CLASSIFICATION OF BIHARMONIC C-PARALLEL LEGENDRIAN SUBMANIFOLDS IN 7-DIMENSIONAL SASAKIAN SPACE FORMS

Toru Sasahara

(Received March 31, 2016, revised November 16, 2016)

Abstract

In [5], D. Fetcu and C. Oniciuc presented the classification result for biharmonic C-parallel Legendrian submanifolds in 7-dimensional Sasakian space forms. However, it is incomplete. In this paper, all such submanifolds are explicitly determined.

1. Introduction. In [5, Theorem 5.1], Fetcu and Oniciuc presented the classification result for proper biharmonic \mathcal{C}-parallel Legendrian submanifolds in 7-dimensional Sasakian space forms. The case (2) of the theorem is proved by applying Lemma 4.4 in [1]. However, the lemma is wrong, and hence Fetcu and Oniciuc's classification is incomplete. This paper corrects errors in [1], and moreover, completes the classification.

Our main result is the following, which determines explicitly all proper biharmonic \mathcal{C} parallel Legendrian submanifolds in 7-dimensional Sasakian space forms.

Theorem 1.1. Let $f: M^{3} \rightarrow N^{7}(\varepsilon)$ be a 3-dimensional C-parallel Legendrian submanifold in a 7-dimensional Sasakian space form of constant φ-sectional curvature ε. Then M^{3} is proper biharmonic if and only if either:
(1) M^{3} is flat, $N^{7}(\varepsilon)=S^{7}(\varepsilon)$ with $\varepsilon>-1 / 3$, where $S^{7}(\varepsilon)$ is a unit sphere in \mathbb{C}^{4} equipped with its canonical and deformed Sasakian structures, and $f\left(M^{3}\right)$ is an open part of

$$
\begin{align*}
f(u, v, w)= & \left(\frac{\lambda}{\sqrt{\lambda^{2}+\alpha^{-1}}} \exp \left(i\left(\frac{1}{\alpha \lambda} u\right)\right)\right. \\
& \frac{1}{\sqrt{\alpha(c-a)(2 c-a)}} \exp (-i(\lambda u-(c-a) v)), \\
& \frac{1}{\sqrt{\alpha \rho_{1}\left(\rho_{1}+\rho_{2}\right)}} \exp \left(-i\left(\lambda u+c v+\rho_{1} w\right)\right), \tag{1.1}\\
& \left.\frac{1}{\sqrt{\alpha \rho_{2}\left(\rho_{1}+\rho_{2}\right)}} \exp \left(-i\left(\lambda u+c v-\rho_{2} w\right)\right)\right),
\end{align*}
$$

where $\alpha=4 /(\varepsilon+3), \rho_{1,2}=\left(\sqrt{4 c(2 c-a)+d^{2}} \pm d\right) / 2$ and λ, a, c, d are real constants given by

$$
\left\{\begin{array}{l}
\left(3 \lambda^{2}-\alpha^{-1}\right)\left(3 \lambda^{4}-2(\varepsilon+1) \lambda^{2}+\alpha^{-2}\right)+\lambda^{4}\left((a+c)^{2}+d^{2}\right)=0 \\
(a+c)\left(5 \lambda^{2}+a^{2}+c^{2}-7 \alpha^{-1}+4\right)+c d^{2}=0, \\
d\left(5 \lambda^{2}+d^{2}+3 c^{2}+a c-7 \alpha^{-1}+4\right)=0 \\
\alpha^{-1}+\lambda^{2}+a c-c^{2}=0
\end{array}\right.
$$

such that $-1 / \sqrt{\alpha}<\lambda<0,0<a \leq\left(\lambda^{2}-\alpha^{-1}\right) / \lambda, a \geq d \geq 0, a>2 c, \lambda^{2} \neq 1 /(3 \alpha)$; or
(2) M^{3} is non-flat, $N^{7}(\varepsilon)=S^{7}(\varepsilon)$ with $\varepsilon \geq(-7+8 \sqrt{3}) / 13$ and $f\left(M^{3}\right)$ is an open part of

$$
\begin{equation*}
f(x, \mathbf{y})=\left(\sqrt{\frac{\mu^{2}}{\mu^{2}+1}} e^{-\frac{i}{\mu} x}, \sqrt{\frac{1}{\mu^{2}+1}} e^{i \mu x} \mathbf{y}\right), \tag{1.2}
\end{equation*}
$$

where $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right),\|\mathbf{y}\|=1$ and

$$
\mu^{2}= \begin{cases}1 & (\varepsilon=1) \tag{1.3}\\ \frac{4 \varepsilon+4 \pm \sqrt{13 \varepsilon^{2}+14 \varepsilon-11}}{3(3+\varepsilon)} & (\varepsilon \neq 1)\end{cases}
$$

Remark 1.1. The flat case (1) of Theorem 1.1 has been proved by Fetcu and Oniciuc in [5, Theorem 5.1]. However, they did not give the explicit representation of non-flat biharmonic C-parallel Legendrian submanifolds in $S^{7}(\varepsilon)$.

REMARK 1.2. The immersion (1.1) can be rewritten as

$$
f(u, v, w)=\left(z_{1}(u), z_{2}(u) \mathbf{y}(v, w)\right),
$$

where $\left(z_{1}(u), z_{2}(u)\right)$ is a Legendre curve with constant curvature $\left(\lambda^{2}-\alpha^{-1}\right) / \lambda$ in $S^{3}(\varepsilon)$ given by

$$
\left(z_{1}(u), z_{2}(u)\right)=\left(\frac{\lambda}{\sqrt{\lambda^{2}+\alpha^{-1}}} e^{i \frac{1}{\alpha} u}, \frac{1}{\sqrt{\alpha \lambda^{2}+1}} e^{-i \lambda u}\right)
$$

and $\mathbf{y}(u, v)$ is a Legendrian surface in $S^{5}(\varepsilon)$ given by

$$
\mathbf{y}(v, w)=\left(\frac{\sqrt{\alpha \lambda^{2}+1}}{\sqrt{\alpha(c-a)(2 c-a)}} e^{i(c-a) v}, \frac{\sqrt{\alpha \lambda^{2}+1}}{\sqrt{\alpha \rho_{1}\left(\rho_{1}+\rho_{2}\right)}} e^{-i\left(\left(v+\rho_{1} w\right)\right.}, \frac{\sqrt{\alpha \lambda^{2}+1}}{\sqrt{\alpha \rho_{2}\left(\rho_{1}+\rho_{2}\right)}} e^{-i\left(c v-\rho_{2} w\right)}\right) .
$$

REMARK 1.3. (i) For each fixed x, (1.2) has constant Gauss curvature $\left(\mu^{2}+1\right) / \alpha$ with respect to the induced metric from $S^{7}(\varepsilon)$. We can check that the surface is an integral \mathcal{C} parallel surface in $S^{7}(\varepsilon)$.
(ii) The curve

$$
z(x):=\left(\sqrt{\frac{\mu^{2}}{\mu^{2}+1}} e^{-\frac{i}{\mu} x}, \sqrt{\frac{1}{\mu^{2}+1}} e^{i \mu x}\right)
$$

given in (1.2) is a Legendre curve with constant curvature $\left(\mu^{2}-1\right) /(\mu \sqrt{\alpha})$ in $S^{3}(\varepsilon)$.
REMARK 1.4. (i) In [5, Theorem 5.1], it is stated that when $\varepsilon=5 / 9, M^{3}$ is locally isometric to a product $\gamma \times \bar{M}^{2}$, where γ is a curve of constant curvature $1 / \sqrt{2}$ in $S^{7}(5 / 9)$ and \bar{M}^{2} is a surface of constant Gauss curvature $4 / 3$. However, $1 / \sqrt{2}$ should be replaced by $2 / 3$ because γ coincides with $z(x)$ in Remark 1.3.
(ii) The function λ in the case (2) of [5, Theorem 5.1] and the function μ in (1.3) are related by the equation $\mu^{2}=\alpha \lambda^{2}$. Hence, in view of Remark 1.3, the case $\varepsilon=1$ and the case $\mu^{2}=\left(4 \varepsilon+4+\sqrt{13 \varepsilon^{2}+14 \varepsilon-11}\right) /(3(3+\varepsilon))$ with $\varepsilon>1$ in (2) of Theorem 1.1 are missing from [5, Theorem 5.1].

Applying Theorem 1.1, we have the following result which corrects [5, Corollary 5.2].
Corollary 1.1. Let $f: M^{3} \rightarrow S^{7}(1)$ be a C-parallel Legendrian submanifold. Then M^{3} is proper biharmonic if and only if either:
(1) M^{3} is flat, and $f\left(M^{3}\right)$ is an open part of

$$
\begin{aligned}
f(u, v, w)= & \left(-\frac{1}{\sqrt{6}} \exp (-i \sqrt{5} u),\right. \\
& \frac{1}{\sqrt{6}} \exp \left(i\left(\frac{1}{\sqrt{5}} u-\frac{4 \sqrt{3}}{\sqrt{10}} v\right)\right), \\
& \frac{1}{\sqrt{6}} \exp \left(i\left(\frac{1}{\sqrt{5}} u+\frac{\sqrt{3}}{\sqrt{10}} v-\frac{3 \sqrt{2}}{2} w\right)\right), \\
& \left.\frac{1}{\sqrt{2}} \exp \left(i\left(\frac{1}{\sqrt{5}} u+\frac{\sqrt{3}}{\sqrt{10}} v+\frac{\sqrt{2}}{2} w\right)\right)\right) ; \text { or }
\end{aligned}
$$

(2) M^{3} is non-flat, and $f\left(M^{3}\right)$ is an open part of

$$
\begin{equation*}
f(x, \mathbf{y})=\frac{1}{\sqrt{2}}\left(e^{i x}, e^{-i x} \mathbf{y}\right) \tag{1.4}
\end{equation*}
$$

where $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right)$ and $\|\mathbf{y}\|=1$.
Remark 1.5. The flat case (1) of Corollary 1.1 has been proved in [5, Corollary 5.2]. However, the non-flat submanifold (1.4) is missing from [5, Corollary 5.2].

Remark 1.6. The author classified proper biharmonic Legendrian surfaces in 5dimensional Sasakian space forms (see [10] and [12]). Those surfaces are flat and C-parallel.

In the last section, by the same argument as in the proof of Theorem 1.1, we determine explicitly all proper biharmonic parallel Lagrangian submanifolds in 3-dimensional complex projective space.

2. Preliminaries.

2.1. Sasakian space forms. A $(2 n+1)$-dimensional manifold $N^{2 n+1}$ is called an almost contact manifold if it admits a unit vector field ξ, a one-form η and a (1, 1)-tensor field φ
satisfying

$$
\eta(\xi)=1, \quad \varphi^{2}=-I+\eta \otimes \xi .
$$

Every almost contact manifold admits a Riemannian metric g satisfying

$$
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y)
$$

The quadruplet (φ, ξ, η, g) is called an almost contact metric structure. An almost contact metric structure is said to be normal if the tensor field S defined by

$$
S(X, Y)=\varphi^{2}[X, Y]+[\varphi X, \varphi Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y]+2 d \eta(X, Y) \xi
$$

vanishes identically. A normal almost contact structure is said to be Sasakian if it satisfies

$$
d \eta(X, Y):=(1 / 2)(X(\eta(Y))-Y(\eta(X))-\eta([X, Y]))=g(X, \varphi Y) .
$$

The tangent plane in $T_{p} N^{2 n+1}$ which is invariant under φ is called a φ-section. The sectional curvature of φ-section is called the φ-sectional curvature. Complete and connected Sasakian manifolds of constant φ-sectional curvature are called Sasakian space forms. Denote Sasakian space forms of constant φ-sectional curvature ε by $N^{2 n+1}(\varepsilon)$.

Let $S^{2 n+1} \subset \mathbb{C}^{n+1}$ be the unit hypersphere centered at the origin. Denote by z the position vector field of $S^{2 n+1}$ in \mathbb{C}^{n+1} and by g_{0} the induced metric. Let $\xi_{0}=-J z$, where J is the usual complex structure of \mathbb{C}^{n+1} which is defined by $J X=i X$ for $X \in T \mathbb{C}^{n+1}$. Let η_{0} be a 1 -form defined by $\eta_{0}(X)=g_{0}\left(\xi_{0}, X\right)$ and φ_{0} be the tensor field defined by $\varphi_{0}=s \circ J$, where $s: T_{z} \mathbb{C}^{n+1} \rightarrow T_{z} S^{2 n+1}$ denotes the orthogonal projection. Then, $\left(S^{2 n+1}, \varphi_{0}, \xi_{0}, \eta_{0}, g_{0}\right)$ is a Sasakian space form of constant φ-sectional curvature 1. If we put

$$
\eta=\alpha \eta_{0}, \quad \xi=\alpha^{-1} \xi_{0}, \quad \varphi=\varphi_{0}, \quad g=\alpha g_{0}+\alpha(\alpha-1) \eta_{0} \otimes \eta_{0}
$$

for a positive constant α, then $\left(S^{2 n+1}, \varphi, \xi, \eta, g\right)$ is a Sasakian space form of constant ϕ sectional curvature $\varepsilon=(4 / \alpha)-3>-3$. We denote it by $S^{2 n+1}(\varepsilon)$. Tanno [13] showed that a simply connected Sasakian space form $N^{2 n+1}(\varepsilon)$ with $\varepsilon>-3$ is isomorphic to $S^{2 n+1}(\varepsilon)$; i.e., there exists a C^{∞}-diffeomorphism which maps the structure tensors into the corresponding structure tensors.
2.2. Legendrian submanifolds in Sasakian space forms. Let M^{m} be an m dimensional submanifold M in a Sasakian space form $N^{2 n+1}(\varepsilon)$. If η restricted to M^{m} vanishes, then M^{m} is called an integral submanifold, in particular if $m=n$, it is called a Legendrian submanifold. In particular a Legendrian submanifold in a 3-dimensional Sasakian space form is called a Legendre curve. One can see that a curve $z(s)$ in $S^{3}(\varepsilon) \subset \mathbb{C}^{2}$ is a Legendre curve if and only if it satisfies $\operatorname{Re}\left(z^{\prime}(s), i z(s)\right)=0$ identically in \mathbb{C}^{2}, where (\cdot, \cdot) is the standard Hermitian inner product on \mathbb{C}^{2}.

We denote the second fundamental form, the shape operator and the normal connection of a submanifold by h, A and D, respectively. The mean curvature vector field H is defined by $H=(1 / m) \operatorname{Tr} h$. If it vanishes identically, then M^{m} is called a minimal submanifold. In particular, if $h \equiv 0$, then M^{m} is called a totally geodesic submanifold. A Legendrian submanifold in
a Sasakian manifold is parallel, i.e., satisfies $\bar{\nabla} h=0$ if and only if it is totally geodesic. Here, $\bar{\nabla} h$ is defined by

$$
\left(\bar{\nabla}_{X} h\right)(Y, Z)=D_{X} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right) .
$$

A Legendrian submanifold is called \mathcal{C}-parallel if $\bar{\nabla} h$ is parallel to ξ.
For a Legendrian submanifold M in a Sasakian space form, we have (cf. [2])

$$
\begin{equation*}
A_{\xi}=0, \varphi h(X, Y)=-A_{\varphi Y} X,\langle h(X, Y), \varphi Z\rangle=\langle h(X, Z), \varphi Y\rangle \tag{2.1}
\end{equation*}
$$

for any vector fields X, Y and Z tangent to M, where $\langle\cdot, \cdot\rangle$ is the inner product. We denote by $K_{i j}$ the sectional curvature determined by an orthonormal pair $\left\{X_{i}, X_{j}\right\}$. Then from the equation of Gauss we have

$$
\begin{equation*}
K_{i j}=(\varepsilon+3) / 4+\left\langle h\left(X_{i}, X_{i}\right), h\left(X_{j}, X_{j}\right)\right\rangle-\left\|h\left(X_{i}, X_{j}\right)\right\|^{2} . \tag{2.2}
\end{equation*}
$$

The following Legendrian submanifolds can be regarded as the simplest Legendrian submanifolds next to totally geodesic ones in Sasakian space forms.

Definition 2.1. An n-dimensional Legendrian submanifold M^{n} in a Sasakian space form is called H-umbilical if every point has a neighborhood V on which there exists an orthonormal frame field $\left\{e_{1}, \ldots, e_{n}\right\}$ such that the second fundamental form takes the following form:

$$
\begin{array}{ll}
h\left(e_{1}, e_{1}\right)=\lambda \varphi e_{1}, & h\left(e_{2}, e_{2}\right)=\cdots=h\left(e_{n}, e_{n}\right)=\mu \varphi e_{1}, \\
h\left(e_{1}, e_{j}\right)=\mu \varphi e_{j}, & h\left(e_{j}, e_{k}\right)=0, \quad j \neq k, \quad j, k=2, \ldots, n,
\end{array}
$$

where λ and μ are some functions on V.
REMARK 2.1. If in Definition 2.1 we assume that the mean curvature vector field is nowhere vanishing, then $e_{1}=-\varphi H /\|H\|^{2}$ holds and hence it is a globally defined differentiable vector field, and λ is also a globally defined differentiable function. Moreover, at each point p of M^{n}, the shape operator $A_{J H}$ has only one eigenvalue $\mu(p)$ on $D(p)=\left\{X \in T_{p} M^{n} \mid\langle X, J H\rangle=\right.$ $0\}$. Since $\mu=(n\|H\|-\lambda) /(n-1)$ holds, it is also a globally defined differentiable function.
2.3. Biharmonic submanifolds. Let $f: M^{n} \rightarrow N$ be a smooth map between two Riemannian manifolds. The tension field $\tau(f)$ of f is a section of the vector bundle $f^{*} T N$ defined by

$$
\tau(f):=\sum_{i=1}^{n}\left\{\nabla_{e_{i}}^{f} d f\left(e_{i}\right)-d f\left(\nabla_{e_{i}} e_{i}\right)\right\}
$$

where ∇^{f}, ∇ and $\left\{e_{i}\right\}$ denote the induced connection, the connection of M^{n} and a local orthonormal basis of M^{n}, respectively.

A smooth map f is called a harmonic map if it is a critical point of the energy functional

$$
E(f)=\int_{\Omega}\|d f\|^{2} d v
$$

over every compact domain Ω of M^{n}, where $d v$ is the volume form of M^{n}. A smooth map f is harmonic if and only if $\tau(f)=0$ at each point on M^{n} (cf. [4]).

The bienergy functional $E_{2}(f)$ of f over compact domain $\Omega \subset M^{n}$ is defined by

$$
E_{2}(f)=\int_{\Omega}\|\tau(f)\|^{2} d v
$$

Thus E_{2} provides a measure for the extent to which f fails to be harmonic. If f is a critical point of E_{2} over every compact domain Ω, then f is called a biharmonic map. In [6], Jiang proved that f is biharmonic if and only if its bitension field defined by

$$
\tau_{2}(f):=\sum_{i=1}^{n}\left\{\left(\nabla_{e_{i}}^{f} \nabla_{e_{i}}^{f}-\nabla_{\nabla_{e_{i}} e_{i}}^{f}\right) \tau(f)+R^{N}\left(\tau(f), d f\left(e_{i}\right)\right) d f\left(e_{i}\right)\right\}
$$

vanishes identically, where R^{N} is the curvature tensor of N.
A submanifold is called a biharmonic submanifold if the isometric immersion that defines the submanifold is biharmonic map. Minimal submanifolds are biharmonic. A biharmonic submanifold is said to be a proper biharmonic submanifold if it is non-minimal.

Loubeau and Montaldo introduced a class which includes biharmonic submanifolds as follows.

DEFINITION 2.2 ([9]). An isometric immersion $f: M \rightarrow N$ is called biminimal if it is a critical point of the bienergy functional E_{2} with respect to all normal variation with compact support. Here, a normal variation means a variation f_{t} through $f=f_{0}$ such that the variational vector field $V=d f_{t} / d t_{t=0}$ is normal to $f(M)$. In this case, M or $f(M)$ is called a biminimal submanifold in N.

An isometric immersion f is biminimal if and only if the normal part of $\tau_{2}(f)$ vanishes identically. Clearly, biharmonic submanifolds are biminimal. Biminimal H-umbilical Legendrian submanifolds in Sasakian space forms have been classified by the author as follows.

THEOREM 2.3 ([12]). Let $f: M^{n} \rightarrow N^{2 n+1}(\varepsilon)$ be a non-minimal biminimal H umbilical Legendrian submanifold, where $n \geq 3$. Then $N^{2 n+1}(\varepsilon)=S^{2 n+1}(\varepsilon)$ with

$$
\varepsilon \geq \frac{-3 n^{2}-2 n+5+32 \sqrt{n}}{n^{2}+6 n+25}(>-3)
$$

and $f\left(M^{n}\right)$ is an open part of

$$
f(x, \mathbf{y})=\left(\sqrt{\frac{\mu^{2}}{\mu^{2}+1}} e^{-\frac{i}{\mu} x}, \sqrt{\frac{1}{\mu^{2}+1}} e^{i \mu x} \mathbf{y}\right),
$$

where $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right),\|\mathbf{y}\|=1$ and

$$
\mu^{2}= \begin{cases}1 & (\varepsilon=1) \\ \frac{(n+5) \varepsilon+3 n-1 \pm \sqrt{P(n, \varepsilon)}}{2(3+\varepsilon) n} & (\varepsilon \neq 1)\end{cases}
$$

where $P(n, \varepsilon):=\left(n^{2}+6 n+25\right) \varepsilon^{2}+\left(6 n^{2}+4 n-10\right) \varepsilon+9 n^{2}-42 n+1$.
REMARK 2.2. Submanifolds given in Theorem 2.3 are in fact proper biharmonic.

3. C-parallel Legendrian submanifolds.

3.1. A special orthonormal basis. We recall a special local orthonormal basis which is used in [1] (see also [5]). Let M be a non-minimal Legendrian submanifold of $N^{7}(\varepsilon)$. Let p be an arbitrary point of M, and denote by $U_{p} M$ the unit sphere in $T_{p} M$. We consider the function $f_{p}: U_{p} M \rightarrow \mathbb{R}$ given by

$$
f_{p}(u)=\langle h(u, u), \varphi u\rangle .
$$

A function f_{p} attains a critical value at X if and only if $\langle h(X, X), \varphi Y\rangle=0$ for all $Y \in U_{p} M$ with $\langle X, Y\rangle=0$, i.e., X is an eigenvector of $A_{\varphi X}$.

We take X_{1} as a vector at which f_{p} attains its maximum. Then there exists a local orthonormal basis $\left\{X_{1}, X_{2}, X_{3}\right\}$ of $T_{p} M$ such that the shape operators take the following forms (cf. [1]):

$$
A_{\varphi X_{1}}=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \tag{3.1}\\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right), A_{\varphi X_{2}}=\left(\begin{array}{ccc}
0 & \lambda_{2} & 0 \\
\lambda_{2} & a & b \\
0 & b & c
\end{array}\right), A_{\varphi X_{3}}=\left(\begin{array}{ccc}
0 & 0 & \lambda_{3} \\
0 & b & c \\
\lambda_{3} & c & d
\end{array}\right),
$$

where

$$
\begin{equation*}
\lambda_{1}>0, \quad \lambda_{1} \geq 2 \lambda_{2}, \quad \lambda_{1} \geq 2 \lambda_{3}, \quad a \geq 0, \quad a^{2} \geq d^{2} \tag{3.2}
\end{equation*}
$$

and moreover, if $\lambda_{2}=\lambda_{3}$, then $b=0$ and $a \geq 2 c$.
Lemma 3.1. The vector $X_{1} \in T_{p} M$ can be differentiably extended to a vector field $X_{1}(x)$ on a neighborhood V of p such that at every point x of V, f_{x} attains a critical value at $X_{1}(x)$, that is, $X_{1}(x)$ is an eigenvector of $A_{\varphi X_{1}(x)}$.

Proof. Let $E_{1}(x), E_{2}(x), E_{3}(x)$ be an arbitrary local differentiable orthonormal frame field on a neighborhood V of p, such that $E_{i}(p)=X_{i}$. The purpose is to find a local differentiable vector field $X_{1}(x)=\sum y^{i}(x) E_{i}(x)$ such that $\left(y^{1}\right)^{2}+\left(y^{2}\right)^{2}+\left(y^{3}\right)^{2}=1$ and at every point x of V, f_{x} attains a critical value at $X_{1}(x)$. As in the proof of Theorem A in [7], we apply Lagrange's multiplier method.

Consider the following function:

$$
F\left(x, y^{1}, y^{2}, y^{3}, \lambda\right):=\sum_{i, j, k} h_{i j k} y^{i} y^{j} y^{k}-\lambda\left\{\left(y^{1}\right)^{2}+\left(y^{2}\right)^{2}+\left(y^{3}\right)^{2}-1\right\},
$$

where $h_{i j k}:=\left\langle h\left(E_{i}(x), E_{j}(x)\right), \varphi E_{k}(x)\right\rangle$. We shall show that there exist differentiable functions y^{1}, y^{2}, y^{3} defined a neighborhood of p satisfying the following system of equations:

$$
\left\{\begin{array}{l}
\frac{\partial F}{\partial y^{i}}=3 \sum_{j, k} h_{i j k}(x) y^{j} y^{k}-2 y^{i} \lambda=0, \quad i \in\{1,2,3\}, \tag{3.3}\\
\frac{\partial F}{\partial \lambda}=\left(y^{1}\right)^{2}+\left(y^{2}\right)^{2}+\left(y^{3}\right)^{2}-1=0 .
\end{array}\right.
$$

Define functions G_{i} by

$$
\left\{\begin{array}{l}
G_{i}\left(x, y^{1}, y^{2}, y^{3}, \lambda\right)=3 \sum_{j, k} h_{i j k}(x) y^{i} y^{k}-2 y^{i} \lambda \text { for } i=1,2,3 . \\
G_{4}\left(x, y^{1}, y^{2}, y^{3}\right)=\left(y^{1}\right)^{2}+\left(y^{2}\right)^{2}+\left(y^{3}\right)^{2}-1 .
\end{array}\right.
$$

Since $X_{1}(p)=X_{1}=E_{1}(p)$, we have $\left(y^{1}, y^{2}, y^{3}\right)=(1,0,0)$ at p. It follows from (3.1) and (3.3) that $2 \lambda(p)=3 \lambda_{1}$. We set $y^{4}=\lambda$. A straightforward computation yields

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial G_{\alpha}}{\partial y^{\beta}}\right)(p)=36\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{1}\right) \tag{3.4}
\end{equation*}
$$

By (3.2), we have $\lambda_{2} \neq \lambda_{1} \neq \lambda_{3}$. Hence the RHS of (3.4) is not zero. The implicit function theorem shows that there exist local differentiable functions $y^{1}(x), y^{2}(x), y^{3}(x), \lambda(x)$ on a neighborhood of p satisfying (3.3). The proof is finished.

REmARK 3.1. In [1] and [5], the differentiablity of $X_{1}(x)$ is not proved.
If the eigenvalues of $A_{\varphi X_{1}(x)}$ have constant multiplicities on a neighborhood V of p, we can extend X_{2} and X_{3} differentiably to vector fields $X_{2}(x)$ and $X_{3}(x)$ on V. We work on the open dense set of M defined by this property.
3.2. Correction to a paper by Biakoussis, Blair and Koufogiorgos. Let M be a C parallel Legendrian submanifold of $N^{7}(\varepsilon)$. The condition that M is C-parallel is equivalent to $\nabla \varphi h=0$, where ∇ is the Levi-Civita connection of M. Hence we have

$$
\begin{equation*}
R \cdot \varphi h=0, \tag{3.5}
\end{equation*}
$$

where R is the curvature tensor of M.
By using (2.2), (3.1) and (3.5), Biakoussis et al. obtained a system of algebraic equations with respect to $\lambda_{1}, \lambda_{2}, \lambda_{3}, a, b, c, d, K_{12}, K_{13}$ and K_{23} (see [1, pages 211-212]).

However, the equation (3.19)-(iv) in [1], i.e., $c(a-2 c)\left(\lambda_{2}-\lambda_{3}\right)=0$ is incorrect. It should be replaced by

$$
b(a-2 c)\left(\lambda_{2}-\lambda_{3}\right)=0,
$$

which is obtained by $\left\langle\left(R\left(X_{1}, X_{2}\right) \cdot \varphi h\right)\left(X_{2}, X_{2}\right), X_{3}\right\rangle=0$.
In [1, Lemma 4.4], it is stated that if $\lambda_{1}=2 \lambda_{3} \neq 2 \lambda_{2}$, then $\varepsilon=-3$. However, the proof is based on the the wrong equation (3.19)-(iv) (see page 214, line 11), and hence the statement is also wrong. The following is a counterexample to [1, Lemma 4.4]: The submanifold (1.4) is a H-umbilical Legendrian submanifold such that, with respect to some orthonormal local frame field e_{1}, e_{2}, e_{3} with $e_{1}=\partial / \partial x$, the second fundamental form h satisfies

$$
\begin{aligned}
& h\left(e_{1}, e_{1}\right)=0, \quad h\left(e_{2}, e_{2}\right)=h\left(e_{3}, e_{3}\right)=\varphi e_{1}, \\
& h\left(e_{1}, e_{2}\right)=\varphi e_{2}, \quad h\left(e_{1}, e_{3}\right)=\varphi e_{3}, \quad h\left(e_{2}, e_{3}\right)=0 .
\end{aligned}
$$

We put $X_{1}=\left(e_{1}-\sqrt{2} e_{2}\right) / \sqrt{3}, X_{2}=\left(\sqrt{2} e_{1}+e_{2}\right) / \sqrt{3}$ and $X_{3}=e_{3}$. Then the shape operators take the forms (3.1) with $\lambda_{1}=2 / \sqrt{3}, \lambda_{2}=-1 / \sqrt{3}, \lambda_{3}=1 / \sqrt{3}, a=c=\sqrt{2} / \sqrt{3}$ and $b=d=0$.

On the other hand, following the wrong statement of [1, Lemma 4.4], the non-flat case (2) of [5, Theorem 5.1] is investigated. Therefore, the classification presented in the theorem is incomplete.
3.3. Biharmonic C-parallel Legendrian submanifolds. We shall prove Theorem 1.1. First, we recall the following.

Proposition 3.1 ([5]). A C-parallel Legendrian submanifolds in a 7-dimensional Sasakian space form $N^{7}(\varepsilon)$ is proper biharmonic if and only if $\varepsilon>-1 / 3$ and

$$
\begin{equation*}
\operatorname{Tr} h\left(\cdot, A_{H} \cdot\right)=(3 \varepsilon+1) / 2 \tag{3.6}
\end{equation*}
$$

By applying the proof of [1, Lemmas 4.2-4.6] and Proposition 3.1, we obtain the following.

Proposition 3.2. Let M^{3} be a proper biharmonic C-parallel Legendrian submanifold in $N^{7}(\varepsilon)$. If M is non-flat, then it is H-umbilical.

Proof. By [1, Lemma 4.2], the case $\lambda_{1} \neq 2 \lambda_{2} \neq 2 \lambda_{3} \neq \lambda_{1}$ cannot hold. According to the proof of [1, Lemma 4.6], the case $\lambda_{1}=2 \lambda_{2}=2 \lambda_{3}$ cannot hold for $\varepsilon>-3$. Hence, by Proposition 3.1 the proof is divided into the following three cases.

CASE (i). $\lambda_{1}=2 \lambda_{2} \neq 2 \lambda_{3}$. In the proof of [1, Lemma 4.3], we have

$$
\begin{equation*}
\lambda_{1}=2 \lambda_{2}=-\lambda_{3}=\sqrt{2(\varepsilon+3)} / 4, \quad a=c=d=0, \quad b= \pm \sqrt{6(\varepsilon+3)} / 8 . \tag{3.7}
\end{equation*}
$$

We choose a local orthonormal frame field $\left\{e_{1}, e_{2}, e_{3}\right\}$ as follows:

$$
e_{1}=\left(X_{1} \pm \sqrt{3} X_{3}\right) / 2, \quad e_{2}=X_{2}, \quad e_{3}=\left(\mp \sqrt{3} X_{1}+X_{3}\right) / 2
$$

where the \pm signs are determined by the sign of b. Then, by a straightforward computation using (3.7), we obtain

$$
\begin{align*}
& h\left(e_{1}, e_{1}\right)=-(\sqrt{2(\varepsilon+3)} / 4) \varphi e_{1}, h\left(e_{2}, e_{2}\right)=h\left(e_{3}, e_{3}\right)=(\sqrt{2(\varepsilon+3)} / 4) \varphi e_{1}, \tag{3.8}\\
& h\left(e_{2}, e_{3}\right)=0, h\left(e_{1}, e_{i}\right)=(\sqrt{2(\varepsilon+3)} / 4) \varphi e_{i}, \quad i \in\{2,3\},
\end{align*}
$$

which implies that M is H-umbilical. Moreover, from (3.6) and (3.8) we have $\varepsilon=5 / 9$ (see the subcase (a) of (2) in [5, Theorem 5.1]).

CASE (ii). $\lambda_{1}=2 \lambda_{3} \neq 2 \lambda_{2}$. Following the proof of [1, Lemma 4.4] (page 214, lines 7-10), we have

$$
\begin{align*}
& K_{12}=0 \tag{3.9}\\
& b=d=0, \quad c \neq 0 . \tag{3.10}
\end{align*}
$$

Moreover, in [1, (3.16)-(iv), (3.21)]) the following equations have been obtained:

$$
\begin{equation*}
c\left(K_{23}+\lambda_{3}\left(\lambda_{2}-\lambda_{3}\right)\right)=0 \tag{3.11}
\end{equation*}
$$

$$
\begin{equation*}
\left(\lambda_{2}-\lambda_{3}\right)\left(K_{23}-b^{2}-c^{2}\right)=0 . \tag{3.12}
\end{equation*}
$$

From (3.10), (3.11), (3.12) and $\lambda_{2} \neq \lambda_{3}$, we have

$$
\begin{equation*}
K_{23}+\lambda_{3}\left(\lambda_{2}-\lambda_{3}\right)=0, K_{23}=c^{2} . \tag{3.13}
\end{equation*}
$$

We note that (3.10) and (3.13) show $\lambda_{3} \neq 0$. It follows from (2.2), (3.1), (3.9) and (3.13) that

$$
\left\{\begin{array}{l}
\lambda_{2}^{2}=4 c^{2}-2 a c-\beta \tag{3.14}\\
\lambda_{3}^{2}=3 c^{2}-a c-\beta \\
\lambda_{2} \lambda_{3}=2 c^{2}-a c-\beta
\end{array}\right.
$$

where $\beta=(\varepsilon+3) / 4$.
We choose a local orthonormal frame field $\left\{e_{1}, e_{2}, e_{3}\right\}$ as follows:

$$
e_{1}=\left(\lambda_{3} X_{1}+c X_{2}\right) / \sqrt{\lambda_{3}^{2}+c^{2}}, \quad e_{2}=\left(-c X_{1}+\lambda_{3} X_{2}\right) / \sqrt{\lambda_{3}^{2}+c^{2}}, \quad e_{3}=X_{3}
$$

We set

$$
k(a, c):=8 c^{4}-6 a c^{3}+\left(a^{2}-3 \beta\right) c^{2}+a \beta c .
$$

Then, by a straightforward computation using (3.14), we obtain

$$
\begin{align*}
& \left\langle h\left(e_{1}, e_{1}\right), \varphi e_{2}\right\rangle=\frac{c k(a, c)}{\lambda_{3}\left(\lambda_{3}^{2}+c^{2}\right)^{3 / 2}},\left\langle h\left(e_{1}, e_{1}\right), \varphi e_{3}\right\rangle=0, \\
& \left\langle h\left(e_{2}, e_{2}\right)-h\left(e_{3}, e_{3}\right), \varphi e_{1}\right\rangle=-\frac{k(a, c)}{\left(\lambda_{3}^{2}+c^{2}\right)^{3 / 2}}, h\left(e_{2}, e_{3}\right)=0, \tag{3.15}\\
& \left\langle h\left(e_{2}, e_{2}\right), \varphi e_{2}\right\rangle=-\frac{\lambda_{3} k(a, c)}{c\left(\lambda_{3}^{2}+c^{2}\right)^{3 / 2}},\left\langle h\left(e_{3}, e_{3}\right), \varphi e_{3}\right\rangle=0 .
\end{align*}
$$

On the other hand, substituting (3.14) into the identity $\lambda_{2}^{2} \lambda_{3}^{3}-\left(\lambda_{2} \lambda_{3}\right)^{2}=0$ gives

$$
k(a, c)=0 .
$$

Hence, it follows from (2.1) and (3.15) that M is H-umbilical.
CASE (iii). $\lambda_{1} \neq 2 \lambda_{2}=2 \lambda_{3}$. By rotating the vector fields X_{2} and X_{3}, if necessary, we may assume that $b=0$. In [1, Lemma 4.5], it is proved that if M is non-flat, then $a \neq 2 c$ and $a=c=d=0$. Thus, M is H-umbilical.

Proof of Theorem 1.1. The flat case (1) has been proved in (1) of [5, Theorem 5.1]. Applying Proposition 3.2 and Theorem 2.3 for $n=3$, we can prove the non-flat case (2).

REmARK 3.2. In [5], the case (ii) of Proposition 3.2 was not investigated.
4. Biharmonic parallel Lagrangian submanifolds. Let $\mathbb{C} P^{n}(4)$ denote the complex projective space of complex dimension n and constant holomorphic sectional curvature 4 . We denote by J the almost complex structure of $\mathbb{C} P^{n}(4)$. An n-dimensional submanifold M^{n} of $\mathbb{C} P^{n}(4)$ is said to be Lagrangian if J interchanges the tangent and the normal spaces at each point.

In [5, Theorem 6.3], Fetcu and Oniciuc presented the classification result of proper biharmonic parallel Lagrangian submanifolds in $\mathbb{C} P^{3}(4)$. However, the theorem is proved by applying the wrong statement of [1, Lemma 4.4], and hence the classification is incomplete. This section completes it. First, we recall the following.

Proposition 4.1 ([5]). Let $L: M^{3} \rightarrow \mathbb{C} P^{3}(4)$ be a proper biharmonic parallel Lagrangian immersion. Then L is locally given by $\pi \circ f$, where $\pi: S^{2 n+1}(1) \rightarrow \mathbb{C} P^{n}(4)$ is the Hopf fibration and $f: M^{3} \rightarrow S^{7}(1)$ is a non-minimal C-parallel Legendrian immersion satisfying

$$
\operatorname{Tr} h\left(\cdot, A_{H} \cdot\right)=6 H .
$$

The following theorem determines explicitly all proper biharmonic parallel Lagrangian submanifolds in $\mathbb{C} P^{3}(4)$.

THEOREM 4.1. Let $L: M^{3} \rightarrow \mathbb{C} P^{3}(4)$ a proper biharmonic parallel Lagrangian submanifold. Then L is locally congruent to $\pi \circ f$, where $f: M^{3} \rightarrow S^{7}(1)$ is one of the following:
(1) M^{3} is flat and

$$
\begin{align*}
& f(u, v, w)=\left(\frac{\lambda}{\sqrt{\lambda^{2}+1}} \exp \left(i\left(\frac{1}{\lambda} u\right)\right), \frac{1}{\sqrt{(c-a)(2 c-a)}} \exp (-i(\lambda u-(c-a) v)),\right. \tag{4.1}\\
& \left.\frac{1}{\sqrt{\rho_{1}\left(\rho_{1}+\rho_{2}\right)}} \exp \left(-i\left(\lambda u+c v+\rho_{1} w\right)\right), \frac{1}{\sqrt{\rho_{2}\left(\rho_{1}+\rho_{2}\right)}} \exp \left(-i\left(\lambda u+c v-\rho_{2} w\right)\right)\right),
\end{align*}
$$

where $\rho_{1,2}=\left(\sqrt{4 c(2 c-a)+d^{2}} \pm d\right) / 2$ and the 4 -tuple (λ, a, c, d) is given by one of the following:

$$
\begin{aligned}
& \left(-\sqrt{\frac{4-\sqrt{13}}{3}}, \sqrt{\frac{7-\sqrt{13}}{6}},-\sqrt{\frac{7-\sqrt{13}}{6}}, 0\right) \\
& \left(-\sqrt{\frac{1}{5+2 \sqrt{3}}}, \sqrt{\frac{45+21 \sqrt{3}}{13}},-\sqrt{\frac{6}{21+11 \sqrt{3}}}, 0\right) \\
& \left(-\sqrt{\frac{1}{6+\sqrt{13}}}, \sqrt{\frac{523+139 \sqrt{13}}{138}},-\sqrt{\frac{79-17 \sqrt{13}}{138}}, \sqrt{\frac{14+2 \sqrt{13}}{3}}\right) ;
\end{aligned}
$$

(2) M^{3} is non-flat and

$$
\begin{equation*}
f(x, \mathbf{y})=\left(\sqrt{\frac{\mu^{2}}{\mu^{2}+1}} e^{-\frac{i}{\mu} x}, \sqrt{\frac{1}{\mu^{2}+1}} e^{i \mu x} \mathbf{y}\right), \tag{4.2}
\end{equation*}
$$

where $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right),\|\mathbf{y}\|=1$ and $\mu^{2}=(4 \pm \sqrt{13}) / 3$.
Proof. The flat case (1) has been proved in [5, Corollary 6.4]. Applying Propositions 3.2 and 4.1 and modifying the second equation of $[12,(5.33)]$ to $\lambda^{2}+2 \mu^{2}=6$, we can prove the non-flat case (2).

Remark 4.1. Fetcu and Oniciuc [5] did not give the explicit representation of non-flat proper biharmonic parallel Lagrangian submanifolds in $\mathbb{C} P^{3}(4)$.

REMARK 4.2. The immersion (4.1) can be rewritten as the one with $\alpha=1$ in Remark 1.2 (cf. [3], [8]).

REMARK 4.3. The immersion (4.2) has the same properties as in Remark 1.3, where $\alpha=1$. From this, we see that (4.2) with $\mu^{2}=(4+\sqrt{13}) / 3$ is missing from [5, Theorem 6.3].

REMARK 4.4. The author classified proper biharmonic Lagrangian surfaces of constant mean curvature in $\mathbb{C} P^{2}(4)$ (see [11]). Those surfaces are flat and parallel.

References

[1] C. Baikoussis, D. E. Blair and T. Koufogiorgos, Integral submanifolds of Sasakian space forms $\bar{M}^{7}(k)$, Results Math. 27 (1995), 207-226.
[2] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics 203, Birkhäuser, Boston, 2010.
[3] F. Dillen, H. Li, L. Vrancken and X. Wang, Lagrangian submanifolds in complex projective space with parallel second fundamental form, Pacific J. Math. 255 (2012), 79-115.
[4] J. EellS And J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160.
[5] D. FETCU AND C. OniCIUC, Biharmonic integral C-parallel submanifolds in 7-dimensional Sasakian space forms, Tohoku Math. J. 64 (2012), 195-222.
[6] G. Y. Jiang, 2-harmonic maps and their first and second variational formulas (Chinese), Chinese Ann. Math. A 7 (1986), 389-402.
[7] A.-M. Li and G. Zhao, Totally real minimal submanifolds $C P^{n}$, Arch. Math. 62 (1994), 562-568.
[8] H. Li and X. WANG, Calabi product Lagrangian immersions in complex projective space and complex hyperbolic space, Results Math. 59 (2011), 453-470.
[9] E. Loubeau and S. Montaldo, Biminimal immersions, Proc. Edinburgh Math. Soc. 51 (2008), 421-437.
[10] T. SASAHARA, Legendre surfaces in Sasakian space forms whose mean curvature vectors are eigenvectors, Publ. Math. Debrecen 67 (2005), 285-303.
[11] T. SASAHARA, Biharmonic Lagrangian surfaces of constant mean curvature in complex space forms, Glasgow Math. J. 49 (2007), 497-507.
[12] T. SASAHARA, A class of biminimal Legendrian submanifolds in Sasakian space forms, Math. Nachr. 287 (2014), 79-90.
[13] S. TANNO, Sasakian manifolds with constant φ-holomorphic sectional curvature, Tohoku Math. J. 21 (1969), 501-507.

Center for Liberal Arts and Sciences
Hachinohe Institute of Technology
Hachinohe 031-8501
Japan
E-mail address: sasahara@hi-tech.ac.jp

