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Abstract. In [5], D. Fetcu and C. Oniciuc presented the classification result for bihar-
monic C-parallel Legendrian submanifolds in 7-dimensional Sasakian space forms. However,
it is incomplete. In this paper, all such submanifolds are explicitly determined.

1. Introduction. In [5, Theorem 5.1], Fetcu and Oniciuc presented the classification
result for proper biharmonic C-parallel Legendrian submanifolds in 7-dimensional Sasakian
space forms. The case (2) of the theorem is proved by applying Lemma 4.4 in [1]. However,
the lemma is wrong, and hence Fetcu and Oniciuc’s classification is incomplete. This paper
corrects errors in [1], and moreover, completes the classification.

Our main result is the following, which determines explicitly all proper biharmonic C-
parallel Legendrian submanifolds in 7-dimensional Sasakian space forms.

THEOREM 1.1. Let f : M3 → N7(ε) be a 3-dimensional C-parallel Legendrian sub-
manifold in a 7-dimensional Sasakian space form of constant ϕ-sectional curvature ε. Then
M3 is proper biharmonic if and only if either:

(1) M3 is flat, N7(ε) = S 7(ε) with ε > −1/3, where S 7(ε) is a unit sphere in C4 equipped
with its canonical and deformed Sasakian structures, and f (M3) is an open part of
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where α = 4/(ε + 3), ρ1,2 = (
√

4c(2c − a) + d2 ± d)/2 and λ, a, c, d are real constants given
by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3λ2 − α−1)(3λ4 − 2(ε + 1)λ2 + α−2) + λ4((a + c)2 + d2) = 0 ,

(a + c)(5λ2 + a2 + c2 − 7α−1 + 4) + cd2 = 0 ,

d(5λ2 + d2 + 3c2 + ac − 7α−1 + 4) = 0 ,

α−1 + λ2 + ac − c2 = 0

such that −1/
√
α < λ < 0, 0 < a ≤ (λ2 − α−1)/λ, a ≥ d ≥ 0, a > 2c, λ2 � 1/(3α); or

(2) M3 is non-flat, N7(ε) = S 7(ε) with ε ≥ (−7+ 8
√

3)/13 and f (M3) is an open part of

(1.2) f (x, y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
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⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,
where y = (y1, y2, y3), ||y|| = 1 and

(1.3) μ2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 (ε = 1) ,

4ε + 4 ± √13ε2 + 14ε − 11
3(3 + ε)

(ε � 1) .

REMARK 1.1. The flat case (1) of Theorem 1.1 has been proved by Fetcu and Oni-
ciuc in [5, Theorem 5.1]. However, they did not give the explicit representation of non-flat
biharmonic C-parallel Legendrian submanifolds in S 7(ε).

REMARK 1.2. The immersion (1.1) can be rewritten as

f (u, v, w) = (z1(u), z2(u)y(v, w)) ,

where (z1(u), z2(u)) is a Legendre curve with constant curvature (λ2 − α−1)/λ in S 3(ε) given
by

(z1(u), z2(u)) =

(
λ√

λ2 + α−1
ei 1
αλ u,

1√
αλ2 + 1

e−iλu

)

and y(u, v) is a Legendrian surface in S 5(ε) given by

y(v, w) =

⎛⎜⎜⎜⎜⎜⎝
√
αλ2 + 1√
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⎞⎟⎟⎟⎟⎟⎠ .
REMARK 1.3. (i) For each fixed x, (1.2) has constant Gauss curvature (μ2 + 1)/αwith

respect to the induced metric from S 7(ε). We can check that the surface is an integral C-
parallel surface in S 7(ε).

(ii) The curve
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given in (1.2) is a Legendre curve with constant curvature (μ2 − 1)/(μ
√
α) in S 3(ε).

REMARK 1.4. (i) In [5, Theorem 5.1], it is stated that when ε = 5/9, M3 is locally
isometric to a product γ × M̄2, where γ is a curve of constant curvature 1/

√
2 in S 7(5/9) and

M̄2 is a surface of constant Gauss curvature 4/3. However, 1/
√

2 should be replaced by 2/3
because γ coincides with z(x) in Remark 1.3.

(ii) The function λ in the case (2) of [5, Theorem 5.1] and the function μ in (1.3) are
related by the equation μ2 = αλ2. Hence, in view of Remark 1.3, the case ε = 1 and the case
μ2 = (4ε + 4 +

√
13ε2 + 14ε − 11)/(3(3 + ε)) with ε > 1 in (2) of Theorem 1.1 are missing

from [5, Theorem 5.1].

Applying Theorem 1.1, we have the following result which corrects [5, Corollary 5.2].

COROLLARY 1.1. Let f : M3 → S 7(1) be a C-parallel Legendrian submanifold. Then
M3 is proper biharmonic if and only if either:

(1) M3 is flat, and f (M3) is an open part of
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; or

(2) M3 is non-flat, and f (M3) is an open part of

(1.4) f (x, y) =
1√
2

(eix, e−ixy) ,

where y = (y1, y2, y3) and ||y|| = 1.

REMARK 1.5. The flat case (1) of Corollary 1.1 has been proved in [5, Corollary 5.2].
However, the non-flat submanifold (1.4) is missing from [5, Corollary 5.2].

REMARK 1.6. The author classified proper biharmonic Legendrian surfaces in 5-
dimensional Sasakian space forms (see [10] and [12]). Those surfaces are flat and C-parallel.

In the last section, by the same argument as in the proof of Theorem 1.1, we determine
explicitly all proper biharmonic parallel Lagrangian submanifolds in 3-dimensional complex
projective space.

2. Preliminaries.
2.1. Sasakian space forms. A (2n + 1)-dimensional manifold N2n+1 is called an al-

most contact manifold if it admits a unit vector field ξ, a one-form η and a (1, 1)-tensor field ϕ
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satisfying

η(ξ) = 1 , ϕ2 = −I + η ⊗ ξ .
Every almost contact manifold admits a Riemannian metric g satisfying

g(ϕX, ϕY) = g(X, Y) − η(X)η(Y) .

The quadruplet (ϕ, ξ, η, g) is called an almost contact metric structure. An almost contact
metric structure is said to be normal if the tensor field S defined by

S (X, Y) = ϕ2[X, Y] + [ϕX , ϕY] − ϕ[ϕX, Y] − ϕ[X , ϕY] + 2dη(X, Y)ξ

vanishes identically. A normal almost contact structure is said to be Sasakian if it satisfies

dη(X, Y) := (1/2) (X(η(Y)) − Y(η(X)) − η([X, Y])) = g(X, ϕY) .

The tangent plane in TpN2n+1 which is invariant under ϕ is called a ϕ-section. The sec-
tional curvature of ϕ-section is called the ϕ-sectional curvature. Complete and connected
Sasakian manifolds of constant ϕ-sectional curvature are called Sasakian space forms. De-
note Sasakian space forms of constant ϕ-sectional curvature ε by N2n+1(ε).

Let S 2n+1 ⊂ Cn+1 be the unit hypersphere centered at the origin. Denote by z the position
vector field of S 2n+1 in Cn+1 and by g0 the induced metric. Let ξ0 = −Jz, where J is the
usual complex structure of Cn+1 which is defined by JX = iX for X ∈ TCn+1. Let η0 be a
1-form defined by η0(X) = g0(ξ0, X) and ϕ0 be the tensor field defined by ϕ0 = s ◦ J, where
s : TzC

n+1 → TzS 2n+1 denotes the orthogonal projection. Then, (S 2n+1, ϕ0, ξ0, η0, g0) is a
Sasakian space form of constant ϕ-sectional curvature 1. If we put

η = αη0 , ξ = α
−1ξ0 , ϕ = ϕ0 , g = αg0 + α(α − 1)η0 ⊗ η0

for a positive constantα, then (S 2n+1, ϕ, ξ, η, g) is a Sasakian space form of constant φ sectional
curvature ε = (4/α) − 3 > −3. We denote it by S 2n+1(ε). Tanno [13] showed that a simply
connected Sasakian space form N2n+1(ε) with ε > −3 is isomorphic to S 2n+1(ε); i.e., there
exists a C∞-diffeomorphism which maps the structure tensors into the corresponding structure
tensors.

2.2. Legendrian submanifolds in Sasakian space forms. Let Mm be an m-
dimensional submanifold M in a Sasakian space form N2n+1(ε). If η restricted to Mm vanishes,
then Mm is called an integral submani f old, in particular if m = n, it is called a Legendrian
submani f old. In particular a Legendrian submanifold in a 3-dimensional Sasakian space form
is called a Legendre curve. One can see that a curve z(s) in S 3(ε) ⊂ C2 is a Legendre curve
if and only if it satisfies Re(z′(s), iz(s)) = 0 identically in C2, where (·, ·) is the standard
Hermitian inner product on C

2.
We denote the second fundamental form, the shape operator and the normal connection

of a submanifold by h, A and D, respectively. The mean curvature vector field H is defined by
H = (1/m)Tr h. If it vanishes identically, then Mm is called a minimal submanifold. In partic-
ular, if h ≡ 0, then Mm is called a totally geodesic submanifold. A Legendrian submanifold in
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a Sasakian manifold is parallel, i.e., satisfies ∇̄h = 0 if and only if it is totally geodesic. Here,
∇̄h is defined by

(∇̄Xh)(Y, Z) = DXh(Y, Z) − h(∇XY, Z) − h(Y,∇XZ) .

A Legendrian submanifold is called C-parallel if ∇̄h is parallel to ξ.
For a Legendrian submanifold M in a Sasakian space form, we have (cf. [2])

(2.1) Aξ = 0 , ϕh(X, Y) = −AϕY X , 〈h(X, Y) , ϕZ〉 = 〈h(X, Z) , ϕY〉
for any vector fields X, Y and Z tangent to M, where 〈·, ·〉 is the inner product. We denote
by Ki j the sectional curvature determined by an orthonormal pair {Xi, X j}. Then from the
equation of Gauss we have

(2.2) Ki j = (ε + 3)/4 +
〈
h(Xi, Xi), h(X j, X j)

〉
− ||h(Xi, X j)||2 .

The following Legendrian submanifolds can be regarded as the simplest Legendrian sub-
manifolds next to totally geodesic ones in Sasakian space forms.

DEFINITION 2.1. An n-dimensional Legendrian submanifold Mn in a Sasakian space
form is called H-umbilical if every point has a neighborhood V on which there exists an
orthonormal frame field {e1, . . . , en} such that the second fundamental form takes the following
form:

h(e1, e1) = λϕe1 , h(e2, e2) = · · · = h(en, en) = μϕe1 ,

h(e1, e j) = μϕe j , h(e j, ek) = 0 , j � k , j , k = 2, . . . , n ,

where λ and μ are some functions on V .

REMARK 2.1. If in Definition 2.1 we assume that the mean curvature vector field is
nowhere vanishing, then e1 = −ϕH/||H||2 holds and hence it is a globally defined differentiable
vector field, and λ is also a globally defined differentiable function. Moreover, at each point p
of Mn, the shape operator AJH has only one eigenvalue μ(p) on D(p) = {X ∈ TpMn| 〈X, JH〉 =
0}. Since μ = (n||H|| − λ)/(n − 1) holds, it is also a globally defined differentiable function.

2.3. Biharmonic submanifolds. Let f : Mn → N be a smooth map between two
Riemannian manifolds. The tension field τ( f ) of f is a section of the vector bundle f ∗T N
defined by

τ( f ) :=
n∑

i=1

{
∇ f

ei
d f (ei) − d f (∇ei ei)

}
,

where ∇ f , ∇ and {ei} denote the induced connection, the connection of Mn and a local or-
thonormal basis of Mn, respectively.

A smooth map f is called a harmonic map if it is a critical point of the energy functional

E( f ) =
∫
Ω

||d f ||2dv

over every compact domain Ω of Mn, where dv is the volume form of Mn. A smooth map f is
harmonic if and only if τ( f ) = 0 at each point on Mn (cf. [4]).
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The bienergy functional E2( f ) of f over compact domain Ω ⊂ Mn is defined by

E2( f ) =
∫
Ω

||τ( f )||2dv .

Thus E2 provides a measure for the extent to which f fails to be harmonic. If f is a critical
point of E2 over every compact domain Ω, then f is called a biharmonic map. In [6], Jiang
proved that f is biharmonic if and only if its bitension field defined by

τ2( f ) :=
n∑

i=1

{
(∇ f

ei
∇ f

ei
− ∇ f

∇ei ei
)τ( f ) + RN(τ( f ), d f (ei))d f (ei)

}

vanishes identically, where RN is the curvature tensor of N.
A submanifold is called a biharmonic submanifold if the isometric immersion that de-

fines the submanifold is biharmonic map. Minimal submanifolds are biharmonic. A bihar-
monic submanifold is said to be a proper biharmonic submanifold if it is non-minimal.

Loubeau and Montaldo introduced a class which includes biharmonic submanifolds as
follows.

DEFINITION 2.2 ([9]). An isometric immersion f : M → N is called biminimal if
it is a critical point of the bienergy functional E2 with respect to all normal variation with
compact support. Here, a normal variation means a variation ft through f = f0 such that the
variational vector field V = d ft/dt|t=0 is normal to f (M). In this case, M or f (M) is called a
biminimal submanifold in N.

An isometric immersion f is biminimal if and only if the normal part of τ2( f ) vanishes
identically. Clearly, biharmonic submanifolds are biminimal. Biminimal H-umbilical Legen-
drian submanifolds in Sasakian space forms have been classified by the author as follows.

THEOREM 2.3 ([12]). Let f : Mn → N2n+1(ε) be a non-minimal biminimal H-
umbilical Legendrian submanifold, where n ≥ 3. Then N2n+1(ε) = S 2n+1(ε) with

ε ≥ −3n2 − 2n + 5 + 32
√

n
n2 + 6n + 25

(> −3)

and f (Mn) is an open part of

f (x, y) =

(√
μ2

μ2 + 1
e−

i
μ x,

√
1

μ2 + 1
eiμxy

)
,

where y = (y1, . . . , yn), ||y|| = 1 and

μ2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 (ε = 1) ,
(n + 5)ε + 3n − 1 ± √P(n, ε)

2(3 + ε)n
(ε � 1) ,

where P(n, ε) := (n2 + 6n + 25)ε2 + (6n2 + 4n − 10)ε + 9n2 − 42n + 1.

REMARK 2.2. Submanifolds given in Theorem 2.3 are in fact proper biharmonic.
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3. C-parallel Legendrian submanifolds.
3.1. A special orthonormal basis. We recall a special local orthonormal basis which

is used in [1] (see also [5]). Let M be a non-minimal Legendrian submanifold of N7(ε). Let
p be an arbitrary point of M, and denote by UpM the unit sphere in TpM. We consider the
function fp : Up M → R given by

fp(u) = 〈h(u, u) , ϕu〉 .
A function fp attains a critical value at X if and only if 〈h(X, X), ϕY〉 = 0 for all Y ∈ UpM
with 〈X, Y〉 = 0, i.e., X is an eigenvector of AϕX .

We take X1 as a vector at which fp attains its maximum. Then there exists a local or-
thonormal basis {X1, X2, X3} of TpM such that the shape operators take the following forms
(cf. [1]):

(3.1) AϕX1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ1 0 0
0 λ2 0
0 0 λ3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , AϕX2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 λ2 0
λ2 a b
0 b c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , AϕX3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 λ3

0 b c
λ3 c d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
where

(3.2) λ1 > 0 , λ1 ≥ 2λ2 , λ1 ≥ 2λ3 , a ≥ 0, a2 ≥ d2 ,

and moreover, if λ2 = λ3, then b = 0 and a ≥ 2c.

LEMMA 3.1. The vector X1 ∈ TpM can be differentiably extended to a vector field
X1(x) on a neighborhood V of p such that at every point x of V, fx attains a critical value at
X1(x), that is, X1(x) is an eigenvector of AϕX1(x).

PROOF. Let E1(x), E2(x), E3(x) be an arbitrary local differentiable orthonormal frame
field on a neighborhood V of p, such that Ei(p) = Xi. The purpose is to find a local differen-
tiable vector field X1(x) =

∑
yi(x)Ei(x) such that (y1)2 + (y2)2 + (y3)2 = 1 and at every point

x of V , fx attains a critical value at X1(x). As in the proof of Theorem A in [7], we apply
Lagrange’s multiplier method.

Consider the following function:

F(x, y1, y2, y3, λ) :=
∑
i, j,k

hi jky
iy jyk − λ{(y1)2 + (y2)2 + (y3)2 − 1} ,

where hi jk :=
〈
h(Ei(x), E j(x)), ϕEk(x)

〉
. We shall show that there exist differentiable functions

y1, y2, y3 defined a neighborhood of p satisfying the following system of equations:

(3.3)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂F
∂yi
= 3

∑
j,k

hi jk(x)y jyk − 2yiλ = 0, i ∈ {1, 2, 3} ,
∂F
∂λ
= (y1)2 + (y2)2 + (y3)2 − 1 = 0 .
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Define functions Gi by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Gi(x, y1, y2, y3, λ) = 3

∑
j,k

hi jk(x)yiyk − 2yiλ for i = 1, 2, 3 .

G4(x, y1, y2, y3) = (y1)2 + (y2)2 + (y3)2 − 1 .

Since X1(p) = X1 = E1(p), we have (y1, y2, y3) = (1, 0, 0) at p. It follows from (3.1) and (3.3)
that 2λ(p) = 3λ1. We set y4 = λ. A straightforward computation yields

(3.4) det

(
∂Gα
∂yβ

)
(p) = 36(λ2 − λ1)(λ3 − λ1) .

By (3.2), we have λ2 � λ1 � λ3. Hence the RHS of (3.4) is not zero. The implicit function
theorem shows that there exist local differentiable functions y1(x), y2(x), y3(x), λ(x) on a
neighborhood of p satisfying (3.3). The proof is finished. �

REMARK 3.1. In [1] and [5], the differentiablity of X1(x) is not proved.

If the eigenvalues of AϕX1(x) have constant multiplicities on a neighborhood V of p, we
can extend X2 and X3 differentiably to vector fields X2(x) and X3(x) on V . We work on the
open dense set of M defined by this property.

3.2. Correction to a paper by Biakoussis, Blair and Koufogiorgos. Let M be a C-
parallel Legendrian submanifold of N7(ε). The condition that M is C-parallel is equivalent to
∇ϕh = 0, where ∇ is the Levi-Civita connection of M. Hence we have

(3.5) R · ϕh = 0 ,

where R is the curvature tensor of M.
By using (2.2), (3.1) and (3.5), Biakoussis et al. obtained a system of algebraic equations

with respect to λ1, λ2, λ3, a, b, c, d, K12, K13 and K23 (see [1, pages 211–212]).
However, the equation (3.19)-(iv) in [1], i.e., c(a−2c)(λ2−λ3) = 0 is incorrect. It should

be replaced by

b(a − 2c)(λ2 − λ3) = 0 ,

which is obtained by 〈(R(X1, X2) · ϕh)(X2, X2), X3〉 = 0.
In [1, Lemma 4.4], it is stated that if λ1 = 2λ3 � 2λ2, then ε = −3. However, the proof is

based on the the wrong equation (3.19)-(iv) (see page 214, line 11), and hence the statement
is also wrong. The following is a counterexample to [1, Lemma 4.4]: The submanifold (1.4)
is a H-umbilical Legendrian submanifold such that, with respect to some orthonormal local
frame field e1, e2, e3 with e1 = ∂/∂x, the second fundamental form h satisfies

h(e1, e1) = 0 , h(e2, e2) = h(e3, e3) = ϕe1 ,

h(e1, e2) = ϕe2 , h(e1, e3) = ϕe3 , h(e2, e3) = 0 .

We put X1 = (e1 −
√

2e2)/
√

3, X2 = (
√

2e1 + e2)/
√

3 and X3 = e3. Then the shape operators
take the forms (3.1) with λ1 = 2/

√
3, λ2 = −1/

√
3, λ3 = 1/

√
3, a = c =

√
2/
√

3 and
b = d = 0.
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On the other hand, following the wrong statement of [1, Lemma 4.4], the non-flat case
(2) of [5, Theorem 5.1] is investigated. Therefore, the classification presented in the theorem
is incomplete.

3.3. Biharmonic C-parallel Legendrian submanifolds. We shall prove Theorem
1.1. First, we recall the following.

PROPOSITION 3.1 ([5]). A C-parallel Legendrian submanifolds in a 7-dimensional
Sasakian space form N7(ε) is proper biharmonic if and only if ε > −1/3 and

(3.6) Tr h(·, AH·) = (3ε + 1)/2 .

By applying the proof of [1, Lemmas 4.2–4.6] and Proposition 3.1, we obtain the fol-
lowing.

PROPOSITION 3.2. Let M3 be a proper biharmonic C-parallel Legendrian submani-
fold in N7(ε). If M is non-flat, then it is H-umbilical.

PROOF. By [1, Lemma 4.2], the case λ1 � 2λ2 � 2λ3 � λ1 cannot hold. According
to the proof of [1, Lemma 4.6], the case λ1 = 2λ2 = 2λ3 cannot hold for ε > −3. Hence, by
Proposition 3.1 the proof is divided into the following three cases.

CASE (i). λ1 = 2λ2 � 2λ3. In the proof of [1, Lemma 4.3], we have

(3.7) λ1 = 2λ2 = −λ3 =
√

2(ε + 3)/4 , a = c = d = 0 , b = ±√
6(ε + 3)/8 .

We choose a local orthonormal frame field {e1, e2, e3} as follows:

e1 = (X1 ±
√

3X3)/2 , e2 = X2 , e3 = (∓√3X1 + X3)/2 ,

where the ± signs are determined by the sign of b. Then, by a straightforward computation
using (3.7), we obtain

h(e1, e1) = −(
√

2(ε + 3)/4)ϕe1 , h(e2, e2) = h(e3, e3) = (
√

2(ε + 3)/4)ϕe1 ,(3.8)

h(e2, e3) = 0 , h(e1, ei) = (
√

2(ε + 3)/4)ϕei , i ∈ {2, 3} ,

which implies that M is H-umbilical. Moreover, from (3.6) and (3.8) we have ε = 5/9 (see
the subcase (a) of (2) in [5, Theorem 5.1]).

CASE (ii). λ1 = 2λ3 � 2λ2. Following the proof of [1, Lemma 4.4] (page 214, lines
7–10), we have

K12 = 0 ,(3.9)

b = d = 0 , c � 0 .(3.10)

Moreover, in [1, (3.16)-(iv), (3.21)]) the following equations have been obtained:

c(K23 + λ3(λ2 − λ3)) = 0 ,(3.11)
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(λ2 − λ3)(K23 − b2 − c2) = 0 .(3.12)

From (3.10), (3.11), (3.12) and λ2 � λ3, we have

(3.13) K23 + λ3(λ2 − λ3) = 0 , K23 = c2 .

We note that (3.10) and (3.13) show λ3 � 0. It follows from (2.2), (3.1), (3.9) and (3.13) that

(3.14)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
λ2

2 = 4c2 − 2ac − β ,
λ2

3 = 3c2 − ac − β ,
λ2λ3 = 2c2 − ac − β ,

where β = (ε + 3)/4.
We choose a local orthonormal frame field {e1, e2, e3} as follows:

e1 = (λ3X1 + cX2)/
√
λ2

3 + c2 , e2 = (−cX1 + λ3X2)/
√
λ2

3 + c2, e3 = X3 .

We set

k(a, c) := 8c4 − 6ac3 + (a2 − 3β)c2 + aβc .

Then, by a straightforward computation using (3.14), we obtain

〈h(e1, e1), ϕe2〉 = ck(a, c)

λ3(λ2
3 + c2)3/2

, 〈h(e1, e1) , ϕe3〉 = 0 ,

〈h(e2, e2) − h(e3, e3) , ϕe1〉 = − k(a, c)

(λ2
3 + c2)3/2

, h(e2, e3) = 0 ,(3.15)

〈h(e2, e2), ϕe2〉 = − λ3k(a, c)

c(λ2
3 + c2)3/2

, 〈h(e3, e3), ϕe3〉 = 0 .

On the other hand, substituting (3.14) into the identity λ2
2λ

3
3 − (λ2λ3)2 = 0 gives

k(a, c) = 0 .

Hence, it follows from (2.1) and (3.15) that M is H-umbilical.
CASE (iii). λ1 � 2λ2 = 2λ3. By rotating the vector fields X2 and X3, if necessary, we

may assume that b = 0. In [1, Lemma 4.5], it is proved that if M is non-flat, then a � 2c and
a = c = d = 0. Thus, M is H-umbilical. �

PROOF OF THEOREM 1.1. The flat case (1) has been proved in (1) of [5, Theorem 5.1].
Applying Proposition 3.2 and Theorem 2.3 for n = 3, we can prove the non-flat case (2). �

REMARK 3.2. In [5], the case (ii) of Proposition 3.2 was not investigated.
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4. Biharmonic parallel Lagrangian submanifolds. Let CPn(4) denote the complex
projective space of complex dimension n and constant holomorphic sectional curvature 4. We
denote by J the almost complex structure of CPn(4). An n-dimensional submanifold Mn of
CPn(4) is said to be Lagrangian if J interchanges the tangent and the normal spaces at each
point.

In [5, Theorem 6.3], Fetcu and Oniciuc presented the classification result of proper bi-
harmonic parallel Lagrangian submanifolds in CP3(4). However, the theorem is proved by
applying the wrong statement of [1, Lemma 4.4], and hence the classification is incomplete.
This section completes it. First, we recall the following.

PROPOSITION 4.1 ([5]). Let L : M3 → CP3(4) be a proper biharmonic parallel La-
grangian immersion. Then L is locally given by π ◦ f , where π : S 2n+1(1) → CPn(4) is
the Hopf fibration and f : M3 → S 7(1) is a non-minimal C-parallel Legendrian immersion
satisfying

Tr h(·, AH·) = 6H .

The following theorem determines explicitly all proper biharmonic parallel Lagrangian
submanifolds in CP3(4).

THEOREM 4.1. Let L : M3 → CP3(4) a proper biharmonic parallel Lagrangian sub-
manifold. Then L is locally congruent to π ◦ f , where f : M3 → S 7(1) is one of the following:

(1) M3 is flat and

f (u, v, w) =

(
λ√
λ2 + 1

exp

(
i

(
1
λ

u

))
,

1√
(c − a)(2c − a)

exp(−i(λu − (c − a)v)) ,

1√
ρ1(ρ1 + ρ2)

exp(−i(λu + cv + ρ1w)),
1√

ρ2(ρ1 + ρ2)
exp(−i(λu + cv − ρ2w))

)
,

(4.1)

where ρ1,2 = (
√

4c(2c − a) + d2 ± d)/2 and the 4-tuple (λ, a, c, d) is given by one of the fol-
lowing: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−

√
4 − √13

3
,

√
7 − √13

6
,−

√
7 − √13

6
, 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−

√
1

5 + 2
√

3
,

√
45 + 21

√
3

13
,−

√
6

21 + 11
√

3
, 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−

√
1

6 +
√

13
,

√
523 + 139

√
13

138
,−

√
79 − 17

√
13

138
,

√
14 + 2

√
13

3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ;
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(2) M3 is non-flat and

(4.2) f (x, y) =

(√
μ2

μ2 + 1
e−

i
μ x ,

√
1
μ2 + 1

eiμxy
)
,

where y = (y1, y2, y3), ||y|| = 1 and μ2 = (4 ± √13)/3.

PROOF. The flat case (1) has been proved in [5, Corollary 6.4]. Applying Propositions
3.2 and 4.1 and modifying the second equation of [12, (5.33)] to λ2 + 2μ2 = 6, we can prove
the non-flat case (2). �

REMARK 4.1. Fetcu and Oniciuc [5] did not give the explicit representation of non-flat
proper biharmonic parallel Lagrangian submanifolds in CP3(4).

REMARK 4.2. The immersion (4.1) can be rewritten as the one with α = 1 in Remark
1.2 (cf. [3], [8]).

REMARK 4.3. The immersion (4.2) has the same properties as in Remark 1.3, where
α = 1. From this, we see that (4.2) with μ2 = (4 +

√
13)/3 is missing from [5, Theorem 6.3].

REMARK 4.4. The author classified proper biharmonic Lagrangian surfaces of con-
stant mean curvature in CP2(4) (see [11]). Those surfaces are flat and parallel.
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