real n × n matrices. Let X = (C(Ω))n be with

the uniform norm, i.e. if y(·) = (y1( · ), . . . , yn( · )) ∈ X, then

‖y‖X =

n∑
k=1

‖yk( · )‖∞.

Since

(3.21) A(x) ≤ D(x, z) ≤ B(x), for all (x, z) ∈ Ω× Rn,

we can apply Theorem 3.3 in order to have a well defined operator T : X → X

by Ty = uy, being uy the unique solution of the linear problem

(3.22)

∆u(x) +D(x, y(x))u(x) +Gu(x, 0) = 0 in Ω,
∂u

∂n
= 0 on ∂Ω.

We will show that T is completely continuous and that T (X) is bounded. The

Schauder’s fixed point theorem provides a fixed point for T which is a solution

of (3.18).

The fact that T is completely continuous is a consequence of the compact

embedding of the Sobolev space W 2,q(Ω) ⊂ C(Ω) for q sufficiently large. It

remains to prove that T (X) is bounded. Suppose, contrary to our claim, that

T (X) is not bounded. In this case, there would exist a sequence {yn} ⊂ X such

that ‖uyn
‖X → ∞. From (3.21), and passing to a subsequence if necessary, we

may assume that, for each 1 ≤ i, j ≤ n, the sequence of functions {Dij( · , yn( · ))}
is weakly convergent in Lp(Ω) to a function Eij( · ) and such that if E(x) =

(Eij(x)), then A(x) ≤ E(x) ≤ B(x), almost everywhere in Ω, (see [20, p. 157]).

If zn ≡ uyn
/‖uyn

‖X , passing to a subsequence if necessary, we may as-

sume that zn → z0 strongly in X (we have used again the compact embedding



Matrix Lyapunov Inequalities 325

W 2,q(Ω) ⊂ C(Ω)), where z0 is a nonzero vectorial function satisfying

(3.23)

∆z0(x) + E(x)z0(x) = 0 in Ω,
∂z0

∂n
= 0 on ∂Ω.

This is a contradiction with Theorem 3.3. �
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