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THE R∞ PROPERTY FOR ABELIAN GROUPS

Karel Dekimpe — Daciberg Gonçalves

Abstract. It is well known there is no finitely generated abelian group

which has the R∞ property. We will show that also many non-finitely
generated abelian groups do not have the R∞ property, but this does not

hold for all of them! In fact we construct an uncountable number of in-

finite countable abelian groups which do have the R∞ property. We also
construct an abelian group such that the cardinality of the Reidemeister

classes is uncountable for any automorphism of that group.

1. Introduction

Let G be a group and ϕ be an endomorphism of G. Then two elements x, y

of G are said to be Reidemeister equivalent (with respect to ϕ), if there exists

an element z ∈ G such that y = zxϕ(z)−1. The equivalence classes are called

the Reidemeister classes or twisted conjugacy classes.

Definition 1.1. The Reidemeister number of a homomorphism ϕ, denoted

by R(ϕ), is the cardinality of the Reidemeister classes of ϕ.

We remark here that most authors define the Reidemeister number as either

a positive integer or∞. This latter definition of course coincides with ours in the

finite case, but does not allow to make a distinction between the various infinite

cases.
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The Reidemeister number is a relevant ingredient in connection with many

parts of mathematics. See for example [4] and references therein. This is for

instance also the case in the study of the fixed point properties of the homotopy

class of a self map on a topological space. In this situation, the group G will

be the fundamental group π1(X) of the space and the homomorphism ϕ = f]
is the one which is induced by the map f on the fundamental group G. Under

certain hypothesis the Reidemeister number R(ϕ) is then exactly the number of

essential fixed point classes of f if R(ϕ) is finite and the number of essential fixed

point classes of f is zero if R(ϕ) is infinite. See [7] and [12] and the references

therein for more information.

A group G has the R∞ property if for every automorphism ϕ of G the

Reidemeister number is not finite. In recent years many works have studied the

question of which groups G have the R∞ property. We refer to [4] for an overview

of the results which have been obtained in this direction. Some more recent

results, e.g. dealing with (extensions of) linear groups and lattices in semisimple

Lie groups, can be found in [3], [9], [10], [11]. In [1], we treated the case of free

nilpotent and free solvable groups. It turns out that in this sitution, infinitely

generated groups behave quite differently than finitely generated groups.

The present work will also give a contribution for this problem, where we will

consider infinite abelian groups. If an abelian group A is finitely generated then

it is well known that A does not have the R∞ property, since it is easy to see

that the automorphism ϕ : A→ A : a 7→ −a has a finite Reidemeister number in

this case ([2]). So, in this paper, we will focus on abelian groups which are not

finitely generated. For information about infinite abelian groups in general we

refer to [5], [6] and [8].

To the best of our knowledge, up till now, there is no example in literature

of an abelian group having the R∞ property. In this paper we do construct an

uncountable number of countable abelian groups which do have the R∞ property.

Before we announce the main results of this paper, let us fix some notation:

• Let p be a prime, then with Zp, we will denote the additive group of p-adic

integers.

• For any positive integer n ≥ 2, Z/nZ will denote the additive group of

integers modulo n.

• Let P be any set of primes, then ZP denotes the additive group of rational

numbers which can be written as a fraction whose denominator is relative prime

with all primes in P. When p is a prime, then p̂ is the set of all primes which

are different from p and hence Zp̂ is the group of all rational numbers whose

denominator is a power of p.

• Finally, when p is a prime Z(p∞) is the Prüfer group Zp̂/Z.
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Recall that a group G is divisible if and only if for any x ∈ G and any positive

integer n, there is a y ∈ G such that yn = x.

We can now formulate the main results of this note:

Proposition 3.1. The following abelian groups do not have the R∞ property:

(a) Abelian divisible groups.

(b) The groups ZP for any set of primes P.

(c) The p-adic groups Zp for any prime p.

(d) Any abelian torsion group without 2-torsion elements.

In the formulation of the following result we use the Reidemeister spectrum

of a group A which is the set {R(ϕ) | ϕ ∈ Aut(A)}:

Proposition 3.6. For any prime p 6= 2, the spectrum of Zp̂ is

{2} ∪ {pm + 1 | m ∈ N} ∪ {pm − 1 | m ∈ N} ∪ {∞}.

Hence if ϕ : Zp̂ → Zp̂ is an automorphism and p 6= 2, then R(ϕ) 6= 1.

Theorem 4.2. Let P be an infinite set of primes and consider the group⊕
Zp̂ as p runs over the set P. Then any automorphism of this group has

infinite Reidemeister number.

Theorem 4.4. Let P be an infinite set of primes and consider the group∏
Zp̂ as p runs over the set P. Then any automorphism of this group has the

property that the set of Reidemeister classes is uncountable. In particular this

group also has the R∞ property.

This work is divided into 3 sections besides the introduction. In Section 2 we

recall a few elementary properties of the infinite abelian groups. In Section 3 we

show that many infinite abelian groups do not have the R∞ property. Groups

constructed using standard constructions like direct sums and direct products

are analysed. In Section 4 we provide examples of countable and uncountable

abelian groups which have the R∞ property. Finally we present an example

of a group having the property that for any automorphism the Reidemeister

number is always uncountable.

2. Preliminaries about infinite abelian groups

In this section we recall some known results about infinite abelian groups and

prove some elementary facts about these groups which are used in our study. Let

A be an abelian group and ϕ : A→ A a homomorphism of A. Whenever we need

to have ϕ an automorphism we make this explicit.

From [8, Theorem 3, p. 9] we have:

Theorem 2.1. Any abelian group A has a unique largest divisible subgroup M

and A = M ⊕N where N has no non-zero divisible subgroups.
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This theorem shows the relevance of the divisible groups for the description

of the infinite abelian groups. An abelian group having no non-zero divisible

subgroup is called a reduced group. When M is the maximal divisible subgroup

of an abelian group A we will call A/M the reduced part of A.

Because the groups in question are abelian groups, it follows that the Rei-

demeister number of an endomorphism ϕ of such an abelian group A coincides

with the cardinality of the quotient group A/Im(ϕ− IdA) (or A/Im(IdA−ϕ)).

Now we prove a lemma which is on the one hand very simple but on the

other hand very useful to show that many abelian groups do not have the R∞
property.

Lemma 2.2. Let A be an abelian group and consider the homomorphism

2: A→ A : a 7→ 2(a) = a+ a (so multiplication by 2). Then:

(a) The Reidemeister number of this homomorphism is 1.

(b) If 2(A), the image of the homomorphism, has finite index in A, then the

automorphism τ : A → A given by x 7→ −x has Reideimeister number

equal to the index of 2(A) in A.

Proof. Part (a) follows straightforward from the definition of the Reide-

meister classes since for any a we have a = −a + 0 − 2(−a) = a so a is in the

same Reidemeister class as 0 for any a. The second part follows from the fact

that for abelian groups the Reidemeister classes for τ correspond with the cosets

of the image of the homomorphism Id−τ : A→ A : a 7→ a− (−a) = 2a. �

Corollary 2.3. If multiplication by 2 is an automorphism, then not only

does A not have the R∞ property, but also A admits automorphisms, which are

multiplication by −1 and multiplication by 2, which have Reidemeister number 1.

Proof. Follows promptly from the lemma above. �

In the rest of this paper we will also need the following lemma.

Lemma 2.4. Let P be any set of primes and let m > 1 be a positive inte-

ger whose prime decomposition only consists of primes in P. Then, the index

[ZP : mZP ] equals m.

Proof. It suffices to show that any element of ZP belongs to exactly one of

the cosets

i+mZP with i ∈ {0, 1, . . . ,m− 1}.
Let x ∈ ZP . If x = 0, then x ∈ 0 + mZP , otherwise x = q/r where r is 1 or

a product of primes not belonging to P and q ∈ Z. As gcd(m, r) = 1, it follows

from Bézout’s identity that there exists integers α and β with q = αr + βm.

Then

x+mZP =
q

r
+ ZP = α+m

β

r
+mZP = α+mZP .
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Now, write α = i + mα′ for some i ∈ {0, 1, . . . ,m − 1} and α′ ∈ Z. It follows

immediately that

x ∈ x+mZP = α+mZP = i+mZP ,

so that x belongs to at least one of these cosets i + mZP . It is also easy to see

that all of these cosets are different, which finishes the proof. �

3. Abelian groups which do not have the R∞ property

In this section we show that many abelian groups do not have the R∞ prop-

erty and in some cases in fact we compute the Reidemeister spectrum (i.e. the

set of all possible cardinals which are the Reidemeister number for some auto-

morphism of the group). The calculation of the spectrum is useful for Section 4.

3.1. Divisible groups, the p-adic integers and torsion groups.

Proposition 3.1. The following abelian groups do not have the R∞ property:

(a) abelian divisible groups.

(b) The groups ZP , where P is any subset of the set of all primes.

(c) The p-adic integers Zp for any prime p.

(d) Any abelian torsion group without 2-torsion elements.

Proof. Part (a) follows promptly from Lemma 2.2(b).

Part (b) follows from Corollary 2.3 if 2 6∈ P and from Lemma 2.2(b) and

Lemma 2.4 otherwise.

Part (c) follows from Corollary 2.3 if p is odd and from Lemma 2.2(b) for

p = 2.

Part (d) follows from Corollary 2.3. �

Note that in case P is the set of all primes, then the group ZP is exactly

the group Z, which certainly does not have the R∞ property, but this group is

finitely generated.

For divisible groups we can even say more:

Proposition 3.2. Let A be a divisible abelian group and ϕ : A → A be any

homomorphism. If R(ϕ) is finite, then R(ϕ) = 1.

Proof. If R(ϕ) is finite, then the group Im(ϕ− IdA) is a subgroup of finite

index in A. However, the only subgroup of finite index in a divisible group A is

the group A itself. Therefore A = Im(ϕ− IdA) and hence R(ϕ) = 1. �

In fact, divisible groups can be totally ignored when studying the R∞ prop-

erty of abelian groups. We make this precise in the following proposition.

Proposition 3.3. Let A be an abelian group. Then A has the R∞ property

if and only if the reduced part of A has the R∞ property.
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Proof. Let M be the unique maximal divisible subgroup of A, then A =

M⊕N where A/M ∼= N is the reduced part of A. Let ϕ be any automorphism of

A, then ϕ restricts to an automorphism ϕ′ of M and induces an automorphism

ϕ of the quotient A/M .

It is easy to see that when R(ϕ) is infinite, then also R(ϕ) is infinite. Hence,

if A/M has the R∞ property, then also A has the R∞ property.

On the other hand, assume that A has the R∞ property and consider any

automorphism ϕ of A/M . We can lift this automorphism, to an automorphism

ϕ of A by defining

ϕ : M ⊕N →M ⊕N, (m,n) 7→ (−m,ϕ(n)).

Recall that R(ϕ) equals the index of Im(IdA−ϕ) in A. Since

Im(IdA−ϕ) = 2M ⊕ Im(IdN −ϕ) = M ⊕ Im(IdN −ϕ)

we have that R(ϕ) = R(ϕ) and so this Reidemeister number is infinite, since A

has the R∞ property. Hence A/M also has this property. �

It follows that, from the point of view of the R∞ property, we are left to the

study of reduced abelian groups.

Also in the case the groups are torsion, it suffices to study the 2−torsion

groups. Indeed, any abelian torsion group A can be decomposed as a direct sum

A =
⊕

p prime

Ap, where Ap is the p-primary part of A, i.e. the subgroup of A all

elements of p-power order ([8, Theorem 1]). As all of these subgroups Ap are

characteristic in A, we have that Aut(A) =
∏

p prime

Aut(Ap). Since for any p 6= 2

there is an automorphism ϕp ∈ Aut(Ap) with Reidemeister number R(ϕp) = 1

(e.g. ϕp is multiplication with 2), it follows that A has property R∞ if and only

if A2 has property R∞.

Remark 3.4. We do not know an example of an abelian 2-torsion group

which has the R∞ property.

In Section 3.4 we continue our study of torsion groups.

3.2. Direct sum and product of any abelian group.

Proposition 3.5. If A is an arbitrary abelian group, then for any finite

integer n > 1, there is an automorphism ϕ : An → An, that has Reidemeister

number 1. Furthermore, in the case α is an infinite cardinal, the same result

holds for both the direct sum
⊕
α
A (weak direct product) and the direct product∏

α
A. Hence none of these groups has the R∞ property.
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Proof. If n is either 2 or 3, it is easy to find an element θn ∈ GL(n,Z) such

that det(θn − Idn) = 1, i.e. it has Reidemeister number 1. E.g. we can take

θ2 =

(
1 1

−1 0

)
and θ3 =

0 −1 0

1 0 1

0 1 1

 .

Then given an arbitrary integer n > 1, using the result for n = 2 and n = 3, we

can construct a blocked diagonal element θn ∈ GL(n,Z) such that det(θn− Idn)

= 1, i.e. it has Reidemeister number 1. Now we use this matrix, in the obvious

way, to define an automorphism ϕ of An. Then the homomorphisms ϕ − Id is

surjective and then we have R(ϕ) = 1.

Now let α be an infinite cardinal. Then α = α+ α and hence∏
α

A ∼=
(∏

α

A

)
⊕
(∏

α

A

)
.

Now, we can apply the proposition for the case n = 2.

The case of an infinite direct sum is completely analogous. �

3.3. The subgroups of the rationals. Now we compute for any prime p

the spectrum of the group Zp̂, the integers localized at the set of primes p̂. As

already mentioned before, this is the set of fractions where the denominators are

powers of p. We already saw that these groups do not have the R∞ property

(Proposition 3.1), but the calculation of the spectrum will be useful for Section 4.

Proposition 3.6. The spectrum of Zp̂ is

{2} ∪ {pm + 1 | m ∈ N} ∪ {pm − 1 | m ∈ N} ∪ {∞},

in case p 6= 2 and is

{2m + 1 | m ∈ N} ∪ {2m − 1 | m ∈ N} ∪ {∞},

for p = 2. Hence if ϕ : Zp̂ → Zp̂ is an automorphism and p 6= 2, then R(ϕ) 6= 1.

Proof. Let us consider an automorphism ϕ of the group Zp̂. Then ϕ(1) =

a/pn for some integers a and n and ϕ is just multiplication with a/pn. Since ϕ

is an automorphism, 1 must be in the image of ϕ, and hence there must exist

a b/pk ∈ Zp̂ such that

ϕ

(
b

pk

)
=

b

pk
a

pn
= 1.

Hence, the only prime which possibly divides a is the prime p. It follows that

ϕ(1) = ±pm for some integer m. Since R(ϕ) = R(ϕ−1), we may assume that

m ≥ 0. Recall that R(ϕ) is the index of Im(ϕ − Id) in Zp̂. We distinguish four

cases:

• ϕ(1) = 1 (first case where m = 0). In this case ϕ − Id is the zero

homomorphism and R(ϕ) =∞.
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• ϕ(1) = −1 (second case where m = 0). In this case ϕ − Id is multipli-

cation by −2. For p = 2, this is an automorphism of Z2̂, which leads

to R(ϕ) = 1 = 21 − 1. When p 6= 2, it follows from Lemma 2.4 that

R(ϕ) = 2.

• ϕ(1) = pm (with m > 0). Now ϕ− Id is multiplication with pm − 1 and

since pm−1 is relative prime to p, Lemma 2.4 implies that R(ϕ) = pm−1.

• ϕ(1) = −pm (with m > 0). Then Im(ϕ − Id) = Im(Id−ϕ) and since

Id−ϕ is the same as multiplication with pm+1, Lemma 2.4 again implies

that R(ϕ) = pm + 1.

This finishes our computation of the spectrum.

The fact that in case p 6= 2, we always have that R(ϕ) 6= 1 is clear from the

first part. �

3.4. Torsion groups and direct products. Among torsion groups we

have the Prüfer groups Z(p∞) where p is any prime number. From Section 5,

Divisible groups, in [8] it follows that the Prüfer groups are divisible so they do

not have the R∞ property by Proposition 3.1.

Another easy way of constructing torsion groups is to take direct sums of

finite cyclic groups. This situation is completely dealt with in the next two

propositions.

Proposition 3.7. Let n1, n2, . . . be an increasing set of positive integers.

Then both ⊕
i∈N

Z/2niZ and
∏
i∈N

Z/2niZ

admit an automorphism with Reidemeister number equal to 1. In particular these

groups and also the torsion subgroup of
∏
i∈N

Z/2niZ do not have the R∞ property.

Proof. We begin this proof with the case of the direct product.

A general element of A =
∏
i∈N Z/2niZ can be written in the form

(a1 + 2n1Z, a2 + 2n2Z, a3 + 2n3Z, a4 + 2n4Z. . . .).

for some integers a1, a2, a3, a4, . . .. For simplicity we will write this shortly as

(a1, a2, a3, a4, . . .)

Now define ϕ : A→ A by

(a1, a2, . . .)

7→ (a1 + a2 + a3, a2 + a3, a3 + a4 + a5, a4 + a5, a5 + a6 + a7, a6 + a7, . . .).

So the (2k−1)-th component of this image is a2k−1 + a2k + a2k+1 and the 2k-th

component is a2k + a2k+1.
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As by assumption n1 ≤ n2 ≤ . . ., the map ϕ is well defined and is an

endomorphism of A. In fact, ϕ is an automorphism, since it is easy to check that

the map ψ : A→ A:

(a1, a2, . . .)

7→ (a1 − a2, a2 − a3 + a4, a3 − a4, a4 − a5 + a6, a5 − a6, a6 − a7 + a8, . . .)

is also well defined and is an endomorphism which is the inverse of ϕ. Moreover,

the map ϕ− Id : A→ A is given by

(a1, a2, a3, a4, . . .) 7→ (a2 + a3, a3, a4 + a5, a5, a6 + a7, a7, . . .)

which is clearly surjectice. Hence R(ϕ) = 1.

It is clear that one can use the restriction of ϕ to the direct sum or the torsion

subgroup of A to obtain the same result in these cases. �

Proposition 3.8. Let A be any direct sum or any direct product of finite

cyclic groups. Then A does not have the R∞ property.

Proof. We will give the proof of the fact that any direct product of finite

cyclic groups does not have the R∞ property. The case for the direct sum is

completely analogous and is left to the reader.

As any finite cyclic group is the direct product of cyclic p-groups (for different

primes p), we can assume that

A =
∏
i∈I

Ai

for some index set I and each Ai is a cyclic group of prime-power order. Now

we divide I into two disjoint subsets I = I1 ∪ I2, where

I1 = {i ∈ I | Ai is a 2-group } and I2 = I \ I1.

Let

A(1) =
∏
i∈I1

Ai and A(2) =
∏
i∈I2

Ai.

Then A = A(1) × A(2). Note that multiplication by 2 is an automorphism, say

ϕ2, of A(2) with Reidemeister number R(ϕ2) = 1. It is now enough to show

that also A(1) admits an automorphism ϕ1 with finite Reidemeister number, for

then the automorpshim ϕ = ϕ1 × ϕ2 will have Reidmeister number R(ϕ) =

R(ϕ1)×R(ϕ2) = R(ϕ1).

So from now onwards we concentrate on A(1), and for any positive integer

n ∈ N we let

I
(n)
1 = {i ∈ I1 | #Ai = 2n} and A(1)

n =
∏
i∈I(n)

1

Ai.
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and so A(1) =
∏
n∈N

A
(1)
n . For those n ∈ N for which #I

(n)
1 > 1, we know, by

Proposition 3.5, that there exists an automorphism ϕ
(n)
1 of A

(1)
n with Reidemeis-

ter number R(ϕ
(n)
1 ) = 1.

Now, let N ⊆ N be the subset of positive integers n such that #I
(n)
1 = 1 and

let in denote the unique element in I
(n)
1 . Then

A(1) =
∏
n∈N

Ain ×
∏

n∈N\N

A(1)
n .

As
∏

n∈N\N
ϕ
(n)
1 is an automorphism of

∏
n∈N\N

A
(1)
n with Reidmeister number 1, it

suffices to find an automorphism of
∏
n∈N

Ain of finite Reidemeister number. If

N is a finite set then any automorphism (e.g. the identity) will do. When N is

infinite, the result follows from the previous proposition. �

4. Abelian groups which have the R∞ property

In this section we present for the first time an example of an abelian group

which has the R∞ property. In fact we will show that there are at least an

uncountable number of abelian groups with this property.

Recall that for any prime p, Zp̂ is the subgroup of the rationals consisting of

all fractions whose denominator is a power of p.

Lemma 4.1. If p1 6= p2 (both primes) then Hom(Zp̂1 ,Zp̂2) contains only one

element, which is the trivial homomorphism.

Proof. Given a homomorphism ϕ ∈ Hom(Zp̂1 ,Zp̂2) this homomorphism is

determined completely by the value of ϕ(1). But 1 ∈ Zp̂1 is divisible by pn1 for

all n, hence also ϕ(1) must be divisible by all powers pn1 . As there is no non-zero

element in Zp̂2 with this property (p1 6= p2), we must have that ϕ(1) = 0. So

the result follows. �

Theorem 4.2. Let P be an infinite set of primes and consider the group

A =
⊕
p∈P

Zp̂.

Then A has the R∞ property.

Proof. It follows from Lemma 4.1 that

Aut(A) =
∏
p∈P

Aut(Zp̂)

i.e. any automorphism ϕ of A can be decomposed as a direct product ϕ =
∏
p∈P

ϕp

of (auto)morphisms ϕp : Zp̂ → Zp̂. From the previous section (Proposition 3.6)

any automorphism of Zp̂ has Reidemeister number greater than 1 if p 6= 2. Since
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an infinite number of primes is different from 2, it follows that R(ϕ) =∞. This

shows that A has the R∞ property. �

Corollary 4.3. There is an uncountable number of abelian groups which

have the R∞ property.

Proof. Given two distinct sets of primes P and P ′, the corresponding groups⊕
p∈P

Zp̂ and
⊕
p∈P′

Zp̂ are not isomorphic. This follows using similar arguments as

in Lemma 4.1 above. As there are an uncountable number of infinite subsets of

the set of all primes, the result follows from Theorem 4.2 above. �

Observe that for a given infinite set P of primes we can also construct the

group
∏
p∈P

Zp̂ instead of
⊕
p∈P

Zp̂. A similar result hold for this group where now

we can even say that the cardinality of the set of Reidemeister classes is indeed

uncountable.

Theorem 4.4. Let P be an infinite set of primes and consider the group∏
p∈P

Zp̂. Then, for any automorphism ϕ of this group, the set of Reidemeister

classes is uncountable. In particular this group also has the R∞ property.

Remark 4.5. It is easy to extend this results to obtain abelian groups of

any infinite cardinality with the R∞ property. Indeed, when taking a direct sum

M ⊕
⊕
p∈P

Zp̂ or M ⊕
∏
p∈P

Zp̂ where M is a divisible group (of any cardinality you

like), the resulting group again has the R∞ property by Proposition 3.3.
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