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Abstract. Given a finite subset Σ ⊂ R and a positive real number q < 1

we study topological and measure-theoretic properties of the self-similar

set K(Σ; q) =

{ ∞∑
n=0

anqn : (an)n∈ω ∈ Σω

}
, which is the unique compact

solution of the equation K = Σ + qK. The obtained results are applied

to studying partial sumsets E(x) =

{ ∞∑
n=0

xnεn : (εn)n∈ω ∈ {0, 1}ω
}

of

multigeometric sequences x = (xn)n∈ω . Such sets were investigated by
Ferens, Morán, Jones and others. The aim of the paper is to unify and
deepen existing piecemeal results.

1. Introduction

Suppose that x = (xn)∞n=1 belongs to l1 \ c00 which means that x is an
absolutely summable sequence with infinitely many nonzero terms. Let

E(x) =

{ ∞∑
n=1

εnxn : (εn)∞n=1 ∈ {0, 1}N
}

denotes the set of all subsums of the series
∞∑

n=1
xn, called the achievement set (or

a partial sumset) of x. The investigation of topological properties of achievement
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sets was initiated almost one hundred years ago. In 1914 Soichi Kakeya [8]
presented the following result:

Theorem 1.1 (Kakeya). For any sequence x ∈ l1 \ c00

(a) E(x) is a perfect compact set.
(b) If |xn| >

∑
i>n

|xi| for almost all n, then E(x) is homeomorphic to the

ternary Cantor set.
(c) If |xn| ≤

∑
i>n

|xi| for almost all n, then E(x) is a finite union of closed

intervals. In the case of non-increasing sequence x, the last inequality is
also necessary for E(x) to be a finite union of intervals.

Moreover, Kakeya conjectured that E(x) is either nowhere dense or a finite
union of intervals. Probably, the first counterexample to this conjecture was
given by Weinstein and Shapiro ([16]) and, independently, by Ferens ([5]). The
simplest example was presented by Guthrie and Nymann [6]: for the sequence
c = ((5 + (−1)n)/4n)∞n=1, the set T = E(c) contains an interval but is not a finite
union of intervals. In the same paper they formulated the following theorem,
finally proved in [12]:

Theorem 1.2. For any sequence x ∈ l1 \ c00, E(x) is one of the following
sets:

(a) a finite union of closed intervals;
(b) homeomorphic to the Cantor set;
(c) homeomorphic to the set T .

Note that the set T = E(c) is homeomorphic to C ∪
∞⋃

n=1
S2n−1, where Sn

denotes the union of the 2n−1 open middle thirds which are removed from [0, 1]

at the n-th step in the construction of the Cantor ternary set C. Such sets are
called Cantorvals (to emphasize their similarity to unions of intervals and to
the Cantor set simultaneously). Formally, a Cantorval (more precisely, an M-
Cantorval, see [9]) is a non-empty compact subset S of the real line such that S is
the closure of its interior, and both endpoints of any component with non-empty
interior are accumulation points of one-point components of S. A non-empty
subset C of the real line R will be called a Cantor set if it is compact, zero-
dimensional, and has no isolated points.

Let us observe that Theorem 1.2 says that l1 can be divided into 4 sets:
c00 and the sets connected with cases (a), (b) and (c). Some algebraic and
topological properties of these sets have been recently considered in [1].

We will describe sequences constructed by Weinstein and Shapiro, Ferens
and Guthrie and Nymann using the notion of multigeometric sequence. We call
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a sequence multigeometric if it is of the form

(k0, . . . , km, k0q, . . . , kmq, k0q
2, . . . , kmq

2, k0q
3 . . .)

for some positive numbers k0, . . . , km and q ∈ (0, 1). We will denote such a se-
quence by (k0, . . . , km; q). Keeping in mind that the type of E(x) (in the sense
of the classification given in Theorem 1.2) is the same as E(αx) for any α > 0,
we can describe the Weinstein–Shapiro sequence as a = (8, 7, 6, 5, 4; 1/10), the
Ferens sequence as b = (7, 6, 5, 4, 3; 2/27) and the Guthrie–Nymann sequence as
c = (3, 2; 1/4).

Another interesting example of a sequence d with E(d) being Cantorval was
presented by R. Jones in ([7]). The sequence is of the formd = (3, 2, 2, 2; 19/109).

In fact, Jones constructed continuum many sequences generating Cantorvals,
indexed by a parameter q, by proving that, for any positive number q with

1

5
≤
∞∑

n=1

qn <
2

9

(i.e. 1/6 ≤ q < 2/11) the achievement set of the sequence (3, 2, 2, 2; q) is a Can-
torval.

The structure of the achievement sets E(x) for multigeometric sequences
x was studied in the paper [3], which contains a necessary condition for E(x)

to be an interval and sufficient conditions for E(x) to contain an interval or
have Lebesgue measure zero. In the case of a Guthrie–Nymann–Jones sequence
xq = (3, 2, . . . , 2; q), of rank m (i.e. with m repeated 2’s), the set E(xq) is an in-
terval if and only if q ≥ 2/(2m+ 5), E(xq) is a Cantor set of measure zero if q <
1/(2m+ 2), and E(xq) is a Cantorval if q ∈ {1/(2m+ 2)}∪[1/(2m), 2/(2m+ 5)).
In this paper we reveal some structural properties of the sets E(xq) for q belong-
ing to the “mysterious” interval (1/(2m+ 2), 1/(2m)). In particular, we shall
show that for almost all q in this interval the set E(xq) has positive Lebesgue
measure and there is a decreasing sequence (qn) convergent to 1/(2m+ 2) for
which E(xqn) is a Cantor set of zero Lebesgue measure. The above description
of the structure of E(xq) can be presented as follows:

0

C0

1
2m+2

MC λ+

1
2m

MC

2
2m+5

I

1

rb b b b r s
where C0 (resp. MC, I) indicates sets of numbers q for which the set E(xq) is
a Cantor set of zero Lebesgue measure (resp. a Cantorval, an interval). The sym-
bol λ+ indicates that for almost all q in a given interval the sets E(xq) have posi-
tive Lebesgue measure, which means that the set Z = {q ∈ (1/(2m+ 2), 1/(2m)) :



1016 T. Banakh — A. Bartoszewicz — M. Filipczak — E. Szymonik

λ(E(xq)) = 0} has Lebesgue measure λ(Z) = 0. Similar diagrams we use later
in this paper.

The achievement sets of multigeometric sequences are special cases of self-
similar sets of the form

K(Σ; q) =

{ ∞∑
n=0

anq
n : (an)∞n=0 ∈ Σω

}
where Σ ⊂ R is a set of real numbers and q ∈ (0, 1). The set K(Σ; q) is self-
similar in the sense that K(Σ; q) = Σ+q ·K(Σ; q). Moreover, the set K(Σ; q) can
be found as the unique compact solution K ⊂ R of the equation K = Σ + qK.
This follows from the Banach Fixed Point Theorem applied to the contraction
mapping K 7→ Σ + qK on the hyperspace H(R) of compact sets of real numbers.

It is easily seen that for a multigeometric sequence xq = (k0, . . . , km; q) the
achievement set E(x) coincides with the self-similar set K(Σ; q) for the set

Σ =

{ m∑
n=0

knεn : (εn)mn=0 ∈ {0, 1}m+1

}
of all possible sums of the numbers k0, . . . , km. This makes possible to apply
for studying the achievement sets E(xq) the theory of self-similar sets developed
in [14] and [13].

In this paper we shall describe some topological and measure properties of
the self-similar sets K(Σ; q) depending on the value of the similarity ratio q ∈
(0, 1), and shall apply the obtained result to establishing topological and measure
properties of achievement sets of multigeometric progressions. To formulate the
principal results we need to introduce some numerical characteristics of compact
subsets A ⊂ R.

Given a compact subset A ⊂ R containing more than one point let

diamA = sup{|a− b| : a, b ∈ A}

be the diameter of A and δ(A) = inf{|a − b| : a, b ∈ A, a 6= b} and ∆(A) =

sup{|a − b| : a, b ∈ A, (a, b) ∩ A = ∅} be the smallest and largest gaps in A,
respectively. Observe that A is an interval (equal to [minA,maxA]) if and only
if ∆(A) = 0. Also put

I(A) =
∆(A)

∆(A) + diamA
and i(A) = inf{I(B) : B ⊂ A, 2 ≤ |B| < ω}.

In particular, given a finite subset Σ ⊂ R of cardinality |Σ| ≥ 2, we will write it
as Σ = {σ1, . . . , σs} for real numbers σ1 < . . . < σs. Then we have

diam(Σ) = σs − σ1, δ(Σ) = min
i<s

(σi+1 − σi), and ∆(Σ) = max
i<s

(σi+1 − σi).

Theorem 1.3. Let Σ = {σ1, . . . , σs} for some real numbers σ1 < . . . < σs.
The self-similar sets K(Σ; q) where q ∈ (0, 1) have the following properties:
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(a) K(Σ; q) is an interval if and only if q ≥ I(Σ);

(b) K(Σ; q) is not a finite union of intervals if q < I(Σ) and ∆(Σ) ∈ {σ2 −
σ1, σs − σs−1};

(c) K(Σ; q) contains an interval if q ≥ i(Σ);

(d) if

d =
δ(Σ)

diam(Σ)
<

1

3 + 2
√

2
and

1

|Σ|
<

√
d

1 +
√
d
,

then for almost all q ∈ (1/|Σ|,
√
d/(1 +

√
d)) the set K(Σ; q) has positive

Lebesgue measure and the set K(Σ;
√
q) contains an interval;

(e) K(Σ; q) is a Cantor set of zero Lebesgue measure if q < 1/|Σ| or, more
generally, if qn < 1/|Σn| for some n ∈ N where

Σn =

{ n−1∑
k=0

akq
k : (ak)n−1

k=0 ∈ Σn

}
;

(f) if Σ ⊃ {a, a + 1, b + 1, c + 1, b + |Σ|, c + |Σ|} for some real numbers
a, b, c ∈ R with b 6= c, then there is a strictly decreasing sequence (qn)n∈ω
with lim

n→∞
qn = 1/|Σ| such that the sets K(Σ; qn) has Lebesgue mesure

zero.

The statements (a)–(c) from this theorem will be proved in Section 2, the
statement (d) in Section 3 and (e), (f) in Section 4. Writing that for almost all
q in an interval (a, b) some property P(q) holds we have in mind that the set
Z = {q ∈ (a, b) : P(q) does not hold} has Lebesgue measure λ(Z) = 0.

2. Intervals and Cantorvals

In this section we generalize results of [3] detecting the self-similar sets
K(Σ; q) which are intervals or Cantorvals. In the following theorem we prove
the statements (a)–(c) of Theorem 1.3.

Theorem 2.1. Let q ∈ (0, 1) and Σ = {σ1, . . . , σs} ⊂ R be a finite set with

σ1 < . . . < σs. The self-similar set K(Σ; q) =

{ ∞∑
i=0

aiq
i : (ai)i∈ω ∈ Σω

}
(a) is an interval if and only if q ≥ I(Σ);

(b) contains an interval if q ≥ i(Σ);

(c) is not a finite union of intervals if q < I(Σ) and ∆(Σ) ∈ {σ2 − σ1, σs −
σs−1}.

Proof. (a) Observe that diamK(Σ; q) = diam(Σ)/(1 − q). Assuming that
q ≥ I(Σ) = ∆(Σ)/(∆(Σ) + diam Σ), we conclude that ∆(Σ) ≤ q · diam(Σ)/

(1− q) = q · diamK(Σ; q), which implies that

∆(K(Σ; q)) = ∆(Σ + q ·K(Σ; q)) ≤ ∆(q ·K(Σ; q)) = q ·∆(K(Σ; q)).
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Since q < 1 this inequality is possible only in case ∆(K(Σ; q)) = 0, which means
that K(Σ; q) is an interval.

If q < ∆(Σ)/(∆(Σ) + diamΣ), then ∆(Σ) > q · diam(Σ)/(1 − q) = q ·
diam(K(Σ; q)) and we can find two consequtive points a < b in Σ with b =

a+ ∆(Σ) > a+ diam(qK(Σ; q)) and conclude that [a, b]∩K(Σ; q) = [a, b]∩ (Σ +

qK(Σ; q)) ⊂ [a, a+ diam(q K(Σ; q))] 6= [a, b], so K(Σ; q) is not an interval.
(b) Now assume that q ≥ i(Σ) and find a subset B ⊂ Σ such that I(B) =

i(Σ) < q. By the preceding item, the self-similar set K(B; q) = B + qK(B; q) is
an interval. Consequently, K(Σ; q) contains the interval K(B; q).

(c) Finally assume that ∆(Σ) = σ2 − σ1 and q < I(Σ). Since for every
a ∈ Σ we get K(Σ − a; q) = K(Σ; q) − a/(1− q), we can replace Σ by its
shift and assume that σ1 = 0 and hence ∆(Σ) = σ2 − σ1 = σ2. It follows from

q < I(Σ) = σ2/(σ2 +diamΣ) that for any j ∈ N, the interval
( ∞∑

n=j+1

qnσs, q
jσ2

)
is nonempty and disjoint from K(Σ; q). Hence, no interval of the form [0, ε] is
included in K(Σ; q). But 0 ∈ K(Σ; q), so K(Σ; q) is not a finite union of closed
intervals. By analogy we can consider the case ∆(Σ) = σs − σs−1. �

In particular, Theorem 2.1 implies:

Corollary 2.2. For Σ = {0, . . . , s−1} the set K(Σ; q) is an interval if and
only if q ≥ I(Σ) = 1/|Σ|.

Corollary 2.3. If {k, . . . , k + n − 1} ⊂ Σ, then i(Σ) ≤ 1/n and for every
q ≥ 1/n the set K(Σ; q) contains an interval.

In particular, for the Guthrie–Nymann–Jones multigeometric sequence xq =

(3, 2, . . . , 2; q) of rank m the sumset Σ = {0, 2, . . . , 2m + 1, 2m + 3} has car-
dinality |Σ| = 2m + 2, I(Σ) = ∆(Σ)/(∆(Σ) + diam Σ) = 2/(2m+ 5), i(Σ) =

min{1/(2m), 2/(2m+ 5)}, and d = δ(Σ)/diam(Σ) = 1/(2m+ 3). So, for q ∈
[2/(2m+ 5), 1) the set E(xq) = K(Σ; q) is an interval.

For q ∈ [1/(2m), 2/(2m+ 5)) the set E(xq) has a nonempty interior but it is
not an interval. Hence, by Theorem 1.2, it is a Cantorval.

3. Sets of positive measure

In this section we shall prove the statement (d) of Theorem 1.3 detecting
numbers q for which the self-similar set K(Σ; q) has positive Lebesgue measure
λ(K(Σ; q)). For this we shall apply the deep results of Boris Solomyak [14]

related to the distribution of the random series
∞∑

n=0
anλ

n, where the coefficients

an ∈ Σ are chosen independently with probability 1/|Σ| each.
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Given a finite subset Σ ⊂ R consider the number

α(Σ) = inf

{
x ∈ (0, 1) : ∃(an)n∈ω ∈ (Σ− Σ)ω \ {0}ω

such that
∞∑

n=0

anx
n = 0 and

∞∑
n=1

nanx
n−1 = 0

}
.

The first part of the following theorem was proved by Solomyak in [14, 1.2]:

Theorem 3.1. Let Σ ⊂ R be a finite subset. If 1/|Σ| < α(Σ), then for
almost all q in the interval (1/|Σ|, α(Σ)) the self-similar set K(Σ; q) has positive
Lebesgue measure and the set K(Σ;

√
q) contains an interval.

Proof. By Theorem 1.2 of [14], for almost all q ∈ (1/|Σ|, α(Σ)) the self-
similar set K(Σ; q) has positive Lebesgue measure. Since K(Σ;

√
q) = K(Σ; q) +

√
q ·K(Σ; q), the set K(Σ;

√
q) contains an interval, being the sum of two sets of

positive Lebesgue measure (according to the famous Steinhaus Theorem [15]).�

The definition of Solomyak’s constant α(Σ) does not suggest any efficient
way of its calculation. In [14] Solomyak found an efficient lower bound on α(Σ)

based on the notion of a (∗)-function, i.e., a function of the form

g(x) = −
n−1∑
k=1

xk + γxn +

∞∑
k=n+1

xk

for some n ∈ N and γ ∈ [−1, 1]. In Lemma 3.1 [14] Solomyak proved that every
(∗)-function g(x) has a unique critical point on [0, 1) at which g takes its minimal
value. Moreover, for every d > 0 there is a unique (∗)-function gd(x) such that
min[0,1) gd = −d. The unique critical point xd ∈ g−1

d (−d) ∈ [0, 1) of gd will be
denoted by α(d). The following lower bound on the number α(Σ) follows from
Proposition 3.2 and inequality (15) in [14].

Lemma 3.2. For every finite set Σ ⊂ R of cardinality |Σ| ≥ 2 we get

α(Σ) ≥ α(d) where d =
δ(Σ)

diam(Σ)
.

The function α(d) can be calculated effectively (at least for d ≤ 1/2).

Lemma 3.3. If 0 < d ≤ 1/(3 + 2
√

2), then

α(d) =

√
d

1 +
√
d
.

Proof. Observe that the minimal value of the (∗)-function

g(x) = −x+

∞∑
k=2

xk = −x+
x2

1− x
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is equal to −1/(3 + 2
√

2), which implies that for d ∈ (0, 1/(3 + 2
√

2)] the number
α(d) is equal to the critical point of the unique (∗)-function

g(x) = γx+

∞∑
k=2

xk = −1 + (γ − 1)x+
1

1− x

with min[0,1) g = −d. This (∗)-function has derivative g′(x) = (γ − 1) +

1/(1− x)2. If x is the critical point of g, then 1 − γ = 1/(1− x)2 and the
equality

d = −1 + (γ − 1)x+
1

1− x
= −1− x

(1− x)2
+

1

1− x
has the solution

x = 1− 1

1 +
√
d

=

√
d

1 +
√
d

which is equal to α(d). �

For d > 1/(3 + 2
√

2) the formula for α(d) is more complex.

Lemma 3.4. If 1/(3 + 2
√

2) ≤ d ≤ 1/2, then the value

α(d) =
1 + d

3
+

3
√

2 ·R
6

+
2d2 − 8d− 1

3 3
√

2 ·R
where

R =
3

√
4d3 − 24d2 + 21d− 5 + 3

√
3
√

1− 8d3 + 39d2 − 6d

can be found as the unique real solution of the qubic equation

2(x− 1)3 + (4− 2d)(x− 1)2 + 3(x− 1) + 1 = 0.

Proof. Since the minimal values of the (∗)-functions

g1(x) = −x+

∞∑
k=2

xk and g(x) = −x− x2 +

∞∑
k=3

xk

are equal to −1/(3 + 2
√

2) and −1/2, respectively, for d ∈ [1/(3 + 2
√

2), 1/2] the
number α(d) is equal to the critical point of a unique (∗)-function

g(x) = −x+ γx2 +

∞∑
k=3

xk = −1− 2x+ (γ − 1)x2 +
1

1− x

with min[0,1) g = −d. At the critical point x the derivative of g equals zero:

0 = g′(x) = −2 + 2(γ − 1)x+
1

(1− x)2

which implies that

γ − 1 =
1

2x

(
2− 1

(1− x)2

)
=

2x2 − 4x+ 1

2x(1− x)2
.
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After substitution of γ − 1 to the formula of the function g(x), we get

−d = −1− 2x− 2x3 − 4x2 + x

2(1− x)2
+

1

1− x
.

This equation is equivalent to the qubic equation

2(x− 1)3 + (4− 2d)(x− 1)2 + 3(x− 1) + 1 = 0.

Solving this equation with the Cardano formulas we can get the solution α(d)

written in the lemma. �

Remark 3.5. Calculating the value α(d) for some concrete numbers d, we
get

α

(
1

5

)
≈ 0.32482, α

(
1

4

)
≈ 0.37097, α

(
1

3

)
≈ 0.42773, α

(
1

2

)
= 0.5.

Theorem 3.1 and Lemma 3.3 imply:

Corollary 3.6. Let Σ ⊂ R be a finite subset containing more than three
points and d = δ(Σ)/diam(Σ). If d ≤ 1/(3 + 2

√
2) and

√
d/(1 +

√
d) > 1/|Σ|,

then for almost all q in the interval (1/|Σ|,
√
d/(1 +

√
d)) the self-similar set

K(Σ; q) has positive Lebesgue measure and the set K(Σ;
√
q) contains an interval.

Remark 3.7. Theorem 2.1 says that for q ∈ [i(Σ), 1) the setK(Σ; q) contains
an interval. By Theorem 3.1 under certain conditions the same is true for almost
all q ∈ [1/

√
|Σ|,

√
α(Σ)). Let us remark that the numbers i(Σ) and 1/

√
|Σ| are

incomparable in general. Indeed, for the multigeometric sequence (1, . . . , 1; q)

containing k > 1 units the set Σ = {0, . . . , k} has

i(Σ) = I(Σ) =
1

k + 1
=

1

|Σ|
<

1√
|Σ|

.

On the other hand, for the multigeometric sequence (3k−1, . . . , 3, 1; q) the set Σ ={
k−1∑
n=0

3nεn : (εn)n<k ∈ {0, 1}k
}

has cardinality |Σ| = 2k, diameter diam(Σ) =

(3k − 1)/2, d = δ(Σ)/diam(Σ) = 2/(3k − 1) and

i(Σ) = I(Σ) =
1

4
+

1

4 · 3k−1
>

1
√

2
k

=
1√
|Σ|

.

Corollary 3.6 guarantees that for almost all q ∈ (1/
√

2
k
, 4
√
d/
√

1 +
√
d) the set

K(Σ; q) contains an interval.

Multigeometric sequences of the form (k+m, . . . , k+ 1, k; q) with m ≥ k we
will call, after [2], Ferens-like sequences. The achievement set E(x) for a Ferens-
like sequence coincides with the self-similar set K(Σ; q) for the set Σ = {0, k, k+

1, . . . , n− k, n}, where n = (m+ 1)(2k+m)/2. Sets K(Σ; q) with Σ of this form
will be called Ferens-like fractals.
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Note that Guthrie–Nymann–Jones sequence of rank m generates a Ferens-
like fractal (with Σ = {0, 2, 3, . . . , 2m + 1, 2m + 3}. There are also Ferens-like
fractals which are not originated by any multigeometric sequence (for example
K(Σ; q) with Σ = {0, 4, 5, 6, 7, 11}). However, as an easy consequence of the
main theorem of [11], we obtain for Ferens-like fractals a “richotomy” analogous
to that formulated in Theorem 1.2. Moreover, some theorems formulated for
multigeometric sequences are in fact proved for K(Σ; q) (see for example Theo-
rem 2 in [3]).

Example 3.8. For the Ferens-like sequence xq = (4, 3, 2; q) we get Σ =

{0, 2, 3, 4, 5, 6, 7, 9},

d =
δ(Σ)

diam(Σ)
=

1

9
<

1

3 + 2
√

2
and

√
d

1 +
√
d

=
1

4
>

1

6
= i(Σ).

By Corollary 3.6 (and Theorem 2.1), for almost all numbers q ∈ (1/8, 1) the
achievement set E(xq) = K(Σ; q) has positive Lebesgue measure (for q < 2/11 =

I(Σ) it is not a finite union of intervals). By Theorem 2.1, for any q ∈ [i(Σ), I(Σ)) =

[1/6; 2/11) the set K(Σ; q) is a Cantorval. The structure of the sets E(xq) =

K(Σ; q) is described in the diagram:

-
C0

1
8

λ+

1
6

MC

2
11

Ir r r
More generally, for any Ferens-like fractal, |Σ| = n−2k+3, ∆(Σ) = k, δ(Σ) =

1, I(Σ) = k/(n+ k), i(Σ) = min(1/(|Σ| − 2), I(Σ)) and d = 1/n. Moreover, if
n ≥ 7 then α(d) = 1/(

√
n+ 1). Therefore, one can check that for any Ferens-

like sequence we have α(d) > i(Σ), and we can draw an analogous diagram.
The same result we can obtain for any Ferens-like fractal with k = 2 (even if
it is not originated by any Ferens-like sequence). However, there are Ferens-
like fractals with α(d) < i(Σ) (for example K(Σ; q) with Σ = {0, 3, 4, 7} or
Σ = {0, 4, 5, 6, 7, 11}).

Example 3.9. For the Guthrie–Nymann–Jones sequence xq = (3, 2, . . . , 2; q)

of rank m ≥ 2 we get Σ = {0, 2, 3, . . . , 2m + 1, 2m + 3}, |Σ| = 2m + 2,
I(Σ) = 2/(2m+ 5), i(Σ) = min{1/(2m), 2/(2m+ 5)}, d = 1/(2m+ 3) and
α(d) = 1/(1 +

√
2m+ 3). Moreover, we have d < 1/(3 + 2

√
2) and α(d) ≥

i(Σ) > 1/(2m+ 2) = 1/|Σ|. So, we can apply Corollary 3.6 and conclude that
for almost all numbers q ∈ (1/(2m+ 2), 1/(2m)) the self-similar set K(Σ; q) has
positive Lebesgue measure. By Theorem 2.1, for any q ∈ [i(Σ), 2/(2m+ 5)) the
set K(Σ; q) is a Cantorval and for all q ∈ [2/(2m+ 5), 1) it is an interval.
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Form = 1 we obtain α(d) = α(1/5) > 2/7. Therefore, for almost all numbers
q ∈ (1/4, 2/7) the set K(Σ; q) has positive Lebesgue measure.

4. Self-similar sets of zero Lebesgue measure

The results of the preceding section yield conditions under which for almost
all q in an interval [1/|Σ|, α(Σ)) the set K(Σ; q) has positive Lebesgue mea-
sure. In this section we shall show that this interval can contain infinitely many
numbers q with λ(K(Σ; q)) = 0 thus proving the statements (e) and (f) of The-
orem 1.3.

Theorem 4.1. If there exists n ∈ N such that∣∣∣∣ n−1∑
i=0

qiΣ

∣∣∣∣ · qn < 1

then the set K(Σ, q) has measure zero.

Proof. Denote K := K(Σ, q) and assume that λ(K) > 0. From the equality
K = Σ + qK we obtain, by induction, that

K =

n−1∑
i=0

qiΣ + qnK.

Let Σn =
n−1∑
i=0

qiΣ. If |Σn| · qn < 1, then λ(K) ≤ |Σn| · qn ·λ(K) < 1 ·λ(K) which

is impossible. �

Remark 4.2. M. Morán in [10] considered achivement sets of multigeo-
metric sequences with complex values. He proved (in our notation) that for
q < δ(Σ)/(δ(Σ) + diam Σ) the set E(x) has measure zero. Observe that

δ(Σ)

δ(Σ) + diam Σ
≤ 1

|Σ|
,

hence the Morán condition follows from Theorem 4.1 (for n = 1). Equality in
the previous formula holds if and only if all differences σi+1 − σi are equal.

To use Theorem 4.1 we need a technical lemma:

Lemma 4.3. For any integer numbers s > 1 and n > 1 the unique positive
solution q of the equation

(4.1) x+ x2 + . . .+ xn−1 =
1

s− 1

is greater than 1/s. Moreover, there is n0 ∈ N such that, for any n > n0,

(4.2)
(
sn − 2n−1

)
· qn < 1.
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Proof. Clearly
n−1∑
i=1

(
1

s

)i

=
1

s− 1
·
(

1− 1

sn−1

)
<

1

s− 1
,

so q > 1/s. From the equality

1

s− 1
=

n−2∑
i=1

(
1

s

)i

+
1

(s− 1)sn−2

we obtain

qn−1 =
1

s− 1
−

n−2∑
i=1

qi <
1

s− 1
−

n−2∑
i=1

(
1

s

)i

=
1

(s− 1)sn−2
.

Using the latter inequality and the equality 1/(s− 1) = (q − qn)/(1− q) we have
1− q
s− 1

= q
(
1− qn−1

)
> q

(
1− 1

(s− 1) sn−2

)
.

Therefore, 1 − q > (s − 1)q − q/sn−2 (which means that sq − q/sn−2 < 1) and
finally

(4.3) q <
1

s(1− 1/sn−1)
.

From Bernoulli’s inequality it follows that(
1− 1

sn−1

)n

≥ 1− n

sn−1

and, by (4.3), we have

qn <
1

sn · (1− n/sn−1)
.

Consequently,

(sn − 2n−1) · qn < sn · (1− 2n−1/sn)

sn · (1− n/sn−1)
.

Obviously, for n greater then some n0, 2n−1/s > n and hence 2n−1/sn > n/sn−1

which proves (4.2). �

Theorem 4.4. If a finite subset Σ ⊂ R contains the set {a, a+1, b+1, c+1, b+

|Σ|, c+ |Σ|} for some real numbers a, b, c with b 6= c, then there is a decreasing
sequence (qn)∞n=1 tending to 1/|Σ| such that, for any n ∈ N, the self-similar set
K(Σ, qn) has Lebesgue measure zero.

Proof. Let s = |Σ| and for every n denote by qn the unique positive solution
of the equation (4.1) from Lemma 4.3. Let n0 be a natural number such that

(sn − 2n−1) · (qn)n < 1 for any n > n0.

Clearly (qn)∞n=n0
is a decreasing sequence and lim

n→∞
qn = 1/s. It suffices to show

that K(Σ, q) has measure zero for n > n0.
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Taking into account that each qn is a solution of (4.1), we conclude that

a+

n−1∑
i=1

(s− 1 + εi)(qn)i = (a+ 1) +

n−1∑
i=1

εi(qn)i

for any εi ∈ {b+ 1, c+ 1} ⊂ Σ. Therefore∣∣∣∣ n−1∑
i=1

(qn)iΣ

∣∣∣∣ ≤ sn − 2n−1.

Hence, by Lemma 4.3, ∣∣∣∣ n−1∑
i=1

(qn)iΣ

∣∣∣∣ · (qn)n < 1.

and we can apply Theorem 4.1 to conclude that K(Σ, q) has Lebesgue measure
zero. �

The condition

(∗) {a, a+ 1, b+ 1, c+ 1, b+ |Σ|, c+ |Σ|} ⊂ Σ

looks a bit artificial but it can be easily verified for many sumsets Σ of multige-
ometric sequences.

In particular, for the Guthrie–Nymann–Jones sequence of rank m ≥ 1 xq =

(3, 2, . . . , 2; q), the sumset Σ = {0, 2, 3, . . . , 2m+ 1, 2m+ 3} has cardinality |Σ| =
2m+ 2. Observe that for the set Σ the condition (∗) holds for a = 2, b = 1 and
c = −1. Because of that, Theorem 4.4 yields a sequence (qn)∞n=1 ↘ 1/(2m+ 2)

such that for every n ∈ N the self-similar set E(xqn) is a Cantor sets of zero
Lebesgue measure.

By [3], for q = 1/(2m+ 2) the achievement set E(xq) is a Cantorval. There-
fore, if m > 2, there are three ratios p < q < r such that E(xp) and E(xr) are
Cantor sets while E(xq) is a Cantorval. To the authors’ best knowledge, this is
the first result of this type for multigeometric sequences.

Now we will focus on Ferens-like sequences xq = (m + k, . . . , k; q) where
m ≥ k.

For k = 1 the Ferens-like sequence xq = (m+ 1, . . . , 2, 1; q) has

Σ = {0, 1, 2, . . . , (m+ 2)(m+ 1)/2}.

The set E(xq) is a Cantor set (for q < 1/|Σ|) or an interval (for q ≥ 1/|Σ|); see
Theorem 7 in [3]), Theorem 1.1 or Theorem 2.1.

For k = 2, the “shortest" Ferens-like sequence is xq = (4, 3, 2; q). For this
sequence

Σ = {0, 2, 3, 4, 5, 6, 7, 9}.
Note that the Guthrie–Nymann–Jones sequence (3, 2, 2, 2; q) has the same Σ

(see Example 3.9). It follows that E(xq) is a Cantor set for q ∈ (0, 1/8) and
E(xq) is a Cantorval for q = 1/8. By Theorem 2.1, K(Σ; q) is an interval for
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q ≥ I(Σ) = 2/11 and a Cantorval for q ∈ (1/6, 2/11). As shown in Example 3.9,
for almost all q ∈ (1/8, 1/6) the set K(Σ; q) has positive Lebesgue measure.
Using Theorem 4.4, we can find a decreasing sequence (qn) tending to 1/8 for
which the sets K(Σ; qn) have zero Lebesgue measure.

For k = 3 the “shortest” Ferens-like sequence is xq = (6, 5, 4, 3; q). For
this sequence Σ = {0, 3, . . . , 15, 18} and |Σ| = 15. Since 1 ∈ Σ/15 the set
Σ2 = Σ + Σ/15 has less than |15|2 elements (for example 4 can be presented as
4 + 0 or as 3 + 1). Therefore |Σ2|/152 < 1 and for q = 1/15 the set E(xq) is a
Cantor set according to Theorem 4.1. Moreover, calculating for q = 1/14 > 1/15

the cardinality

|Σ3| = |Σ + qΣ + q2Σ| = 2655 < 143

and applying Theorem 4.1, we conclude that the achievement set E(xq) is a Can-
tor set of zero Lebesgue measure for q = 1/14. On the other hand, Corollary 3.6
implies that for almost all q ∈ (1/15, 1/(1 +

√
18)) the achievement set E(xq) has

positive Lebesgue measure. The set Σ has i(Σ) = 1/13 and I(Σ) = 3/21 = 1/7.
So, in this case we have the diagram:

C0

1
15

λ+ λ+C0

1
14

1
13

MC

1
7

Ib
0

b r s
1

As in the previous case, we can use Theorem 4.4 (taking a = b = 3 and
c = −1) and find a decreasing sequence (qn) tending to 1/15 such that all E(xqn)

have zero Lebesgue measure.
Suppose now that k > 3. For the Ferens-like sequence xq = (k +m, . . . , k +

1, k; q) its sumset Σ contains the number |Σ|, which implies that |Σ + qΣ| < |Σ|2

for q = 1
|Σ| and therefore E(xq) is a Cantor set of zero measure according to

Theorem 4.1.

5. Rational ratios

For a contraction ratio q ∈ {1/(n+ 1) : n ∈ N} self-similar sets of positive
Lebesgue measure can be characterized as follows:

Theorem 5.1. Let Σ ⊂ Z be a finite set, q ∈ {1/(n+ 1) : n ∈ N} and

Σn =
n−1∑
i=0

qiΣ for n ∈ N. For the compact set K = K(Σ; q) the following

conditions are equivalent:

(a) |Σn| · qn ≥ 1 for all n ∈ N,
(b) infn∈N |Σn| · qn > 0,
(c) λ(K) > 0.
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Proof. The implication (c)⇒(a) follows from Theorem 4.1 while (a)⇒(b)
is trivial. It remains to prove (b)⇒(c). Suppose that λ(K) = 0. Given any
r > 0 consider the r-neighbourhood H(K, r) = {h ∈ R : dist(h,K) < r} of

the set K = K(Σ; q). Take any point z ∈
{ ∞∑

i=n

xiq
i : xi ∈ Σ for all i ≥ n

}
and observe that Σn + z ⊂ K =

{ ∞∑
i=0

xiq
i : (xi)i∈ω ∈ Σω

}
, which implies that

H(Σn + z, r) ⊂ H(K, r) for all r > 0. The continuity of the Lebesgue measure
implies that λ(H(K, r)) → 0 when r tends to zero. It follows from Σ ⊂ Z and
1/q ∈ N that Σn ⊂ qn−1 · Z. Hence, for any two different points x and y from
Σn, the distance between x and y is no less then qn−1 > qn. Therefore, for any
n ∈ N,

|Σn| · qn = λ
(
H
(
Σn, q

n/2
))

= λ
(
H
(
Σn + z, qn/2

))
≤ λ

(
H
(
K, qn/2

))
which means that lim

n→∞
|Σn| · qn = 0. �

Theorem 5.1 combined with Corollary 2.3 of [13] implies the following corol-
lary.

Corollary 5.2. For a finite subset Σ ⊂ Z and the number q = 1/|Σ| < 1

the following conditions are equivalent:

(a) K(Σ; q) has positive Lebesgue measure,
(b) K(Σ; q) contains an interval,

(c) for every n ∈ N the set Σn =
n−1∑
k=0

qkΣ has cardinality |Σn| = |Σ|n.

Problem 5.3. Is it true that for a finite set Σ ⊂ Z and any (rational)
q ∈ (0, 1) the self-similar set K(Σ; q) has positive Lebesgue measure if and only
if it contains an interval?

Remark 5.4. According to [4], there exists a 10-element set Σ on the complex
plane C such that for q = 1/3 the self-similar compact set K(Σ; q) = Σ +

qK(Σ; q) ⊂ C has positive Lebesgue measure and empty interior in C.
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