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EQUIVALENCE AND NONEXISTENCE OF STANDING WAVES

FOR COUPLED SCHRÖDINGER EQUATIONS

WITH CHERN–SIMONS GAUGE FIELDS

Hyungjin Huh — Jinmyoung Seok

Abstract. This paper is devoted to the study of standing waves for so-

called N = 2 supersymmetric Chern–Simons–Schrödinger equations, a cou-
pled system of Schrödinger equations in which Chern–Simons gauge fields

are incorporated. We show that there is no nontrivial standing wave to

the N = 2 supersymmetric Chern–Simons–Schrödinger equations when the
coupling constants are less than critical numbers. We also prove that static

N = 2 supersymmetric Chern–Simons–Schrödinger equations are equiva-

lent to their first order self-dual system when the coupling constants are
critical.
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1. Introduction

In this paper, we are concerned with the following coupled Schrödinger equa-

tions with the Chern–Simons gauge fields

(1.1)

iD0φ+ (D1D1 +D2D2)φ+ 2λ1|φ|2φ+ λ2|ψ|2φ,= 0,

iD0ψ + (D1D1 +D2D2)ψ + λ2|φ|2ψ − (∂1A2 − ∂2A1)ψ = 0,

∂0A1 − ∂1A0 = − Im(φD2φ)− Im(ψD2ψ) + ∂1|ψ|2/2,

∂0A2 − ∂2A0 = Im(φD1φ) + Im(ψD1ψ) + ∂2|ψ|2/2,

∂1A2 − ∂2A1 = − (|φ|2 + |ψ|2)/2,

where i denotes the imaginary unit, ∂0 = ∂/∂t, ∂1 = ∂/∂x1, ∂2 = c∂/∂x2 for

(t, x1, x2) ∈ R1+2, φ, ψ : R1+2 → C are complex scalar fields, Aµ : R1+2 → R are

gauge fields,Dµ = ∂µ + iAµ are covariant derivative for µ = 0, 1, 2. The parame-

ters λ1, λ2 > 0 represent the strength of coupling effect of φ and ψ. The system

(1.1) is proposed in [7] for explaining electromagnetic phenomena on a planar

domain such as fractional quantum Hall effect or high temperature super conduc-

tivity. It is called the N = 2 supersymmetric Chern–Simons–Schrödinger equa-

tions because it is N = 2 supersymmetric extension of the well-known Jackiw–Pi

model [6] which may be derived by putting ψ ≡ 0 in (1.1).

The aim of this paper is to observe some equivalence and nonexistence results

for standing wave solutions to (1.1) in a unified way. We mean, by a standing

wave solution, a solution (φ, ψ,A0, A1, A2) to (1.1) of the form

(φ(t, x), ψ(t, x), Aµ(t, x)) = (u(x)eiω1t, v(x)eiω2t, Aµ(x)),

where u, v are complex C∞ functions, Aµ(x) are real C∞ functions and ω1, ω2

are real constants. A standing wave solution with ω1 = ω2 = 0 is called static.

We first consider a special case where the critical coupling constants λ1 and

λ2 are critical, i.e. λ1 = 1/2 = λ2. In this case, one can derive the following

system of first order equations called self dual system:

(1.2)

D1u+ iD2u = 0,

D1v + iD2v = 0,

∂1A2 − ∂2A1 = −1

2
(|u|2 + |v|2),

A0 −
1

2
|u|2 = 0.

We note that solutions of the self-dual equations (1.2) provide static solutions

to the equations (1.1) with the critical constants λ1 = 1/2 = λ2, i.e. solutions to

the following equations

A0u−D1D1u −D2D2u− |u|2u−
1

2
|v|2u = 0,(1.3)
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A0v −D1D1v −D2D2v −
1

2
|u|2v + (∂1A2 − ∂2A1)v = 0,(1.4)

∂1A0 = Im(uD2u) + Im(vD2v)− 1

2
∂1|v|2,(1.5)

∂2A0 = − Im(uD1u)− Im(vD1v)− 1

2
∂2|v|2,(1.6)

∂1A2 − ∂2A1 = − 1

2
(|u|2 + |v|2).(1.7)

Indeed, applying the following identity

(1.8)

2∑
j=1

DjDju = (D1 − iD2)(D1 + iD2)u+ (∂1A2 − ∂2A1)u,

one can check, for instance, the equation (1.3) is verified

A0u− (D1 − iD2)(D1 + iD2)u− (∂1A2 − ∂2A1)u− |u|2u− 1

2
|v|2u = 0.

The first main result is to establish the reverse direction. In other words, we

prove that every smooth solution of (1.3)–(1.7) with some integrability conditions

is a solution of the self-dual system (1.2). This kind of equivalence is proved in [4]

for Jackiw–Pi model. Here we extend it to the N = 2 super-symmetric Chern–

Simons–Schrödinger equations.

Theorem 1.1. Suppose that (φ, ψ,A0, A1, A2) is a static solution of (1.1)

such that:

(a) φ, ψ ∈ H1(R2) and φ 6≡ 0,

(b) A0 ∈ Lp(R2) for some 1 < p ≤ ∞,

(c) A1, A2 ∈ Lq(R2) for some 2 < q ≤ ∞.

Then (φ, ψ,A0, A1, A2) also solves the self dual system (1.2).

Theorem 1.1 says that the system (1.2) equals to the equations (1.3)–(1.7)

under the condition of Theorem 1.1 although it consists of first-order differential

equations. In the case of φ ≡ 0, we have A0ψ = 0 and A0 = c which implies

A0 ≡ 0 for nontrivial ψ. See the proof of Theorem 1.1.

Next, we state nonexistence results of nontrivial standing waves when param-

eters λ1 and λ2 are subcritical, i.e. (λ1, λ2) ∈ ((0, 1/2]× (0, 1/2]) \ {(1/2, 1/2)}.

Theorem 1.2. Suppose that (φ, ψ,A0, A1, A2) is a standing wave solution

of (1.1) satisfying (a)–(c) of Theorem 1.1 and 0 < λ1 < 1/2, 0 < λ2 ≤ 1/2.

Then, one has φ ≡ 0. In addition, one also has ψ ≡ 0 if A0 6= −ω2.

Theorem 1.3. Suppose that (φ, ψ,A0, A1, A2) is a standing wave solution

of (1.1) satisfying (a)–(c) of Theorem 1.1 and λ1 = 1/2, 0 < λ2 < 1/2. Then,

one has either φ ≡ 0 or ψ ≡ 0. In addition, one has ψ ≡ 0 if A0 6= −ω2.



498 H. Huh — J. Seok

In fact, Theorems 1.2 and 1.3 are corollaries of Theorems 3.1 and 3.2 in which

the equations (2.1), a generalized version of (1.1), is considered. See Section 3.

All the theorems mentioned above are derived as easy applications of an integral

identity (2.8) which holds true for every standing wave solutions to (2.1). We

will see that (2.8) is due to combining Pohozaev type identity and Nehari type

identity with Bogomol’nyi trick (2.17) below.

The rest of the paper is organized as follows. We derive (2.8) in Section 2.

In sections 3 we give precise statements of Theorems 3.1 and 3.2. In Section 4

we prove Theorems 1.1, 3.1 and 3.2 by using (2.8).

2. Integral identity

Consider the generalized version of (1.1) as the following:

(2.1)

iD0φ+ (D1D1 +D2D2)φ+ F ′(|φ|2)φ+
∂G

∂s1
(|φ|2, |ψ|2)φ = 0,

iD0ψ + (D1D1 +D2D2)ψ +
∂G

∂s2
G(|φ|2, |ψ|2)ψ − (∂1A2 − ∂2A1)ψ = 0,

∂0A1 − ∂1A0 = − Im(φD2φ)− Im(ψD2ψ) +
1

2
∂1|ψ|2,

∂0A2 − ∂2A0 = Im(φD1φ) + Im(ψD1ψ) +
1

2
∂2|ψ|2,

∂1A2 − ∂2A1 = − 1

2
(|φ|2 + |ψ|2).

Throughout the paper, we always assume that F and G are C∞ functions and

satisfy

(2.2) F (0) = F ′(0) = 0 and G(s1, 0) = G(0, s2) = 0 for all s1, s2 ≥ 0.

If one choose, for example, F (s) = λ1s
2, G(s1, s2) = λ2s1s2, the system (2.1)

becomes (1.1).

Now, we plug the standing wave ansatz into (2.1) to get the equations

(ω1 +A0)u − (D1D1 +D2D2)u− F ′(|u|2)u− ∂s1G(|u|2, |v|2)u = 0,(2.3)

(ω2 +A0)v − (D1D1 +D2D2)v(2.4)

− ∂s2G(|u|2, |v|2)v + (∂1A2 − ∂2A1)v = 0,

∂1A0 = Im(uD2u) + Im(vD2v)− 1

2
∂1|v|2,(2.5)

∂2A0 = − Im(uD1u)− Im(vD1v)− 1

2
∂2|v|2,(2.6)

∂1A2 − ∂2A1 = − 1

2
(|u|2 + |v|2).(2.7)

Then, on can obtain the following:
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Proposition 2.1. Let (u, v,A0, A1, A2) be a smooth solution of equations

(2.3)–(2.7). Suppose that

(a) u, v ∈ H1(R2),

(b) A0 ∈ Lp(R2) for some 1 < p ≤ ∞,

(c) A1, A2 ∈ Lq(R2) for some 2 < q ≤ ∞,

(d) F (|u|2), F ′(|u|2)|u|2, G(|u|2, |v|2), ∂s1G(|u|2, |v|2)|v|2, ∂s2G(|u|2, |v|2)|v|2

in L1(R2).

Then the following integral identity holds true:

(2.8)

∫
R2

|(D1 + iD2)u|2 + |(D1 + iD2)v|2 +
1

2
|u|4

+ F (|u|2)− F ′(|u|2)|u|2 +
1

2
|u|2|v|2 +G(|u|2, |v|2)

− ∂s1G(|u|2, |v|2)|u|2 − ∂s2G(|u|2, |v|2)|v|2 dx = 0.

Here, H1(R2) denotes the standard Sobolev space which is the set of weakly

differentiable functions u on R2 such that both of u and∇u are square integrable.

We will derive the identity (2.8) by combining the well-known Derrick–Pohozaev

type identity [2] and Nehari type identity with the Bogomol’nyi trick (2.17).

Proof. The main part of the proof is to multiply (2.3) and (2.4) by xkDku

and xkDkv respectively and to integrate them to derive the Derrick–Pohozaev

identity. Then the Bogomol’nyi trick (2.17) is used to obtain (2.8). Rigorous

proof consists of integrating by parts over BR := {x ∈ R2 | |x| ≤ R}, taking care

of boundary terms and applying the Lebesgue dominated convergence theorem as

in [4]. Here we skip a detailed process and just show main calculation for simple

presentation. From now on, we adopt the summation convention for repeated

indices.

Suppose that (u, v,A0, A1, A2) is a solution of (2.3)–(2.7). Multiplying (2.3)

by xkDku and integrating over R2, we obtain

(2.9)

∫
R2

(ω1 +A0)uxkDku dx−
∫
R2

DjDjuxkDku dx

−
∫
R2

(F ′(|u|2)u+ ∂s1G(|u|2, |v|2)v)xkDku dx = 0.

Now we set

I =

∫
R2

(ω1 +A0)uxkDku dx,

II =

∫
R2

DjDjuxkDku dx,

III =

∫
R2

(F ′(|u|2)u+ ∂s1G(|u|2, |v|2)v)xkDku dx.
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Integrating by parts and taking real parts, we have

(2.10)

Re{I} = −
∫
R2

(ω1 +A0)|u|2 +
1

2
|u|2 xj∂jA0 dx,

Re{III} = −
∫
R2

F (|u|2)− 1

2
∂s1G(|u|2, |v|2)xj∂j |u|2 dx.

For II, we define Fjk := ∂jAk − ∂kAj . Then we have, integrating by parts,

II = −
∫
R2

|Dju|2 + xkDjuDjDku dx

= −
∫
R2

|Dju|2 + xkDju (DkDju+ iFjku) dx,

where we used the identity DjDku = DkDju+ iFjku. Taking the real part, we

obtain

Re{II} = −
∫
R2

|Dju|2 +
1

2
xk∂k(|Dju|2) + xkFjkIm(uDju) dx(2.11)

= −
∫
R2

xkFjkIm(uDju) dx.

Multiplying (2.4) by xkDkv and integrating over R2, we obtain

(2.12)

∫
R2

(ω2 +A0)v xkDkv dx−
∫
R2

DjDjv xkDkv dx

−
∫
R2

(
∂s2G(|u|2, |v|2)v − F12v

)
xkDkv dx = 0.

Now we set

IV =

∫
R2

(ω2 +A0)v xkDkv dx, V =

∫
R2

DjDjv xkDkv dx,

VI =

∫
R2

(
∂s2G(|u|2, |v|2)v − F12v

)
xkDkv dx.

Integrating by parts and taking real parts, we have

(2.13)

Re{VI} = −
∫
R2

(ω2 +A0)|v|2 +
1

2
|v|2 xj∂jA0 dx,

Re{V} = −
∫
R2

xkFjkIm(vDjv) dx,

Re{VI} = −
∫
R2

1

2
F12 xj∂j |v|2 −

1

2
∂s2G(|u|2, |v|2)xj∂j |v|2 dx.

We put (2.10), (2.11) and (2.13) in the equations (2.9) and (2.12). Taking

equations (2.5)–(2.7) into accout, we obtain∫
R2

F (|u|2) +G(|u|2, |v|2)− (ω1 +A0)|u|2 − (ω2 +A0)|v|2 dx = 0.(2.14)

On the other hand, multiplying (2.3) and (2.4) by u and v respectively and

integrating them, we derive
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(2.15)

∫
R2

(ω1 +A0)|u|2 + (ω2 +A0)|v|2 + |Dju|2 + |Djv|2 + F12|v|2

− F ′(|u2|)|u|2 − ∂s1G(|u|2, |v|2)|u|2 − ∂s2G(|u|2, |v|2)|v|2 dx = 0.

Combining (2.14) and (2.15), we conclude that

(2.16)

∫
R2

|Dju|2 + |Djv|2 + F12|v|2 + F (|u|2)− F ′(|u2|)|u|2

+G(|u|2, |v|2)− ∂s1G(|u|2, |v|2)|u|2 − ∂s2G(|u|2, |v|2)|v|2 dx = 0.

Now we apply Bogomol’nyi trick. Note the following identities hold

|Dju|2 = |(D1 + iD2)u|2 +∇× JB − F12|u|2,

|Djv|2 = |(D1 + iD2)v|2 +∇× JF − F12|v|2 +
1

2
∆|v|2,

(2.17)

where we denote

JB = (Im(uD1u), Im(uD2u)),

JF =

(
Im(vD1v) +

1

2
∂2|v|2, Im(vD2v)− 1

2
∂1|v|2

)
,

and use the notation ∇ × J = ∂1J2 − ∂2J1 for a vector J = (J1, J2). Then

the equation (2.16), considering the equation (2.7) and the divergence theorem,

gives∫
R2

|(D1 + iD2)u|2 + |(D1 + iD2)v|2 +
1

2
|u|4 +F (|u|2)−F ′(|u|2)|u|2 +

1

2
|u|2|v|2

+G(|u|2, |v|2)− ∂s1G(|u|2, |v|2)|u|2 − ∂s2G(|u|2, |v|2)|v|2 dx = 0.

This completes the proof of Proposition 2.1. �

3. Statements for nonexistence results to (2.1)

We state in this section some structural condition on F and G so that (2.1)

only admits trivial standing wave solutions. This is an extension of the result

in [5] where Jackiw-Pi model is considered. We also refer to [3] in which the

nonexistence of nontrivial solutions to another field equation of Schrödinger type,

the nonlinear Schrödinger–Maxwell system

(3.1)

−∆u+ V (x)u+ φu = |u|p−2u,
−∆φ = u2,

is studied. It is shown in [3] that if V is positive constant and p ∈ (0, 2)∩ (6,∞),

then (3.1) does not admit any nontrivial solutions (u, φ) with finite energy. When

p = 6 and V is nonconstant, a nonexistence result is obtained in [1] by imposing

some conditions on V . The above two papers also make use of Pohozaev and

Nehari identities.
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Now, we state the result. Recall that we are already assuming the condi-

tion (2.2).

Theorem 3.1. Suppose that (u, v, A0, A1, A2) is a smooth solution of the

equations (2.3)–(2.7) satisfying:

(a) u, v ∈ H1(R2),

(b) A0 ∈ Lp(R2) for some 1 < p ≤ ∞,

(c) A1, A2 ∈ Lq(R2) for some 2 < q ≤ ∞,

(d) F (|u|2), F ′(|u|2)|u|2, G(|u|2, |v|2), ∂s1G(|u|2, |v|2)|v|2, ∂s2G(|u|2, |v|2)|v|2

in L1(R2).

Assume that

(3.2)


1

2
s2 + F (s)− F ′(s)s > 0 for all s > 0,

1

2
s1s2 +G(s1, s2)− ∂s1G(s1, s2)s1 − ∂s2G(s1, s2)s2 ≥ 0

for all s1, s2 > 0.

Then we have that u ≡ 0, A0 is a real constant and

(D1 + iD2) v = 0, ∂1A2 − ∂2A1 = −1

2
|v|2.

Moreover, we also have v ≡ 0 if A0 6= −ω2.

Note that Theorem 3.1 immediately implies Theorem 1.2. We will give

a proof of Theorem 3.1 in Section 4.

Now, we switch the strict inequality sign in the condition (3.2). Then we

have the following result, which will be proved in Section 4.

Theorem 3.2. Suppose that (φ, ψ,A0, A1, A2) is a smooth solution of the

equations (2.3)–(2.7) satisfying (a)–(d) of Theorem 3.1. Assume that

(3.3)


1

2
s2 + F (s)− F ′(s)s ≥ 0 for all s > 0,

1

2
s1s2 +G(s1, s2)− ∂s1G(s1, s2)s1 − ∂s2G(s1, s2)s2 > 0

for all s1, s2 > 0.

Then one of the following holds:

(a) u ≡ 0, v ≡ 0, A0 is a real constant and ∂1A2 − ∂2A1 = 0;

(b) u ≡ 0, A0 = −ω2, v 6≡ 0 and

(D1 + iD2)v = 0, ∂1A2 − ∂2A1 = −1

2
|v|2;

(c) v ≡ 0, A0 = |u|2/2− ω1, u 6≡ 0 and

(D1 + iD2)u = 0, ∂1A2 − ∂2A1 = −1

2
|u|2, F (s) =

1

2
s2 for s ∈ [0, T ],

where T = max
x∈R2

|u(x)|2.
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It is easy to see that Theorem 3.2 implies both of Theorem 1.3 and the

following nonexistence results.

Corollary 3.3. Let (φ, ψ,A0, A1, A2) be a solution of the equations (2.3)–

(2.7) satisfying (a)–(d) of Theorem 3.2. Suppose that F and G satisfy the con-

dition (3.3) and there is a sequence {sn} → 0 such that F (sn) 6= s2n/2 for all n.

Suppose also that A0 6= −ω2. Then one has φ ≡ 0 and ψ ≡ 0.

4. Proof of Theorems 1.1, 3.1 and 3.2

We can easily prove all the theorems by using identity (2.8).

Proof of Theorem 1.1. Set ω1 = ω2 = 0, F (s) = s2/2 and G(s1, s2) =

s1s2/2. Then Proposition 2.1 implies (D1 + iD2)φ = 0 and (D1 + iD2)ψ = 0.

It remains to show A0 = |φ|2/2 to complete the proof of Theorem 1.1.

From the equation (1.3) and the factorization identity (1.8), we can check that

the equation A0φ = |φ|2φ/2 is satisfied. Also ∇A0 = ∇|φ|2/2 from equations

(1.5) and (1.6) so that A0 = |φ|2/2 + c for some c ∈ R. Thus, we have cφ ≡ 0

and conclude that c = 0 since φ 6≡ 0. �

Proof of Theorem 3.1. Observe that the condition (3.2) and Proposi-

tion 2.1 imply that

u ≡ 0 and (D1 + iD2)v = 0.

Then, equations (2.5)–(2.6) become ∇A0 = 0 so that A0 is a real constant.

The equation (2.7) becomes ∂1A2 − ∂2A1 = −|v|2/2. From the factorization

identity (1.8) and the condition (2.2), we see that the equation (2.4) becomes

(ω2 +A0)v = 0. Therefore v ≡ 0 if A0 6= −ω2. �

Proof of Theorem 3.2. We deduce from the condition (3.3) and Propo-

sition 2.1 that

uv ≡ 0, (D1 + iD2)u = 0, (D1 + iD2)v = 0.(4.1)

Then we have(
(ω1 +A0) +

1

2
|u|2 − F ′(|u|2)

)
u = 0, (ω2 +A0)v = 0,

A0 =
1

2
|u|2 + c, F12 = −1

2
(|u|2 + |v|2).

(4.2)

for some c ∈ R.

Now we introduce the following lemma and refer to Proposition 5.1 in [8] for

the proof.

Lemma 4.1. Let f be a nonzero smooth complex function and A1, A2 be

smooth real functions on R2 such that (D1 + iD2)f = 0. Then the zero set of f

has empty interior.
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Considering (4.1) and Lemma 4.1, we have the following three cases:

Case 1. Suppose that u ≡ 0 and v ≡ 0. Then we can derive the conclusion (a)

of Theorem 3.2 from (4.2).

Case 2. Suppose that v 6≡ 0. Then u ≡ 0 by Lemma 4.1 and the conclu-

sion (b) of Theorem 3.2 is also immediate from (4.2).

Case 3. Suppose that u 6≡ 0. Then v ≡ 0 and ω1 + c + |u|2 − F ′(|u|2) = 0

by (4.2). Taking limit |x| → ∞, we see that c = −ω1 and |u|2 − F ′(|u|2) ≡ 0.

Therefore we have A0 = |u|2/2 − ω1 and s − F ′(s) = 0 on s ∈
[
0,max
x∈R2

|u(x)|2
]
.

This completes the proof of Theorem 3.2. �

Acknowledgements. H. Huh was supported by Basic Science Research

Program through the National Research Foundation of Korea (NRF) funded

by the Ministry of Education, Science and Technology (2011-0015866).

References

[1] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrodinger–

Maxwell equations, J. Math. Anal. Appl. 345 (2008), no. 1, 90–108.

[2] L.C. Evans, Partial differential equations, Second edition, Graduate Studies in Mathemat-

ics 19, 2010.

[3] T. D’Aprile and D. Mugnai, Non-existence results for the coupled Klein–Gordon–Maxwell

equations, Adv. Nonlinear Stud. 4 (2004), no. 3, 307–322.

[4] H. Huh and J. Seok, The equivalence of the Chern–Simons–Schrödinger equations and

its self-dual system, J. Math. Phys. 54 (2013), 021502, 5 pp.

[5] H. Huh, Nonexistence results of semilinear elliptic equations coupled with the Chern–

Simons gauge field, Abstr. Appl. Anal. (2013), Article ID 467985, 5 pages.

[6] R. Jackiw and S.-Y. Pi, Classical and quantal nonrelativistic Chern–Simons theory, Phys.

Rev. D. 42 (1990), 3500–3513.

[7] M. Leblanc, G. Lozano and H. Min, Extended superconformal Galilean symmetry in

Chern–Simons matter systems, Ann. Physics 219 (1992), no. 2, 328–348.

[8] C.H. Taubes, Vortices and monopoles, Birkhäuser, Boston, (1980).
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