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Abstract. We prove that if a complete connected n-dimensional Riemannian mani-
fold M has radial sectional curvature at a base point p ∈ M bounded from below by the radial
curvature function of a two-sphere of revolution M̃ belonging to a certain class, then the di-
ameter of M does not exceed that of M̃. Moreover, we prove that if the diameter of M equals
that of M̃, then M is isometric to the n-model of M̃. The class of a two-sphere of revolution
employed in our main theorem is very wide. For example, this class contains both ellipsoids of
prolate type and spheres of constant sectional curvature. Thus our theorem contains both the
maximal diameter sphere theorem proved by Toponogov [9] and the radial curvature version
by the present author [2] as a corollary.

1. Introduction. The following result by Bonnet [1] is one of classical and funda-
mental results in global differential geometry: “If the sectional curvature of a complete Rie-
mannian manifold M is not less than a positive constant H, then the diameter of M does not
exceed π/

√
H.”

Toponogov considered the case where the diameter of M attains the maximal number
π/
√
H, and in 1959, he proved the following theorem called the maximal diameter sphere

theorem:

THEOREM 1.1 ([9]). Let M be a complete connected n-dimensional Riemannianman-
ifold whose sectional curvature is bounded from below by a positive constant H. If the diam-
eter of M equals π/

√
H, then M is isometric to the n-dimensional sphere with radius 1/

√
H.

Toponogov proved the above theorem by making use of a comparison theorem, which is
now called the Toponogov comparison theorem. In fact, the Toponogov comparison theorem
plays an important role in the proof of the theorem.

Recently, the present author generalized the theorem above by considering a certain two-
sphere of revolution as a model surface.

THEOREM 1.2 ([2]). Let M be a complete connected n-dimensional Riemannianman-
ifold with a base point p ∈ M whose radial sectional curvature at p is bounded from below by
the radial curvature function of a model surface M̃. Then, the diameter of M does not exceed
the diameter of M̃. Furthermore if the diameter of M equals that of M̃, then M is isometric to
the n-dimensional model M̃n.

A model surface M̃ in the above theorem means a two-sphere of revolution M̃ with a
pair of poles p̃ and q̃ satisfying the following two properties:
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(1.1) M̃ has a reflective symmetry with respect to the equator {x̃ ∈ M̃|d( p̃, x̃) = d(x̃, q̃)},
where d(·, ·) denotes the Riemannian distance.

(1.2) The Gaussian curvature G of M̃ is strictly decreasing along a meridian from the
point p̃ to the point on the equator.

Theorem 1.2 does not contain Theorem 1.1 as a corollary, since the Gaussian curvature of
the unit sphere is constant. In this paper, we generalize the maximal diameter sphere theorem
as follows. The following theorem contains both theorems above as a corollary.

MAIN THEOREM. Let M be a complete connected n-dimensional Riemannian mani-
fold with a base point p such that M has radial sectional curvature at p bounded from below
by the radial curvature function of a two-sphere of revolution M̃ with a pair of poles p̃, q̃.
Suppose that the cut locus of any point on M̃ distinct from both poles is a subset of the half
meridian opposite to the point. Then the diameter of M does not exceed that of M̃. Moreover
if the diameter of M equals that of M̃, then M is isometric to the n-model M̃n of M̃.

COROLLARY TO MAIN THEOREM. If a complete connected n-dimensional Riemann-
ian manifold M has radial sectional curvature at a point p ∈ M bounded from below by 1,
then the diameter of M does not exceed π. Moreover if the diameter of M equals π, then M is
isometric to the n-dimensional unit sphere.

If the base point p admits a point q satisfying d(p, q) = Diam (M̃), then it is not difficult to
prove that M is isometric to the n-dimensional model. In fact, under the assumption, Itokawa,
Machigashira, and Shiohama proved the maximal diameter sphere theorem (Theorem 1.4 in
[3]) for any two-spheres of revolution.

A noncompact version corresponding to the Main Theorem is proved by Shiohama and
Tanaka [7].

THEOREM 1.3. Let M be a complete noncompact connected Riemannian n-manifold
with a base point p ∈ M, at which the radial sectional curvature is bounded from below by
the radial curvature function of a noncompact complete model surface of revolution (M̃, dr2+

f (r)2dθ2). If
∫ ∞

1
f (t)−2dt = ∞, then M is isometric to the n-model M̃n of M̃.

Finally, the author would like to express his deepest thanks to Professor Minoru Tanaka
for his various discussions on the maximal diameter sphere theorem.

2. Preliminaries and fundamental definitions. Let us review the definition of a two-
sphere of revolution (M̃, g̃), which is defined in [8]. A Riemannian manifold (M̃, g̃) homeo-
morphic to a 2-dimensional sphere is called a (generalized von Mangoldt’s) two-sphere of rev-
olution if (M̃, g̃) admits a point p̃ whose cut locus has a single cut point q̃, and the Riemannian
metric g̃ is expressed as dr2+ f (r)2dθ2 on M̃ \{p̃, q̃}, by using geodesic polar coordinates (r, θ)
around p̃. Here f is a smooth function on [0, d( p̃, q̃)] satisfying f (0) = f (d( p̃, q̃)) = 0. Notice
that f is positive on (0, d( p̃, q̃)), since the point q̃ is a unique cut point of p̃. Each point of
the pair p̃ and q̃ is called a pole of the two-sphere of revolution. The typical example of a
two-sphere of revolution is the unit sphere in Euclidean space. Incidentally, its Riemannian
metric is expressed as dr2+ sin2 rdθ2, i.e., the warping function f is sin r. Each geodesic pass-
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ing through the poles p̃ and q̃ is called a meridian. Notice that each meridian is a periodic
geodesic of length 2d( p̃, q̃), since any meridian is the set of fixed points of an isometry on M̃.
For each two-sphere of revolution (M̃, dr2 + f (r)2dθ2), we may define the n-model (M̃n, g∗)
diffeomorphic to the unit n-sphere with a Riemannian metric

g∗ = dr2 + f (r)2dΘ2 ,

where dΘ2 denotes the Riemannian metric of the (n − 1)-dimensional unit sphere.
Let M denote a complete connected Riemannian manifold and a point p in M, which

is called a base point. A 2-dimensional plane σ in the tangent space TqM of M at a point
q � p is called a radial plane at q if there exists a unit speed minimal geodesic segment
γ : [0, d(p, q)]→ M joining p to q such that γ′(d(p, q)) ∈ σ, and the sectional curvature K(σ)
of the plane σ is called a radial sectional curvature. The manifold M is said to have radial
sectional curvature at p bounded from below by the radial curvature function of a two-sphere
of revolution M̃, if for any radial plane σ at any point q distinct from p, the radial sectional
curvature K(σ) is not less than the Gaussian curvature of M̃ at μ(d(p, q)). Here μ denotes a
unit speed meridian emanating from p̃.

From now on, (M̃, dr2+ f (r)2dθ2) denotes a two-sphere of revolution with a pair of poles
p̃ and q̃. By scaling the Rimannian metric, we may assume that π = d( p̃, q̃).

LEMMA 2.1. The perimeter of any geodesic triangle �( p̃x̃ỹ) in M̃ does not exceed 2π.

PROOF. Let �( p̃x̃ỹ) denote any geodesic triangle in M̃. By the triangle inequality, we
get

d(x̃, ỹ) ≤ d(x̃, q̃) + d(q̃, ỹ) .(1)

Since it is trivial that d(x̃, q̃) = π − d( p̃, x̃) and d(q̃, ỹ) = π − d( p̃, ỹ) hold, we obtain d(x̃, ỹ) +
d( p̃, x̃) + d( p̃, ỹ) ≤ 2π, by (1). �

LEMMA 2.2. The diameter Diam(M̃) := max{d(x̃, ỹ)|x̃, ỹ ∈ M̃} of M̃ is π = d( p̃, q̃).

PROOF. Choose a pair of points x̃ and ỹ satisfying d(x̃, ỹ) = Diam(M̃). If x̃ or ỹ equals
p̃, then it is clear that Diam(M̃) = π, since q̃ is the farthest point from p̃. Hence we may
assume that p̃ � x̃, ỹ. By applying Lemma 2.1 to the geodesic triangle �( p̃x̃ỹ), we obtain

d( p̃, x̃) + d(x̃, ỹ) + d( p̃, ỹ) ≤ 2π .(2)

By the triangle inequality, we have

d(x̃, ỹ) ≤ d( p̃, x̃) + d( p̃, ỹ) .(3)

By (2) and (3), we get d(x̃, ỹ) ≤ π. Thus, the diameter of M̃ is π. �

We need the following generalized Toponogov comparison theorem for proving the Main
Theorem. The proof of the following theorem is given in [8].

THEOREM 2.3. Let M be a complete connected n-dimensional Riemannian manifold
with a base point p such that M has radial sectional curvature at p bounded from below by
the radial curvature function of a two-sphere of revolution M̃ with a pair of poles p̃ and q̃.
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Suppose that the cut locus of any point on M̃ distinct from its two poles is a subset of the half
meridian opposite to the point. Then for each geodesic triangle �(pxy) in M, there exists a
geodesic triangle �( p̃x̃ỹ) in M̃ such that

d(p, x) = d( p̃, x̃) , d(p, y) = d( p̃, ỹ) , d(x, y) = d(x̃, ỹ) ,(4)

and such that

∠(pxy) ≥ ∠( p̃x̃ỹ) , ∠(pyx) ≥ ∠( p̃ỹx̃) , ∠(xpy) ≥ ∠(x̃ p̃ỹ) .(5)

Here, d(·, ·) denotes the Riemannian distance and ∠(pxy) denotes the angle at the vertex x of
the geodesic triangle �(pxy).

Moreover, we also need the following theorem which will be proved along methods
developed by Kondo and Tanaka [5] in Section 3.

THEOREM 2.4. If ∠(xpy) = ∠(x̃ p̃ỹ) holds under the same assumptions as in Theo-
rem 2.3, then there exists a minimal geodesic joining x to y such that the equality holds for
the other two inequalities in (5).

3. Proof of Theorem 2.4 . We need the following generalized first variation formula
(6) in order to prove Theorem 2.4. This lemma is very closely related to Lemma 2.1 in [4]
and a certain technique used in the proof of Lemma 2.1 in [4] is also used for proving the
following lemma.

LEMMA 3.1. Let μ, η denote geodesics defined on a common interval (a, b) in a
complete Riemannian manifold (M, g). Then, for each t0 ∈ (a, b) \ ψ−1(0), where we set
ψ(t) := d(μ(t), η(t)), ψ′+(t0) := limt↓t0 (ψ(t) − ψ(t0))/(t − t0) exists and

ψ′+(t0) = −g(μ′(t0), γ′+(0)) + g(η′(t0), γ′+(ψ(t0))) ,(6)

where γ+ : [0, ψ(t0)]→ M denotes any limit geodesic segment of the sequence of (unit speed)
minimal geodesic segments joining μ(ti) to η(ti) as ti converges to t0, where {ti}i denotes a de-
creasing sequence. In particular, if there exists a unique minimal geodesic segment γ joining
μ(t0) to η(t0), then ψ′(t0) exists and ψ′(t0) = −g(μ′(t0), γ′(0)) + g(η′(t0), γ′(ψ(t0))).

PROOF. Let α : [0, ψ(t0)] → M denote any unit speed minimal geodesic segment
joining μ(t0) to η(t0). Let t ∈ (t0, b) denote any number and q0 the midpoint of α. By the
triangle inequality, we get ψ(t) ≤ d(μ(t), q0) + d(q0, η(t)). Therefore, by applying the first
variation formula to both functions d(q0, μ(t)) and d(q0, η(t)), we obtain

lim sup
t↓t0

ψ(t) − ψ(t0)
t − t0 ≤ −g(μ′(t0), α′(0)) + g(η′(t0), α′(ψ(t0))) .(7)

Choose a sequence {hi}i of positive numbers convergent to zero such that there exists a limit
minimal geodesic segment γ+ joining μ(t0) to η(t0) of the sequence of unit speed minimal
geodesic segments γi joining μ(t0 + hi) to η(t0 + hi) as hi goes to zero and that

lim
i→∞

ψ(t0 + hi) − ψ(t0)
hi

= lim inf
t↓t0

ψ(t) − ψ(t0)
t − t0 .(8)
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For each hi, let qi denote the midpoint of the minimal geodesic segment γi joining μ(t0 +
hi) and η(t0 + hi). Then, by the triangle inequality, we obtain

ψ(t0) ≤ d(μ(t0), qi) + d(qi, η(t0))(9)

and

ψ(t0 + hi) − ψ(t0) ≥ d(μ(t0 + hi), qi) − d(μ(t0), qi) + d(η(t0 + hi), qi) − d(η(t0), qi) .(10)

By imitating the proof of Lemma 2.1 in [4], we have

lim
i→∞

d(μ(t0 + hi), qi) − d(μ(t0), qi)
hi

= −g(μ′(t0), γ′+(0))

and

lim
i→∞

d(η(t0 + hi), qi) − d(η(t0), qi)
hi

= g(η′(t0), γ′+(ψ(t0))) .

Hence, by (8) and (10), we get

lim inf
t↓t0

ψ(t) − ψ(t0)
t − t0 ≥ −g(μ′(t0), γ′+(0)) + g(η′(t0), γ′+(ψ(t0)) .(11)

Since the equation (7) holds for any minimal geodesic segment α joining μ(t0) to η(t0), we get
(6), by combining (7) and (11).

By reversing the parameters of μ and η in the equation (6), we have

ψ′−(t0) := lim
t↑t0

ψ(t) − ψ(t0)
t − t0 = −g(μ′(t0), γ′−(0)) + g(η′(t0), γ′−(ψ(t0))) ,(12)

where γ− denotes a limit minimal geodesic segment joining μ(t0) to η(t0) of the sequence of
unit speed minimal geodesic segments joining μ(t0 + hi) to η(t0 + hi) as a sequence {hi} of
negative numbers goes to zero. If there exists a unique minimal geodesic segment γ joining
μ(t0) to η(t0), then it is clear from (6) and (12) that ψ′+(t0) = ψ′−(t0), and hence ψ′(t0) exists. �

The following lemma is one of key lemmas for proving Theorem 2.4. The proof is similar
to that of Lemma 7.3.2 in [6].

LEMMA 3.2. Let (M̃, dr2 + f (r)2dθ2) denote a two-sphere of revolution with a pair of
poles p̃ and q̃. Let x̃ ∈ r−1(0, d( p̃, q̃)) ∩ θ−1(0) be a point on M̃. If two points q̃1 and q̃2 lying
on a common parallel r = c ∈ (0, d( p̃, q̃)) satisfy

0 ≤ θ(q̃1) < θ(q̃2) ≤ π ,
then,

d(x̃, q̃1) < d(x̃, q̃2)

holds.

For each real number α, let μ̃α : [0,∞) → M̃ denote the unit speed geodesic emanating
from the pole p̃ with θ ◦ μ̃α = α on (0, d( p̃, q̃)). For each c ∈ (0, d( p̃, q̃)), σ̃c : [0, 2π] → M̃
denotes the parallel r = c, i.e., σ̃c(θ) := μ̃θ(c).
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It follows from Lemma 3.2 that for any a, c ∈ (0, d( p̃, q̃)), and θ0 ∈ (0, π),

lim inf
θ↓θ0

d(μ̃0(a), σ̃c(θ)) − d(μ̃0(a), σ̃c(θ0))
θ − θ0

≥ 0 .(13)

The next lemma states a stronger conclusion than the equation (13). The proof is the
same as that of Lemma 4.2 in [5].

LEMMA 3.3. For any a0, c0 ∈ (0, d( p̃, q̃)) and θ0 ∈ (0, π), there exist constant numbers
ε1 ∈ (0, π/2) and δ > 0 such that

|d(μ̃0(a), σ̃c(θ2)) − d(μ̃0(a), σ̃c(θ1))| ≥ ( f (c) sin ε1)|θ2 − θ1|(14)

holds for all a ∈ (a0 − δ, a0 + δ), c ∈ (c0 − δ,c0 + δ), and θ1, θ2 ∈ (θ0 − δ, θ0 + δ).

From Lemma 3.2, it follows that for any positive numbers a, b, and c with (a, b, c) ∈ T,
where

T := {(a, b, c) ∈ R3|a, b, c > 0, |a − c| < b < d(μ̃0(a), μ̃π(c))} ,

there exists a geodesic triangle �( p̃ỹz̃) in the two-sphere of revolution M̃ such that d( p̃, ỹ) =
a, d(ỹ, z̃) = b, and d(z̃, p̃) = c. Let θ(a, b, c) denote the angle ∠(ỹ p̃z̃) of the geodesic triangle
�( p̃ỹz̃). Notice that the angle θ(a, b, c) is uniquely determined even if there exist more than
one minimal geodesic segment joining ỹ to z̃.

Since the proof of Lemma 4.3 in [5] is still valid for the two-sphere of revolution M̃, we
get the following lemma.

LEMMA 3.4. The function θ(a, b, c) is locally Lipschitz on the set T.

Let �(pxy) be a geodesic triangle in M, and maps x and y from the interval [0, 1] into
M denote the edges joining p to x and joining p to y, respectively, i.e., the minimal geodesic
segment joining p = x(0) = y(0) to x = x(1), and joining p to y = y(1), respectively.
Here we assume that x and y are parametrized proportionally to arc-length and that ∠(xpy) ∈
(0, π). Furthermore we assume that for each t ∈ (0, 1] there exists a unique geodesic triangle
�̃(px(t)y(t)) := �( p̃x̃(t)ỹ(t)) in M̃ corresponding to �(px(t)y(t)) such that

d( p̃, x̃(t)) = d(p, x(t)), d( p̃, ỹ(t)) = d(p, y(t)), d(x̃(t), ỹ(t)) = d(x(t), y(t))(15)

and that

∠(px(t)y(t)) ≥ ∠( p̃x̃(t)ỹ(t)) , ∠(py(t)x(t)) ≥ ∠(pỹ(t)x̃(t)) .(16)

From Lemma 3.4, the function θ̃(t) := ∠(x̃(t) p̃ỹ(t)) is locally Lipschitz on (0, 1]. More-
over, we get

LEMMA 3.5. The function θ̃(t) is locally Lipschitz and non-increasing on (0, 1].
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PROOF. Putting a := d(p, x), b := d(x, y), and c := d(p, y), we get at = d(p, x(t)),
ct = d(p, y(t)), and θ̃(t) = θ(at, d(x(t), y(t)), ct). Since d(x(t), y(t)) is a Lipschitz function, it
is trivial from Lemma 3.4 that θ̃(t) is locally Lipschitz on (0, 1]. Next, we prove that θ̃(t) is
non-increasing. It follows from Lemma 7.29 in [10] that for almost all t ∈ (0, 1], θ̃′(t) exists

and for any t0 ∈ (0, 1], θ̃(t0) − limt↓0 θ̃(t) =
∫ θ0

0
θ̃′(t)dt holds. Hence, it is sufficient to prove

that θ̃′(t) ≤ 0 for almost all t. Choose any t0 ∈ (0, 1), at which θ̃ is differentiable. Since the
function φ(t) := d(x(t), y(t)) is also Lipschitz, we may assume that both functions θ̃(t) and φ(t)
are differentiable at t0. By (16), we get

∠(px(t0)y(t0)) ≥ ∠( p̃x̃(t0)ỹ(t0)) , ∠(py(t0)x(t0)) ≥ ∠( p̃ỹ(t0)x̃(t0)) .(17)

Let μ̃0, η̃0 : [0,∞) → M̃ denote unit speed geodesics emanating from p̃ such that the
angle made by μ̃0 and η̃0 at p̃ equals θ̃(t0). Thus, we may assume that x̃(t) = μ̃0(at) for all
t ∈ (0, 1] and ỹ(t0) = η̃0(ct0). Then, we define a Lipschitz function ψ̃ : [0, 1]→ R by

ψ̃(t) := d(μ̃0(at), η̃0(ct)) .

Since there exists a unique minimal geodesic segment joining μ̃0(at0) = x̃(t0) to η̃0(ct0) =
ỹ(t0), it follows from Lemma 3.1 that

ψ̃′(t0) = a cos∠( p̃x̃(t0)ỹ(t0)) + c cos∠( p̃ỹ(t0)x̃(t0))(18)

and

φ′(t0) = a cos∠(px(t0)y(t0)) + c cos∠(py(t0)x(t0))(19)

and hence by (17), we obtain

φ′(t0) ≤ ψ̃′(t0) .(20)

Supposing that θ̃′(t0) > 0, we will get a contradiction. Then, there exists a positive δ0 such
that θ̃(t) > θ̃(t0) for all t ∈ (t0, t0 + δ0). From Lemmas 3.2 and 3.3, there exist ε1 > 0 and
δ1 ∈ (0, δ0] such that

φ(t) = d(μ̃0(at), ỹ(t)) ≥ ψ̃(t) + ( f (ct) sin ε1)(θ̃(t) − θ̃(t0))(21)

for all t ∈ (t0, t0 + δ1). Since φ(t0) = ψ̃(t0), we get

ψ̃′(t0) ≥ φ′(t0) ≥ ψ̃′(t0) + ( f (ct0) sin ε1)θ̃′(t0) ,

by (20) and (21), and hence θ̃′(t0) ≤ 0. This is a contradiction. Therefore, θ̃(t) is non-
increasing on (0, 1]. �

LEMMA 3.6. If θ̃(t) is constant on (0, 1], then for all t ∈ (0, 1),

∠(px(t)y(t)) = ∠( p̃x̃(t)ỹ(t)) and ∠(py(t)x(t)) = ∠( p̃ỹ(t)x̃(t))

hold.
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PROOF. Suppose that θ̃(t) is constant on (0, 1]. Let μ̃, η̃ : [0,∞)→ M̃ denote unit speed
geodesics emanating from p̃ such that the angle made by μ̃ and η̃ at p̃ equals ∠(xpy). We may
assume that for each t ∈ (0, 1], we get x̃(t) = μ̃(at) and ỹ(t) = η̃(ct), since θ̃(t) = limt↓0 θ̃(t) =
∠(xpy). Hence, d(x(t), y(t)) = d(μ̃(at), η̃(ct)) for all t ∈ (0, 1]. Since there exists a unique
minimal geodesic segment joining x̃(t) to ỹ(t), it follows from Lemma 3.1 that d(x̃(t), ỹ(t)) =
d(μ̃(at), η̃(ct)) is differentiable on (0, 1), and that

d
dt
d(x̃(t), ỹ(t)) = a cos∠( p̃x̃(t)ỹ(t)) + c cos∠( p̃ỹ(t)x̃(t))(22)

and

d
dt
d(x(t), y(t)) = a cos∠(px(t)y(t)) + c cos∠(py(t)x(t))(23)

hold on (0, 1). Therefore, by (16), ∠(px(t)y(t)) = ∠( p̃x̃(t)ỹ(t)), and ∠(py(t)x(t)) =
∠(pỹ(t)x̃(t)) hold on (0, 1). �

PROOF OF THEOREM 2.4. Since limt↓0 θ̃(t) = ∠(xpy) = ∠(x̃ p̃ỹ) = θ̃(1), θ̃(t) is con-
stant by Lemma 3.5. Hence, by Lemma 3.6, we get the conclusion. �

4. Proof of Main Theorem. In this section we add an additional assumption to the
two-sphere of revolution M̃ with a pair of poles p̃, and q̃: The cut locus of any point x̃ on
M̃ distinct from both poles is a subset of the half meridian opposite to the point x̃, i.e., the
cut locus of x̃ ∈ θ−1(0) is a subset of θ−1(π), by choosing suitable geodesic polar coordinates
(r, θ).

For example, the unit two-sphere is a trivial example satisfying the property above, and
an ellipsoid defined by

x2 + y2

a2
+

z2

b2
= 1 ,

where a < b are positive constants, is a non-trivial example of a two-sphere of revolution
satisfying the property above (see [8].)

From now on, M denotes a complete connected n-dimensional Riemannian manifold
which has radial sectional curvature at a point p ∈ M bounded from below by the radial cur-
vature function of the two-sphere of revolution M̃. Furthermore, By scaling the Riemannian
metrics of M and M̃, we may assume that d( p̃, q̃) = π.

The following lemma is an easy consequence of Theorem 2.3,Lemma 2.1, and Lemma 2.2.

LEMMA 4.1. The perimeter of any geodesic triangle �(pxy) of M does not exceed 2π.
Moreover, the diameter, Diam(M) := max{d(x, y)|x, y ∈ M}, of M is at most π.

LEMMA 4.2. If there exists a pair of points x, y ∈ M \ {p} with d(x, y) = π, then the
perimeter of the geodesic triangle�(pxy) equals 2π, and∠(xpy) = π, i.e., the broken geodesic
consisting of two minimal geodesic segments joining x to p and joining p to y respectively is
a minimal geodesic segment joining x to y which passes through p.
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PROOF. Choose any points x, y ∈ M\{p} satisfying d(x, y) = π. We get a geodesic
triangle �(pxy) of M. It follows from Lemma 4.1 that

d(p, x) + d(p, y) + d(x, y) ≤ 2π(24)

holds. By the triangle inequality, we obtain,

d(p, x) + d(p, y) ≥ d(x, y) = π .(25)

Thus, combining (24) and (25), we get

d(p, x) + d(p, y) = π = d(x, y) .(26)

Hence the perimeter of �(pxy) is 2π and ∠(xpy) = π. �

LEMMA 4.3. If there exists a pair of points x̃, ỹ ∈ M̃ \ {p̃} with d(x̃, ỹ) = π = Diam(M̃),
then ỹ is a unique cut point of x̃, and for any z̃ ∈ M̃ \ {x̃} there exists a minimal geodesic
segment joining x̃ to ỹ which passes through z̃, and hence d(x̃, z̃) + d(z̃, ỹ) = d(x̃, ỹ) = π.

PROOF. By making use of the same proof of Lemma 4.2, we may prove that the points
x̃ and ỹ lie on a common meridian μ, which is divided in two minimal geodesic segments
joining x̃ to ỹ. Thus, the cut locus of x̃ consists of a single point ỹ, since the cut locus of x̃
is a subset of the half meridian opposite to the point x̃. In particular, the minimal geodesic
segment joining x̃ to any z̃ ∈ M̃ \ {x̃} has a geodesic extension which passes through ỹ, and
hence d(x̃, z̃) + d(z̃, ỹ) = d(x̃, ỹ). �

LEMMA 4.4. Suppose that there exist x, y ∈ M \ {p} satisfying d(x, y) = π. Then for any
point z ∈ M \ {p, x, y}, there exists a geodesic triangle �̃(pxz) in the two-sphere of revolution
corresponding to �(pxz) satisfying ∠(xpz) = ∠(x̃ p̃z̃) and (4) for y = z, ỹ = z̃. Moreover, there
exists a minimal geodesic segment joining x to y which passes through z.

PROOF. By Theorem 2.3, there exists a geodesic triangle �̃(pxy) in the two-sphere of
revolution M̃ corresponding to �(pxy) satisfying (4). Hence, by Lemma 4.3,

d(x̃, ỹ) = d(x, y) = π = d( p̃, x̃) + d( p̃, ỹ) .(27)

We may assume that θ(x̃) = 0, and θ(ỹ) = π, i.e., the three points x̃, p̃, and ỹ lie on the meridian
c̃ := {p̃, q̃} ∪ θ−1{0, π} in this order. Choose any z ∈ M \ {p, x, y}. By applying Theorem 2.3 to
the two geodesic triangles �(pxz) and �(pzy), we get geodesic triangles �( p̃x̃z̃1) and �( p̃z̃2ỹ)
respectively, satisfying

d(x, z) = d(x̃, z̃1), d(z, y) = d(z̃2, ỹ), d(p, z) = d( p̃, z̃1) = d( p̃, z̃2)(28)

and

α := ∠(xpz) ≥ ∠(x̃ p̃z̃1) =: α̃ , β := ∠(zpy) ≥ ∠(z̃2 p̃ỹ) =: β̃ .(29)

Without loss of generality, we may assume that the points z̃i, i = 1, 2 are in the common hemi-
sphere θ−1(0, π) determined by c̃. Since d(x̃, ỹ) = π holds by (27), it follows from Lemma 4.3,
from (28), and from the triangle inequality that

π = d(x̃, z̃1) + d(z̃1, ỹ) = d(x̃, z̃2) + d(z̃2, ỹ) ,(30)
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and

π = d(x, y) ≤ d(x, z) + d(z, y) = d(x̃, z̃1) + d(z̃2, ỹ) .(31)

By Lemma 4.2, we get α + β = ∠(xpy) = π. From (29), we have π = α + β ≥ α̃ + β̃. Thus,
∠(x̃ p̃z̃1) = α̃ ≤ π − β̃ = ∠(x̃ p̃z̃2), and the two points z̃1 and z̃2 are on the parallel r = d(p, z),
by (28). By applying Lemma 3.2 for the pair of points z̃1 and z̃2 on the parallel r = d(p, z), we
obtain

d(x̃, z̃1) ≤ d(x̃, z̃2) .(32)

By (30), (31) and (32), we have

π ≤ d(x̃, z̃1) + d(z̃2, ỹ) ≤ d(x̃, z̃2) + d(z̃2, ỹ) = π .

This implies that equality holds in (32) and we get, by Lemma 3.2, α̃ = π − β̃, and z̃1 = z̃2.

Since α + β = α̃ + β̃ = π, α ≥ α̃, and β ≥ β̃ by (29), we obtain α = α̃ and β = β̃. By (27), and
(30),

d(x, z) + d(z, y) = d(x̃, z̃) + d(z̃, ỹ) = d(x̃, ỹ) = d(x, y) = π

holds. Here we put z̃1 = z̃2 =: z̃. Therefore, we get d(x, y) = d(x, z) + d(z, y), and it is clear
now that there exists a minimal geodesic segment joining x to y passing through z. �

PROOF OF MAIN THEOREM. By scaling the Riemannian metric, we may assume that
π = d( p̃, q̃) = Diam(M̃). It is clear from Lemma 4.1 that the diameter of M does not exceed
that of M̃. Suppose that Diam(M) = Diam(M̃) = π. Thus, there exist x, y ∈ M satisfying
d(x, y) = π. If the base point p admits a point q ∈ M satisfying d(p, q) = π, then it is
not difficult to construct an isometry between M and the two-sphere of revolution (see [2]).
Therefore, we may assume that 0 < d(p, x) < π and 0 < d(p, y) < π. Let γ : [0,∞) → M
denote the unit speed geodesic emanating from p passing through x such that γ|[0,d(p,x)] is
minimal. From Lemma 4.4, it follows that γ|[d(p,x),d(p,x)+π] is a minimal geodesic segment
joining x to y. In particular, the subarc γ|[d(p,x),π] is a unique minimal geodesic segment joining
x to qπ := γ(π). From Lemma 4.4 again, it follows that the geodesic triangle �(pxqπ) admits
a geodesic triangle �̃(pxqπ) in the two-sphere of revolution satisfying ∠(xpqπ) = ∠(x̃ p̃q̃π)
and (4) for y = qπ and ỹ = q̃π. Thus, by Theorem 2.4, π = ∠(pxqπ) = ∠( p̃x̃q̃π), q̃π = q̃, and
d(p, qπ) = d( p̃, q̃π) = π, since π = d(p, x) + d(x, qπ) = d( p̃, x̃) + d(x̃, q̃π). Therefore, the base
point p admits a point q satisfying d(p, q) = π. �
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