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POSITIVE SOLUTIONS

OF ONE-DIMENSIONAL p-LAPLACIAN EQUATIONS

AND APPLICATIONS TO POPULATION MODELS

OF ONE SPECIES

Kunquan Lan — Xiaojing Yang — Guangchong Yang

Abstract. We prove new results on the existence of positive solutions of

one-dimensional p-Laplacian equations under sublinear conditions involving
the first eigenvalues of the corresponding homogeneous Dirichlet boundary

value problems. To the best of our knowledge, this is the first paper to

use fixed point index theory of compact maps to give criteria involving the
first eigenvalue for one-dimensional p-Laplacian equations with p 6= 2. Our

results generalize some previous results where either p is required to be

greater than 2 or the nonlinearities satisfy stronger conditions. We shall
apply our results to tackle a logistic population model arising in mathe-
matical biology.

1. Introduction

We study the existence of positive (classical) solutions of one-dimensional

p-Laplacian equations of the form

(1.1)

−∆pz(x) = f(x, z(x)) for a.e. x ∈ (0, 1),

z(0) = z(1) = 0,
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where p ∈ (1,∞), ∆pz(x) = (|z′(x)|p−2z′(x))′ := (φp(z
′(x)))′, z′(x) denotes the

usual derivative of the function z at x, and φp : R→ R is defined by

φp(s) = |s|p−2s.

One or higher-dimensional p-Laplacian equations arise in the study of Newtonian

fluids (p = 2) and non-Newtonian fluids (p 6= 2) such as dilatant fluids (p > 2)

and pseudoplastic fluids (1 < p < 2), for example see Guo and Webb [11] or [27].

Existence of nonzero nonnegative positive solutions of (1.1) has been studied

by many authors, for example, by Wang [33], where the nonlinearity is of the

form g(x)f(u), under the following condition:

(1.2) lim
u→∞

f(u)

up−1
= 0 and lim

u→0+

f(u)

up−1
=∞,

and by Webb and Lan [36], where p = 2, under the following sublinear condition:

0 ≤ lim
u→∞

f(u)

u
< π2 < lim

u→0+

f(u)

u
≤ ∞.

When p ≥ 2, Ćwiszewski and Maciejewski [5] use the Granas fixed point index

(see [9], [10]) to study the existence of positive weak solutions of p-Laplacian

equations under the following sublinear condition:

(1.3) 0 ≤ lim
u→∞

f(u)

up−1
< µp < lim

u→0+

f(u)

up−1
≤ ∞,

where µp is the first eigenvalue of the corresponding homogeneous Dirichlet

boundary value problem and µ2 = π2. Actually [5] also covers the superlin-

ear case and PDE cases, where f is not required to be nonnegative, but [5] only

studies weak solutions and requires both a global growth condition on f and

p ≥ 2. Hence, [5] obtained less restrictive solution under stronger assumptions.

Rynne [31] studies (1.1) with suitable boundary conditions using bifurcation the-

ory, and Kajikiya, Lee and Sim [15]–[17] study the bifurcation of sign-changing

solutions for one-dimensional p-Laplacian with a strong singular weight. We re-

fer to [1], [7], [12]–[14], [18], [20]–[25], [29], [32], [37], [38], [41] for the study of

the existence and uniqueness of systems of p-Laplacian equations under suitable

sublinear or superlinear conditions.

In this paper, we obtain new results on the existence of (classical) positive

solutions of (1.1) under the sublinear condition (1.3). As mentioned above, there

have been many papers studying the existence of solutions of the one-dimensional

p-Laplacian equation (1.1), but, to the best of our knowledge, when p 6= 2, our

paper is the first one to use the fixed point index theory of compact maps [2]

to give criteria involving the first eigenvalue, which is well known for the case

p = 2, see Webb and Lan [36]. Our results allow p ∈ (1,∞) and we obtain

positive (classical) solutions in C1
0 [0, 1]. Our results generalize Webb and Lan’s

result in [36] from p = 2 to p 6= 2, Wang’s result in [33] from (1.2) to (1.3),
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where the fixed point index theory of compact maps is employed. Our results

also improve Ćwiszewski and Maciejewski’s result from p ≥ 2 to p ∈ (1,∞) and

from weak solutions to classical solutions under the sublinear condition (1.3),

where the Granas fixed point index (see [9], [10]) is used to prove the criteria

involving the first eigenvalue of p-laplacian with p ≥ 2. We prove our results by

applying the theory of fixed point index for compact maps defined on cones in

Banach spaces [2]. We overcome the difficulty of lacking linearity of the operator

arising from the corresponding homogeneous Dirichlet boundary value problem.

Our method is different from those used in [5], where a different index theory

is applied, and in [33], [36], where linearity of the corresponding operators are

applied in an essential way.

We remark that it remains open whether (1.1) has (classical) positive solu-

tions under the superlinear condition:

(1.4) 0 ≤ lim
u→0+

f(u)

up−1
< µp < lim

u→∞

f(u)

up−1
≤ ∞.

As applications of our results, we study the persistence of population models

of one species governed by the p-Laplacian equations of the form

(1.5)

−∆pz(x) = µzσ−1(x)(1− z(x)) for x ∈ (0, 1),

z(0) = z(1) = 0,

where z(x) denotes the population density of one species at location x, µ > 0 is a

parameter related to the patch size of the population, the term zσ−1(x)(1−z(x))

represents the logistic growth rate of order σ. When p = σ = 2, (1.5) was studied

in [4], [6], [26], [30]. Our result allows p ∈ (1,∞) and σ ∈ (1, p].

2. Positive solutions of one-dimensional p-Laplacian equations

In this section we prove a new result on the existence of nonzero positive

solutions of (1.1) and apply it to study the persistence of population models (1.5).

We always assume the following conditions hold:

(C1) f : [0, 1] × R+ → R+ satisfies Carathéodory conditions, that is, f( · , u)

is measurable for each fixed u ∈ R+ and f(t, · ) is continuous for almost

every t ∈ [0, 1].

(C2) For each r > 0 there exists gr ∈ L1
+(0, 1) such that

(2.1) f(x, u) ≤ gr(x) for a.e. x ∈ [0, 1] and all u ∈ [0, r].

The condition (C1) is a standard condition which has been widely used, for

example in [5], [23]. The upper bound function gr in (C2) is independent of u

and belongs to L1
+(0, 1), which is more general than those used previously in [5]

and [23]. The condition: f(x, u) ≤ C(1 + up−1) for almost every x ∈ [0, 1] and

all u ∈ R+ was used in [5] while [23] required gr in L∞+ (0, 1).
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We denote by AC[0, 1] the space of all the absolutely continuous functions

defined on [0, 1].

Definition 2.1 ([8]). A function z : [0, 1] → R is said to be a (classical)

solution of (1.1) if z ∈ C1[0, 1], φp(z
′) ∈ AC[0, 1] and z satisfies (1.1).

A solution z of (1.1) is said to be nonnegative if z(x) ≥ 0 for x ∈ [0, 1] and

to be positive if z(x) > 0 for x ∈ (0, 1).

We denote by W 1,p
0 (0, 1) the standard Sobolev space with norm

‖u‖W 1,p
0

=

(∫ 1

0

|u′(x)|p dx
)1/p

:= ‖u′‖Lp ,

and by P the positive cone in W 1,p
0 (0, 1), that is,

P = {u ∈W 1,p
0 (0, 1) : u(x) ≥ 0 for x ∈ [0, 1]}.

The following result can be found in [19, Lemma A.9(ii), p. 56].

Lemma 2.2. W 1,p
0 (0, 1) ⊂ C[0, 1] and there exists c0 > 0 such that

‖u‖C[0,1] ≤ c0‖u‖W 1,p
0

for u ∈W 1,p
0 .

We need the following maximum principle, see [28, Lemma 3.1], and the weak

comparison principle which is a special case of Lemma 2.4 with λ = 0 in [3].

Lemma 2.3. Assume that a function u ∈ C[0, 1] satisfies the following con-

ditions:

(a) u′(x) exists for x ∈ (0, 1) and φp(u
′) ∈ AC(0, 1).

(b) −∆pu(x) ≥ 0 for a.e. x ∈ (0, 1), and u(0) = u(1) = 0.

Then u(x) ≥ 0 for x ∈ [0, 1]. If u 6≡ 0 on (0, 1), then u(x) > 0 for x ∈ (0, 1).

Lemma 2.4. Assume that u,w ∈W 1,p
0 (0, 1) satisfy

(−∆pu(x), v(x)) ≤ (−∆pw(x), v(x)) for v ∈ P,

where

(−∆pu(x), v(x)) =

∫ 1

0

(−∆pu(x))v(x) dx.

Then u(x) ≤ w(x) almost everywhere on (0, 1).

The following result can be found in [39, p. 44].

Lemma 2.5. For every w ∈ L1(0, 1), the quasilinear boundary value problem

(2.2)

−∆pu(x) = w(x) for a.e. x ∈ (0, 1),

u(0) = u(1) = 0,



One-Dimensional p-Laplacian Equations 435

has a unique solution u in D(∆p), where D(∆p) = {u ∈ C1
0 [0, 1] : φp(u

′) ∈
AC[0, 1]} and C1

0 [0, 1] = {u ∈ C1[0, 1] : u(0) = u(1) = 0} is a Banach space with

the norm

(2.3) ‖u‖C1[0,1] = ‖u‖C[0,1] + ‖u′‖C[0,1].

We denote by T the inverse of −∆p. Then T : L1(0, 1)→ D(∆p) is defined by

(2.4) Tw = u,

where u is the unique solution of (2.2) in D(∆p).

The following result is a special case of [39, Lemma 1].

Lemma 2.6. The map T defined in (2.4) has the following properties.

(a) T : L1(0, 1)→ C1
0 [0, 1] is continuous and bounded.

(b) T (B) is relatively compact in C1
0 [0, 1] for each subset B ⊂ L1(0, 1) satis-

fying the following condition:

(C) There exists hB ∈ L1(0, 1) such that

|z(x)| ≤ hB(x) for a.e. x ∈ (0, 1) and each z ∈ B.

It is easy to see that the p-Laplacian operator−∆p has the following property:

(−∆p)(λu(x)) = λp−1(−∆p)u(x) for u ∈ D(∆p) and λ ≥ 0.

This, together with Lemma 2.5, implies the following property of the inverse

operator T .

Lemma 2.7. The map T defined in (2.4) has the following property.

T (λw) = λ1/(p−1)T (w) for w ∈ L1(0, 1) and λ ≥ 0.

Define a map A from P to D(∆p) by

(2.5) Az(x) = (TFz)(x),

where T is given in (2.4) and the Nemytskii operator F : C+[0, 1] → L1
+(0, 1) is

defined by

(2.6) Fz(x) = f(x, z(x)).

Let X be a Banach space. Recall that a map A : Ω ⊂ X → X is said to

be compact if it is continuous and A(D) is compact for each bounded subset

D ⊂ Ω. It is shown in [8, p. 3] that the map T maps Lq(0, 1) into C1[0, 1] and is

compact for q > 1. Although Lemma 2.6 (i) shows that T : L1(0, 1) → C1[0, 1]

is continuous and bounded, it is not clear whether T : L1(0, 1) → C1[0, 1] is

compact.

The following result shows that under the assumptions (C1) and (C2), the

map A defined in (2.5) maps P into P and is compact.

Theorem 2.8. Under (C1) and (C2), the following assertions hold.
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(a) The map A defined in (2.5) maps P into P and is compact.

(b) z ∈ P is a fixed point of A if and only if z is a nonnegative solution

of (1.1).

Proof. (a) By Lemma 2.2, the embedding map i1 : W 1
0 (0, 1) → C[0, 1] de-

fined by i1(u) = u is continuous and hence, i1 : P → C+[0, 1] is continuous.

By (C1) and (C2), F maps C+[0, 1] to L1
+(0, 1) and is continuous. Hence,

F (z) = F (i1(z)) ∈ L1
+(0, 1) for z ∈ P , and F maps P into L1

+(0, 1) and is

continuous. Let w ∈ L1
+(0, 1) and u(x) = Tw(x) for x ∈ [0, 1]. By Lemma 2.5

and (2.4), u ∈ D(∆p) and u satisfies (2.2). Hence, −∆pu(x) = w(x) ≥ 0 for

almost every x ∈ (0, 1) and u(0) = u(1) = 0. By Lemma 2.3, u(x) ≥ 0 for

x ∈ (0, 1) and u ∈ P . Since

‖u‖W 1,p
0
≤ ‖u′‖C[0,1] ≤ ‖u‖C1[0,1] for u ∈ C1[0, 1],

the embedding map i2 : C1
0 [0, 1]→W 1,p

0 (0, 1) defined by i2(u) = u is continuous.

By Lemma 2.6 (i), T : L1
+(0, 1) → P is continuous and by (2.5), A : P → P

is continuous. Let D ⊂ P be bounded. Then there exists ρ > 0 such that

‖z‖W 1
0
≤ ρ for z ∈ D. By Lemma 2.2, z(x) ≤ c0ρ := r for x ∈ [0, 1] and by

(C2), there exists gr ∈ L1
+(0, 1) such that (2.1) holds. By Lemma 2.6(b) with

B = F (D) and hB = gr, A(D) = T (F (D)) = T (B) is relatively compact in

C1
0 [0, 1]. Since i2 : C1

0 [0, 1] → W 1,p
0 (0, 1) is continuous, A(D) = T (B) = i2T (B)

is relatively compact in W 1
0 (0, 1). Hence, A : P → P is compact.

(b) Under the assumptions (C1) and (C2), the results follows from (2.4). �

The following result can be found in [40, Theorem 2.1] or [15, Theorem 2.1].

Lemma 2.9. For each g ∈ L1
+(0, 1) with

∫ 1

0
g(x) ds > 0, there exist µg > 0

and ϕg ∈ C1
0 [0, 1] ∩ (P \ {0}) satisfying

(2.7)

−∆pϕg(x) = µgg(x)ϕp−1g (x) for a.e. x ∈ (0, 1),

ϕg(0) = ϕg(1) = 0.

The positive value µg is called the first eigenvalue of (2.7) and ϕg is called

the eigenfunction corresponding to the eigenvalue µg. By [40, (3.5), p. 42], we

see that for each g ∈ L1
+(0, 1) \ {0},

(2.8) µg = inf

{∫ 1

0

|u′(x)|p dx
/∫ 1

0

g(x)|u(x)|p dx : u ∈W 1,p
0 (0, 1) \ {0}

}
.

where
∫ 1

0
|u′(x)|p dx/

∫ 1

0
g(x)|u(x)|p dx = ∞ if

∫ 1

0
g(x)|u(x)|p dx = 0. It is given

in [8, (3.8)] that the first eigenvalue µg with g ≡ 1 equals

(2.9) µ1(p) :=

{
2

∫ (p−1)1/p

0

[1− sp(p− 1)−1]−1/p ds

}p
.
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Let r > 0 and let Pr = {x ∈ P : ‖x‖ < r}, ∂Pr = {x ∈ P : ‖x‖ = r} and

P r = {x ∈ P : ‖x‖ ≤ r}.

Lemma 2.10 ([2]).

(a) If A : P r → P is compact and satisfies z 6= tAz for x ∈ ∂Pr and t ∈ (0, 1],

then iP (A,Pr) = 1.

(b) If A : P r → P is compact and z 6= Az for z ∈ P r, then iP (A,Pr) = 0.

(c) Assume that h : [0, 1] × P r → P is compact and satisfies z 6= h(t, z) for

(t, z) ∈ [0, 1]× ∂Pr. Then iP (h(0, · ), Pr) = iP (h(1, · ), Pr).

(d) If iP (A,Pr) = 1 and iP (A,Pρ) = 0 for some ρ ∈ (0, r), then A has

a fixed point in Pr \ P ρ.

Now, we state and prove our main result.

Theorem 2.11. Assume that (C1), (C2) and the following conditions hold:

(H1) There exist r0 > 0, ε > 0 and φr0 ∈ L1
+(0, 1) \ {0} such that

f(x, u) ≤ (µφr0 − ε)φr0(x)up−1 for a.e. x ∈ [0, 1] and all u ∈ [r0,∞).

(H2) There exist ρ0 > 0, ε > 0 and ψρ0 ∈ L1
+(0, 1) \ {0} such that

f(x, u) ≥ (µψρ0 + ε)ψρ0(x)up−1 for a.e. x ∈ [0, 1] and all u ∈ [0, ρ0].

Then (1.1) has a positive solution z in C1
0 [0, 1], that is, z ∈ C1

0 [0, 1] satisfies

z(x) > 0 for x ∈ (0, 1).

Proof. By (C2), there exists gr0 ∈ L1
+(0, 1) such that

f(x, u) ≤ gr0(x) for a.e. x ∈ [0, 1] and all u ∈ [0, r0].

This, together with (H1), implies, for almost every x ∈ [0, 1] and all u ∈ R+,

(2.10) f(x, u) ≤ gr0(x) + (µφr0 − ε)φr0(x)up−1.

Let r1 = (ε−1c0µφr0 ‖gr0‖L1)1/(p−1) and r > max{r1, c−10 ρ0}. We prove that

(2.11) z 6= tAz for z ∈ ∂Pr and t ∈ [0, 1].

In fact, if not, there exist z ∈ ∂Pr and t ∈ (0, 1] such that z = tAz. By (2.5) and

Lemma 2.7, z(x) = T (tp−1Fz)(x) for x ∈ [0, 1]. It follows from (2.4) that

(2.12) −∆pz(x) = tp−1f(x, z(x)) for a.e. x ∈ [0, 1].
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By (2.12), (2.10), (2.8) with g = φr0 and Lemma 2.2, we have

‖z‖p
W 1,p

0

= (−∆pz, z) = tp−1
∫ 1

0

f(x, z(x))z(x) dx ≤
∫ 1

0

f(x, z(x))z(x) dx

≤
∫ 1

0

[gr0(x) + (µφr0 − ε)φr0(x)zp−1(x)]z(x) dx

≤ ‖z‖C[0,1]‖gr0‖L1 + (µφr0 − ε)µ
−1
φr0
‖z‖p

W 1,p
0

≤ c0‖z‖W 1,p
0
‖gr0‖L1 + (1− εµ−1φr0 )‖z‖p

W 1,p
0

.

This implies that ‖z‖p−1
W 1,p

0

≤ ε−1c0µφr0‖gr0‖L1 . Hence, we have

r1 < r = ‖z‖W 1,p
0
≤ (ε−1c0µφr0 ‖gr0‖L1)1/(p−1) = r1,

a contradiction. By (2.11) and Lemma 2.10(a), iP (A,Pr) = 1.

Let ρ = c−10 ρ0. Then ρ < r. By Lemma 2.2, we have for z ∈ ∂Pρ,

z(x) ≤ ‖z‖C[0,1] ≤ c0‖z‖W 1,p
0

= c0ρ = ρ0 for x ∈ [0, 1].

It follows from (H2) that for almost every x ∈ [0, 1] and all z ∈ ∂Pρ,

(2.13) f(x, z(x)) ≥ (µψρ0 + ε)ψρ0(x)zp−1(x).

If there exists z ∈ ∂Pρ such that z = T (Fz), then the result of Theorem 2.11

holds. Hence, we assume that z 6= T (Fz) for z ∈ ∂Pρ and prove that

(2.14) z 6= T (Fz + ν(−∆pe)) for z ∈ ∂Pρ and ν > 0,

where e is the eigenfunction corresponding to the eigenvalue µψρ0 , that is,

(2.15)

−∆pe(x) = µψρ0ψρ0(x)ep−1(x) for a.e. x ∈ (0, 1),

e(0) = e(1) = 0.

In fact, if not, there exist z ∈ ∂Pρ and ν > 0 such that z = T (Fz + ν(−∆pe)).

Then

(2.16) −∆pz(x) = Fz(x) + ν(−∆pe)(x) for a.e. x ∈ [0, 1]

and we have for v ∈ P ,

(−∆pz, v) = (Fz, v) + ν((−∆pe), v) ≥ ν((−∆pe), v) = (−∆p(ν
1/(p−1)e), v).

By Lemma 2.4 and continuity of z and e, z(x) ≥ ν
1
p−1 e(x) for x ∈ (0, 1). Let

(2.17) τ = sup{ζ > 0 : z(x) ≥ ζ1/(p−1)e(x) for x ∈ (0, 1)}.

Then 0 < ν ≤ τ <∞ and

(2.18) z(x) ≥ τ1/(p−1)e(x) for x ∈ (0, 1).
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By (2.15), we see that ((−∆pe), v) ≥ 0 for v ∈ P . By (2.16), (2.13), (2.18) and

(2.15), we have for v ∈ P ,

(−∆pz, v) =

∫ 1

0

f(x, z(x))v(x) dx+ ν((−∆pe), v) ≥
∫ 1

0

f(x, z(x))v(x) dx

≥ (µψρ0 + ε)

∫ 1

0

ψρ0(x)zp−1(x)v(x) dx

≥ (µψρ0 + ε)τ

∫ 1

0

ψρ0(x)ep−1(x)v(x) dx

= ξ

∫ 1

0

µψρ0ψρ0(x)ep−1(x)v(x) dx

= ξ(−∆pe, v) = (−∆p(ξ
1/(p−1)e), v),

where ξ = (µψρ0 + ε)τµ−1ψρ0
. Using Lemma 2.4 and continuity of z and e, we

obtain

z(x) ≥ ξ1/(p−1)e(x) for x ∈ (0, 1).

By (2.17), we have τ ≥ ξ = (µψρ0 + ε)τµ−1ψρ0
> τ, a contradiction.

Now, we prove that there exists n0 ∈ N such that

(2.19) z 6= T (Fz + n0(−∆pe)) for z ∈ P ρ.

In fact, if not, there exists zn ∈ P ρ such that zn = T (Fzn+n(−∆pe)). It follows

from Lemma 2.7 that

(2.20)
zn

n1/(p−1)
= T

(
Fzn
n

+ (−∆pe)

)
.

By Lemma 2.2,

zn(x) ≤ ‖zn‖C[0,1] ≤ c0‖zn‖W 1,p
0

= c0ρ for x ∈ [0, 1].

By (C2), there exists gc0ρ ∈ L1
+(0, 1) such that

f(x, zn(x)) ≤ gc0ρ(x) for a.e. x ∈ [0, 1].

Hence, we have∥∥∥∥Fznn
∥∥∥∥
L1

=
1

n

∫ 1

0

f(x, zn(x)) dx ≤ 1

n

∫ 1

0

gc0ρ(x) dx =
‖gc0ρ‖L1

n
→ 0

and
Fzn
n

+ (−∆pe)→ −∆pe in L1(0, 1).

By (2.15), −∆pe ∈ L1
+(0, 1) and Fzn/n+(−∆pe) ∈ L1

+(0, 1). By Lemma 2.6(a),

T

(
Fzn
n

+ (−∆pe)

)
→ T (−∆pe) in C1

0 [0, 1].

Since the identity i2 : C1
0 [0, 1]→W 1,p

0 (0, 1) defined by i2(u) = u is continuous,

(2.21) T

(
Fzn
n

+ (−∆pe)

)
→ T (−∆pe) in W 1,p

0 (0, 1).
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Since zn ∈ P ρ, we have zn/n
1/(p−1) → 0 in W 1,p

0 (0, 1). By (2.20) and (2.21), we

have 0 = T (−∆pe) = e, which contradicts the fact that the eigenfunction e is

nonzero.

Using (2.19) and Lemma 2.10(a), we have

(2.22) iP (T (Fz + n0(−∆pe)), Pρ) = 0.

We define a map h : [0, 1]× P ρ → P by

(2.23) h(t, z) = T (Fz + n0t(−∆pe)).

Then h : [0, 1] × P ρ → P is compact and by (2.14), z 6= h(t, z) for (t, z) ∈
[0, 1]× ∂Pρ. By Lemma 2.10(c), we obtain

iP (h(0, · ), Pρ) = iP (h(1, · ), Pρ).

It follows from (2.23) and (2.22) that

iP (A,Pρ) = iP (h(0, · ), Pρ) = iP (h(1, · ), Pρ) = iP (T (Fz + n0(−∆pe)), Pρ) = 0.

By Lemma 2.10 (iv), there exists z ∈ Pr \P ρ such that z = Az and by Theorem

2.8, z is a nonnegative solution of (1.1). By Lemma 2.6 (i), T maps L1(0, 1) into

C1
0 [0, 1] and thus, z ∈ C1

0 [0, 1] \ {0}. It follows from Lemma 2.3 that z(x) > 0

for x ∈ (0, 1). �

Remark 2.12. Theorem 2.11 allows f to have explicit dependence on x. We

refer to Webb [34], [35] for work on semi-linear problems, which includes the case

p = 2 here, when f depends explicitly on x.

Let E be a fixed subset of [0, 1] of measure zero. Let

f(z) = inf
x∈[0,1]\E

f(x, z), (fp)0 = lim inf
z→0+

f(z)/zp−1,

f(z) = sup
x∈[0,1]\E

f(x, z), f∞p = lim sup
z→∞

f(z)/zp−1.

As a special case of Theorem 2.11, we give the following result which depends

on the behavior of f(z)/zp−1 at 0 and ∞.

Corollary 2.13. Assume that (C1), (C2) and the following condition holds:

(2.24) 0 ≤ f∞p < µ1(p) < (fp)0 ≤ ∞,

where µ1(p) is the same as in (2.9). Then (1.1) has a positive solution z

in C1
0 [0, 1].

Proof. By (2.24), (H1) with φr0 ≡ 1 and (H2) with ψρ0 ≡ 1 hold for some

ε > 0 and ρ0, r0 with 0 < ρ0 < r0 <∞. The result follows from Theorem 2.11.�
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Remark 2.14. Corollary 2.13 improves [5, Theorem 1.1] with N = 1 and

ρ∞(x) < λ1,p < ρ∞(x) in the following ways:

(a) The condition (b) in [5, Theorem 1.1] is stronger than the condition (C2)

in this paper.

(b) Corollary 2.13 allows p ∈ (1,∞) while [5, Theorem 1.1] requires p ≥ 2.

(c) The nonzero negative solution z in Corollary 2.13 is a classical solution

(see Definition 2.1) while the solution z in [5, Theorem 1.1] is a weak solution,

that is, z satisfies∫ 1

0

φp(z
′(x))z′(x) dx =

∫ 1

0

f(x, z(x))z(z) dx for z ∈W 1
0 (0, 1).

It is known that if f( · , z( · )) is in Lr, where r > 1, then the weak solution z is

a classical solution. (see [8, p. 3]). However, under the condition (C2), we see

that f( · , z( · )) is in L1(0, 1). Hence, under the condition (C2), it is not clear

whether a weak solution of (1.1) is a classical solution.

(d) Corollary 2.13 does not require the two limits lim
|z|→0+

f(x, z)/zp−1 and

lim
z→∞

f(x, z)/zp−1 converge uniformly on [0, 1].

(e) Our method is different from that used in [5].

The function f in Corollary 2.13 depends on x, but if f is independent of x,

then we have the following result.

Corollary 2.15. Assume that f : R+ → R+ is continuous and satisfies

0 ≤ lim sup
u→∞

f(u)

up−1
< µ1(p) < lim inf

u→0+

f(u)

up−1
≤ ∞.

Then the following p-Laplacian equation

(2.25)

−∆pz(x) = f(z(x)) for x ∈ (0, 1),

z(0) = z(1) = 0,

has a positive solution z in C1
0 [0, 1] satisfying z(x) > 0 for x ∈ (0, 1).

As another special case of Theorem 2.11, we obtain the following result.

Corollary 2.16. Assume that g ∈ L1
+(0, 1) with

∫ 1

0
g(s) ds > 0 and f : [0, 1]

×R+ → R+ satisfies (C1), (C2) with gr ∈ L∞+ (0, 1), and (2.24). Then the

following p-Laplacian equation

(2.26)

−∆pz(x) = g(x)f(x, z(x)) for x ∈ (0, 1),

z(0) = z(1) = 0.

has a positive solution z in C1
0 [0, 1] satisfying z(x) > 0 for x ∈ (0, 1).

Proof. Since g ∈ L1(0, 1) and gr ∈ L∞+ (0, 1), the product gf of g and f

satisfies (C2). The rest of the proof is similar to that of Corollary 2.13. �
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Remark 2.17. Corollary 2.16 with p = 2 was essentially obtained by Webb

and Lan [36], see Theorem 4.1(H2) and Theorem 5.1(a) in [36]. Corollary 2.16

with p 6= 2 improves Theorem 3(b) with the Dirichlet boundary condition in [33],

where f is independent of x, lim
u→∞

f(u)/up−1 = 0 and lim
u→0+

f(u)/up−1 = ∞, g

satisfies a stronger condition, see (1.6a) in [33].

3. Applications to persistence of population models of one species

In this section, we apply the results in Section 2 to study the persistence of

population models of one species governed by (1.5), that is,

(3.1)

−∆pz(x) = µzσ−1(x)(1− z(x)) for x ∈ (0, 1),

z(0) = z(1) = 0,

where z(x) denotes the population density of one species at location x, µ > 0 is

a parameter related to the patch size of the population, the term zσ−1(x)(1 −
z(x)) represents the logistic growth rate of order σ. We refer to [4], [6], [26], [30]

for the study of (3.1) with p = σ = 2. Here we allow p ∈ (1,∞) and σ ∈ (1, p].

To make the population persist on every location x ∈ (0, 1), one needs to find a

positive solution z.

Let p ∈ (1,∞) and let

(3.2) µ(σ) =

µp if σ = p,

0 for σ ∈ (1, p).

Theorem 3.1. Let p ∈ (1,∞) and σ ∈ (1, p]. Then for µ ∈ (µ(σ),∞), (3.1)

has a positive solution z in C1
0 [0, 1].

Proof. Let µ ∈ (µ(σ),∞). We define a function R+ → R+ by

(3.3) f(u) =

µuσ−1(1− u) for u ∈ [0, 1],

0 for u ∈ (1,∞).

Then lim
u→∞

f(u)/up−1 = 0 < µp and

lim
u→0+

f(u)

up−1
= µ lim

u→0+

1

up−σ
lim
u→0+

(1− u) =

µ if σ = p,

∞ for σ ∈ (1, p),
> µp.

By Corollary 2.15, (2.25) with the function f defined in (3.3) has a positive

solution z in C1
0 [0, 1] satisfying z(x) > 0 for x ∈ (0, 1). We prove that z is

a solution of (3.1). It suffices to prove that ‖z‖C[0,1] ≤ 1. The proof is by

contradiction. In fact, if ‖z‖C[0,1] > 1, then there exists x0 ∈ (0, 1) such that
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z(x0) = ‖z‖C[0,1] > 1. It follows that there exists δ ∈ (0,min{x0, 1 − x0}) such

that z(x) > 1 for x ∈ (x0 − δ, x0 + δ). Let

x1 = inf{x ∈ [0, 1] : z(s) > 1 for s ∈ [x, x0]}

and

x2 = sup{x ∈ [0, 1] : z(s) > 1 for s ∈ [x0, x]}.
Then the following properties hold: (i) 0 < x1 < x0 < x2 < 1, (ii) z(x) > 1 for

x ∈ (x1, x2), (iii) z(x1) = z(x2) = 1 and (iv) z′(x0) = 0. By (3.3), f(z(x)) = 0

for x ∈ [x1, x2]. Hence,

−∆pz(x) = f(z(x)) = 0 for x ∈ [x1, x2].

This implies that there exists a constant η > 0 such that

φp(z
′(x)) = |z′(x)|p−2z′(x) = η for x ∈ [x1, x2].

Since φp : R → R is strictly increasing on R, z′(x) = φ−1p (η) = φq(η) for x ∈
[x1, x2], where 1/p + 1/q = 1. Since z′(x0) = 0 and x0 ∈ [x1, x2], we have

z′(x) = 0 for x ∈ [x1, x2] Hence, we have

z(x) = z(x0) = ‖z‖C[0,1] > 1 for x ∈ [x1, x2].

which contradicts the above property (iii). �

Theorem 3.1 extends [6, Lemma 1(i)] or [26, Lemma 1.1(ii)] from p = σ = 2

to p ∈ (1,∞) and σ ∈ (1, p].
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