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NONLINEAR HAMMERSTEIN EQUATIONS AND FUNCTIONS

OF BOUNDED RIESZ–MEDVEDEV VARIATION

Jürgen Appell —Tomás Doḿınguez Benavides

Abstract. In this paper we study the solvability of a nonlinear Hammer-

stein type integral equation in the space of functions of bounded Riesz–
Medvedev variation. To this end, we derive a compactness criterion and

apply Schauder’s fixed point theorem to a suitable operator whose fixed

points coincide with the solutions of the integral equation.

1. Statement of the problem

Consider the nonlinear integral equation of Hammerstein type

(1.1) f(s) =

∫ b

a

k(s, t)h(t, f(t)) dt+ b(s).

We are interested in conditions on the given functions k, h, and b under which

the above equation admits a solution f in some space of functions of generalized

bounded variation. To this end, we reformulate (1.1) as usual as a fixed point

problem f = Af for the operator

(1.2) Af := KHf + b,
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where

(1.3) Hf(t) = h(t, f(t))

is the (nonlinear) composition operator generated by the function h : [a, b]×R→R,

and

(1.4) Kg(s) =

∫ b

a

k(s, t)g(t) dt

is the (linear) integral operator generated by the kernel k : [a, b]× [a, b]→ R. Of

course, this idea is very old, and there is a wealth of existence theorems in the

literature, obtained in this way by considering the operators (1.3) and (1.4) in the

space C([a, b]) of continuous functions, or in spaces of measurable functions like

the Lebesgue space Lp([a, b]) and the Orlicz space Lφ([a, b]). On the other hand,

to the best of our knowledge there are only very few papers on the solvability

of (1.1) in spaces of functions of (classical or generalized) bounded variation,

although these spaces frequently occur in applications. As a sample result, we

mention [18], where the author considers BV-solutions of a nonlinear convolution-

type Volterra integral equation on the real line. More recently, Bugajewska,

Bugajewski et al. [6]–[12] study equation (1.1) more systematically from the

viewpoint of variation and prove existence of solutions in the spaces BV([a, b])

(bounded Jordan variation, see [15]), WBVp([a, b]) (bounded Wiener variation,

see [31]), or even ΛBV([a, b]) (bounded Waterman variation, [27]–[30]).

The purpose of this paper is to prove existence of solutions of (1.1) in the

spaces BVp([a, b]) of functions of bounded Riesz p-variation or, more generally,

BVφ([a, b]) of functions of bounded Medvedev φ-variation. First we recall the

definition and some properties of these spaces and derive a natural compactness

criterion. Afterwards we impose some conditions on the given data h and k

under which the operator (1.2) is continuous and compact, and leaves a closed

ball in the space BVp([a, b]) or BVφ([a, b]) invariant. By means of Schauder’s

fixed point theorem we obtain then existence of solutions of (1.1). Finally, we

briefly sketch how our method could be extended to a larger class of equations

if we define a measure of noncompactness in BVp([a, b]) and replace Schauder’s

theorem by Darbo’s fixed point theorem [13].

2. The Riesz–Medvedev variation

We begin this section recalling the definition of the Riesz variation [24], [25]

which contains the Jordan variation as special case. Throughout this paper, we

take [a, b] = [0, 1] for simplicity of notation.
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Definition 2.1. Given a real number p ≥ 1, the total Riesz variation of

a function f : [0, 1]→ R is defined to be the (possibly infinite) number

(2.1) Varp(f) := sup

{ m∑
j=1

|f(tj)− f(tj−1)|p

(tj − tj−1)p−1
: P = {t0, . . . , tm}

}
,

where the supremum is taken over all partitions P = {t0, . . . , tm} of the interval

[0, 1]. In case Varp(f) < ∞ we say that f has bounded Riesz variation on [0, 1]

and write f ∈ BVp([0, 1]).

In what follows we write BVp instead of BVp([0, 1]), and similarly for other

function spaces. It is not hard to show that BVp, equipped with the norm

(2.2) ‖f‖BVp := |f(0)|+ Varp(f)1/p (f ∈ BVp),

is a Banach space which is for p > 1 continuously imbedded into the space C

of continuous functions with the usual maximum norm, see Corollary 2.3 below.

Moreover, the chain of (strict) inclusions

Lip ⊂ BVp ⊂ BVq ⊂ AC ⊂ BV

holds for 1 < q < p < ∞, where Lip denotes the space of Lipschitz continuous

functions, AC the space of absolutely continuous functions, and BV = BV1 the

classical space of functions of bounded Jordan variation [15].

The most interesting and useful property of the space BVp is that it is iso-

metrically isomorphic to the space Lp ⊕1 R in the following sense.

Theorem 2.2. Let 1 < p < ∞. Then, a function f belongs to BVp if and

only if f is absolutely continuous and f ′ ∈ Lp. Moreover,

Varp(f) =

∫ 1

0

|f ′(x)|p dx,

and so

(2.3) ‖f‖BVp = |f(0)|+ ‖f ′‖Lp .

Theorem 2.2 is due to F. Riesz [25]. An analogous result for p = 1 is of

course not true, since functions from BV1 = BV are usually not continuous, let

alone absolutely continuous. However, the decomposition AC = L1⊕1 R is true,

because Var(f) = ‖f ′‖L1
for f ∈ AC ⊂ BV.

Theorem 2.2 allows us to say more on the inclusion BVp ⊂ C for p > 1. In

fact, for f ∈ BVp and 0 ≤ t ≤ 1 we have

|f(t)| − |f(0)| ≤ ‖f ′‖L1 ≤ ‖f ′‖Lp ,

and so ‖f‖C ≤ ‖f‖BVp , by (2.3). In this way we have proved the following
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Corollary 2.3. For p > 1 the space BVp with the norm (2.2) is continuously

embedded into the space C of continuous functions with the maximum norm and

embedding constant 1.

Definition 2.1 and Theorem 2.2 were later extended by Yu.T. Mevdvedev who

replaced Lebesgue spaces by Orlicz spaces. Recall that a mapping φ : [0,∞) →
[0,∞) is said to be a Young function if φ is continuous, convex, and satisfies

φ(0) = 0, φ(t) > 0 for t > 0, and φ(t) → ∞ as t → ∞. Given a Young

function, the corresponding Orlicz space Lφ consists of all measurable functions

f : [0, 1]→ R for which there exists λ > 0 such that∫ 1

0

φ

(
|f(x)|
λ

)
dx ≤ 1.

This space with the Luxemburg norm

(2.4) ‖f‖Lφ = inf

{
λ > 0 :

∫ 1

0

φ

(
|f(x)|
λ

)
dx ≤ 1

}
becomes a Banach space, see e.g. [16], [23]. To avoid L1-type spaces for which

Theorem 2.2 fails, we will assume throughout that the Young function φ satisfies

the so-called condition ∞1 which means that

lim
t→∞

φ(t)

t
=∞.

Under this condition, Lφ is a proper subspace of L1. A useful estimate for

Young functions satisfying condition ∞1 is Jensen’s inequality

(2.5) φ


∫ 1

0

α(t)u(t) dt∫ 1

0

α(t) dt

 ≤
∫ 1

0

α(t)φ(u(t)) dt∫ 1

0

α(t) dt

,

where u and α are nonegative integrable functions and ‖α‖L1
> 0. We also

assume that φ satisfies the ∆2-condition, i.e. there exist C > 0 and T > 0 such

that φ(2t) ≤ Cφ(t) for t ≥ T . From this it follows that, more generally, for each

η > 0 we can find C = C(η) > 0 and T = T (η) > 0 such that

(2.6) φ(ηt) ≤ C(η)φ(t) (t ≥ T (η)).

For a finite measure, as the Lebesgue measure on [0, 1], it is well-known that

the ∆2-condition for φ implies that∫ 1

0

φ

(
|f(x)|
λ

)
dx <∞

for every λ > 0 if f ∈ Lφ. Moreover, in this case the space L∞ is dense in Lφ.

Of course, the simplest example of a Young function satisfying both condi-

tions ∞1 and ∆2 is φ(t) = tp for p > 1; however, other choices of φ are also
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important in applications. The Riesz variation (2.1) has been extended to Orlicz

spaces by Medvedev [19] in the following way.

Definition 2.4. Given a Young function φ, the total Riesz–Medvedev vari-

ation of a function f : [0, 1]→ R is defined to be the (possibly infinite) number

Varφ(f) := sup

{ m∑
j=1

φ

(
|f(tj)− f(tj−1)|

tj − tj−1

)
(tj − tj−1) : P = {t0, . . . , tm}

}
,

where the supremum is taken over all partitions P = {t0, . . . , tm} of the interval

[0, 1]. In case Varφ(f) <∞ we say that f has bounded Riesz–Medvedev variation

on [0, 1] and write f ∈ BVφ([0, 1]).

Again, it is not hard to show that BVφ, equipped with the norm

(2.7) ‖f‖BVφ := |f(0)|+ inf {λ > 0 : Varφ(f/λ) ≤ 1} (f ∈ BVφ),

is a Banach space. The following theorem [19] is parallel to Theorem 2.2.

Theorem 2.5 (Medvedev). Let φ be a Young function which satisfies con-

dition ∞1. Then, a function f belongs to BVφ if and only if f is absolutely

continuous and f ′ ∈ Lφ. Moreover,

Varφ(f) =

∫ 1

0

φ(|f ′(x)|) dx,

and so

(2.8) ‖f‖BVφ = |f(0)|+ ‖f ′‖Lφ .

We will use Theorem 2.5 in the next section for proving an existence result

for solutions of the Hammerstein equation (1.1) in BVφ. To this end, we need

the following compactness criterion in Orlicz spaces.

Theorem 2.6. A bounded subset M ⊂ Lφ is relatively compact if and only if

lim
τ→0

sup
f∈M

‖f − fτ‖Lφ = 0,

where fτ (t) = f(t+ τ) for 0 ≤ t+ τ ≤ 1, and fτ (t) = 0 otherwise.

Theorem 2.6 is proved in [14, Theorem 7] and generalizes the classical Riesz

compactness criterion [26] in Lp spaces.

3. First existence theorem

In this section we assume throughout that φ is a Young function which satis-

fies both conditions∞1 and ∆2. Moreover, without loss of generality we suppose

that φ is normalized, i.e. φ(1) = 1. Note that, for a normalized φ satisfying ∞1,

Jensen’s inequality implies that ‖f‖L1
≤ ‖f‖Lφ for every f ∈ Lφ.
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Under these assumptions on φ, our main goal is now to study the solvability

of equation (1.1) in the Riesz–Medvedev space BVφ. To this end, we impose the

following conditions.

Assumption 3.1. The function k : [0, 1] × [0, 1] → R is measurable with

k(s0, · ) ∈ L1 for some s0 ∈ [0, 1], and k( · , t) ∈ BVφ for almost all t ∈ [0, 1].

Assumption 3.2. The function v : [0, 1]→ R defined by

(3.1) v(t) := Varφ(k( · , t)) (0 ≤ t ≤ 1)

belongs to L1.

Assumption 3.3. The partial derivative ks( · , t) exists and is continuous for

almost all t ∈ [0, 1], and the function w : [0, 1]→ R defined by

(3.2) w(t) := ‖ks( · , t)‖C (0 ≤ t ≤ 1)

belongs to Lφ.

Assumption 3.4. The function h : [0, 1]×R→ R is continuous and bounded.

Observe that Assumption 3.1 implies that Varφ(k( · , t)) < ∞ for almost all

t ∈ [0, 1], so from Medvedev’s theorem we conclude that k( · , t) is absolutely

continuous with ks( · , t) ∈ Lφ for almost all t ∈ [0, 1]. Of course, Assump-

tions 3.2 and 3.3 are stronger. In fact, under Assumption 3.2, the integrability

of k(s0, · ) ∈ L1 for some s0 ∈ [0, 1] implies the integrability of k(s, · ) ∈ L1 for

all s ∈ [0, 1], as is shown by the following:

Lemma 3.5. Under Assumptions 3.1 and 3.2, the function k(s, · ) belongs to

L1 for every s ∈ [0, 1].

Proof. Since k is a Lebesgue measurable function on [0, 1]× [0, 1] we know

that the one-variable function t 7→ k(s, t) is Lebesgue measurable for almost all

s ∈ [0, 1]. Thus, for an arbitrary s ∈ [0, 1] there exists a sequence {sn} convergent

to s such that k(sn, · ) is measurable. Since k( · , t) is continuous for almost all

t ∈ [0, 1] we easily obtain that k(s, · ) is Lebesgue measurable.

Considering the partition P = {0, s0, 1}, for every t ∈ [0, 1], we have

φ

(
|k(s0, t)− k(0, t)|

s0

)
s0 + φ

(
|k(1, t)− k(s0, t)|

1− s0

)
(1− s0) ≤ v(t),

which implies that both |k(s0, · )− k(0, · )| and |k(1, · )− k(s0, · )| belong to L1.

Thus, k(0, · ) and k(1, · ) are integrable. Given s ∈ [0, 1] arbitrary, a similar ar-

gument shows that |k(s, · )−k(0, · )| belongs to L1, and so k(s, · ) is integrable.�

Note that we cannot remove the condition k(s0, · ) ∈ L1 for at least one

s0 ∈ [0, 1] from Assumption 3.1. Indeed, consider, for instance, the function



Nonlinear Hammerstein Equations 325

k : [0, 1]× [0, 1]→ R defined by

k(s, t) :=

s+ 1/t for 0 < t ≤ 1,

0 for t = 0.

Then k(s, · ) 6∈ L1 for 0 ≤ s ≤ 1, but k satisfies all remaining conditions from

Assumptions 3.1–3.3 with v(t) = w(t) ≡ 1. However, it is clear that the function

t 7→ k(s, t)h(t, f(t)) is not, in general, integrable, even if h and f are very regular.

In what follows, we use the shortcut

(3.3) η := sup{|h(t, u)| : 0 ≤ t ≤ 1, u ∈ R}.

Moreover, by Br(X) we denote the closed ball of radius r > 0 centered at zero

in a normed space X. Under the hypotheses stated above, we may now prove

the announced existence theorem.

Theorem 3.6. Let b ∈ BVφ, and let Assumptions 3.1–3.4 be satisfied. Then

there exists R > 0 such that the operator (1.2) is compact and continuous and

maps the ball BR(BVφ) into itself. Consequently, equation (1.1) has a solution

in this ball.

Proof. Fix f ∈ BVφ. Since k is measurable, k(s, · ) belongs to L1 for all

s ∈ [0, 1], by Lemma 3.5, and the function Hf is continuous and bounded, the

function t 7→ k(s, t)h(t, f(t)) is integrable for every s ∈ [0, 1], and so the function

g := KHf in (1.2) is well-defined. We will prove that this function belongs to

BVφ for every continuous function f . Indeed, for any partition P = {s0, . . . , sm}
of the interval [0, 1] we have

|g(sj)− g(sj−1)|
sj − sj−1

≤ η
∫ 1

0

|k(sj , t)− k(sj−1, t)|
sj − sj−1

dt,

with η given by (3.3). We distinguish two cases. If∫ 1

0

|k(sj , t)− k(sj−1, t)|
sj − sj−1

dt ≥ T (η),

then combining (2.6) with the Jensen inequality (2.5) for α(t) ≡ 1 we obtain

φ

(
|g(sj)− g(sj−1)|

sj − sj−1

)
≤C(η)φ

(∫ 1

0

|k(sj , t)− k(sj−1, t)|
sj − sj−1

dt

)
≤C(η)

∫ 1

0

φ

(
|k(sj , t)− k(sj−1, t)|

sj − sj−1

)
dt.

On the other hand, in case∫ 1

0

|k(sj , t)− k(sj−1, t)|
sj − sj−1

dt < T (η)
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we immediately obtain

φ

(
|g(sj)− g(sj−1)|

sj − sj−1

)
≤ φ(ηT (η)),

since φ is monotone. Multiplying both estimates by sj − sj−1 and summing up

over j = 1, . . . ,m, we get

m∑
j=1

φ

(
|g(sj)− g(sj−1)|

sj − sj−1)

)
(sj − sj−1)

≤C(η)

m∑
j=1

∫ 1

0

φ

(
|k(sj , t)− k(sj−1, t)|

sj − sj−1

)
(sj − sj−1) dt

+

m∑
j=1

φ(ηT (η))(sj − sj−1)

≤C(η)

∫ 1

0

Varφ(k( · , t)) dt+ φ(ηT (η)) = C(η)‖v‖L1
+ φ(ηT (η)),

with v given by (3.1), and so

Varφ(g) ≤ C(η)‖v‖L1 + φ(ηT (η)).

Furthermore,

|g(0)| =
∣∣∣∣ ∫ 1

0

k(0, t)h(t, f(t)) dt

∣∣∣∣ ≤ η‖k(0, · )‖L1
<∞,

by Lemma 3.5. Thus, if we choose

R ≥ C(η)‖v‖L1
+ φ(ηT (η)) + η‖k(0, · )‖L1

+ ‖b‖BVφ ,

we see that the operator A from (1.2) maps the ball BR(BVφ) into itself.

To prove that this operator is compact we use Theorem 2.5 and the com-

pactness criterion given in Theorem 2.6. So we have to show that

(3.4) lim
τ→0

sup{‖(HKf)′ − (HKf)′τ‖Lφ : ‖f‖BVφ ≤ R} = 0,

which amounts to considering the function

(3.5) ψτ,ε(s, t) := φ

(
|ks(s, t)− ks(s+ τ, t)|

ε

)
for (s, t) varying over the unit square [0, 1] × [0, 1], where, as in Theorem 2.6,

we assume that k(s + τ, t) = 0 if s + τ /∈ [0, 1]. Observe that this function is

measurable, because the derivative ks is the limit of the measurable functions

kn(s, t) := nk

(
s+

1

n
, t

)
− nk(s, t) (n = 1, 2, . . .),
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and φ is continuous, by assumption. Now, by applying the classical parametric

derivation theorem

(3.6)
d

ds

∫ 1

0

γ(s, t) dt =

∫ 1

0

∂

∂s
γ(s, t) dt

to γ(s, t) := k(s, t)h(t, f(t)), Jensen’s inequality (2.5), Fubini’s theorem, and the

monotonicity of φ, we obtain, for η as in (3.3),

inf

{
ε > 0 :

∫ 1

0

φ

(∣∣∣∣1ε
∫ 1

0

[ks(s, t)− ks(s+ τ, t)]h(t, f(t)) dt

∣∣∣∣) ds ≤ 1

}
≤ inf

{
ε > 0 :

∫ 1

0

φ

(∫ 1

0

η
|ks(s, t)− ks(s+ τ, t)|

ε
dt

)
ds ≤ 1

}
≤ inf

{
ε > 0 :

∫ 1

0

(∫ 1

0

φ

(
η
|ks(s, t)− ks(s+ τ, t)|

ε

)
dt

)
ds ≤ 1

}
≤ η inf

{
ε > 0 :

∫ 1

0

∫ 1

0

ψτ,ε(s, t) ds dt ≤ 1

}
.

Moreover, from ψτ,ε(s, t) ≤ φ(2w(t)/ε) (0 ≤ s, t ≤ 1) and Assumption 3.3 we

deduce that ∫ 1

0

∫ 1

0

ψτ,ε(s, t) ds dt→ 0 (τ → 0),

by the Lebesgue Dominated Convergence theorem. Thus, for any ε > 0 there

exists τ0 > 0, depending only on k and φ, such that∫ 1

0

∫ 1

0

ψτ,ε(s, t) ds dt ≤ 1

for τ ≤ τ0, which implies that ‖(HKf)′ − (HKf)′τ‖Lφ ≤ ε if τ ≤ τ0. Since τ0 is

independent of f ∈ BR(BVφ), we conclude that (3.4) is true.

It remains to prove that the operator KH is continuous on BR(BVφ). Fix

f0 ∈ BVφ, and let m := ‖f0‖C . The uniform continuity of h on the compact

rectangle [0, 1] × [−m − 1,m + 1] implies that for a given ε > 0 we can find

δ ∈ (0, 1) such that

|h(s, u)− h(t, v)| ≤ ε′ := min

{
ε

2‖w‖Lφ
,

ε

2‖k(0, · )‖L1

}
for |s − t| < δ, |u|, |v| ≤ m + 1, and |u − v| ≤ δ, where w is taken from (3.2).

Now take any f ∈ BVφ with ‖f − f0‖BVφ ≤ δ; we claim that ‖g − g0‖BVφ ≤ ε,

where g0 := KHf0 and g := KHf . In fact, for every t ∈ [0, 1] we have

|f(t)− f0(t)| ≤ |f(0)− f0(0)|+ ‖f ′ − f ′0‖L1 ≤ |f(0)− f0(0)|+ ‖f ′ − f ′0‖Lφ ≤ δ,
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by (2.8). Thus, |f(t)| ≤ m + 1 and so |h(t, f(t)) − h(t, f0(t))| ≤ ε′ for every

t ∈ [0, 1]. Together with Jensen’s inequality and the parametric derivation the-

orem (3.6), applied to γ(s, t) := k(s, t)[h(t, f(t))− h(t, f0(t))], this implies that∫ 1

0

φ

(
|g′(s)− g′0(s)|

ε/2

)
ds ≤

∫ 1

0

φ

(
‖ks(s, · )‖L1

‖w‖Lφ

)
ds

≤
∫ 1

0

φ

(∫ 1

0

w(t)

‖w‖Lφ
dt

)
ds ≤

∫ 1

0

∫ 1

0

φ

(
w(t)

‖w‖Lφ

)
dt ds ≤ 1,

hence ‖g′ − g′0‖Lφ ≤ ε/2. Analogously,

|g(0)− g0(0)| ≤
∫ 1

0

ε|k(0, t)|
2‖k(0, · )‖L1

dt =
ε

2
.

Combining these two estimates we see that ‖g − g0‖BVφ ≤ ε, and so we are

done. �

4. Second existence theorem

Of course, the global boundedness condition on h : [0, 1]×R→ R is a rather

strong requirement. In the following Theorem 4.2, which we state for the space

BVp we will prove the existence of solutions of equation (1.1) under a weaker

assumption. We suppose, as before, that the above Assumptions 3.1–3.3 are

fulfilled for φ(t) = tp, but instead of 3.4 we assume

Assumption 4.1. The function h : [0, 1]×R→ R is continuous and satisfies:

(4.1) |h(t, u)|p ≤ A|u|+B (0 ≤ t ≤ 1, u ∈ R)

for some constants A and B in (0,∞).

Then we have the following:

Theorem 4.2. Let b ∈ BVp, and let Assumptions 3.1–3.3 and 4.1 be sat-

isfied. Then there exists R > 0 such that the operator (1.2) is continuous and

compact and maps the ball BR(BVp) into itself. Consequently, equation (1.1) has

a solution in this ball.

Proof. The proof is similar to that of Theorem 3.6, so we only sketch the

idea. First of all, note that the continuity of h implies that h is bounded on

bounded sets which implies that the function t 7→ k(s, t)h(t, f(t)) is integrable

for any continuous function f . Fix f ∈ Br(BVp) and put again KHf =: g.

By Assumption 4.1, we have

|h(t, f(t))|p ≤ Ar +B (0 ≤ t ≤ 1, f ∈ Br(BVp) ⊂ Br(C)),
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where we have used Corollary 2.3 in the inclusion Br(BVp) ⊂ Br(C). Following

the same argument as in the proof of Theorem 3.6, we deduce that

Varp(g) ≤ (Ar +B)

∫ 1

0

Varp(k( · , t)) dt = (Ar +B)‖v‖L1
(f ∈ Br(BVp)).

Furthermore, since k(0, · ) ∈ L1 we have

|g(0)| =
∣∣∣∣ ∫ 1

0

k(0, t)h(t, f(t)) dt

∣∣∣∣ ≤ (Ar +B)1/p‖k(0, · )‖L1
.

Thus, choosing for a given b ∈ BVp, a number R large enough such that

R > (AR+B)1/p‖v‖1/pL1
+ (AR+B)1/p‖k(0, · )‖L1

+ ‖b‖BVp ,

it follows that the operator (1.2) maps the ball BR(BVp) into itself. The com-

pactness and continuity of the operator (1.2) on this ball is proved exactly as in

Theorem 3.6. �

5. Concluding remarks

We make some comments on Theorems 3.6 and 4.2. First of all, observe that

our hypotheses 3.1–3.4 do not imply that the operators (1.3) and (1.4) map the

space BVφ (in particular, BVp) into itself, in contrast to what is often assumed

for proving existence. Consider, for example, the special choice

φ(t) := tp, k(s, t) := sαtβ , h(u) := |u|γ .

Then Assumptions 3.1 and 3.2 are satisfied for (α− 1)p > −1 and β > −1. As-

sumption 3.3 is satisfied for α ≥ 1 and βp > −1 (which implies Assumptions 3.1

and 3.2), and Assumption 4.1 for 0 ≤ γp < 1. However, Assumption 3.4 is satis-

fied only for γ = 0, so in case 0 < γp < 1 Theorem 4.2 applies, but Theorem 3.6

does not.

As was shown in [21] (see also [3, Theorem 5.10]), the composition operator

H maps the space BVp into itself if and only if h ∈ Liploc(R) which here means

γ ≥ 1. But this is excluded by the condition γp ≤ 1, since p > 1. Consequently,

in this example (assuming 0 < γp < 1, βp > −1, and α ≥ 1) the operator (1.3)

never maps BVp into itself, but the operator (1.2) does.

Now comes an important point which is concerned with the use of fixed point

theorems. To prove existence of solutions of (1.1), Banach’s contraction mapping

theorem is frequently used, because it also gives uniqueness and constructibility.

This works well in the spaces C,Lp, or Lφ. However, a contraction hypothesis

on the operator H in spaces like BVp or BVφ leads to a strong degeneracy of the

corresponding function h; for the space BVp this was shown in [22], for the space

BVφ in [20]. This is the reason why we applied Schauder’s fixed point principle

in Theorems 3.6 and 4.2, rather than Banach’s contraction mapping theorem.
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However, we can do better. Both Banach’s and Schauder’s theorems are

in a certain sense contained in a more general fixed point principle proved by

G. Darbo [13] in 1955. Recall that the Kuratowski measure of noncompactness

γ associates to each bounded subset M of a Banach space X the nonnegative

number [17]

(5.1) γ(M) := inf{d > 0 : M may be covered by finitely many sets

M1, . . . ,Mk satisfying diam(Mj) ≤ d for j = 1, . . . , k}.

This name is of course motivated by the fact that γ(M) = 0 if and only if M

is relatively compact. A continuous operator A : BR(X)→ X is called condens-

ing if there exists q < 1 such that γ(A(M)) ≤ qγ(M) for every M ⊆ BR(X).

Darbo’s fixed point principle states that a condensing operator which maps a ball

BR(X) into itself has a fixed point. Since both contractions and compact op-

erators are obviously condensing, Darbo’s theorem bridges the gap between the

apparently quite different fixed point principles by Banach and Schauder. A

thorough presentation of the theory and applications of this fixed point theorem

may be found, for example, in [1], [2], [4], [5].

In our context Darbo’s theorem may be applied as follows. It is well-known

that the function

γ∗(M) := lim
τ→0

sup
f∈M

‖f − fτ‖Lp (M ⊂ Lp bounded)

is equivalent to the Kuratowski measure of noncompactness (5.1) in the Lebesgue

space Lp in the sense that γ(M) ≤ 2γ∗(M) ≤ 4γ(M) for each bounded subset

M . In particular, this explains why Theorem 2.6 characterizes precisely the

relatively compact subsets M ⊂ Lp. Now, relation (2.3) suggests to consider, for

p > 1, the function

γ∗(M) := lim
τ→0

sup
f∈M

‖f ′ − f ′τ‖Lp (M ⊂ BVp bounded)

which is in turn equivalent to the Kuratowski measure of noncompactness in BVp,

and to find conditions on h and k under which the operator (1.2) is condensing

in the space BVp for p > 1. This makes it possible to impose milder conditions

than our Assumptions 3.1–3.4 and 4.1 above to prove existence of solutions.

Acknowledgements. The authors are indebted to the referees for some

useful remarks which essentially improved the paper.
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