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DOUBLE LINES ON QUADRIC HYPERSURFACES
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Abstract. We study double line structures in projective spaces and quadric hypersur-
faces, and investigate the geometry of irreducible components of Hilbert scheme of curves and
moduli of stable sheaves of pure dimension 1 on a smooth quadric threefold.
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1. Introduction. Let X be a smooth projective variety over C, the field of complex
numbers. For a fixed polynomial χ(t), C. Simpson introduced in [17] the coarse projective
moduli spaces Mχ(t)(X) of semistable sheaves with Hilbert polynomial χ(t). If the degree
of χ(t) is d , then the support of each sheaf in Mχ(t)(X) is a d-dimensional subvariety of
X. The study on these moduli spaces inspires the study of Hilbert schemes Hilbχ(t)(X) of
curves, that is, closed subschemes of dimension 1, on X with Hilbert polynomial χ(t), be-
cause certain components of Mχ(t)(X) can be viewed as compactifications of an open part
of the corresponding Hilbχ(t)(X). There have been several investigations on the relation of
these spaces in the case of projective spaces X = Pn, e.g. [6, 8, 14].

In this paper we first investigate rational ribbons, i.e. double structures on P1. Rational
ribbons and their canonical embeddings were studied in [5] and we show several facts on the
Hilbert scheme of double lines in projective spaces and n-dimensional quadric hypersurfaces
Qn. Note that the study of families of double lines in projective spaces is done in [15]. Then
we describe birational properties of Mχ(t)(Q3) and Hilbχ(t)(Q3) when the leading coefficient
of a linear polynomial χ(t) is two. A double line in Qn is a locally Cohen-Macaulay curve
with Hilbert polynomial χ(t) = 2t + a for some constant a and a line as its reduction. The
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information on the set of double lines turns out to be very valuable in describing Simpson’s
moduli spaces and Hilbert schemes. LettingDa be the subscheme consisting of double lines in
Q3 with the Euler characteristic a, we observe that D1 consists of reducible and non-reduced
conics on Q3. Indeed Hilb2t+1(Q3) consists of the conics on Q3 ⊂ P4 and we observe the
following:

THEOREM 1.1. We have Hilb2t+1(Q3) ∼= M2t+1(Q3) ∼= Gr(3, 5), the Grassmannian
variety parametrizing projective planes in P4.

We also follow the notion of α-stable pairs as in [12] to consider moduli space Mα
χ(t)(Q3)

of α-stable pairs, and observe that it is isomorphic to Gr(3, 5) if χ(t) = 2t + 1, independent
on α. In other words, there is no wall-crossing. Then we turn our interest to the case χ(t) =
2t + 2, when there is again no wall-crossing. Our main result is as follows:

THEOREM 1.2. For the Hilbert polynomial χ(t) = 2t + 2, we have the following
description of the three moduli spaces:

(1) Hilbχ(t)(Q3) consists of two rational irreducible components,H1 andH2, of dimen-
sion 9 and 6 respectively, and it is smooth outsideH1 ∩ H2.

(2) Mχ(t)(Q3) consists of two irreducible components,M1 andM2, of dimension 6 both,
andM1 is rational and smooth outsideM1 ∩ M2.

(3) Mα
χ(t)(Q3) consists of two rational irreducible components,N1 andN2, of dimension

7 and 6 respectively, and it is smooth outsideN1 ∩ N2.

Note that we have no geometric description on M2 because it consists only of strictly
semistable sheaves. Moreover we give full description of elements in each irreducible com-
ponent and their intersections:

• H1 consists of non-locally Cohen-Macaulay curves and H2 is the closure of locally
Cohen-Macaulay curves. Their intersection consists of singular conics D with an
extra point p ∈ Dsing such that the hyperplane section containing the curve is singular
at p.

• M1,red is parametrized by the space of conics in Q3 and (M1 ∩ M2)red is para-
metrized by the space of singular conics inQ3. M2 has a one-to-one correspondence
to Sym2(P3), the set of pairs of lines in Q3.

• N1 is birational to the incidence variety of the space of conics in Q3 and N2 is
birational to Sym2(P3).

Set-theoretic description of the component induced from locally Cohen-Macaulay curves
is relatively easy and the main ingredients in the study of the other component are the families
of double lines D1 and D2. We classify non-locally Cohen-Macaulay curves with respect to
the hyperplane section containing them and study their corresponding pure sheaves with the
deformation data.

Let us summarize here the structure of this paper. In Section 2, we introduce the def-
initions and main properties that will be used throughout the paper, mainly those related to
stability and α-stability conditions. In Section 3, we pay attention to the Hilbert schemes of
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double lines in projective spaces and quadric hypersurfaces to conclude their irreducibility in
some cases. In Section 4, as a warm-up case, we describe the moduli spaces with the Hilbert
polynomial χ(t) = 2t + 1. Finally in Section 5, we deal with the case of χ(t) = 2t + 2 and
describe the irreducible components of each moduli space and their intersections.

2. Definitions and preliminaries. Let Qn be a smooth quadric hypersurface of the
complex projective space Pn+1. Then we have

Pic(Qn) = H 2(Qn,Z) = Z〈h〉 for n ≥ 3

where h is the class of a hyperplane section. If n = 3, the cohomology ring H ∗(Q3,Z) is
generated by h, a line l ∈ H 4(Q3,Z) and a point p ∈ H 6(Q3,Z) with the relations: h2 =
2l, h · l = p, h3 = 2p. If there is no confusion, we will denote Q3 simply by Q.

DEFINITION 2.1. Let F be a pure sheaf of dimension 1 onQ with the Hilbert polyno-
mial χF (t) = μt +χ with respect to OQ(1). The p-slope of F is defined to be p(F) = χ/μ.
F is called semistable (stable) if

(1) F does not have any 0-dimensional torsion, and
(2) for any proper subsheaf F ′, we have

p(F ′) = χ ′

μ′ ≤ (<)
χ

μ
= p(F)

where χF ′(t) = μ′t + χ ′.

For every semistable 1-dimensional sheaf F with χF (t) = μt + χ , let us define CF :=
Supp(F) to be its scheme-theoretic support and then it corresponds to μl ∈ H 4(Q). We often
use slope stability (resp. slope semistability) instead of Gieseker stability (resp. semistability)
with respect to L := OQ(1), just to simplify the notation; they should be the same, because
the support is 1-dimensional and so the inequalities for Gieseker and slopes χ/μ are the same.

DEFINITION 2.2. Let M(μ, χ) be the moduli space of semistable sheaves on Q with
linear Hilbert polynomial χ(t) = μt + χ .

Note that χF(a)(t) = χF + μ · a and so we may assume 0 < χ ≤ μ. Our main interest
in this article is on the case μ = 2; M(2, 1) in Section 4 and M(2, 2) in Section 5.

For a smooth projective varietyX ⊂ Pr , let HilbX(μ, χ) be the Hilbert scheme of curves
in X with the Hilbert polynomial μt + χ .

DEFINITION 2.3. A locally Cohen-Macaulay (for short, locally CM) curve in X is
a 1-dimensional subscheme C ⊂ X whose irreducible components are all 1-dimensional
and that has no embedded points. We denote by HilbX(μ, χ)+ the subset of HilbX(μ, χ)
parametrizing the locally CM curves.

If there is no confusion, we will simply denote HilbQ(μ, χ) by Hilb(μ, χ).
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REMARK 2.4. For F ∈ M(1, 1), we have F ∼= OL with a line L ⊂ Q. Note that we
have TQ|L ∼= OL(2)⊕ OL(1)⊕ OL and so NL|Q ∼= OL(1)⊕ OL. It implies h0(NL|Q) = 3
and h1(NC|Q) = 0. Thus Hilb(1, 1) is smooth and of dimension 3. It is well known that the
family of lines in Q is isomorphic to P3. Hence we have M(1, 1) ∼= P3.

For a positive rational number α ∈ Q>0, a pair (s,F) of a purely 1-dimensional sheaf F
with χF (t) = μt + χ and a non-zero section s : OQ → F is called α-semistable if F is pure
and for any non-zero proper subsheaf F ′ ⊂ F with χF ′(t) = μ′t + χ ′, we have

χ ′ + δ · α
μ′ ≤ χ + α

μ
=: μα(s,F) ,

where we take δ = 1 if the section s factors through F ′ and δ = 0 if not. As usual, if the
inequality is strict, we call it α-stable. By [12, Theorem 4.2] the wall occurs at α with which
the strictly α-semistability occurs. As a routine, we will write (1,F) for the pair of a sheaf F
with a non-zero section and (0,F) for the pair of sheaf with zero section.

Let us denote by Mα(μ, χ) the moduli space of α-semistable pairs. Note that there are
only finitely many critical values {α1, . . . , αs} for α-stability with α1 < · · · < αs in a sense
that any α ∈ (αi, αi+1) gives the same moduli space of α-stable pairs. Notice that if α < α1,
then α-stability is equivalent to the Gieseker stability and so there exists a forgetful map

M0+(μ, χ) := Mα(μ, χ) −→ M(μ, χ) .

If α > αs , then the cokernel of the pair OQ → F is supported at a 0-dimensional sub-
scheme and so we get the moduli of PT stable pairs, which maps naturally to Chow(μ, χ) :=⊔
k Hilb(μ, χ − k)+ × SymkQ:

M∞(μ, χ) := Mα(μ, χ) −→ Chow(μ, χ) .

3. Double lines in projective spaces and hyperquadrics.

DEFINITION 3.1. For each a ∈ Z and a line L ⊂ Q, define

Da := {A ∈ Hilb(2, a)+ | Ared is a line };
Da(L) := {A ∈ Da | Ared = L} .

For the moment we take Da as a set. In each case it would be clear which scheme-
structure is used on it. Since Q is a smooth threefold, [3, Remark 1.3] says that each C ∈ Da
is obtained by the Ferrand construction and in particular it is a ribbon in the sense of [5] with
a line as its support.

For each positive integer a ∈ N, let us denote by T [a] the unique ribbon T on P1 with
χ(OT [a]) = a whose reduced scheme is a line as in [5, Theorem 1.2]. Then we have an exact
sequence

0 −→ OP1(a − 2) −→ OT [a] −→ OP1 −→ 0 .(1)
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Note that T = T [a] is a split ribbon, i.e. the sequence (1) splits as a sequence of OP1 -
sheaves and each line bundle L on T is uniquely determined by the integer deg(L|Tred) by
[5, Proposition 4.1]. We denote this line bundle by OT (t), where t = deg(L|Tred). Using
sequence (1), we get h1(OT (t)) = 0 and h0(OT (t)) = 2t + a for t ≥ 0. To collect several
aspects on double lines, we will first consider double line structures as morphisms in a more
general setting.

DEFINITION 3.2. For a ≥ 1 and n ≥ 3, we define

Da,n := {locally CM curves C in Qn with χOC
(t) = 2t + a} .(2)

Similarly we define

Ca,r := {locally CM curves C in Pr with χOC
(t) = 2t + a} .(3)

REMARK 3.3. Let Da,n be the family of all possible embeddings T [a] → Qn such
that OT [a](1) is its hyperplane line bundle. Then the elements in Da,n can be obtained as
images of the embedding in Da,n. Thus we get dimDa,n = dimDa,n − dim Aut(T [a]).
Similarly we may define Ca,n for Ca,r as a family of embeddings.

LEMMA 3.4. Let T = T [a] with a > 0. For t > 0, we have the following:

(1) the line bundleOT (t) is very ample for t > 0 and
(2) a general 4-dimensional linear subspace V ⊆ H 0(OT (t)) induces an embedding of

T into P3.

PROOF. Set D := Tred. Each line bundle OT (t) with t > 0, is spanned by the sequence
(1). The line bundle OT (1) is ample, because OT (1) generates Pic(T ) and h0(OT (−c)) = 0
for c � 0. Thus OT (t) is ample for each t > 0. The morphism f : T −→ Pm with m :=
h0(OT (t)) − 1, induces an embedding of D and so it is sufficient to prove that f is a local
embedding.

Fix a point p ∈ D and a non-zero tangent vector v of T at p. If v is tangent to D, then
f|v is an embedding because f|D is an embedding. If v is not tangent to D, then we may
use h1(OP1(a − 2 + t)) = 0 to see that h0(Iv(t)) < h0(Ip(t)). Since this is true for all p
and v, the injective morphism f is a local embedding by [9, Proposition II.7.3]. Hence f is
an embedding. Since dim(T ) = 1 and each Zariski tangent space of T has dimension 2, a
general linear projection of f (T ) into P3 is an embedding. �

REMARK 3.5. By Lemma 3.4, we get that Ca,r �= ∅ for each a > 0 and r ≥ 3.
The elements of Ca,r are obtained in the following way: fix an integer s such that 4 ≤ s ≤
min{r + 1, a + 3} and let V ⊆ H 0(OT [a](1)) be an s-dimensional linear subspace spanning
OT [a](1) and inducing an embedding of T [a]. Note that the set of all such subspaces is a non-
empty open subset of the Grassmannian Gr(s,H 0(OT [a](1))). Thus Ca,r is irreducible and its
general element is obtained by taking s = min{r + 1, a + 3}. If a ≥ 3, we get HilbQn(2, a)+
and HilbPn+1(2, a)+ contain no reduced locally CM curve, because every reduced locally CM
curve C ⊂ Pr of degree 2 has χ(OC) ≤ 2.



452 E. BALLICO AND S. HUH

By Remark 3.5, Da,n with n ≥ 7 contains the embeddings of T [a] into the maximal
linear subspaces ofQn. Later in Proposition 3.14, we get a description of Da,4 with a = 1 by
consideringQ4 as the Grassmannian Gr(2, 4).

For fixed a ∈ Z, we get the following lemma for T = T [a] using the sequence (1).

LEMMA 3.6. The line bundle OT (t) is spanned if and only if t ≥ 0. We also have

h0(OT (t)) =
⎧⎨
⎩

0, if t ≤ −a + 1 ;
t + a − 1, if − a + 2 ≤ t < 0 ;
t + a, if t ≥ 0 ,

and h1(OT (t)) = 0 for all t ≥ −a + 1.

LEMMA 3.7. For C ∈ Ca,r with r ≥ 2, we have the following:

(i) C is contained in each quadric hypersurface whose singular locus contains L :=
Cred and in particular, h0(IC(2)) ≥ (

r
2

)
.

(ii) The linear system |IC(2)| has no base points outside L.
PROOF. Let B ⊂ Pr be a quadric hypersurface. We have B ∈ |(IL)2(2)| if and only

if the singular locus of B contains L and the set of all such quadrics is a projective space of
dimension

(
r
2

) − 1. Thus the lemma follows from the inclusion (IL)2 ⊂ IC . Fix a point p ∈
Pr \L and letH ⊂ Pr be any hyperplane containingL such that p /∈ H . Since 2H ∈ |IC(2)|,
p is not a base point of |IC(2)|. �

For each integers r ≥ 3 and a ≥ 1, let us define

C+
a,r := {C ∈ Ca,r | h0(IC(1)) = 0 or h1(IC(1)) = 0} ,

i.e. the linear span of C in Pr has dimension min{r, h0(OT [a](1)) − 1}. Then C+
a,r is a dense

open subset of Ca,r .
LEMMA 3.8. For each integer a ≥ 3, we have Ca,a+1 �= ∅ and all elements of C+

a,a+1
are projectively equivalent.

PROOF. Recall that h0(OT [a](1)) = a + 1 and that OT [a](1) is very ample. Thus we
get Ca,a+1 �= ∅ and all elements of C+

a,a+1 are projectively equivalent; they correspond to a

choice of a basis of H 0(OT [a](1)). �

For any C ∈ Ca,r , we have h0(OC(2)) = a+ 4. In particular we have hi(IC(2)) > 0 for
i = 0, 1, if a + 4 >

(
r+2

2

) − (
r
2

) = r + 1 by Lemma 3.7.

PROPOSITION 3.9. For C ∈ C+
3,4, we have

(1) hi(IC(t)) = 0 for all i ≥ 3 and t ≥ −4,
(2) h2(IC(t)) = 0 for all t ≥ −1,

(3) h1(IC(t)) =
{

0, if t > 0;
2, if t = 0,

(4) h0(IC(t)) = (
t+4

4

) − 2t − 3 for all t ≥ 1 and C is contained in a smooth quadric
hypersurface.
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PROOF. Since dim(C) = 1, we have h2(IC(t)) = h1(OC(t)) = 0 for all t ≥ −1.
Similarly if i ≥ 3 and t ≥ −4, then we have hi(IC(t)) = hi(OP4(t)) = 0. Since h0(IC) =
0, we have h1(IC) = h0(OC)− 1 = 2. Since C ∈ C+

3,4, it is linearly normal, i.e. hi(IC(1)) =
0 for i = 0, 1.

Since h0(OC(2)) = 7 and h0(OP4(2)) = (6
2

) = 15, we have h0(IC(2)) = 8+h1(IC(2)).
Set L := Cred. By Lemma 3.7 and Bertini theorem, a general element of |IC(2)| has singular
locus contained in L.

Fix a point p ∈ P1. The choice of the point p, i.e. a degree 1 effective divisor of P1,
induces a surjective morphism f : T [3] → T [2] inducing an exact sequence

0 −→ OT [2] −→ OT [3] −→ Cp −→ 0(4)

by [7, Theorem 1.1]. From (4) we get that the map u : H 0(OT [3](1))∨ → H 0(OT [2](1))∨
is surjective with a 1-dimensional kernel. Since C is linearly normal, ker(u) corresponds to a
unique point o ∈ P4. Since f is a morphism, we have o /∈ C and f corresponds to the linear
projection from o. Since f is induced by the linear projection from o, the set�o of all quadric
cones containing C and with o contained in their vertices has dimension h0(P3,IC ′(2)) −
1 = 3 with C′ = f (C). Since C′ is contained in a smooth quadric surface, we have W =
{o} for a general W ∈ �o. In particular, L is contained in the smooth locus of W and so a
general A ∈ |IC(2)| is smooth at all points of L. Hence A is smooth. The set of all B ∈
|OP4(2)| singular at o has codimension 5 in |OP4(2)|. Since dim(�o) = 3 and h0(IC(2)) ≥
8, we get h0(IC(2)) = 8 and so h1(IC(2)) = 0. Since hi(IC(3 − i)) = 0 for i = 2, 3, 4, the
Castelnuovo-Mumford lemma gives h1(IC(t)) = 0 for all t ≥ 3. �

PROPOSITION 3.10. We have Hilb(2, 3)+ = D3 �= ∅.
PROOF. SinceQ is a smooth three-fold, every degree 2 locally Cohen-Macaulay double

structure on a line is a ribbon ([3, Remark 1.3]). No reduced locally CM curve D ⊂ Q has
χ(OD) = 3. Therefore Hilb(2, 3)+ = D3. We have D3 �= ∅, because every C ∈ C+

3,4 is
contained in a smooth quadric hypersurface by Proposition 3.9. �

LEMMA 3.11. Let E be a vector bundle of rank r ≥ 2 on T = T [a]. If (a1, . . . , ar ) ∈
Z⊕r is the splitting type of E|Tred , i.e. E|Tred

∼= ⊕r
i=1OTred(ai), then we have E ∼= ⊕r

i=1OT (ai).

PROOF. We use induction on r; the case r = 1 being true by [5, Proposition 4.1].
Assume r ≥ 1 and that the lemma is true for lower ranks.

Let s be the maximal positive integer i such that ai = a1 for all i ≤ s and let h be the
minimal positive integer i ≤ r such that a − 2 + ai − a1 ≥ 0. Tensoring (1) with E(−a1),
we get h0(E(−a1)) = s + ∑h

i=1(a + ai − a1 − 1). Fix a general map f : OX(a1) → E .
Since we have h0(E(−a1)) >

∑h
i=1(a + ai − a1 − 1), so f induces an injective map ϕ :

OP1(−a1) → ⊕r
i=1OP1(ai − a1) with locally free cokernel. Thus f is injective also with

locally free cokernel, say F . By the inductive assumption we have F ∼= ⊕r
i=2OT (ai). Since

a is nonnegative, the sequence (1) gives h1(OT (j)) = 0 for all j ≥ 0. Hence every extension
of F by OT (a1) splits and we get E ∼= ⊕r

i=1OT (ai). �
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DEFINITION 3.12. The sequence of integers (a1, . . . , ar ) with a1 ≥ · · · ≥ ar in the
statement of Lemma 3.11 is called the splitting type of E .

REMARK 3.13. By Lemma 3.6 the bundle E ∼= ⊕r
i=1OT (ai) is spanned if and only if

ar ≥ 0. Since dim(T ) = 1, a dimension counting gives that if E is spanned and h0(E) > r ,
then E is spanned by a general (r + 1)-dimensional linear subspace of H 0(E) by [2, Theorem
2]. Again by Lemma 3.6, if E is spanned, then we get h1(E) = 0. Now assume ar ≥ 0 and
so E is spanned. By Lemma 3.4, the pair (E,H 0(E)) induces an embedding of T into the
Grassmannian Gr(N, r) with N = ra − r + 2r(a1 + · · · + ar) if and only if a1 > 0. In the
case a1 > 0, the image of T in Gr(N, r) has degree 2, i.e. it is a double structure on a line, if
and only if a1 = 1 and ai = 0 for all i > 1.

The case a = 1 is very particular because it is the only case with h0(OT ) = 1, and it is
treated separately below.

PROPOSITION 3.14. D1,4 is a smooth and irreducible open subset of HilbQ4(2, 1) and
dim(D1,4) = 9.

PROOF. For fixed A ∈ D1,4, we have 〈A〉 ∼= P2 since h0(OA(1)) = 3. First assume
〈A〉 ⊂ Q. In Q4, we have two families of planes, each of them isomorphic to P2. The set of
all double lines in a plane is isomorphic to a plane; the dual plane of all lines of P2. Hence we
get in this way two irreducible families T1,T2 of elements of D1,4, each of them of dimension
4. Fix A ∈ T1 and set W := 〈A〉. Since A is a conic of W , we have NA|Q4

∼= OA(2) ⊕
(NW |Q4)|A. The bundle NW |Q4 is the restriction to W of the universal quotient bundle E on

Q4 and so it is spanned. We get h1(A, (NW |Q4)|A) = 0 and so h1(NA|Q4) = 0. We get that

HilbQ4(2, 1) is smooth and of dimension h0(NA|Q4) = 9 at [A].
Now fix a line L ⊂ Q4 and let H ⊂ P5 be a general hyperplane containing L. The

quadric Q′ := H ∩ Q4 is smooth. Fix o1, o2 ∈ L with o1 �= o2 and let Hi , i = 1, 2, be
the tangent hyperplane ToiQ4 of Q4 at oi . The scheme D := Q4 ∩ H ∩ H1 ∩ H2 has L
as its reduction and hence it is a complete intersection curve D ⊂ P5 with Dred = L and
〈D〉 = H ∩ H1 ∩ H2, i.e. dim〈D〉 = 2. Hence we get D ∈ D1,4. We also get that D is the
complete intersection of Q4 and three hyperplanes, and so ND|Q4

∼= OD(1)⊕3. We get that
HilbQ4(2, 1) is smooth and of dimension 9 at [D]. This part of D1,4 is irreducible, because
the set of all lines of Q4 is irreducible. Since dim(Ti ) < 9, we get that D1,4 has a unique
irreducible component. �

PROPOSITION 3.15. For D1,n with n ≥ 5, we get the following:

(i) D1,n is irreducible.
(ii) Each C ∈ D1,n is a flat limit of a smooth conic ofQn.

(iii) HilbQn(1, n) is smooth at C ∈ D1,n.

PROOF. Fix C ∈ D1,n and let M = 〈C〉 ⊂ Pn+1 denote the plane spanned by C. If
M is contained in Qn, then we may deform C to a smooth conic inside M and so inside Qn.
Since the normal bundleNM|Qn is globally generated, we have h1(C,

(
NM|Qn

)
|C) = 0. From
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NC|M ∼= OC(2) we have h1(NC|M) = 0. The inclusion C ↪→ M is a regular embedding and
so the natural map NC|Qn → (

NM|Qn
)
|C is surjective. Hence the normal sheaf sequence of

the inclusions C ⊂ M ⊂ Qn gives h1(NC) = 0 and so HilbQn(1, n) is smooth at C.
If M is not contained in Qn, then we have C = Qn ∩ M as schemes and NC ∼=

OC(1)⊕(n−1). Thus we have h1(NC) = 0 and so HilbQn(1, n) is smooth at C. Moving M
to a plane in Pn+1 transversal to Qn, we get that C may be deformed inside Qn to a smooth
conic. �

PROPOSITION 3.16. Let T = T [a] with a ≥ 2. For E := OT (1)⊕ OT and a general
4-dimensional linear subspace V of H 0(E), we have the following:

(1) (E, V ) induces an embedding of T .
(2) Da,4 is non-empty and irreducible.
(3) Every element of D2,4 is a flat limit inside Q4 of a family of disjoint unions of two

lines and a general element of D2,4 is a smooth point of HilbQ4(2, 4).

PROOF. It is sufficient to prove part (1). Note that V spans E by Remark 3.13.
For each point p ∈ P1 = Tred, let TpT be the Zariski tangent space of T at p and call

Dp ⊂ TpT the Zariski tangent space of Tred. Then we have TpT \Dp ∼= A2. For v ∈ TpT \
Dp , the sequence (1) gives h0(T ,Iv) = h0(OT ) − 2 since a ≥ 2. So we have h0(T ,Iv ⊗
E) = h0(E)− 4.

Consider Uv := H 0(T ,Iv ⊗ E) as a 4-codimensional linear subspace of H 0(E). Let Bv
be the Schubert cycle of all V ∈ Gr(4,H 0(E)) with dim(V ∩ Uv) > 0. The variety Bv has
codimension 4 in Gr(4,H 0(E)). Since dim(T ) = 1, the set

⋃
p∈P1, v∈TpT \Dp

Bv

is not dense in Gr(4,H 0(E)), and so for a general V ∈ Gr(4,H 0(E)) we have V ∩ Bv = ∅
for all p and v ∈ TpT \ Dp. For a general V we may also assume that it spans E . Let f :
T → Gr(V , 2) denote the morphism associated to (E, V ). Note that f (Tred) is a line and that
f|Tred is injective. Thus f is an embedding if and only if it is a local embedding at all p ∈ P1.
By [9, proof of II.7.3] it is sufficient to prove that its differential induces an embedding of the
Zariski tangent space TpT of T at a fixed point p. Fix v ∈ TpT \ {0}. If v is tangent to Tred,
then dfp∗(v) �= 0, because f|Tred is an embedding. If v /∈ Dp , we have dfp∗(v) �= 0, because
V ∩ Bv = ∅, i.e. V ∩H 0(Iv ⊗ E) = 0.

Now assume a = 2. Since D2,4 is irreducible, it is sufficient to prove that a general C ∈
D2,4 satisfies h1(NC) = 0 and that C is a flat limit of a family of disjoint unions of two lines.
Fix a smooth hyperplane section Q3 ⊂ Q4 and any C contained in D2,4. By Lemma 5.1 C
is a flat limit of a family of disjoint unions of two lines of Q3. By the proof of the Claim
in the proof of Lemma 5.1, C is contained in a smooth quadric surface Q2 ⊂ Q3. We have
NC|Q2

∼= OC and so h1(NC|Q2) = 0. Since h1(OC(1)) = 0, we get h1(NC) = 0. By the
semicontinuity, we get h1(ND) = 0 for a generalD ∈ D2,4. �
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REMARK 3.17. If a = 2 (resp. a = 3), then any C ∈ Da,4 is contained in a 3-
dimensional (resp. 4-dimensional) linear subspace, because h0(OC(1)) = a + 2.

PROPOSITION 3.18. For D2,n with n ≥ 5, we get the following:

(i) D2,n is irreducible.
(ii) Each C ∈ D2,n is a flat limit of a family of two disjoint lines.

(iii) HilbQn(2, n) is smooth at C ∈ D2,n, outside the (4n − 9)-dimensional family of
curves in D2,n whose linear span intersects Qn in the double plane.

PROOF. Let M = 〈C〉 ⊂ Pn+1 denote the linear span of C ∈ D2,n and then we have
dim(M) = 3.

First assume M ⊂ Qn. In this case C may be deformed inside M to a disjoint union of
two lines. Since the normal bundleNM|Qn is globally generated, we have h1(C,

(
NM|Qn

)
|C)=

0. We also have h1(NC|M) = 0, becauseC is contained in a smooth quadric surface contained
in M . Since C is a locally complete intersection in M , the natural map NC|Qn → (

NM|Qn
)
|C

is surjective. Hence the normal sheaves sequence of the inclusions C ⊂ M ⊂ Qn gives
h1(NC) = 0.

Now assume that M ∩Qn is a quadric surface with singular locus of dimension at most
1, i.e. M ∩Qn is not a double plane. In this case there is a smooth 4-dimensional quadricQ4

such thatM ∩Qn ⊂ Q4 ⊂ Qn. By part (3) of Proposition 3.16, C is smoothable to a disjoint
union of two lines and there is a smooth quadric surface Q2 ⊂ Q4 such that C ⊂ Q2. We
first get h1(NC|Q2) = 0 and then h1(NC) = 0.

Assume that M ∩ Qn is not a double plane. The family of all curves in D2,n, which is
contained in M ∩Qn, is irreducible and 5-dimensional by [11, Corollary 4.3] with Z = {q},
Y = P = L and z = y = p = 1. Since the set of all planes contained in Qn is an irreducible
variety of dimension 2+4(n−4) = 4n−14, we get that the family of all such curves on double
planes is parametrized by an irreducible variety of dimension 5+ (4n−14) < 2+4(n−2) =
χ(NC). Since C is a locally complete intersection with embedded dimension 2 everywhere, it
deforms to another curve C′ of embedded dimension at most 2 everywhere, which is locally
a complete intersection and so with no embedded point. In particular C′ is either a disjoint
union of two lines or a double structure on a line with no embedded point and with embedded
dimension 2 everywhere. In the latter case it is a ribbon because of its embedded dimension 2
everywhere. Hence we get that C′ ∈ D2,n and we many assume that C′ spans a 3-dimensional
linear space whose intersection with Qn is not a double plane because of dimensional reason.
Since C′ is a limit of a family of two disjoint lines, so is C. �

4. Warm-up case of χ = 1.

REMARK 4.1. Let A ⊂ Pr , r ≥ 3, be a locally Cohen-Macaulay scheme of degree 2
with pure dimension 1. Then we have χ(OA) ≥ 1 by the upper bound for the genus of locally
Cohen-Macaulay curves with degree 2 in projective space of dimension at least three (e.g. see
[10]). Since deg(A) = 2, this may also be proved using that no ribbon of positive genus has a
very ample line bundle of degree 2. Thus we have Hilb(2, a)+ = ∅ for all a ≤ 0.
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LEMMA 4.2. We have D1 ∼= P3.

PROOF. It is enough to check that D1(L) is a single point space for each line L ⊂ Q.
The elements of D1 are the complete intersection of two quadric cones of Q such that their
vertices are contained in a line L ⊂ Q. Indeed, fix any line L ⊂ Q and two distinct points
p, q ∈ L. The conic TpQ∩ TqQ∩Q contains L and it has at least two singular points p and
q . Thus we have TpQ ∩ TqQ ∩Q ∈ D1. Using the quadratic form associated to Q, we see
that the map u : Q → (P4)∨ defined by p �→ TpQ is injective with a smooth quadric surface
u(Q) as its image. Thus for all p, q ∈ L with p �= q , we have TpQ �= TqQ and so TpQ ∩
TqQ ∩Q ∈ D1(L).

Claim: The set u(L) is a line, i.e. there is a unique plane E ⊂ P4 such that TpQ ⊃ E

for all p ∈ L.
Proof of the Claim: Since the set of all lines of Q is homogeneous for the action

of the group Aut(Q), it is sufficient to prove the Claim for a single line. Fix homogeneous
coordinates [x0 : · · · : x4] such that Q = {x0x1 + x2x3 + x2

4 = 0} and L = {x0 = x2 = x4 =
0}. For p = [0 : 1 : 0 : 0 : 0], we have TpQ = {x0 = 0}. If q = [0 : a : 0 : 1 : 0] for some a,
then we have TqQ = {ax0 + x2 = 0}. Thus we may choose E = {x0 = x2 = 0}. �

Since TpQ ∩ TqQ = E for all p �= q ∈ L in the Claim, we get that D1(L) is a unique
point. �

LEMMA 4.3. We have Hilb(2, 1) = Hilb(2, 1)+ ∼= Gr(3, 5), the Grassmannian vari-
ety parametrizing projective planes in P4.

PROOF. Recall that Q contains no plane and so the curve C := M ∩Q for a planeM is
an element of Hilb(2, 1)+. Conversely, for a fixed [C] ∈ Hilb(2, 1)+, either C is a reduced
conic or C ∈ D1. In the latter case C fits into the exact sequence

0 −→ OL(−1) −→ OC −→ OL −→ 0

with L := Cred and so h0(OC(1)) = 3. Thus in either case C is contained in a plane 〈C〉 ∼=
P2 and so we haveC = 〈C〉∩Q as schemes. Thus we have (Hilb(2, 1)+)red ∼= Gr(3, 5). Now
we check that Hilb(2, 1) = Hilb(2, 1)+. Fix [C] ∈ Hilb(2, 1) and letD ⊆ C be the maximal
locally Cohen-Macaulay subcurve of C; the ideal sheaf ID,C of D in C is the intersection
of the non-embedded components of a primary decomposition of the Noetherian sheaf OC .
Let a be the degree of the kernel of the quotient map OC → OD . If D �= C, i.e. [C] /∈
Hilb(2, 1)+, then we have a > 0 and so D ∈ Hilb(2, 1 − a)+. Thus we get Hilb(2, 1)red =
Hilb(2, 1)+,red ∼= Gr(3, 5) by Remark 4.1. Now for each conic C ⊂ Q, we get the locally
free resolution of IC ,

0 −→ OQ(−2) −→ OQ(−1)⊕2 −→ IC −→ 0 .

Tensor it with OC and get NC|Q ∼= OC(1)⊕2. In particular we have h0(NC|Q) = 6 and
h1(NC|Q) = 0. Hence we have Hilb(2, 1) ∼= Hilb(2, 1)red and the assertion follows. �
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REMARK 4.4. Let Gi for i = 1, 2, 3 be the subvariety of Gr(3, 5) parametrizing con-
ics onQ of rank at most i. In particular, we have G1 ∼= P3 and G3 = Gr(3, 5). To each point
p ∈ Q we may associate the projective plane formed by the planes contained in TpQ and
containing p. Thus G2 is a hypersurface and so it is an element of |OGr(3,5)(a)| for some a >
0. Fix a general hyperplane H ⊂ P4 and set Q1 := H ∩ Q a smooth quadric surface. Let
M ⊂ Gr(3, 5) be the set of all planes contained in H and then G2 ∩M is the set of all planes
in H which are tangent to Q1, i.e. the dual variety Q∨

1 of Q1, as a hypersurface of H . Since
Q∨

1 is a smooth quadric surface, we get a = 2. G2 is homogeneous for the action of Aut(Q),
because this group acts transitively on the set of all reducible conics; it acts transitively on the
set of singular points of conics and if D1,D2 are reducible conics with common vertex point
p, then they correspond to pairs of different lines of the surface quadric cone TpQ ∩Q.

PROPOSITION 4.5. We have

M(2, 1) ∼= Mα(2, 1) ∼= Hilb(2, 1) ∼= Gr(3, 5)

for all α > 0 and they are fine moduli spaces.

PROOF. The fineness of M(2, 1) comes from [13, Corollary 4.6.6] with (a0, a1) =
(1, 2). Let (1,F) ∈ Mα(2, 1) be a strictly α-semistable pair and so it has a subpair (s,F ′)
with χF ′(t) = t + c such that c + δ · α = 1+α

2 . In particular we have F ′ ∼= OL′(c − 1) for
a line L′ ⊂ Q. If δ = 1, then we have 2c + α = 1. But since F ′ has a non-zero section, we
have c ≥ 1, a contradiction. If δ = 0, then we have c = 1+α

2 . But the quotient pair (1,F ′′)
has χF ′′(t) = t + 1 − c. Since F ′′ ∼= OL′′ (-c) with a line L′′, we have c ≤ 0, a contradiction.
Thus there is no wall-crossing among Mα(2, 1)’s and so we have

M∞(2, 1) ∼= Mα(2, 1) ∼= M0+(2, 1)

for all α > 0. Note that a curve C in Hilb(2, 1) is a conic, including a planar double line. For
such a curve C, we have that OC is stable with χ(OC) = 1 and h0(OC) = 1. Note that C is
either

• a smooth conic with TQ|C ∼= OP1(2)⊕3 and so NC|Q ∼= OP1(2)⊕2, or
• a reducible conic, say C = L1 ∪ L2 (possibly L1 = L2), with NC ∼= OC(1)⊕2

and so it is evident that OC is stable. Conversely, for F ∈ M(2, 1), the curve C = CF has
degree at most 2. If deg(C) = 1, say C = L a line, then F is a vector bundle of rank 2 on
L, i.e. F ∼= OL(a1) ⊕ OL(a2) with a1 + a2 = −1 and a1 > a2. The subbundle OL(a1)

destabilize F and so we have deg(C) = 2. Since χ(F) = 1, we have h0(F) > 0 and a
non-zero section induces an injection u : OD ↪→ F for a subcurveD ⊂ C. In the case D =
C, we have [D] ∈ Hilb(2, 1) by Remark 4.1 and coker(u) = 0. If D � C, then D = L

is a line. Since χOL
(t) = t + 1, it contradicts to the semistability of F . Thus the forgetful

morphism ϕ : M∞(2, 1) → M(2, 1) is bijective. To confirm that it is an isomorphism, it is
enough to check the smoothness of M(2, 1). Note that dim HomQ(OC,OC) = 1, since C is
connected. Apply Ext•Q(−,OC) to the standard sequence for C ⊂ Q, we get

0 −→ HomQ(OC,OC) −→ HomQ(OQ,OC) −→ HomQ(IC,OC)
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−→ Ext1Q(OC,OC) −→ Ext1Q(OQ,OC) .

Since Ext1Q(OQ,OC) ∼= H 1(OC) = 0, we get Ext1Q(OC,OC) ∼= HomQ(IC,OC). But we

have HomQ(IC,OC) ∼= HomC(IC ⊗ OC,OC) ∼= H 0(NC|Q) and so its dimension is 6. In
particular, M(2, 1) is smooth.

The morphism from M∞(2, 1) → Hilb(2, 1) is bijective and so it is an isomorphism
since Hilb(2, 1) is smooth. In particular, M∞(2, 1) is smooth.

Now let U be the universal sheaf onQ× M(2, 1) and then f1∗(U) is a line bundle onQ,
where f1 is the projection to Q. If g1 : Q × M∞(2, 1) −→ Q is the projection, then the pair
(g∗

1 f1∗(U), ϕ∗U) is the universal coherent system. �

5. Case of χ = 2.

LEMMA 5.1. D2 is an irreducible and non-empty subset of Hilb(2, 2)with dim(D2) =
5. For any C ∈ D2, we have the following:

(i) C is contained in a smooth hyperplane sectionQ2 ofQ.
(ii) h1(NC) = 0 and h1(IC(t)) = 0 for all t > 0. In particular, C is a smooth point of

Hilb(2, 2).
(iii) C is a flat limit of a family of disjoint unions of two lines.

PROOF. Note that for each smooth hyperplane section Q2 ⊂ Q and any line L ⊂ Q2,
the effective Cartier divisor 2L of Q2 is a split ribbon with the prescribed χ(OC) and so it is
an element of D2. In particular we have D2 �= ∅. Conversely fix any C ∈ D2 and then it fits
into the exact sequence

0 −→ OL −→ OC −→ OL −→ 0(5)

with L := Cred. Since h0(OC(1)) = 4, so C is contained in the scheme-theoretic intersection
M ∩Q, where M ⊂ P4 is a hyperplane. Note that the hyperplaneM is unique, because it is
the linear span 〈C〉 of C in P4.

Claim : M is not a tangent hyperplane ofQ, i.e. M ∩Q is a smooth quadric surface.
Proof of Claim : Let A be the split ribbon with χ(OA) = 2. The unique line bundle

L of degree 2 on A is very ample and h0(L) = 4. Therefore, up to projective transforma-
tions, there is a unique ribbon E ⊂ P3 with χ(OE) = 2. Set L := Ered. Any smooth
quadric surface containingL also contains an embeddingE of A with L as its support. By the
uniqueness of the embedding of A up to a projective transformation, we get h1(P3,IE(2)) =
0, h0(P3,IE(2)) = 4 and that a general quadric surface containing E is smooth. E is con-
tained in all quadric surfaces which are the union of two planes through L. We need to prove
that E is not contained in an integral quadric cone. Assume E ⊂ U with U a quadric cone
and call o the vertex of U . Then we have o ∈ L. Since U is a quadric cone, for two points
p,p′ ∈ L \ {o} the planes TpU and Tp′U are the same. Since E has planar singularities,
we get that TpU is the Zariski tangent plane to E at o. Fix a smooth quadric surface Q2 ⊃
E. Since E has planar singularities, we get TpQ = TpE for all p ∈ L. The tangent planes
TpQ2 with p ∈ L \ {o}, have the property that TpQ2 ∩Q = L ∪ Lp, where Lp is the unique
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line of Q2 intersecting L and containing p. Hence p �= p′ would imply TpQ2 �= Tp′Q2, a
contradiction. �

By Claim, C is contained in a smooth quadric surface and so we get h1(NC) = 0. Thus
[C] is a smooth point of Hilb(2, 2). Similarly we get h1(IC(t)) = 0 for all t > 0. We also
see that the algebraic set D2 is equidimensional of dimension 5 and that it has one or two
irreducible components, because each smooth quadric surface has exactly two rulings. The
set of all lines in Q is isomorphic to P3. In particular it is irreducible and of dimension 3.
For each line L ⊂ Q, the set of all hyperplanes M ⊂ P4 containing L such that M ∩ Q is
smooth is a non-empty open subset of P2. Thus it is irreducible of dimension 2 and so D2 is
irreducible. �

REMARK 5.2. Note that the set of hyperplanes in P4 whose intersection with Q is a
smooth quadric surface, is parametrized by (P4)∨ \Q∨, the dual space of P4 minus the dual
of Q. The quadratic form associated to Q induces an isomorphism between Q and its dual
Q∨, which associates TpQ to each p ∈ Q; under the isomorphism, a line L ⊂ Q is mapped
to a line in Q∨, not just a rational curve. In particular, we have D2(L) ∼= P2 \ P1.

PROPOSITION 5.3. Hilb(2, 2)+ is smooth, irreducible and of dimension 6.

PROOF. Take [C] ∈ Hilb(2, 2)+. Then we have that either C is the disjoint union of
two lines or C ∈ D2. If C is the disjoint union of two lines, then we have h1(NC) = 0 and
so the set of all such curves is irreducible of dimension 6. Now the assertion follows from
Lemma 5.1. �

REMARK 5.4. The scheme Hilb(2, 2)+ is not closed in Hilb(2, 2) and in particular it
is not complete. Let T ⊂ Q be a quadric cone with vertex o. Fix two distinct lines L,R ⊂
T and so we have L ∩ R = {o}. Let � be an integral affine curve with a fixed point q ∈ �

and {Rp}p∈� be a family of lines of Q with Rq = R and L ∩ Rp = ∅ for all p ∈ � \ {q}.
The family {L ∪ Rp}p∈�\{q} has a flat limit B ∈ Hilb(2, 2) containing L ∪ R, but with an
embedded point o. Note that B is not contained in T .

Fix [C] ∈ Hilb(2, 2)\Hilb(2, 2)+. LetD ∈ Hilb(2, c)+ be the maximal locally Cohen-
Macaulay subscheme of C with pure dimension 1. Let a be the degree of the kernel of the
surjection ϕ : OC → OD and then we have c = 2 − a. Remark 4.1 gives a = 1 and c = 1.
Thus the sheaf ker(ϕ) is the structural sheaf Cp of a unique point p ∈ Q and we have a map

ψ : Hilb(2, 2) −→ Hilb(2, 2)+ � (Hilb(2, 1)×Q) .(6)

For (D, p) ∈ Hilb(2, 1)+ × Q, let us define A(D, p) := ψ−1(D, p), i.e. the set of all
[C] ∈ Hilb(2, 2) with D as the maximal locally Cohen-Macaulay subscheme of C with pure
dimension 1 and with p ∈ Dred as the support of the kernel of the surjection OC → OD . If
p /∈ Dred, then we have C ∼= D � {p} as schemes and so A(D, p) is a single-point space.
Thus it is sufficient to consider the scheme C with p ∈ Dred.

LEMMA 5.5. ForD ∈ Hilb(2, 1) and p ∈ Dred, we have A(D, p) ∼= P1.



DOUBLE LINES ON QUADRIC HYPERSURFACES 461

PROOF. Assume that D is smooth at p. In the local ring OQ,p, there are generators
{x, y, z} of the maximal ideal m of OQ,p such that D has local equations y = z = 0. There
is a bijection between A(D, p) and the set of all ideals J of OQ,p contained in (y, z) and
with a 1-dimensional vector space (y, z)/J . In particular, J contains a linear combination of
y and z. Thus we may assume that z ∈ J and so we get (y, z)/J ∼= (y)/J ′ for an ideal J ′ ⊂
C[x, y]. The only possibility of such J ′ is (xy, y2) and so the set of ideals J is parametrized
by the set of planes containing the line y = z = 0. In other words, letting TpD ⊂ TpQ be the
tangent line ofD at p, there is a bijection between A(D, p) and the planes in TpQ containing
TpD. Hence we have A(D, p) ∼= P1.

Assume now that D is reduced and that p is a singular point of D. In this case D is a
reduced conic with the singular point p. We may assume that D is locally defined by z =
xy = 0 with the maximal ideal m = (x, y, z) of OQ,p. Again there is a bijection between
A(D, p) and the set of ideals J contained in (xy, z) and with a 1-dimensional vector space
(xy, z)/J . Thus J contains a linear combination of xy and z, say axy + bz ∈ J . If a = 0,
i.e. z ∈ J , then C is contained in the plane z = 0, and we have (xy, z)/J ∼= (xy)/J ′ for an
ideal J ′ ⊂ C[x, y]. Since dimC(xy)/J

′ = 1, the only possibility is J ′ = (x2y, xy2). If a �=
0, then we have xy + cz ∈ J . Then we must have an isomorphism (xy, z)/J ∼= C{z} defined
by xy �→ −cz, since we have dimC(xy, z)/J = 1. Thus we have {z2, xz, yz} ⊂ J and so
we get {xy + cz, z2, xz, yz} ∈ J . Indeed the ideal (xy + cz, z2, xz, yz) defines D with the
embedded point p and so we have J = (xy + cz, z2, xz, yz). Overall we get J = (axy +
bz, z2, xz, yz, x2y, xy2) and thus the ideals J are parametrized by the choice of coordinates
(a : b) ∈ P1 and so we get A(D, p) ∼= P1. In fact, there are two kinds of curves in A(D, p),
one with a = 0 and the others with a �= 0. The curves with a �= 0 are isomorphic to each
others, but they define different elements in Hilb(2, 2).

Now assume D ∈ D1. Since there exists a unique plane 〈D〉 ∼= P2 containing D, we
may assume that D has local equation z = x2 = 0, i.e. 〈D〉 is defined by z = 0. The ideal J
defining C is contained in (z, x2) such that the dimension of the vector space (z, x2)/J is 1.
Similarly as in the previous case, if z ∈ J , then we have (z, x2)/J ∼= (x2)/J ′ for an ideal J ′ ⊂
C[x, y]. Thus we have J ′ = (x3, x2y). If z �∈ J , then we have an isomorphism (z, x2)/J ∼=
C{z} defined by x2 �→ −cz for some c ∈ C and so we get J = (x2 + cz, z2, xz, yz). Overall
we get J = (ax2 + bz, z2, xz, yz, x3, x2y) and thus the ideals J are parametrized by the
choice of coordinates (a : b) ∈ P1 for which ax2 + bz ∈ J and so we get A(D, p) ∼= P1. �

Let I1 be the incidence variety of Hilb(2, 1)×Q, i.e.

I1 := {(D, p) ∈ Hilb(2, 1)×Q | p ∈ D} .
The set of conics on Q passing through a fixed point p ∈ Q is isomorphic to Gr(2, 4) and so
π2 : I1 −→ Q is a Gr(2, 4)-fibration. In particular I1 is a smooth variety of dimension 7. Let
us define I2 to be the diagonal over Sym2(P3), the second symmetric power of P3.

Let H1 be the subvariety of Hilb(2, 2) parametrizing the non-locally Cohen Macaulay
curves and then we have a morphism ψ|H1 : H1 −→ Hilb(2, 1) ×Q. We also let H2 be the
closure of Hilb(2, 2)+.
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Let us set H′ := (H1 ∩ H2)red. If D ∈ Hilb(2, 1) and p /∈ Dred, then C := D ∪ {p} is a
smooth point of Hilb(2, 2).Therefore we have C /∈ H′.

LEMMA 5.6. Let D be a conic in Hilb(2, 1) and p a point on D.

(1) If p ∈ Dsm, we have A(D, p) ∩ H′ = ∅, i.e. no curve in A(D, p) is a flat limit of
Hilb(2, 2)+.

(2) If p ∈ Dsing, we have A(D, p) ∩ H′ �= ∅, i.e. there exists a curve C ∈ A(D, p)
which is a flat limit of Hilb(2, 2)+.

PROOF. A flat limit C of a family of locally CM curves {At }t∈T with (At )red containing
a line, also contains a line. Thus we get A(D, p) ∩ H′ = ∅ if D is a smooth conic. Assume
now that D is a reducible conic and let e be a singular point of D. Assume the existence of
a flat family π : � → T with T an irreducible curve, o ∈ T , π−1(o) = C and π−1(t) ∈
Hilb(2, 2)+ for all t ∈ T \ {o}. Since the support of the nilradical of OC is a single point p,
we get π−1(t) /∈ D2 for a general t ∈ T . Since p �= e, there is an open neighborhood U of
e in � such that π|U : U → π(U) has reduced fibers, one connected fiber with an ordinary
node and as general fiber a smooth curve with two connected components because which is
impossible by [1, Proposition X.2.1].

(a) Assume that D is a reducible conic with singular point e, different from p. Since
the support of the nilradical of OC is a single point p, we get π−1(t) /∈ D2 for a general t ∈
T . Since p �= e, there is an open neighborhood U of e in � such that π|U : U → π(U) has
reduced fibers, one connected fiber with an ordinary node and a general fiber a smooth curve
with two connected components, which is impossible by [1, Proposition X.2.1].

(b) Assume that D is a reducible conic and let p be its singular point. Write D = L∪
R with L,R lines. Let {Rt }t∈T be a family of lines of Q with T an integral curve, Ro = R

for some o ∈ T and Rt ∩ D = ∅ for all t ∈ T \ {o}. Since Hilb(2, 2) is proper, the family
{L ∪ Rt }t∈T \{o} has a limit C ∈ H′. We have ψ(C) = (D, p).

(c) For a fixed line L ⊂ Q and any p,p′ ∈ L, set C′ := Q∩TpQ∩Tp′Q ∈ D1 that is
the only element of D1 with L as its reduction. Take a flat family of lines {Rλ} of Q disjoint
from L and with L as its flat limit. Taking {Rλ ∪ L}, we get C ∈ H′ with ψ(C) = (C′, p′′)
for some p′′ ∈ L. Since Aut(Q) acts transitively on the set of all (L, p′′), we get that for each
p1 ∈ L there is C1 ∈ H′ with ψ(C1) = (C′, p1). �

COROLLARY 5.7. For a singular conic D in Q and a point p ∈ Dsing, we have∣∣A(D, p) ∩ H′∣∣ = 1 .

PROOF. By (2) of Lemma 5.6, we have |A(D, p) ∩ H2| ≥ 1. From the exact sequence

0 −→ Cp −→ OC −→ OD −→ 0(7)

for C ∈ A(D, p), we have h0(OC(1)) = 4 and so we get 〈C〉 ∼= P3. In particular, C is
contained in a quadric surface Q2 := Q ∩ 〈C〉. By the proof of [16, Lemma 2], any surface
containing C is singular at p. In particular,Q2 is a singular quadric surface with the singular
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point p. Without loss of generality, we may assume that Q2 is defined by the equation z2 −
xy = 0 in local coordinates x, y, z of 〈C〉 and p = (0, 0, 0).

If D is a singular conic with the singular point p, then we may assume that D is defined
by the ideal (z, xy). We know from Lemma 5.5 that the ideal defining C ∈ A(D, p) is
(axy + bz, z2, xz, yz, x2y, xy2) and the only one containing z2 − xy is with b = 0, i.e.
(z2, xy, yz, zx).

If D is in D2(L) with L defined by (z, x), then D is defined by the ideal (x, z2). Again
the ideal defining C ∈ A(D, p) is (az2 +bx, x2, xz, xy, z3, yz2) and the only one containing
z2 − xy is with b = 0, i.e. (z2, x2, xz, xy).

Hence the curves in (H1 ∩ H2)red are determined by the pairs (D, p) with D ∈ G2 and
p ∈ Dsing. �

REMARK 5.8. By Corollary 5.7, the curves in A(D, p) \ H′ with p ∈ Dsing is para-
metrized by P1 minus a point. Indeed, such curves are given as follows:

(1) Fix a reducible conic D ⊂ Q with the singular point p and let Q2 ⊂ Q be any
smooth quadric surface containing D and then we have D ∈ |OQ2(1, 1)|. Let E ∈
|OQ2(1, 1)| be any smooth conic containing p and let 3p ⊂ Q2 denote the closed
subscheme ofQ2 with (Ip,Q2)

3 as its ideal sheaf. The scheme (D∪E)∩(D∪3p) has
D as its reduction, but it contains a degree 3 subscheme of E with p as its support,
while E ∩D is exactly the degree 2 subscheme of E with p as its reduction.

(2) For a double line D ∈ D1, fix any quadric cone Q2 ⊂ Q containing D and take any
point p different from the vertex o of Q2. Let M ⊂ H be a plane containing p, but
not the line Dred. Set E := Q2 ∩M . You take as C the union of D and the degree 3
subscheme of the smooth conic E with p as its support.

PROPOSITION 5.9. We have

Hilb(2, 2) = H1 ∪ H2 ,

with two irreducible componentsHi for i = 1, 2 such that

(a) H1 andH2 are rational varieties of dimension 9 and 6 respectively,
(b) (H1 ∩ H2)red consists of singular conics D with an extra point p ∈ Dsing such that

the hyperplane section containing the curve is singular at p, and
(c) Hilb(2, 2) is smooth outsideH1 ∩ H2.

PROOF. By Proposition 5.3 and Corollary 5.7, it remains to show the irreducibility of
H1 and its smoothness over (Hilb(2, 1)×Q) \ (H1 ∩ H2).

Let ψ = ψ|H1 : H1 → Hilb(2, 1) × Q be the map defined from (6). We saw in
Lemma 5.5 that ψ is surjective and that if (D, p) /∈ I1, then the fiber is a single point, while
for each x = (D, p) ∈ I1 we have ψ−1(x) ∼= P1 and in particular the fiber is irreducible
and of dimension 1. Hence ψ−1(I1) is irreducible and of dimension 8. Thus to prove the
assertion it is sufficient to prove that a general element of ψ−1(I1) is contained in the closure
of ψ−1((Hilb(2, 1)×Q) \ I1).
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Fix (D, p) ∈ Hilb(2, 1)×Q withD a smooth conic and p ∈ D. Let TpD be the tangent
line to D at p. For a general (D, p) we may assume that the line TpD is not contained in Q.
Let H ⊂ P4 be a general hyperplane containing TpD. We saw in the proof of Lemma 5.5
that a general element of ψ−1((D, p)) corresponds to a general triple (D, p,H). The setH ∩
Q is a smooth quadric surface. The family {(D, q)}q∈Q∩H\D∩H has a flat limit in Hilb(2, 2)
corresponding to (D, p,H).

For the smoothness in (c), it is sufficient to check h0(NC|Q) = 9 and h1(NC|Q) = 0 for
C ∈ H1 \ (H1 ∩ H2). If C = D ∪ {p} with p �∈ Dred, then it is true since NC|Q ∼= ND|Q ⊕
TpQ. Let C be in A(D, p) for a conic D ⊂ Q and p ∈ D. Then we have 〈C〉 ∼= P3 and let
Q2 := Q ∩ 〈C〉. From the following exact sequence

0 −→ NC|Q2 −→ NC|Q −→ OC(1)(8)

where (NQ2|Q)|C ∼= OC(1), we get that h0(NC|Q) ≤ 4 + h0(NC|Q2). Assume that Q2 is
smooth and then we have ID,Q2

∼= OQ2(−1,−1). Tensoring the exact sequence

0 −→ IC,Q2 −→ ID,Q2 −→ Cp −→ 0 ,(9)

by OC , we get

0 −→ T or1(Cp,OC) −→ IC,Q2 ⊗ OC −→ OC(−1) −→ C⊕2
p −→ 0 .(10)

If we tensor the sequence (7) by Cp, we get

0 −→ T or1(OC,Cp) −→ T or1(OD,Cp) −→ Cp −→ OC ⊗ Cp −→ Cp −→ 0

and so we get T or1(OC,Cp) ∼= T or1(OD,Cp). Tensoring the following exact sequence

0 −→ OQ2(−1,−1) −→ OQ2 −→ OD −→ 0

by Cp, we get T or1(OD,Cp) ∼= Cp and so T or1(OC,Cp) ∼= Cp. Thus the sequence (10)
factors into the following two exact sequences

0 −→ Cp ∼= T or1(Cp,OC) −→ IC,Q2 ⊗ OC −→ OD(−1,−1) −→ 0 ,

0 −→ OD(−1,−1) −→ OC(−1,−1) −→ OC ⊗ Cp ∼= C⊕2
p −→ 0 .

(11)

Applying Ext•Q2
(−,OC)-functor to the first sequence of (11), we get

0−→HomQ2(OD(−1,−1),OC)−→HomQ2(IC,Q2 ⊗ OC,OC)−→HomQ2(Cp,OC)−→· · · .
Note that dim HomQ2(Cp,OC) = 1 and dim HomQ2(OD(−1,−1),OC) = 4. It implies that
h0(NC|Q2) = dim HomQ2(IC,Q2 ⊗ OC,OC) is at most 5. Since C is a limit of a flat family
of curvesD ∪ {q} ⊂ Q2 with q �∈ D and h0(NC|Q2) is an upper semi-continuous function on
C, we get h0(NC|Q2) = 5. Thus we have h0(NC|Q) ≤ 9. Again by the upper semi-continuity,
we get h0(NC|Q) = 9.

If Q2 is a singular quadric surface with the singular point e �= p, then we may apply
exactly the same steps as in (a) by replacing OQ2(1, 1) by OQ2(1), because we still have
that (i) ID,Q2

∼= OQ2(−1), (ii) T or1(OC,Cp) ∼= Cp and (iii) dim HomQ2(OD(−1),OC) =
4. �
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LEMMA 5.10. For [D] ∈ Hilb(2, 1) and a point p ∈ D, there exists a unique non-
trivial extension

0 −→ OD −→ F −→ Cp −→ 0 .(12)

PROOF. Let D ∈ Hilb(2, 1) be a conic in Q defined as a complete intersection of zeros
of two linear forms f1, f2 with the exact sequence

0 −→ OQ(−2) −→ OQ(−1)⊕2 −→ ID −→ 0 .(13)

Applying Ext•(Cp,−)-functor to (13) for a point p ∈ D, we get

0 −→ Ext2(Cp,ID) −→ Ext3(Cp,OQ(−2))
s

−→ Ext3(Cp,OQ(−1))⊕2 .

Note that we get that dim Ext3(Cp,OQ(−2)) = dim Ext3(Cp,OQ(−1)) = 1 and the map s
is the transpose of Hom(OQ(2),Cp)⊕2 → Hom(OQ(1),Cp) defined by (g1, g2) �→ f1g1 +
f2g2. Since p is a point on D, the map s is a zero map and so we have dim Ext2(Cp,ID) =
1. Applying Ext•(Cp,−)-functor to the standard sequence for OD , we get Ext1(Cp,OD) ∼=
Ext2(Cp,ID) and so there exists a unique non-trivial extension. �

PROPOSITION 5.11. Any semistable sheaf F of depth 1 onQ with Hilbert polynomial
2t + 2 is one of the following:

(i) F ∼= OL1 ⊕ OL2 with two lines L1, L2 onQ, possibly L1 = L2,
(ii) a non-trivial extension of OL by OL with L a line onQ,

(iii) F ∼= OC(p) for a smooth conic C and p ∈ C.
PROOF. Let C = CF be the scheme-theoretic support of F and then deg(C) is either 1

or 2. If deg(C) = 1, i.e. C = L is a line, then F is a vector bundle of rank 2 on L. Thus we
have F ∼= OL(a1) ⊕ OL(a2) for a1 ≥ a2 such that a1 + a2 = 0. In particular the subbundle
OL(a1) destabilize F unless a1 = 0 and so we have F ∼= O⊕2

L .
Now let us assume that deg(C) = 2. Since χ(F) = 2, we have h0(F) ≥ 2. A non-zero

section of H 0(F) induces an injection u : OD ↪→ F for a subcurveD ⊂ C. If D � C, then
D = L is a line and so we get coker(u) ∼= OL′ with a line L′, because χcoker(u)(t) = t + 1.
The vanishing Ext1(OL′,OL) = 0 implies that F ∼= OL ⊕ OL′ . In the case D = C, we get
[D] ∈ Hilb(2, c)+ with c ∈ {1, 2} due to the semistability of F . Note that we have F ∼= OC

if c = 2, and coker(u) = Cp for a point p ∈ C if c = 1.
Conversely, the sheaf F ∼= OC with [C] ∈ Hilb(2, 2)+ is strictly semistable from the

following exact sequence

0 −→ OLi −→ F −→ OLj −→ 0

with {i, j } = {1, 2}. Assume now c = 1 and so [C] ∈ Hilb(2, 2) \ Hilb(2, 2)+. Then F
fits into the exact sequence (12) with p ∈ D and [D] ∈ Hilb(2, 1). If D is a smooth conic,
then any F fitting into (12) non-trivially is stable. Assume that D is a reduced conic with the
singular point o, say D = L1 ∪ L2. If p ∈ L2 \ L1, then by applying Hom•(−,OL1)-functor
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to (12), we have Hom(F ,OL1)
∼= Hom(OC,OL1). Thus we have a surjection u : F → OL1

with ker(u) ∼= OL2 , contradicting to the semi-stability of F . Conversely, if p = o, let us
assume that G ⊂ F is a subsheaf with slope > 1. With no loss of generality we may assume
G ∼= OL1(c) with c ≥ 1. The composition u′ : G → F → Co is surjective, otherwise we
would have an injection OL1(c) → OC , absurd. Thus we have ker(u′) ∼= OL1(c − 1) and it
injects into OC . In particular we have c ≤ 0, a contradiction.

Claim 1 : We have F ∼= OL1 ⊕ OL2 .
Proof of Claim 1: We have a surjection u : OL1 ⊕ OL2 → Cp. The sheaf ker(u) has

depth 1 and 2t + 1 as its Hilbert polynomial,D as its support. Since the map u∗ : H 0(OL1 ⊕
OL2) → H 0(Cp) is surjective, we have h0(ker(u)) = 1 and h1(ker(u)) = 0. By symmetry
we get that the only non-zero section s, up to a scalar, of ker(u) does not vanish identically on
one of the componentsLi . We get that s never vanishes, i.e. ker(u) ∼= OD . By the uniqueness
of a non-trivial extension due to Lemma 5.10, we get the assertion. �

Now assume that D ∈ D1 with L = Dred and p ∈ D. If G ∼= OL(c) is a subsheaf of
F with slope > 1, then we have c ≥ 1. The composition u′ : G → F → Cp is surjective,
otherwise it would give an injection OL(c) → OD and it is absurd. Then we have ker(u′) ∼=
OL(c − 1) and it injects into OD . Since c − 1 ≥ 0, it is again absurd and so F is semistable.

Claim 2: F is an extension of OL by OL.
Proof of Claim 2: Since Ext1Q(OL,OL) ∼= H 0(NL|Q), its dimension is 3. In particular

the family of non-trivial extensions of OL by OL is an OQ-sheaf up to scalar forms P2, say
P(L). For a semistable sheaf OC with C ∈ D2(L), there exists a section s ∈ H 0(OC), induc-
ing an extension in P(L). Notice that the space of sections inducing the sequence (5) form a
1-dimensional subspace, otherwise every non-zero section of H 0(OC) induces sequence (5)
and it is impossible because 1 ∈ H 0(OC). Since D2(L) is isomorphic to P2 \ P1, there exists
a P1-family of extensions of OL by OL, not coming from OC . Since every element in P(L) is
semistable, the only remaining possibility corresponding to P1 ⊂ P(L) is given as an exten-
sion of Cp by OD for D the unique element in D1(L) and some point p ∈ L. Indeed such an
extension for every p ∈ L admits an extension in P(L), because Aut(Q) is transitive on the
pairs (L, p). �

REMARK 5.12. For any line L ⊂ Q the isomorphism classes P(L) of non-trivial ex-
tension F of OL by itself are parametrized by P2. We have P(L) = F1 � F2, where F1 is
parametrized by D2(L) = P2 \ P1 and F2 is parametrized by L ∼= P1, i.e. the extensions of
Cp by OD with {D} = D1(L) and p ∈ L. So the corresponding locally CM curve to F ∈ F2

is the uniqueD ∈ D1(L).
Moreover, the sheaf F ∈ F2 is not isomorphic to O⊕2

L . Indeed from two non-proportional
surjective maps ui : F → OL for i = 1, 2, we get two non-proportional, possibly not
surjective, maps vi : OD → OL. One of them cannot be surjective and so it has OL(c) with
c > 0, as its image, which is impossible since OD is stable by Proposition 4.5.

REMARK 5.13. Let C be an abstract ribbon with χ(OC) = 2 and F be the unique
non-trivial extension of Cp by OD with D ∈ D1(L) and p ∈ L. There is a unique morphism
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u : C → D, the blow-up of D at p in the terminology of [7]; set G := u∗OC and then it is an
OD-module with an injection OD → G with Cp as its cokernel. Since G is torsion-free, this
extension of Cp as an OD-module is not trivial. Since OD is a quotient of OQ, so G is also an
extension as OQ-module and it is non-trivial, since it is torsion-free as an OD-module. Hence
we get G ∼= F . F is not locally free at p, because it is locally free outside p and we know
that all line bundles on D have odd Euler number with the form OD(t), t ∈ Z. Thus the fiber
of F at p is not a 1-dimensional vector space by Nakayama’s lemma. Hence F|L is not a line
bundle on L and so we get F|L ∼= OL ⊕ Cp.

COROLLARY 5.14. Any [F ] ∈ M(2, 2) appears in this list:
(i) F ∼= OL1 ⊕ OL2 with two lines L1, L2 onQ, possibly L1 = L2,

(ii) F ∼= OC(p) for a smooth conic C and p ∈ C.
REMARK 5.15. (1) For each sheaf F ∈ P(L), we get the exact sequence

0 −→ OL −→ F −→ OL −→ 0(14)

and so its corresponding equivalence class in M(2, 2) coincides with [O⊕2
L ].

(2) In (iii) of Proposition 5.11 with D a smooth conic, we have F ∼= OC(p) and so F is
determined only by the choice of D.

LEMMA 5.16. For a semistable sheafF of depth 1 onQ with Hilbert polynomial 2t+
2, we have

dim Ext1Q(F ,F) =
⎧⎨
⎩

12, if F ∼= O⊕2
L f oralineL ⊂ Q,

8, if CF ∈ G2 ,

6, otherwise .

Recall that we have CF ∈ G2 if and only if either
(a) F ∼= OL1 ⊕ OL2 for two lines L1, L2 with |L1 ∩ L2| = 1 or
(b) F admits (12) non-trivially with D ∈ D1 and p ∈ Dred.

PROOF. By [6, Lemma 13] we have the following exact sequence for a smooth subva-
riety Y , a coherent OQ-sheaf F and a coherent OY -sheaf G:

0 −→ Ext1Y (F|Y ,G) −→ Ext1Q(F ,G)

−→ HomY (T orY1 (F ,OY ),G) −→ Ext2Y (F|Y ,G) .
(15)

If F ∼= G ∼= OC(p) for a smooth conic C and a point p ∈ C, we get Ext1Q(F ,F) ∼=
H 0(NC|Q)⊕2 and so its dimension is 6.

Let F ∼= OL1 and G ∼= OL2 for two lines L1 and L2. If L := L1 = L2, then we get
Ext1Q(F ,G) ∼= H 0(NL|Q) whose dimension is 3. If L1 ∩ L2 = ∅, then we get Ext1Q(F ,G) =
0. If L1 ∩ L2 = {p}, then Ext1Q(F ,G) ∼= Ext1L2

(Cp,OL2) and so its dimension is 1. Using
this we get for F = OL1 ⊕ OL2 that

dim Ext1Q(F ,F) =
⎧⎨
⎩

12, if L1 = L2 ;
8, if |L1 ∩ L2| = 1 ;
6, if L1 ∩ L2 = ∅ .
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Assume now that F ∼= OC with C ∈ D2 and L := Cred. By Claim of Lemma 5.1, we
have Q1 := 〈C〉 ∩Q is a smooth quadric surface. Assume that C ∈ |OQ1(2, 0)|. Apply the
sequence (15) to Y = Q1 with F = G = OC and then we have

0 −→ Ext1Q1
(OC,OC) −→ Ext1Q(OC,OC)

−→ HomQ1(OC(−1),OC) −→ Ext2Q1
(OC,OC) .

(16)

Note that the dimension of HomQ1(OC(−1),OC) is h0(OC(1)) = 4. Apply Ext•Q1
(OC,−)

to the standard exact sequence for C ⊂ Q1 and then we get

0 −→ HomQ1(OC,OC) −→ Ext1Q1
(OC,OQ1(−2, 0))

−→ Ext1Q1
(OC,OQ1) −→ Ext1Q1

(OC,OC) −→ Ext2Q1
(OC,OQ1(−2, 0))

−→ Ext2Q1
(OC,OQ1) −→ Ext2Q1

(OC,OC) −→ 0 .

Note that Ext1Q1
(OC,OQ1(−2, 0)) ∼= H 1(OC(0,−2))∨ ∼= H 0(OC(2, 0)) ∼= H 0(OC) and so

its dimension is 2. Similarly we get that

dim Ext1Q1
(OC,OQ1) = 2 and dim Ext2Q1

(OC,OQ1(−2, 0)) = 0 .

Since the dimension of HomQ1(OC,OC) is at least 2, it is indeed 2 and so we get dim Ext1Q1

(OC,OC) = 2. Since Ext2(OC,OQ1) = 0 by the Serre duality, we get Ext2Q1
(OC,OC) = 0.

Hence we get dim Ext1Q(OC,OC) = 6 by the sequence (16).
Let F be the non-trivial extension of Cp by OD with D ∈ D1(L) and p ∈ L. Now we

get the following two sequences for ID: (13) and

0 −→ ID −→ OQ −→ OD −→ 0 .(17)

Apply Ext•Q(OL,−)-functor to (13) and then we get

0−→Ext1Q(OL,ID)−→Ext2Q(OL,OQ(−2))−→Ext2Q(OL,OQ(−1)⊕2)−→Ext2Q(OL,ID)−→0

(18)

since Ext1Q(OL,OQ(−1)⊕2) = Ext3Q(OL,OQ(−2)) = 0. Now we get Ext1Q(OL,OQ(−2))

= 0 and Ext2Q(OL,OQ(−1)) ∼= H 1(OL(−2))∨. Thus we have

dim ExtiQ(OL,ID) =
{

0, if i �= 2 ,
2, if i = 2 .

Apply Ext•Q(OL,−)-functor to (17) and then we get

0 −→ Ext1Q(OL,OD) −→ Ext2Q(OL,ID) −→ Ext2Q(OL,OQ) −→ Ext2Q(OL,OD) −→ 0(19)

since Ext1Q(OL,OQ) ∼= H 2(OL(−3))∨ = 0. Note that Ext2Q(OL,OQ) ∼= H 1(OL(−3))∨

and so its dimension is 2. We have Ext2Q(OL,OD) ∼= Ext1Q(OD,OL(−3))∨ and it admits the
following exact sequence

0−→Ext1L(OD ⊗ OL,OL(−3))−→Ext1Q(OD,OL(−3))−→HomL(T orQ1 (OD,OL),OL(−3)) .
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In particular, the dimension of Ext1Q(OD,OL(−3)) is at least dim Ext1L(OD⊗OL,OL(−3)) =
2 since we have OD ⊗ OL

∼= OL. Hence from (19) we get

dim ExtiQ(OL,OD) =
{

2, if i=1,2 ,
0, otherwise .

Now we get two exact sequences (12) and (14). Apply Ext•Q(OL,−)-functor to (12) to get

0 −→ Ext1Q(OL,OD) −→ Ext1Q(OL,F) −→ Ext1Q(OL,Cp)

−→ Ext2Q(OL,OD) −→ Ext2Q(OL,F) −→ Ext2Q(OL,Cp) −→ 0 ,

since HomQ(OL,F) ∼= HomQ(OL,Cp) with dimension 1. We also get the exact sequence

0 −→ Ext1L(OL,Cp) −→ Ext1Q(OL,Cp) −→ HomL(T orQ1 (OL,OL),Cp) −→ 0 ,

which gives Ext1Q(OL,Cp) ∼= HomL(N
∨
L|Q,Cp). Thus we get dim Ext1Q(OL,Cp) = 2.

Recall that F|L ∼= OL ⊕ Cp by Remark 5.13 and so from the exact sequence

0 −→ Ext1L(F|L,OL(−3)) −→ Ext1Q(F ,OL(−3)) −→ HomL(T orQ1 (F ,OL),OL(−3)) −→ 0 ,

we get dim Ext1Q(F ,OL(−3)) = 3 + dim HomL(T orQ1 (F ,OL),OL(−3)). Here we get

T orQ1 (F ,OL) ∼= T orQ1 (F|L,OL) ∼= T orQ1 (OL,OL) ∼= N∨
L|Q

since T orQ1 (Cp,OL) is zero. Since HomL(N
∨
L|Q,OL(−3)) is trivial and Ext2Q(OL,F) ∼=

Ext1Q(F ,OL(−3))∨, we get dim Ext2Q(OL,F) = 3. Hence we have

dim ExtiQ(OL,F) =

⎧⎪⎪⎨
⎪⎪⎩

1, if i=0 ,
4, if i=1 ,
3, if i=2 ,
0, otherwise .

Now apply Ext•Q(−,F)-functor to (14) and then we get

0 −→ Ext1Q(OL,F) −→ Ext1Q(F ,F) −→ Ext1Q(OL,F)

−→ Ext2Q(OL,F) −→ Ext2Q(F ,F) −→ Ext2Q(OL,F) −→ 0 ,

since dim HomQ(OL,F) = 1 and dim HomQ(F ,F) = 2. Hence dim Ext1Q(F ,F) is at
most 8. Note that any curve in G1 is a specialization of curves in G2 \ G1 and so F can
be considered as a degeneration of OL1 ⊕ OL2 for a reducible and reduced conic L1 ∪ L2.
By [4, Theorem in page 21] in case of N = n = 1, the global Ext1-function is upper semi-
continuous. Since dim Ext1Q(G,G) = 8 for G = OL1 ⊕ OL2 , so dim Ext1Q(F ,F) is at least 8.
Hence the dimension is indeed 8. �
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REMARK 5.17. For a sheaf F ∼= OC(p) with a smooth conic C and p ∈ C, we have
Ext2Q(OC(p),OC(p)) ∼= Ext1Q(OC(p),OC(p)⊗ OQ(−3))∨. Applying the sequence (15) to
F = OC(p) and G = OC(p)⊗ OQ(−3), we get

0 −→ Ext1C(F ,F(−3)) −→ Ext1Q(F ,F ⊗ OQ(−3)) −→ H 0(NC|Q(−3)) −→ 0 .

Since h0(NC|Q(−3)) = 0 and dim Ext1C(F ,F(−3)) = 5, we get dim Ext2Q(F ,F) = 5.

COROLLARY 5.18. The moduli M(2, 2) has the two irreducible componentsM1 and
M2 such that

• M1,red is parametrized by G3 = Gr(3, 5),
• Ms (2, 2) ⊂ M1 consisting of stable sheaves, is isomorphic to G3 \ G2,
• M2 consists only of strictly semi-stable sheaves [OL1 ⊕ OL2] with two lines L1, L2

onQ,
• (M1 ∩ M2)red is parametrized by G2, consisting of the equivalence classes [OL1 ⊕
OL2] with two intersecting lines L1, L2 ⊂ Q.

LEMMA 5.19. We have

M(2, 2)∞ ∼= M(2, 2)α ∼= M(2, 2)0+

for all α > 0.

PROOF. As in Proposition 4.5, let (1,F) ∈ Mα(2, 2) be a strictly α-semistable pair and
so it has a subpair (s,F ′) with χF ′(t) = t + c such that c + δ · α = 2+α

2 . In particular we
have F ′ ∼= OL′(c − 1) for a line L′ ⊂ Q. If δ = 1, then we have 2c + α = 2. But since F ′
has a non-zero section, we have c ≥ 1, a contradiction. If δ = 0, then we have c = 2+α

2 . But
the quotient pair (1,F ′′) has χF ′′(t) = t + 1 − c. Since F ′′ ∼= OL′′(−c) with a line L′′, we
have c ≤ 0, a contradiction. Thus there is no wall-crossing among Mα(2, 2)’s. �

PROPOSITION 5.20. We have M∞(2, 2) = N1 ∪N2 with two irreducible components
N1 andN2 of dimension 7 and 6 respectively such that

• N1 andN2 are rational,
• M∞(2, 2) is smooth outsideN1 ∩ N2, and
• (N1 ∩N2)red is of dimension 5 and it consists of stable pairs (1,F) where CF ∈ G2.

PROOF. Let  := (1,F) be a stable pair in M∞(2, 2) and then F is semistable as an
element of M(2, 2), since (1,F) is also in M0+(2, 2). In Proposition 5.11 we have the list of
semistable sheaves and in particular we have h1(F) = 0. Note that the tangent space at [] is
isomorphic to Ext1Q(,) and the obstruction space is Ext2Q(,). By [12, Corollary 1.6],
we get the following exact sequence

0 −→ HomQ(,) −→ HomQ(F ,F) −→ HomC(〈1〉,H 0(F)/〈1〉)
−→ Ext1Q(,) −→ Ext1Q(F ,F) −→ 0

(20)

and an isomorphism Ext2Q(,)
∼= Ext2Q(F ,F).
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Take F ∼= O⊕2
L . Since H 0(F) = H 0(L,O⊕2

L ), any nonzero section s ∈ H 0(F) may
be seen as a non-zero map σ : OL → F . The sheaf σ(OL) is a subsheaf of F obviously
isomorphic to OL and the pair (s, σ (OL)) shows that (s,F) is not α-semistable for any α >
0.

(a1) If F ∼= OC(p) for a smooth conic C and p ∈ C, a pair (s,F) for any non-zero
section s ∈ H 0(OC(p)) is α-stable. In Lemma 5.16, we observed that dim Ext1Q(F ,F) = 6

and so we get dim Ext1Q(,) = 7 by (20). Since the family of such pairs is 7-dimensional,
M∞(2, 2) is smooth at (1,F).

(a2) Take F ∼= OL1 ⊕ OL2 with two skew lines L1, L2 ⊂ Q. As in the following
item (d), any section s = (s1, s2) ∈ H 0(F) with nonzero s1 and s2, defines α-stable pair
(s,F) for any α > 0. Note that dim HomQ(,) = 1 and dim HomQ(F ,F) = 2. Since
dim Ext1Q(F ,F) = 6 by Lemma 5.16, we have dim Ext1Q(,) = 6. Since the family of two
skew lines on Q is 6-dimensional, M∞(2, 2) is smooth at (1,F).

Let N1 be the closure of stable pairs of type (a1) and N2 be the closure of stable pairs of
type (a2). By (a1) and (a2), we get that N1 and N2 are two different irreducible components
of M∞(2, 2).

(b) Take F ∼= OC with C ∈ D2. We have F �∼= O⊕2
L as an OQ-sheaf, because it is

not an OL-sheaf. In particular E is semistable and indecomposable. By (5) we have h0(F) =
2, h1(F) = 0 and the 1-dimensional vector space image V of H 0(OL) by the map induced
by (5) is the 0th-cohomology H 0 of the nilradical of OC . For any s ∈ V \ {0}, the inclusion
(s,OL) → (s,F) shows that (s,F) is not α-semistable for any α > 0. Now take s ∈ H 0(F)\
V .

Claim: (s,F) is α-stable.
Proof of Claim: Assume that (s,F) is not α-stable and take a proper subpair (s′,G)

with μα(s′,G) ≥ μα(s,F). We have G ∼= OL(a) for some a ∈ Z. Since s′ �= 0, we get
a ≥ 0. Since (5) does not split as an OQ-sheaf, we get that the inclusion G → F is the one
induced by (5) and hence s′ ∈ V , a contradiction. �

Now for each α-stable pair  = (s,F), we have dim HomQ(,) = 1 and dim HomQ

(F ,F) = 2. Thus we get dim Ext1Q(,) = 6. Note that any two suitable sections of
F define one isomorphism class of stable pairs (1,F) and so the family of such pairs is 5-
dimensional, because the dimension of D2 is 5. Thus such pairs are contained in N2 and N2

is smooth at (1,F).
(c) Let F ∼= OL1 ⊕ OL2 with D = L1 ∪ L2 a reducible conic and the singular point

p and then we have h0(F) = 2. Let s = (s1, s2) ∈ H 0(OL1 ⊕ OL2) be a non-zero section.
If s1 = 0, then the section (0, s2) factors through OL2 and it destabilize (s,F). Similarly we
get s2 �= 0. If both s1 and s2 are nonzero, then s gives an automorphism of F and so it does
not factor through any proper subsheaf. In particular, (s,F) is α-stable for any α > 0. Note
that dim HomQ(F ,F) = 2 and dim Ext1Q(F ,F) = 8. Since dim HomQ(,) = 1, we have

dim Ext1Q(,) = 8 by (20). Note that the family of this type of pairs is 5-dimensional and
it is contained in (N1 ∩ N2)red due to Lemma 5.6.
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(d) Let F be the non-trivial extension of Cp by OD with D ∈ D1(L) and p ∈ L. We
get h0(F) = 2 and there exists a unique section s up to constant, inducing an extension (14).
For any section s′ ∈ H 0(F) \ 〈s〉, we get an exact sequence (12) and it gives a stable pair
 := (s′,F). Note that HomQ(F ,F) = 2 and dim Ext1Q(F ,F) = 8 by Lemma 5.16. Since

dim HomQ(,) = 1, we have dim Ext1Q(,) = 8. Note that the family of this type of
pairs is 4-dimensional and it is contained in (N1 ∩ N2)red due to Lemma 5.6.

Now N2 is birational to Sym2(P3) and so it is a rational variety of dimension 6. N1 is
birational to I1, since its general point OC(p) with a smooth conicC and p ∈ C is determined
by the pair (C, p). The incidence variety I1 is a rational variety of dimension 7, since I1 is
isomorphic to the Grassmannian bundle Gr(2, T P4(−1)|Q) and T P4(−1)|Q is trivial on a
nonempty subset ofQ. �

REMARK 5.21. The forgetful map ϕ : M∞(2, 2) → M(2, 2) consists of two mor-
phisms ϕi : Ni → Mi for i = 1, 2 that are surjective.

Recall that we have a morphism ψ : H1 → Hilb(2, 1)×Q sending [C] ∈ H1 to (D, p)
with the exact sequence

0 −→ Cp −→ OC −→ OD −→ 0 ,

where D is the maximal locally CM subscheme of C with pure dimension 1. Letting π1 :
I1 → Hilb(2, 1) be the projection to 1st-factor, we obtain the following diagram as a relation
between Hilb(2, 2) and M(2, 2).

Hilb(2, 2) ⊃ H1 ψ−1(I1)red� ��

ψ

��
I1

π1

��

�� ������� N1

ϕ1

��

� � � M∞(2, 2)

ϕ

��
Hilb(2, 1)

red �� M1
� � � M(2, 2)

(21)

By Proposition 5.5, each fibre of ψ is isomorphic to P1 and fibres of π1 over G3 \ G2 are
again isomorphic to P1. Thus π1 ◦ ψ : ψ−1(I1)red → G3 \ G2 is a (P1 × P1)-fibration. Note
that there exists a birational map η : I1 ��� N1 defined by (D, p) �→ OD(p) for a smooth
conic D and p ∈ D.
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