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Abstract. We prove the p-adic duality theorem for the finite star-multiple polyloga-
rithms. That is a generalization of Hoffman’s duality theorem for the finite multiple zeta-star
values.

1. Introduction. We begin with the duality for the finite multiple zeta(-star) values
(FMZ(S)Vs) in Subsection 1.1. Next, we explain the duality for the finite star-multiple poly-
logarithms (FSMPs) in Subsection 1.2. Our main results are Theorem 1.3, Theorem 1.5, and
Theorem 3.4. The first two theorems are special cases of Theorem 3.4.

1.1. Duality for FMZVs. For any positive integer n and an index k = (k1, . . . , km),
we define the truncated multiple harmonic sums ζn(k) and ζ�n (k) by

ζn(k) :=
∑

n≥n1>···>nm≥1

1

nk1
1 · · ·nkm

m

,

ζ�n (k) :=
∑

n≥n1≥···≥nm≥1

1

nk1
1 . · · ·nkm

m

,

respectively (we define ζn(k) as 0 for an empty summation). Then, the multiple zeta
value (MZV) ζ(k) and the multiple zeta-star value (MZSV) ζ�(k) are defined by ζ(k) :=
limn→∞ ζn(k) and ζ�(k) := limn→∞ ζ�n (k), respectively when k1 ≥ 2. The duality theorem for
MZVs ζ(k) = ζ(k′) was conjectured firstly by Hoffman in [1] and proved by using the iterated
integral (cf. [9]). Dualities for MZSVs are not found except a few cases (cf. [4]).

Recently, Kaneko and Zagier [5] introduced the finite multiple zeta values (FMZVs)
and several people are studying relations among FMZVs. The FMZV ζA(k) and the finite
multiple zeta-star value (FMZSV) ζ�A(k) are defined by ζA(k) := (ζp−1(k) mod p)p and

ζ�A(k) := (ζ�p−1(k) mod p)p respectively in the Q-algebra A =
(∏

p Z/pZ
)/ (⊕

p Z/pZ
)
,

where p runs over all prime numbers. Around 2000, the duality theorem for FMZSVs was
discovered and proved by Hoffman [2, Theorem 4.6]:

ζ�A(k) = −ζ�A(k∨) ,(1)

where k∨ is the Hoffman dual of the index k (See Definition 2.1). This is a counterpart to the
duality theorem for MZVs. Comparing with the duality of MZVs, it is worth mentioning that
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such a simple duality is satisfied by FMZSVs rather than by non-star FMZVs. The duality (1)
is one of basic relations among FMZ(S)Vs and some other proofs are given by Imatomi [3,
Corollary 4.1] and Yamamoto [8, p. 3].

In order to rewrite the duality (1) to relations for non-star FMZVs, let us recall termi-
nologies of Hoffman’s algebra. Let H := Q〈x, y〉 be a non-commutative polynomial algebra
in two variables and H1 := Q + Hy its subalgebra. Let zk := xk−1y for a natural number k
and zk := zk1 · · · zkm for an index k = (k1, . . . , km). Then, H1 is generated by zk (k = 1, 2, . . . )
as a non-commutative algebra. We define the Q-linear map ZA : H1 → A characterized by
ZA(1) = 1 and ZA(zk) = ζA(k) for each index k. We also define an algebra automorphism
ψ : H1 → H1 by x 
→ x+y and y 
→ −y. In this setup, Hoffman proved that the duality theorem
(1) is equivalent to the following relations for FMZVs:

THEOREM 1.1 ([2, Theorem 4.7]). For any word w ∈ H1, we have

ψ(w) − w ∈ ker(ZA) .

Next, we recall the Q-algebra Â introduced by Rosen [6]. For any positive integer n, we
define An to be the quotient ring

(∏
p Z/pnZ

)/ (⊕
p Z/pnZ

)
. Then, the rings {An} becomes

a projective system by natural projections and we define Â to be the projective limit lim←−−n
An.

We equipAn with the discrete topology for each n and Â with the projective limit topology.
The Q-algebra Â is complete and not locally compact. There exist natural projections π : Ẑ =∏

p Zp � Â and πn : Â� An for any n, where Zp is the ring of p-adic integers. We redefine
the FMZV ζÂ(k) and the FMZSV ζ�Â(k) to be π((ζp−1(k))p) and π((ζ�p−1(k))p), respectively as

elements of Â. Furthermore, ζAn (k) := πn(ζÂ(k)) and ζ�An
(k) := πn(ζ�Â(k)) in An. We define

the element p := π((p)p) ∈ Â and we also denote πn(p) ∈ An by p by abuse of notation. We
can check that the topology of Â is the p-adic topology (see Subsection 2.2).

Let Ĥ1 be the completion of H1. Namely, Ĥ is defined as the non-commutative formal
power series ring Q〈〈x, y〉〉 and Ĥ1 := Q+ Ĥy. Then, the weighted finite multiple zeta function
ZÂ : Ĥ1 → Â is defined by

∑

k

akzk 
→
∑

k

akζÂ(k)pwt(k) ,

where ak ∈ Q and wt(k) is the weight of the index k. The algebra automorphism ψ on H1 is
extended continuously to the map on Ĥ1 and we define a continuous algebra automorphism
Φ : Ĥ1 → Ĥ1 by

w 
→ (1 + y)

(
1

1 + y
∗ w

)
.

Here, the harmonic product ∗ : H1 × H1 → H1 is defined Q-bilinearly and inductively by

w ∗ 1 = 1 ∗ w = w, zkw1 ∗ zlw2 = zk(w1 ∗ zlw2) + zl(zkw1 ∗ w2) + zk+l(w1 ∗ w2)
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for any positive integers k, l and words w, w1, w2 ∈ H1 and ∗ is extended naturally to the
product on Ĥ1. Rosen generalized Theorem 1.1 as follows:

THEOREM 1.2 (Asymptotic duality theorem [6, Theorem 4.5]). For any w ∈ Ĥ1, we
have

ψ(w) − Φ(w) ∈ ker(ZÂ) .

On the other hand, Zhao, Sakugawa, and the author proved the straightforward general-
ization of the duality (1) to an A2-relation ([10, Theorem 2.11] and [7, The equality (40)]).
We can rewrite the relation as the following symmetric form:

ζ�A2
(k) + ζ�A2

(1, k)p = −ζ�A2
(k∨) − ζ�A2

(1, k∨)p .

In this paper, we give the following p-adic version of the duality (1):

THEOREM 1.3 (The p-adic duality theorem for FMZSVs). Let k be an index. Then,
we have

∞∑

i=0

ζ�Â({1}i, k)pi = −
∞∑

i=0

ζ�Â({1}i, k∨)pi

in the ring Â.

Here, the notation ({1}i, k) means (1, . . . , 1︸��︷︷��︸
i

, k1, . . . , km) for k = (k1, . . . , km). We remark

that if we take the i = 0 part of the equality in the above theorem, then we recover the equality
(1).

1.2. Duality for FSMPs. In [7], Sakugawa and the author introduced the finite
(star-) multiple polylogarithms (F(S)MPs) and proved the following dual functional equation
of FSMPs which is a generalization of Hoffman’s duality theorem (1):

THEOREM 1.4 (Sakugawa-Seki [7, Theorem 1.3]). Let k be an index. Then, we have

£̃
�

A,k(t) − 1
2
ζ�A(k) = £̃

�

A,k∨(1 − t) − 1
2
ζ�A(k∨)

in the ringAZ[t] =
(∏

p Z/pZ[t]
)/ (⊕

p Z/pZ[t]
)
.

See Definition 2.7 for the definition of FMPs.
In this paper, we prove the following p-adic version of Theorem 1.4 which contains

Theorem 1.3 as a special case:

THEOREM 1.5. Let k be an index. Then, we have
∞∑

i=0

(
£̃
�

Â,({1}i ,k)(t) −
1
2
ζ�Â({1}i,k)

)
pi =

∞∑

i=0

(
£̃
�

Â,({1}i ,k∨)(1 − t) − 1
2
ζ�Â({1}i,k∨)

)
pi(2)

in the ring ÂZ[t] = lim←−−n

(∏
p Z/pnZ[t]

)/ (⊕
p Z/pnZ[t]

)
.

We remark that if we take the i = 0 part of the equality (2), then we recover Theorem
1.4. More generally, Sakugawa and the author proved the multi-variable and A2-version of
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Theorem 1.4 ([7, Theorem 3.12]) and the main result of this paper is the p-adic dual functional
equation for the multi-variable FSMPs (= Theorem 3.4) which contains [7, Theorem 3.12] and
Theorem 1.5 as special cases.

This paper is organized as follows. In Section 2, we prepare some notation and define the
finite multiple polylogarithms. In Section 3, we prove the p-adic reversal theorem for FMPs
and state the p-adic duality theorem for FSMPs. In Section 4, we complete the proof of main
results.

Acknowledgement. The author would like to express his sincere gratitude to his advisor Professor
Tadashi Ochiai for carefully reading the manuscript and helpful comments. The author also thanks Dr.
Kenji Sakugawa for useful discussion and helpful advice. In addition, the author would like to thank the
anonymous referee for pointing out several errors and useful suggestions. The proof of Proposition 4.2
was greatly shortened by his/her idea of using Lemma 4.1, though the author’s original proof was based
on more complicated calculations.

2. Notation and Definitions. For a tuple of indeterminates t = (t1, . . . , tm), we define
t1, 1 − t, t−1, and t to be (t1, . . . , tm−1, 1), (1 − t1, . . . , 1 − tm), (t−1

1 , . . . , t−1
m ), and (tm, . . . , t1)

respectively. We use the notation R[t] as a polynomial ring R[t1, . . . , tm] for a ring R.
2.1. Indices. We call a tuple of positive integers k = (k1, . . . , km) an index and we

define the weight wt(k) (resp. depth dep(k)) of k to be k1 + · · · + km (resp. m).
Let k = (k1, k2, . . . , km), k′ = (k′1, . . . , k

′
m), and l = (l1, . . . , ln) be indices. Then, we define

the reverse index k of k, the summation k ⊕ k′, and the concatenation index (k, l) by

k := (km, . . . , k1) ,

k ⊕ k′ := (k1 + k′1, . . . , km + k′m) ,

(k, l) := (k1, . . . , km, l1, . . . , ln) ,

respectively. We use the same notation for tuples of non-negative integers or indeterminates.
Let W be the free monoid generated by the set {0, 1}. We set W1 := W1. Then, there

exists a bijection from the set of all indices I to W1 induced by the correspondence

k = (k1, . . . , km) 
→ 0 · · ·0︸︷︷︸
k1−1

1 0 · · ·0︸︷︷︸
k2−1

1 · · ·1 0 · · ·0︸︷︷︸
km−1

1

and we denote the bijection as w. Let τ : W → W be a monoid homomorphism defined by
τ(0) = 1 and τ(1) = 0.

DEFINITION 2.1 (cf. [2, Section 3]). For an index k, we define the Hoffman dual k∨

of k by the relation w(k∨) = τ(w(k)1−1)1.

For any index k, wt(k) = wt(k∨) and dep(k) + dep(k∨) = wt(k) + 1 hold.
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2.2. The adelic ring. In order to define the finite multiple polylogarithms, we intro-
duce some adelic rings in a general setting.

DEFINITION 2.2. Let R be a commutative ring and Σ an infinite family of ideals of R.
Then, we define the ringAΣ

n,R for each positive integer n by

AΣ
n,R :=

(∏

I∈Σ
R/In

)/(⊕

I∈Σ
R/In

)
.

Then, {AΣ
n,R} becomes a projective system by natural projections and we define the ring ÂΣ

R

by

ÂΣ
R := lim←−−

n

AΣ
n,R .

We put the discrete topology on AΣ
n,R for each n and we define the topology of ÂΣ

R to be the
projective limit topology.

LEMMA 2.3. We use the same notation as in Definition 2.2 and we define the I-adic
completion R̂I of R to be lim←−−n

R/InR. Then, there exists the following natural surjective ring
homomorphism:

π :
∏

I∈Σ
R̂I −→ ÂΣ

R .

PROOF. For a short exact sequence of projective systems of rings

0 −→
{⊕

I∈Σ
R/In

}
−→

{∏

I∈Σ
R/In

}
−→

{
AΣ

n,R

}
−→ 0 ,

the system
{⊕

I∈Σ R/In
}

satisfies the Mittag-Leffler condition. Therefore, there exists a natural
surjection

∏

I∈Σ
R̂I � lim←−−

n

∏

I∈Σ
R/In −→ ÂΣ

R .

�

REMARK 2.4. We assume that some topology of R/In is defined for any I ∈ Σ. If we
put the product topology on

∏
I∈Σ R/In and the quotient topology on AΣ

n,R by
∏

I∈Σ R/In �
AΣ

n,R, then the topology is indiscrete. However, we consider the discrete topology of AΣ
n,R in

this paper.

LEMMA 2.5. We use the same notation as in Definition 2.2 and Definition 2.3. We
assume that IR̂I is a principal ideal of R̂I for any I ∈ Σ. Furthermore, we define an ideal I of
ÂΣ

R to be π((IR̂I)I∈Σ ). Let πn be the natural projection πn : ÂΣ
R � AΣ

n,R for any positive integer

n. Then, we have ker(πn) = In. In particular, the topology of ÂΣ
R coincides with the I-adic

topology and ÂΣ
R is complete with respect to the I-adic topology.
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PROOF. Let n be a positive integer. Take any element x of ker(πn). Then, there exists
an element {xI}I∈Σ of

∏
I∈Σ R̂I such that x = π((xI)I∈Σ ) by Lemma 2.3. By the commutative

diagram
∏

I∈Σ
R̂I

π−−−−−−→ ÂΣ
R

( mod In)I∈Σ
⏐⏐⏐⏐⏐�

⏐⏐⏐⏐⏐�πn

∏

I∈Σ
R/In ρn−−−−−−→ AΣ

n,R

we have

πn(x) = πn ◦ π((xI)I∈Σ ) = ρn((xI mod In)I∈Σ ) = 0 .

Here, ρn is the canonical projection. Therefore, there exists a subset Σ′ of Σ such that Σ \ Σ′
is finite and xI ∈ InR̂I for every I ∈ Σ′. We can take a generator aI of IR̂I for any I ∈ Σ by the
assumption. Then, there exists an element {yI}I∈Σ ′ of

∏
I∈Σ ′ R̂I such that xI = an

I yI holds for
any I ∈ Σ′. We define yI to be zero for I ∈ Σ \ Σ′. Then, we have

x = π((xI)I∈Σ ) = π((an
IyI)I∈Σ ) = (π((aI)I∈Σ))n · π((yI)I∈Σ ) ∈ In

and we obtain the inclusion ker(πn) ⊂ In. The opposite inclusion is trivial and the last assertion
follows from the fact that {ker(πn)} is a neighborhood basis of zero. �

In the rest of this paper, we only use the case Σ = {pR | p is a prime number} and we
omit the notation Σ. We will define the finite multiple polylogarithms as elements of the
Q-algebra ÂZ[t] in the next subsection. Let π :

∏
p Ẑ[t]p � ÂZ[t] be the natural surjection

obtained by Lemma 2.3 where Ẑ[t]p = lim←−−n
Z[t]/pnZ[t] is the p-adic completion of Z[t]. Let

πn : ÂZ[t] � An,Z[t] be the natural projection for each n. The topology of ÂZ[t] coincides with
the p-adic topology and ÂZ[t] is complete with respect to the topology by Lemma 2.5. Since
an equality π

((∑∞
i=0 a(p)

i pi)
p

)
=

∑∞
i=0(a(p)

i )p pi holds, in order to obtain a p-adic relation, it is
sufficient to show the p-adic relations given by taking the p-components for all but finitely
many prime numbers p. Here, a(p)

i ∈ Z(p)[t] and Z(p) is the localization of Z at p, and note
that the opposite assertion does not hold in general.

2.3. The finite multiple polylogarithms.

DEFINITION 2.6. Let n be a positive integer, k = (k1, . . . , km) an index, and t =
(t1, . . . , tm) a tuple of indeterminates. Then, we define the four kinds of the truncated multiple
polylogarithms which are elements of Q[t] as follows:

£∗n,k(t) :=
∑

n≥n1>···>nm≥1

tn1
1 · · · tnm

m

nk1
1 · · · nkm

m

,

£∗,�n,k (t) :=
∑

n≥n1≥···≥nm≥1

tn1

1 · · · tnm
m

nk1
1 · · · nkm

m

,
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£xn,k(t) :=
∑

n≥n1>···>nm≥1

tn1−n2

1 · · · tnm−1−nm

m−1 tnm
m

nk1
1 · · · nkm

m

,

£x,�n,k (t) :=
∑

n≥n1≥···≥nm≥1

tn1−n2

1 · · · tnm−1−nm

m−1 tnm
m

nk1
1 · · · nkm

m

.

DEFINITION 2.7. Let k = (k1, . . . , km) be an index and t = (t1, . . . , tm) a tuple of
indeterminates. Then, we define the four kinds of the finite multiple polylogarithms which
are elements of ÂZ[t] as follows:

£∗Â,k(t) := π((£∗p−1,k(t))p) (the finite harmonic multiple polylogarithm) ,

£∗,�Â,k(t) := π((£∗,�p−1,k(t))p) (the finite harmonic star-multiple polylogarithm) ,

£x
Â,k(t) := π((£xp−1,k(t))p) (the finite shuffle multiple polylogarithm) ,

£x,�
Â,k(t) := π((£x,�p−1,k(t))p) (the finite shuffle star-multiple polylogarithm) .

This definition is well-defined since £◦,•p−1,k(t) is an element of Z(p)[t] for each prime number
p, ◦ ∈ {∗,x}, and • ∈ {∅, �}. We also define the finite multiple polylogarithm £◦,•An,k

(t) as
elements ofAn,Z[t] by

£◦,•An,k
(t) := πn(£◦,•Â,k(t))

for each positive integer n, ◦ ∈ {∗,x}, and • ∈ {∅, �}. We define 1-variable finite (star-)
multiple polylogarithms as follows:

£•Â,k(t) := £∗,•Â,k(t, {1}m−1) = £x,•Â,k({t}m) ∈ ÂZ[t] ,

£̃
•
Â,k(t) := £∗,•Â,k({1}m−1, t) = £x,•Â,k({1}m−1, t) ∈ ÂZ[t] ,

where t is an indeterminate and • ∈ {∅, �}.
3. The p-adic reversal theorem and the p-adic duality theorem.
3.1. The p-adic reversal theorem for FMPs. The reversal relation for FMZVs ([2,

Theorem 4.5]) has been extended to several general cases. For example, Rosen proved the
p-adic reversal relation for FMZVs in Â ([6, Theorem 4.1]) and Sakugawa and the author
proved the reversal relation for FMPs in A2,Z[t] ([7, Proposition 3.11]). Here, we prove the
p-adic reversal relation for FMPs in ÂZ[t].

THEOREM 3.1. Let k = (k1, . . . , km) be an index, t = (t1, . . . , tm) a tuple of indetermi-
nates, and • ∈ {∅, �}. Then, we have the following p-adic relation in ÂZ[t] :

£∗,•Â,k(t) = (−1)wt(k)(t1 · · · tm)p
∞∑

i=0

∑

l=(l1 ,...,lm)∈Zm
≥0

wt(l)=i

[ m∏

j=1

(
k j + l j − 1

l j

)]
£∗,•Â,k⊕l

(t−1)pi ,

where (t1 · · · tm)p = ((t1 · · · tm)p)p ∈ ÂZ[t] and £∗,•Â,k⊕l
(t−1) is an element of ÂZ[t−1].
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PROOF. Let p be a prime number. Since a p-adically convergent identity

1
(p − n)k

= (−1)k
∞∑

l=0

(
k + l − 1

l

)
pl

nk+l

holds for a positive integer n < p, by the substitutions ni 
→ p − nm+1−i, we have

£∗
p−1,k

(t) =
∑

p−1≥n1>···>nm≥1

tn1
1 · · · tnm

m

nkm

1 · · · nk1
m

=
∑

p−1≥p−nm>···>p−n1≥1

tp−nm

1 · · · tp−n1
m

(p − nm)km · · · (p − n1)k1

= (−1)wt(k)(t1 · · · tm)p

×
∑

p−1≥n1>···>nm≥1

∑

(l1,...,lm)∈Zm
≥0

[ m∏

j=1

(
k j + l j − 1

l j

)]
t−n1
m · · · t−nm

1

nk1+l1
1 · · · nkm+lm

m

pl1+···+lm

= (−1)wt(k)(t1 · · · tm)p
∞∑

i=0

∑

l=(l1 ,...,lm)∈Zm
≥0

wt(l)=i

[ m∏

j=1

(
k j + l j − 1

l j

)]
£∗p−1,k⊕l(t−1)pi

in the ring Ẑ[t]p. Therefore, we have the conclusion for non-star case. The star case is similar.
�

3.2. The p-adic duality theorem for FSMPs. In this subsection, we state the main
results. Let k be an index and t a tuple of dep(k) indeterminates. We define a p-adically
convergent series L�Â,k(t) with FSSMPs-coefficients by

L�Â,k(t) :=
∞∑

i=0

(
£x,�Â,({1}i ,k)

({1}i, t) − 1
2

£x,�Â,({1}i ,k)
({1}i, t1)

)
pi .(3)

THEOREM 3.2. Let w be a positive integer and t a tuple of w indeterminates. Then, we
have

L�Â,{1}w(t) = L�Â,{1}w(1 − t)

in the ring ÂZ[t].

We will give a proof of Theorem 3.2 in the next section. Since finite multiple polyloga-
rithms in (3) are of shuffle type, the case k = {1}w (= Theorem 3.2) is essential. In fact, the
following lemma holds:

LEMMA 3.3. Let k = (k1, . . . , km) be an index, w = wt(k), t = (t1, . . . , tm) a tuple of
indeterminates, and • ∈ {∅, �}. Then, we have

£x,•Â,k(t) = £x,•Â,{1}w({0}k1−1, t1, . . . , {0}km−1, tm) .
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PROOF. We can easily check it by the definition of the finite shuffle multiple polylog-
arithms. �

The main result of this paper is as follows:

THEOREM 3.4. Let r be a positive integer, k1, . . . , kr indices, and t = (t1, . . . , tr) a
tuple of indeterminates. We define an index k to be (k1, . . . , kr) and k′ to be (k∨1 , . . . , k

∨
r ).

Furthermore, we define li and l′i by li := dep(ki) and l′i := dep(k∨i ) respectively for i = 1, . . . , r.
Then, we have

L�Â,k({1}l1−1, t1, . . . , {1}lr−1, tr) = L�Â,k′ ({1}l
′
1−1, 1 − t1, . . . , {1}l′r−1, 1 − tr)

in the ring ÂZ[t].

PROOF. We denote ki and k∨i as (k(i)
1 , . . . , k

(i)
li

) and (k′(i)1 , . . . , k
′(i)
l′i

) respectively for i =
1, . . . , r. Let w := wt(k). Then, by Lemma 3.3, Theorem 3.2, and Definition 2.1, we have

L�Â,k({1}l1−1, t1, . . . , {1}lr−1, tr)

= L�Â,{1}w(. . . , {0}k(i)
1 −1, 1, . . . , {0}k(i)

li−1−1
, 1, {0}k(i)

li
−1
, ti, . . . )

= L�Â,{1}w(. . . , {1}k(i)
1 −1, 0, . . . , {1}k(i)

li−1−1
, 0, {1}k(i)

li
−1
, 1 − ti, . . . )

= L�Â,{1}w(. . . , {0}k′(i)1 −1, 1, . . . , {0}k
′(i)
l′i−1
−1
, 1, {0}k

′(i)
l′i
−1
, 1 − ti, . . . )

= L�Â,k′ ({1}
l′1−1, 1 − t1, . . . , {1}l′r−1, 1 − tr) .

�

By considering the case r = 1, we obtain Theorem 1.5. Theorem 1.3 is obtained by the
substitution t = 1 in the equality (2).

4. Proof of Theorem 3.2.

LEMMA 4.1. Let p be a prime number and n a positive integer satisfying n < p. Then,
we have the following p-adic expansion:

(−1)n

(
p − 1

n

)
= (−1)p−1

(
1 − p

n

) ∞∑

i=0

∑

p−1≥m1≥···≥mi≥n

pi

m1 · · ·mi
.
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PROOF. We can calculate as follows:

(−1)n

(
p − 1

n

)
= (−1)n

(
p − 1

p − 1 − n

)
= (−1)n p − n

n

(
p − 1
p − n

)

= (−1)p−1
(
1 − p

n

) p−1∏

m=n

(
1 − p

m

)−1

= (−1)p−1
(
1 − p

n

) p−1∏

m=n

(
1 +

p
m
+

p2

m2
+ · · ·

)

= (−1)p−1
(
1 − p

n

) ∞∑

i=0

∑

p−1≥m1≥···≥mi≥n

pi

m1 · · ·mi
.

This completes the proof of the lemma. �

PROPOSITION 4.2. Let p be an odd prime number and t = (t1, . . . , tw) a tuple of inde-
terminates. Then, we have the following p-adic expansion:

∑

p−1≥n1≥···≥nw≥1

(−1)n1

(
p − 1

n1

)
tn1−n2
1 · · · tnw−1−nw

w−1 tnw
w

n1 · · · nw

= £x,�
p−1,{1}w(t) +

∞∑

i=1

(
£x,�

p−1,{1}w+i ({1}i, t) − £x,�
p−1,({1}i−1,2,{1}w−1)

({1}i−1, t)
)

pi.

PROOF. By Lemma 4.1, we have
∑

p−1≥n1≥···≥nw≥1

(−1)n1

(
p − 1

n1

)
tn1−n2
1 · · · tnw−1−nw

w−1 tnw
w

n1 · · · nw

=
∑

p−1≥n1≥···≥nw≥1

tn1−n2
1 · · · tnw−1−nw

w−1 tnw
w

n1 · · · nw
(
1 − p

n1

) ∞∑

i=0

∑

p−1≥m1≥···≥mi≥n1

pi

m1 · · ·mi

=

∞∑

i=0

∑

p−1≥m1≥···≥mi≥n1≥···nw≥1

(
1 − p

n1

)
tn1−n2

1 · · · tnw−1−nw
w−1 tnw

w

m1 · · ·min1 · · · nw pi

= £x,�
p−1,{1}w(t) +

∞∑

i=1

(
£x,�

p−1,{1}w+i ({1}i, t) − £x,�
p−1,({1}i−1 ,2,{1}w−1)

({1}i−1, t)
)

pi.

This completes the proof of the proposition. �

PROPOSITION 4.3. Let N and w be positive integers. Then, the following polynomial
identity holds in Q[t1, . . . , tw] :

∑

N≥n1≥···≥nw≥1

(−1)n1

(
N
n1

)
tn1−n2
1 · · · tnw−1−nw

w−1 (tnw
w − 1

2 )

n1 · · · nw

=
∑

N≥n1≥···≥nw≥1

(1 − t1)n1−n2 · · · (1 − tw−1)nw−1−nw {(1 − tw)nw − 1
2 }

n1 · · · nw .
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PROOF. By [7, Theorem 2.5], we have

∑

N≥n1≥···≥nw≥1

(−1)n1

(
N
n1

)
tn1−n2
1 · · · tnw−1−nw

w−1 tnw
w

n1 · · · nw

=
∑

N≥n1≥···≥nw≥1

(1 − t1)n1−n2 · · · (1 − tw−1)nw−1−nw{(1 − tw)nw − 1}
n1 · · · nw ,

and by the substitution tw = 1, we have

∑

N≥n1≥···≥nw≥1

(−1)n1

(
N
n1

)
tn1−n2

1 · · · tnw−1−nw
w−1

n1 · · · nw

= −
∑

N≥n1≥···≥nw≥1

(1 − t1)n1−n2 · · · (1 − tw−1)nw−1−nw

n1 · · · nw .

By combining these two identities, we obtain the desired identity. �

In order to prove Theorem 3.2, it is sufficient to show the following theorem:

THEOREM 4.4. Let n and w be positive integers and t a tuple of w indeterminates. We
define L�An,{1}w(t) to be

L�An,{1}w(t) :=
n−1∑

i=0

(
£x,�
An,{1}w+i ({1}i, t) − 1

2
£x,�An,{1}w+i ({1}i, t1)

)
pi .

Then, we have

L�An,{1}w(t) = L�An,{1}w(1 − t)(4)

inAn,Z[t].

PROOF. We prove the equality (4) by induction on n. By combining Proposition 4.2
with Proposition 4.3, we have

£x,�
Â,{1}w(t) − 1

2
£x,�
Â,{1}w(t1) +

∞∑

i=1

{(
£x,�
Â,{1}w+i

({1}i, t) − 1
2

£x,�
Â,{1}w+i

({1}i, t1)

)

−
(
£x,�
Â,({1}i−1,2,{1}w−1)

({1}i−1, t) − 1
2

£x,�Â,({1}i−1,2,{1}w−1)
({1}i−1, t1)

)}
pi

= £x,�Â,{1}w(1 − t) − 1
2

£x,�
Â,{1}w((1 − t)1) .

(5)

We see that the equality (4) for n = 1 holds by the projection π1 : ÂZ[t] � AZ[t]. We assume
that the equation (4) for n − 1 holds for any tuple of indeterminates. By the equality (5) and
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the projection πn : ÂZ[t] � An,Z[t], we have

L�An,{1}w(t) = £x,�An,{1}w(1 − t) − 1
2

£x,�An,{1}w((1 − t)1)

+

n−1∑

i=1

(
£x,�An,{1}w+i ({1}i−1, t0, t) − 1

2
£x,�
An,{1}w+i ({1}i−1, t0, t1)

)
pi

∣∣∣∣∣∣∣
t0=0

.
(6)

On the other hand, by the induction hypothesis, we have

L�An−1,{1}w+1 (t0, t) = L�An−1,{1}w+1 (1 − t0, 1 − t) .

Therefore, the right-hand side of (6) coincides with L�An,{1}w(1 − t) and the equality (4) for n
holds. Here, note that there exists the canonical isomorphismAn−1,Z[t] � pAn,Z[t]. �

REFERENCES

[ 1 ] M. HOFFMAN, Multiple harmonic series, Pacific J. Math. 152 (1992), no. 2, 275–290.
[ 2 ] M. HOFFMAN, Quasi-symmetric functions and mod p multiple harmonic sums, Kyushu J. Math. 69 (2015),

345–366.
[ 3 ] K. IMATOMI, Multi-poly-Bernoulli-star numbers and finite multiple zeta-star values, Integers 14 (2014), Paper

No. A51, 10 pp.
[ 4 ] M. KANEKO AND Y. OHNO, On a kind of duality of multiple zeta-star values, Int. J. Number Theory 6 (2010),

no. 8, 1927–1932.
[ 5 ] M. KANEKO AND D. ZAGIER, Finite multiple zeta values, in preparation.
[ 6 ] J. ROSEN, Asymptotic relation for truncated multiple zeta values, J. Lond. Math. Soc. (2) 91, 554–572.
[ 7 ] K. SAKUGAWA AND S. SEKI, On functional equations of finite multiple polylogarithms, J. Algebra 469

(2017), 323–357.
[ 8 ] S. YAMAMOTO, Multiple zeta-star values and multiple integrals, RIMS Kôkyûroku Bessatsu, B68 (2017),

3–14.
[ 9 ] D. ZAGIER, Values of zeta functions and their applications, in ECM volume, Progr. Math. 120 (1994), 497–

512.
[10] J. ZHAO, Wolstenholme type theorem for multiple harmonic sums, Int. J. Number Theory 4 (2008), no. 1,

73–106.

MATHEMATICAL INSTITUTE

TOHOKU UNIVERSITY

6–3, AOBA, ARAMAKI, AOBA-KU

SENDAI 980–8578
JAPAN

E-mail address: shinichiro.seki.b3@tohoku.ac.jp



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Japan Color 2001 Coated)
  /PDFXOutputConditionIdentifier (JC200103)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /BGR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /CHS (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /CHT (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /CZE (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DAN (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ENU (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ESP (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ETI (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /FRA (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /GRE (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /HEB (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /HRV (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /HUN (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ITA (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /KOR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /LTH (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /LVI (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /NLD (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /NOR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /POL (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /PTB (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /RUM (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /RUS (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SKY (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SLV (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SUO (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SVE (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /TUR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /UKR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /JPN <FEFFff08682aff0956fd969b6587732e53705237793e306e51fa529b6a5f306b90693057305f002000410064006f0062006500200050004400460020658766f830924f5c62103057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (Japan Color 2001 Coated)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive true
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 0
      /MarksWeight 0.283460
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /JapaneseWithCircle
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


