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Abstract. We prove that various notions of supersolutions to the porous medium equa-
tion are equivalent under suitable conditions. More spesifically, we consider weak supersolu-
tions, very weak supersolutions, and m-superporous functions defined via a comparison prin-
ciple. The proofs are based on comparison principles and a Schwarz type alternating method,
which are also interesting in their own right. Along the way, we show that Perron solutions
with merely continuous boundary values are continuous up to the parabolic boundary of a
sufficiently smooth space-time cylinder.

1. Introduction. Our aim is to clarify and extend the connections between various
notions of solutions and supersolutions to the porous medium equation

(1.1) ut −Δum = 0 in ΩT = Ω × (0, T ).

We treat both the case of prescribed boundary values and the purely local notions, and restrict
our attention to the degenerate casem > 1. For the basic theory of the equation and numerous
further references, we refer to the monographs [9], [19], [20] and [21].

There are at least two natural ways to define solutions to (1.1). Weak solutions are de-
fined by multiplying the equation by a suitable test function and integrating by parts once.
In this definition, the function um is assumed to be in a parabolic Sobolev space. In the case
of the boundary value problem, the boundary values are interpreted in a Sobolev sense. The
chief attraction of this notion is that a weak solution itself is an admissible test function after a
mollification in the time direction, which leads to natural energy estimates. On the other hand,
we may integrate by parts twice in the space variable, thus relaxing the regularity assumptions
for solutions. This leads to very weak solutions, a notion which makes sense under the min-
imal assumptions that u and um are integrable. The boundary values are taken into account
via including the appropriate integrals over the lateral boundary and at the initial time. One of
the advantages of the very weak solutions is their stability under convergence. Weak and very
weak solutions with fixed boundary values turn out to be the same. This result is probably
known to experts, at least when the boundary values are sufficiently regular.

It is important to understand not only the solutions, but also supersolutions. Superso-
lutions arise naturally in obstacle problems [2, 4] and problems with measure data [3, 18].
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Furthermore, supersolutions connect the equation to potential theory, providing important
tools such as the Perron method [13]. In the classical theory they also play a central role in
the study of boundary regularity, removability of sets and other fine properties.

There are again various ways to define supersolutions. Weak and very weak supersolu-
tions (Definition 4.1 and Definition 4.2) satisfy the inequality

∂u

∂t
−Δum ≥ 0 ,

the rigorous interpretation being analoguous to the concepts of weak and very weak solu-
tions. Another way is to use a comparison principle: supersolutions are lower semicontinuous
functions which satisfy a parabolic comparison principle with respect to continuous weak so-
lutions. We call these supersolutionsm-superporous functions (Definition 5.1). This is one of
the ways to define superharmonic functions in classical potential theory, and it is amenable
to generalization to nonlinear equations. In the case of the PME, the basic properties of this
class of supersolutions have been established in [11]; see also [12]. Several nice properties
follow immediately from the definition of m-superporous functions. For instance, it is easy to
see that the minimum of two m-superporous functions is also m-superporous. Moreover, the
m-superporous functions form a closed class under increasing convergence.

A natural question is whether the different classes of supersolutions are equivalent. The
similar problem is well understood in the case of p-Laplace type equations, see [14, 17].
However, the question is more challenging for the porous medium equation. For example, the
boundary values cannot be perturbed in the standard way, because constants cannot be added
to solutions. Further difficulties arise when trying to incorporate the very weak notions to the
arguments. Therefore new methods have to be developed.

Our main result is the equivalence of the above classes of supersolutions under suitable
conditions:

THEOREM 1.1. The following properties are equivalent for continuous, nonnegative
functions u.

(1) u is a weak supersolution,
(2) u is a very weak supersolution,
(3) u is m-superporous.

For completeness we also address the question of equivalence of the classes of solutions,
as it is difficult to find a reference where this matter is treated thoroughly. Along the way,
we obtain that Perron solutions with merely continuous boundary values are continuous up to
the parabolic boundary of a sufficiently smooth space-time cylinder, thus complementing the
results of [13].

The natural situation for Theorem 1.1 would be to consider locally bounded lower semi-
continuous functions. Indeed, lower semicontinuity is the natural regularity of weak super-
solutions, see [1], and local boundedness is definitely necessary. Further, the equivalence of
weak supersolutions and m-superporous functions under these weaker assumptions has been
established in [11]. Our contribution is including very weak supersolutions to the theory. The
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necessity of boundedness can be seen by considering the Barenblatt solution

Bm(x, t) =
⎧
⎨

⎩

t−λ
(
C − λ(m−1)

2mn
|x|2
t2λ/n

)1/(m−1)

+ , t > 0 ,

0 , t ≤ 0 ,

where

λ = n

n(m− 1)+ 2
.

The Barenblatt solution Bm is an unboundedm-superporous function, but its gradient fails to
be square integrable in any neighbourhood of the origin, and thus Bm is not a weak superso-
lution.

It is unclear whether the classes are the same, if one only assumes lower semicontinuity.
The crucial point where continuity is used is to show that very weak supersolutions are also
very weak supersolutions with boundary values given by the function itself. This is needed
for proving the comparison principle for very weak supersolutions. Further, there are other
challenges already in the continuous case. Therefore we find the continuity assumption rea-
sonable. Note that equivalence holds for solutions without assuming continuity: nonnegative
very weak solutions turn out to be continuous after a redefinition on a set of zero measure, by
[8].

Yet another way to define supersolutions is viscosity supersolutions, see [5, 6]. This
notion uses pointwise touching test functions. In this paper we focus on the previously men-
tioned classes of supersolutions. A very interesting open question is whether viscosity super-
solutions are equivalent to the other notions of supersolutions as well. The answer is known
to affirmative for equations similar to the p-Laplacian by [10], so one would expect the same
result to hold for the PME as well.

2. Weak solutions. Throughout the work we use the following notation. We work in
space-time cylindersΩT = Ω × (0, T ) ⊂ R

n+1, where Ω ⊂ R
n is a bounded domain, such

that ∂Ω is sufficiently nice, for example smooth or Lipschitz. We denote the lateral boundary
of ΩT by ΣT = ∂Ω × [0, T ] and the parabolic boundary by ∂pΩT = Ω × {0} ∪ ΣT . For
U � Ω , we denote Ut1,t2 = U × (t1, t2). The parabolic boundary of Ut1,t2 is defined as
∂pUt1,t2 = U × {t1} ∪ ∂U × [t1, t2].

We consider the solutions to the boundary value problem

(2.1)

⎧
⎪⎪⎨

⎪⎪⎩

ut −Δum = 0 on ΩT ,

u(x, 0) = u0(x) ,

um = g on ΣT ,

where u0 is in H 1(Ω) and g is a continuous function defined in ΩT such that g ∈ L2(0, T ;
H 1(Ω)). Further, we require that the initial and lateral boundary values are compatible in the
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sense that the function ϕ : ∂pΩT → R defined by

ϕ(x, t) =
{
g(x, t)1/m , (x, t) ∈ ΣT ,
u0(x) , (x, t) ∈ Ω × {0}

is continuous. For simplicity, we will assume that g and u0 are non-negative and thus the
solutions will be non-negative as well by the comparison principle, which will be proved in
Section 3. Hence we may assume that the solutions are always non-negative.

DEFINITION 2.1. We say u is a local weak solution to (1.1) if um ∈ L2
loc(0, T ;

H 1
loc(Ω)) and u satisfies the equality

∫

ΩT

(−uϕt + ∇um · ∇ϕ) dx dt = 0

for any ϕ ∈ C∞
0 (ΩT ).

A function u is a weak solution to the boundary value problem (2.1), if um ∈ L2(0, T ;
H 1(Ω)), um − g ∈ L2(0, T ;H 1

0 (Ω)), and
∫

ΩT

(−uϕt + ∇um · ∇ϕ) dx dt =
∫

Ω

u0(x)ϕ(x, 0) dx

for all smooth test functions ϕ with compact support in space, vanishing at the time t = T .

We will show that the boundary value problem (2.1) has at most one weak solution. This
follows by using a clever test function devised by Oleı̆nik.

LEMMA 2.2. Weak solutions to the boundary value problem (2.1) are unique.

PROOF. The proof is a standard application of the Oleı̆nik test function

ϕ =
{∫ T

t (u
m − vm) ds, if 0 ≤ t < T ,

0 otherwise.

For a detailed proof, we refer to [19, Theorem 5.3]. �

3. Very weak solutions. In this section we consider another natural class of general-
ized solutions, very weak solutions. This concept is defined as follows.

DEFINITION 3.1. We say u ∈ L1
loc(ΩT ) is a local very weak solution to (1.1) if um ∈

L1
loc(ΩT ) and u satisfies the equality

∫

ΩT

(umΔη + uηt ) dx dt = 0

for any η ∈ C∞
0 (ΩT ).

A function u ∈ L1(ΩT ) is a very weak solution to the boundary value problem (2.1), if
um ∈ L1(ΩT ) and

∫

ΩT

(umΔη + uηt ) dx dt +
∫

Ω

u0(x)η(x, 0) dx =
∫

ΣT

g∂νη dS dt
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for all smooth η vanishing on ΣT and at time t = T . Note that the test functions η are not
required to have compact support in ΩT .

We prove the comparison principle for the very weak solutions to the boundary value
problem (2.1). That is, if u and v are very weak solutions to (2.1) such that u ≥ v on ∂pΩT
and um, vm ∈ L2(ΩT ), then u ≥ v in ΩT . In fact, we only need to assume u is a very weak
supersolution and v is a very weak subsolution, see Lemma 4.4. First, we present a technical
lemma, which will be used in proving the comparison principles for very weak solutions and
very weak supersolutions. The idea is, that in both cases the proof can be reduced to using the
following lemma.

LEMMA 3.2. Let u, v ∈ L2(ΩT ) and suppose um, vm ∈ L2(ΩT ). If
∫

ΩT

(
(vm − um)Δϕ + (v − u)ϕt

)
dx dt ≥ 0

for every smooth ϕ vanishing on ΣT , then u ≥ v in ΩT .

The proof of this lemma can be found in [19, Theorem 6.5]. Next, we will show that the
comparison principle for very weak solutions follows from this lemma.

LEMMA 3.3. Let u, v ∈ L2(ΩT ) be very weak solutions to the boundary value prob-
lem (2.1) with boundary and initial data g, u0 and h, v0 respectively. Suppose that um, vm ∈
L2(ΩT ). If u0 ≥ v0 in Ω and g ≥ h on ΣT , then u ≥ v in ΩT .

PROOF. By the definition of very weak solutions,
∫

ΩT

( − umΔϕ − uϕt
)
dx dt +

∫

ΣT

gm∂νϕ dS dt −
∫

Ω

u0(x)ϕ(x, 0) dx = 0

and
∫

ΩT

( − vmΔϕ − vϕt
)
dx dt +

∫

ΣT

hm∂νϕ dS dt −
∫

Ω

v0(x)ϕ(x, 0) dx = 0

for every smooth ϕ vanishing on ΣT . Subtracting the equalities gives

(3.1)

∫

ΩT

(
(vm − um)Δϕ + (v − u)ϕt

)
dx dt −

∫

ΣT

(hm − gm)∂νϕ dS dt

+
∫

Ω

(v0(x)− u0(x))ϕ(x, 0) dx = 0.

Now suppose ϕ ≥ 0 in ΩT . Since u0 ≥ v0 onΩ , we see that
∫

Ω

(v0 − u0)ϕ dx ≤ 0 .

The function ϕ vanishes on the lateral boundaryΣT , so ∂νϕ ≤ 0, and since g ≥ h onΣT , we
have

∫

ΣT

(h− g)∂νϕ dS dt ≥ 0 .
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Using the estimates above, we conclude
∫

ΩT

(
(vm − um)Δϕ + (v − u)ϕt

)
dx dt ≥ 0 .

Now we may apply Lemma 3.2 to conclude the proof. �

REMARK 3.4. The comparison principle in Lemma 3.3 holds also for finite unions of
space-time cylindersK = ⋃N

i=1 U
i

ti1,t
i
2
. This can be proved by considering an enumeration sk

of the times t ij , i = 1, . . . , N , j = 1, 2, where s1 < s2 < · · · < sM and proving the result
inductively for the sets K ∩ (Rn × [si, si+1]) using Lemma 3.3.

We use the following lemma from [13] to bypass the fact that we may not add constants
to solutions. We will present the proof for the reader’s convenience.

LEMMA 3.5. Suppose g is a continuous, non-negative function in ΩT , such that g ∈
L2(0, T ;H 1(Ω)) and suppose u0 ∈ H 1(Ω) is non-negative. Let ε ∈ (0, 1). Denote by
gε = g + ε and u0,ε = u0 + ε. Let u and uε be a weak solutions to (2.1) with boundary and
initial data g, u0 and gε, u0,ε respectively. Then

∫

ΩT

(uε − u)(umε − um) dx dt ≤ ε|ΩT |(M + 1)+ ε|ΩT |(M + 1)m ,

where M = max{supΩT g, supΩ u0}.
PROOF. Since u and uε are weak solutions, the equalities

∫

ΩT

( − uϕt + ∇um · ∇ϕ)
dx dt =

∫

Ω

u0(x)ϕ(x, 0) dx and

∫

ΩT

( − uεϕt + ∇umε · ∇ϕ)
dx dt =

∫

Ω

u0,ε(x)ϕ(x, 0) dx

hold. Now a subtraction gives
∫

ΩT

( − (uε − u)ϕt + ∇(umε − um) · ∇ϕ)
dx dt =

∫

Ω

(u0,ε − u0)ϕ(x, 0) dx .

We will use an Oleı̆nik type test function defined as

ϕ(x, t) =
{∫ T

t (u
m
ε − um − ε) ds , t ∈ [0, T ) ,

0 otherwise.

Now ϕ has the properties

ϕt = −(umε − um − ε) and ∇ϕ =
∫ T

t

∇(umε − um) ds .

Thus
∫

ΩT

(

(uε − u)(umε − um − ε)+ ∇(umε − um) ·
( ∫ T

t

∇(umε − um) ds

))

dx dt
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=
∫

Ω

(u0,ε − u0)

(∫ T

0
(umε − um − ε) ds

)

dx .

We observe that

∫

ΩT

∇(umε − um) ·
(∫ T

t

∇(umε − um) ds

)

dx dt

= 1

2

∫

Ω

(∫ T

0
(∇umε − ∇um) ds

)2

dx ≥ 0 and

− εT

∫

Ω

(u0,ε − u0) dx ≤ 0 .

Hence, we have the estimate
∫

ΩT

(uε − u)(umε − um) dx dt

≤ ε

∫

ΩT

(uε − u) dx dt +
∫

Ω

(u0,ε − u0)

(∫ T

0
(umε − um) ds

)

dx .

(3.2)

By the comparison principle u ≤ M in ΩT and thus by construction of gε and u0,ε, the
comparison principle gives uε ≤ M + 1 in ΩT . Then the right hand side of (3.2) can be
bounded from above using

uε − u ≤ M + 1 ,

u0,ε − u0 ≤ ε and

umε − um ≤ (uε − u)m ≤ (M + 1)m .

We have
∫

ΩT

(uε − u)(umε − um) dx dt ≤ ε(M + 1)|ΩT | + ε(M + 1)m|ΩT | . �

For proving the equivalence of local weak and very weak supersolutions, we need to
consider solutions to the boundary value problem (2.1) when the functions u0 and g are only
assumed to be continuous. In such a case, the previous interpretation of the boundary and
initial conditions is no longer available, so we use the notion of Perron solutions [13] instead.
Perron solutions are weak solutions in the interior, but the question whether they attain the
correct boundary values was left open in [13]. Next we show that this is indeed the case in
sufficiently smooth cylinders, by using a barrier argument. This justifies calling the Perron
solution the solution to the boundary value problem (2.1).

In order to construct a suitable lower barrier, we need to show the existence of signed
solutions to the boundary value problem with smooth boundary values. This will be done in
the next lemma. The proof follows the ideas outlined in Chapter 5 of [19].
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LEMMA 3.6. Let ΩT = Ω × (0, T ), where Ω ⊂ R
n is a bounded domain. Let g be a

smooth function defined in a neighbourhood of ΣT and let u0 ∈ C∞(Ω). Then there exists a
weak solution to the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

ut −Δ(|u|m−1u) = 0 on ΩT ,

u(x, 0) = u0(x) ,

um = g on ΣT .

PROOF. Let φ(s) = |s|m−1s. Define a smooth function φ1 such that

φ1(s) =
{
φ(s) for |s| ≥ 1 ,

cs for |s| ≤ 1
2 ,

φ1 is convex for s ≥ 0 and φ1(−s) = −φ1(s). Now define φn(s) = n−mφ1(ns), where
n = 1, 2, . . . . Then φn(s) = φ(s) for |s| ≥ 1

n
and φ′

n(s) > 0 for every s ∈ R. Moreover
φn → φ uniformly on compact sets. We consider the approximate problem

(3.3)

⎧
⎪⎪⎨

⎪⎪⎩

ut −Δφn(u) = 0 on ΩT ,

u(x, 0) = u0(x) ,

φ(u) = g on ΣT .

By the quasilinear regularity theory (see [15]), there exists a smooth solution un to (3.3).
Moreover, by the maximum principle we have

−N ≤ un(x, t) ≤ M in ΩT ,

where N = max{sup(−u0), sup(−g)} and M = max{sup(u0), sup(g)}. We multiply the
equation (un)t−Δφn(un) = 0 by a test function φn(un)−g ∈ L2(0, T ;H 1

0 (Ω)) and integrate
by parts to get

∫

ΩT

(un)t (φn(un)− g) dx dt +
∫

ΩT

∇φn(un)
(∇φn(un)− ∇g

)
dx dt = 0 .

Therefore

(3.4)

∫

ΩT

|∇φn(un)|2 dx dt =
∫

ΩT

∇φn(un) · ∇g dx dt −
∫

ΩT

(un)tφn(un) dx dt

+
∫

ΩT

(un)tg dx dt.

Let Ψn denote the primitive of φn, defined as

Ψn(s) =
∫ s

0
φn(t) dt .

We observe that

(Ψn(un))t = (un)tΨ
′
n(un) = (un)tφn(un) ,
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and thus
∫

ΩT

(un)tφn(un) dx dt =
∫

Ω

Ψn(un(x, T )) dx −
∫

Ω

Ψn(u0(x)) dx .(3.5)

To control the last term on the right hand side of (3.4), we integrate by parts to get
∫

ΩT

(un)tg dx dt = −
∫

ΩT

ungt dx dt +
∫

Ω

un(x, T )g(x, T ) dx

−
∫

Ω

u0(x)g(x, 0) dx .
(3.6)

Collecting the facts from (3.4), (3.5) and (3.6) and using Young’s inequality gives us an upper
bound for the L2-norm of the gradient

∫

ΩT

|∇φn(un)|2 dx dt ≤C
( ∫

ΩT

|∇g|2 dx dt +
∫

Ω

|Ψn(u0(x))| dx

+
∫

Ω

|Ψn(un(x, T ))| dx +
∫

ΩT

|un||gt | dx dt

+
∫

Ω

|un(x, T )||g(x, T )| dx +
∫

Ω

|u0(x)||g(x, 0)| dx
)

.

Thus ∇φn(un) is uniformly bounded in L2(ΩT ). In order to control the time derivative
(φn(un))t , we multiply the equation (un)t −Δφn(un) = 0 by the test function ζ(t)(φn(un)−
g)t , where ζ(t) is a smooth cut-off function, such that 0 ≤ ζ ≤ 1, ζ(t) = 1 for t ∈ (ε, T − ε),
and ζ(0) = ζ(T ) = 0. Integrating by parts gives

∫

ΩT

ζ
(
φn(un)− g

)

t
(un)t dx dt = −

∫

ΩT

ζ∇φn(un) · ∇(
φn(un)− g

)

t
dx dt ,

which can be written as
∫

ΩT

ζφn(un)t (un)t dx dt =
∫

ΩT

ζgtut dx dt −
∫

ΩT

ζ∇φn(un) · ∇φn(un)t dx dt

+
∫

Ωt

ζ∇φn(un) · ∇g dx dt

= I1 + I2 + I3 .

We integrate I1 by parts in the time variable to get

I1 =
∫

ΩT

ζgtut dx dt = −
∫

ΩT

(
ζgt

)

t
un dx dt .

Integrating I2 by parts gives

I2 = −
∫

ΩT

ζ∇φn(un) · ∇φn(un)t dx dt

=
∫

ΩT

(
ζ∇φn(un)

)

t
· ∇φn(un) dx dt
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=
∫

ΩT

ζ ′|∇φn(un)|2 dx dt +
∫

ΩT

ζ∇φn(un) · ∇φn(un)t dx dt,

and therefore

I2 = 1

2

∫

ΩT

ζ ′|∇φn(un)|2 dx dt .

Finally, I3 can be bounded by

|I3| =
∣
∣
∣
∣

∫

Ωt

ζ∇φn(un) · ∇g dx dt

∣
∣
∣
∣

≤
(∫

ΩT

ζ 2|∇g|2 dx dt
)1/2 (∫

ΩT

|∇φn(un)|2 dx dt
)1/2

.

Since un is bounded, φ′
n(un) ≤ C for some C. Thus by (3.7), we get

∫

Ωε,T−ε
|φn(un)t |2 dx dt =

∫

Ωε,T−ε
|(un)tφ′

n(un)|2 dx dt ≤
∫

ΩT

ζ |(un)2t φ′
n(un)| dx dt

≤ C
(|I1| + |I2| + |I3|

)
.

Hence, φn(un)t is uniformly bounded in L2(Ω × (ε, T − ε)). In conclusion, φn(un) is
uniformly bounded in H 1(Ω × (ε, T − ε)). By compactness, there exists a subsequence
φnj (unj ) → w ∈ L2(Ω × (ε, T − ε)) almost everywhere. It follows that w ∈ L2((0, T ),
H 1(Ω)). The sequence unj is uniformly bounded, so it converges to some u almost ev-
erywhere (taking a subsequence, if necessary) and φnj (unj ) → φ(u) almost everywhere.
Thereforew = φ(u) almost everywhere. Since un is a classical solution to (3.3), it satisfies

∫

ΩT

(−unϕt + ∇φn(un) · ∇ϕ) dx dt =
∫

Ω

u0(x)ϕ(x, 0) dx .

By weak compactness, ∇φn(un) → ∇φ(u) weakly, thus showing that indeed u is a weak
solution to the problem. �

We are now ready to show that Perron solutions attain the correct boundary values in the
classical sense.

LEMMA 3.7. Let the functions g ∈ C(ΩT ) and u0 ∈ C(Ω) be non-negative and
compatible. Then the Perron solution to the boundary value problem (2.1) attains the correct
boundary values continuously.

PROOF. We will show the claim by a barrier type argument. To simplify notation we
write

ϕ(x, t) =
{
g(x, t)1/m , (x, t) ∈ ΣT ,
u0(x) , (x, t) ∈ Ω × {0} .

Fix ξ ∈ ∂pΩT and take ε > 0. We will show that there exists a supersolution v+ ∈ Uϕ , such
that limz→ξ v

+(z) = ϕ(ξ)+ε and a subsolution v− ∈ Lϕ , such that limz→ξ v
−(z) = ϕ(ξ)−ε.

Here Uϕ and Lϕ denote the upper and lower Perron classes respectively.
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The upper barrier v+ can be constructed by solving the boundary value problem (2.1)
with boundary values ϕ + ε. A continuous solution exists by the quasilinear theory, as de-
scribed in the proof of the previous lemma. Moreover v+ is continuous up to the boundary
by [22]. In order to construct the lower barrier v−, we will consider a small neighbourhood
E of ξ . Let f be a smooth function, such that f (ξ) = ϕ(ξ)− ε and f = −k on ∂p(E ∩ΩT )
outside a neighbourhood of ξ . By Lemma 3.6, there exists a weak solution ṽ in E ∩ΩT with
boundary values f . We extend ṽ to the whole ΩT by defining

v− =
{

max{ṽ,−k} in E ∩ΩT ,
−k in ΩT \ E .

By choosing k large enough, we have v− ∈ Lϕ and v− = ṽ in E ∩ΩT . Again, the continuity
of v− up to the boundary is provided by [22].

By the definition of the Perron solution, v− ≤ u ≤ v+ and thus

ϕ(ξ)− ε ≤ lim inf
z→ξ

u(z) ≤ lim sup
z→ξ

u(z) ≤ ϕ(ξ)+ ε.

Since this holds for every ε > 0, we conclude that limz→ξ u(z) = ϕ(ξ). �

We are now ready to prove the first of the main results, the equivalence of the different
notions of solutions to the boundary value problem. We emphasize the fact that the boundary
and initial values are only assumed to be continuous.

THEOREM 3.8. Let u be the Perron solution and v a very weak solution to the bound-
ary value problem

⎧
⎪⎪⎨

⎪⎪⎩

ut −Δum = 0 on ΩT ,

u(x, 0) = u0(x),

um = g on ΣT ,

with continuous, compatible boundary values u0 and g . If vm ∈ L2(ΩT ), then u = v.

PROOF. The claim follows from the comparison principle for very weak solutions
(Lemma 3.3) as soon as we show that the Perron solution u is also a very weak solution
to the boundary value problem. For smooth boundary values, this follows by Green’s formula
from the fact that the Perron solution also attains the correct boundary values in the Sobolev
sense, see Theorem 5.8 in [13].

It remains to reduce the general case to the smooth case. We do this by an approximation
argument. Define as before

ϕ(x, t) =
{
g(x, t)1/m , (x, t) ∈ ΣT ,
u0(x) , (x, t) ∈ Ω × {0} ,

extend ϕ continuously to the whole space and choose smooth functions ϕj converging to ϕ
uniformly and such that

ϕj ≤ ϕ ≤ ϕj + 1/j .
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Further, let uj and vj be the Perron solutions with boundary values ϕj and ϕj + 1/j , respec-
tively. Since uj ≤ u and

u− uj ≤ vj − uj → 0

as j → ∞ by Lemma 3.5, we have that uj → u pointwise in ΩT . Now uj is a very weak
solution to the boundary value problem with boundary values given by ϕj , and passing to the
limit j → ∞ in the very weak formulation for uj shows that u is a very weak solution to the
boundary value problem with boundary values given by ϕ. �

The previous theorem together with the continuity result in [8] implies the equivalence
of local weak and very weak solutions.

COROLLARY 3.9. A nonnegative function u is a local very weak solution to the PME
if and only if u is a local weak solution to the PME.

PROOF. By [8], local very weak solutions are continuous in the interior of ΩT . Thus,
following the proof of Lemma 4.3 below, we may show that local very weak solutions are
solutions to the boundary value problem (2.1) in space-time cylinders Bt1,t2 � ΩT where the
base is a ball, with boundary values defined by the function itself. Therefore the result follows
from Theorem 3.8 and the fact that being a weak solution is a local property. �

4. Supersolutions. In this section, we turn our attention to supersolutions. The defi-
nitions of weak supersolutions and very weak supersolutions are analogous to those of weak
solutions and very weak solutions.

DEFINITION 4.1. A function u is a (local) weak supersolution to (1.1) if um ∈
L2

loc(0, T ;H 1
loc(Ω))

∫

ΩT

( − uϕt + ∇um · ∇ϕ)
dx dt ≥ 0

for all non-negative, compactly supported smooth test functions ϕ.

As in the case of weak solutions, it is natural to consider also very weak supersolutions.

DEFINITION 4.2. A function u ∈ L1
loc(ΩT ) is a (local) very weak supersolution to

(1.1), if um ∈ L1
loc(ΩT ) and

∫

ΩT

( − uϕt − umΔϕ
)
dx dt ≥ 0

for all non-negative, compactly supported smooth test functions ϕ.

As the first step in relating the various classes of supersolutions we will show that contin-
uous very weak supersolutions can be seen as supersolutions to the boundary value problem
in a space-time cylinder, whose base is a ball, with boundary values defined by the function
itself. The known argument for solutions (see e.g. [9]) carries over to supersolutions without
serious difficulties. However, the continuity assumption is essential in the proof.
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LEMMA 4.3. Let u be a non-negative, continuous very weak supersolution in ΩT .
Then for any Br ×(t1, t2) � ΩT , u is a very weak supersolution in Br ×(t1, t2) with boundary
values u

∣
∣
∂pBr×(t1,t2).

PROOF. Let η be a smooth function in Br × (t1, t2) vanishing on ∂Br × (t1, t2). For
ε ∈ (0, r) and θ ∈ [0, ε) let Ψεθ be the radial, continuous function satisfying

Ψεθ(ρ) =
{

1 for 0 ≤ ρ ≤ r − ε ,

0 for ρ ≥ r − θ ,

and

ΔΨεθ (x) = n− 1

|x| Ψ ′
εθ (|x|)+ Ψ ′′

εθ (|x|) = 0 in Br−θ \ Br−ε .
By solving the equation we obtain

Ψεθ (ρ) = ρ

θ − ε
+ r − θ

ε − θ
, n = 1 ,

Ψεθ (ρ) = ln(ρ)− ln(r − θ)

ln(r − ε)− ln(r − θ)
, n = 2 ,

Ψεθ (ρ) = (r − ε)n(ρn−2(r − θ)2 − (r − θ)n)

(r − ε)n(r − θ)2 − (r − ε)2(r − θ)n

1

ρn−2
, n > 2 .

From now on, we will assume that n > 2 for simplicity. A similar reasoning can be carried
out also in the cases n = 1, 2. We observe that

∇Ψεθ (x) =
{
(n−2)(r−ε)n−2(r−θ)n−2

(r−ε)n−2−(r−θ)n−2
x

|x|n = −Wεθ
x

|x|n in Br−θ \ Br−ε ,
0 otherwise.

Now ΔΨεθ can be seen as the distribution
∫

B

ϕΔΨεθ dx = Wεθ

(∫

∂Br−θ
ϕ dS −

∫

∂Br−ε
ϕ dS

)

.

Let Kν be a standard mollifier, i.e. a smooth, positive, radially symmetric function sup-
ported in Bν(0) with the property

∫
Kν dx = 1. Define

Ψ ν
εθ (x) = Ψεθ ∗Kν(x) .

Let φλ(t) be smooth functions with compact support in (0, T ), converging to

Ht1(t) =
{

0 for t < t1 ,

1 for t ≥ t1 ,

as λ → 0.
Define ϕ(x, t) = Ψ ν

εθ(x)φλ(t)η(x, t). Now ϕ is a smooth, compactly supported function
in ΩT and thus

(4.1)
∫

ΩT

( − uϕt − umΔϕ
)
dx dt ≥ 0 .
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Since

Δϕ = φλ(Ψ
ν
εθΔη + 2∇Ψ νεθ · ∇η + ηΔΨ ν

εθ) and

ϕt =Ψ ν
εθ (φληt + (φλ)t η) ,

inequality (4.1) can be written as

0 ≤
∫ t2

t1

∫

B

( − umφλΨ
ν
εθΔη − uΨ ν

εθφληt
)
dx dt −

∫ t2

t1

∫

B

2umφλ∇Ψ ν
εθ · ∇η dx dt

−
∫ t2

t1

∫

B

umφληΔΨ
ν
εθ dx dt −

∫ t2

t1

∫

B

uΨ ν
εθ(φλ)tη dx dt = I1 + I2 + I3 + I4 .

(4.2)

Letting ν → 0, θ → 0, ε → 0 and λ → 0 gives us

I1 →
∫ t2

t1

∫

B

( − umΔη − uηt
)
dx dt .

Letting ν → 0 and λ → 0 and taking supp(∇Ψεθ ) into account,

I2 = −2
∫ t2

t1

∫

Br−θ\Br−ε
um∇Ψεθ · ∇η dx dt

= 2Wεθ

∫ t2

t1

∫

Br−θ\Br−ε
um

x

|x|n · ∇η dx dt

= 2Wεθ

∫ t2

t1

∫ r−θ

r−ε

∫

Sn−1
um∂νη

∣
∣|x|=ρ dS dρ dt

→ 2Wε0

∫ t2

t1

∫ r

r−ε

∫

Sn−1
um∂νη

∣
∣|x|=ρ dS dρ dt

as θ → 0. Since

Wε0 = (n− 2)(r − ε)n−2rn−2

rn−2 − (r − ε)n−2 = (r − ε)n−2rn−2

εξn−3 ,

where ξ ∈ (r − ε, r), we get

2Wε0

∫ t2

t1

∫ r

r−ε

∫

Sn−1
um∂νη

∣
∣|x|=ρ dS dρ dt

= 2
(r − ε)n−2rn−2

ξn−3

∫ t2

t1

1

ε

∫ r

r−ε

∫

Sn−1
um∂νη

∣
∣|x|=ρ dS dρ dt

→ 2rn−1
∫ t2

t1

∫

Sn−1
um∂νη

∣
∣|x|=r dS dt.

Since u is continuous,

I3 → −Wεθ

∫ t2

t1

(∫

∂Br−θ
umη dS −

∫

∂Br−ε
umη dS

)

dt ,
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as ν → 0 and λ → 0, due to the weak convergence of the measures ΔΨ ν
εθ . Note that the

continuity assumption is essential here, as we use weak convergence for signed measures.
Now, as θ → 0 we get

−Wε0

∫ t2

t1

∫

Sn−1
um

(
η
∣
∣|x|=r − η

∣
∣|x|=r−ε

)
dS dt

= − (r − ε)n−2rn−2

ξn−3

∫ t2

t1

∫

Sn−1
um

(
η
∣
∣|x|=r − η

∣
∣|x|=r−ε

ε

)

dS dt

→ −rn−1
∫ t2

t1

∫

Sn−1
um∂νη

∣
∣|x|=r dS dt.

Finally, letting ν → 0, θ → 0 and ε → 0 gives us

I4 → −
∫ t2

t1

∫

B

u(φλ)tη dx dt → −
∫

B

u(x, 0)η(x, 0) dx

as λ → 0. Now we may conclude from inequality (4.2) that
∫ t2

t1

∫

B

( − umΔη − uηt
)
dx dt +

∫ t2

t1

∫

∂B

um∂νη dS dt

−
∫

B

u(x, 0)η(x, 0) dx ≥ 0 . �

The next step is to show that continuous very weak supersolutions satisfy the comparison
principle with continuous very weak solutions in the special case where we look at a cylinder
whose base is a ball. Since weak solutions are also very weak solutions, this lemma is the key
to showing that continuous very weak supersolutions are indeed m-superporous functions in
the sense of Definition 5.1 below.

LEMMA 4.4. Let u be a continuous very weak supersolution and let v be a continuous
very weak solution in ΩT . Let Ut1,t2 = Br × [t1, t2] � ΩT . Then if u ≥ v on ∂pUt1,t2 , then
u ≥ v in Ut1,t2 .

PROOF. Since u is a continuous very weak supersolution, Lemma 4.3 gives
∫ t2

t1

∫

B

( − umΔϕ − uϕt
)
dx dt +

∫ t2

t1

∫

∂B

um∂νϕ dS dt

−
∫

B

u(x, 0)ϕ(x, 0) dx ≥ 0

for every smooth ϕ vanishing on ∂Br × (t1, t2). By definition of very weak solutions
∫ t2

t1

∫

B

( − vmΔϕ − vϕt
)
dx dt +

∫ t2

t1

∫

∂B

vm∂νϕ dS dt

−
∫

B

v(x, 0)ϕ(x, 0) dx = 0.
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Subtracting the inequalities gives
∫ t2

t1

∫

B

(
(vm − um)Δϕ + (v − u)ϕt

)
dx dt −

∫ t2

t1

∫

∂B

(vm − um)∂νϕ dS dt

+
∫

B

(v(x, 0)− u(x, 0))ϕ(x, 0) dx ≥ 0 .

In fact, we could have assumed v is only a very weak subsolution to get the same inequality.
Now we are at similar situation as in (3.1) with inequality instead of equality. However, the
same reasoning still applies, and thus we may use Lemma 3.2 to conclude that u ≥ v in
Ut1,t2 . Note that u and v are continuous functions and thus u, v, um, vm ∈ L2(Ut1,t2) so the
assumptions of Lemma 3.3 hold for u and v. �

The following lemma extends the comparison property to finite unions of space-time
cylinders whose bases are balls. We utilize a Schwarz type alternating method. The proof is
delicate since we need to work around the fact that constants cannot be added to solutions.

LEMMA 4.5. Let Bi ⊂ R
n, i = 1, . . . , N be a collection of balls and let Ui = Bi ×

(t1, t2). Set K = ⋃N
i=1 Ui . Suppose that u satisfies the comparison principle for cylinders

whose base is a ball in a neighbourhood ofK . That is, if h is a continuous weak solution such
that h ≤ u on ∂pU , where U is a cylinder whose base is a ball, then h ≤ u in U .

Then the comparison principle for u holds also in K . That is, if h is a solution of the
PME in K , which is continuous up to the boundary of K , then h ≤ u on ∂pK implies h ≤ u

in K .

PROOF. Let δ > 0. Take ϕ ∈ C∞(K) ∩ C(K) such that

ϕ ≤ u in K ∪ ∂pK ,
h− δ ≤ ϕ on ∂pK .

Let Ψ0 be a continuous weak subsolution to the PME in K satisfying

Ψ0 = ϕ on ∂pK ,

Ψ0 ≤ ϕ in K .

Such a subsolution can be constructed by the arguments leading to Theorem 2.6 of [4]. We
want to construct an increasing sequence of continuous weak subsolutions vk such that vk →
w, where w is a continuous weak solution. Set v0 = Ψ0. For 1 ≤ i ≤ N and j ≥ 0 we define
the functions recursively by

vNj+i =
{
ṽNj+i−1 in Ui ,

vNj+i−1 in K \ Ui ,
where ṽNj+i−1 is the continuous weak solution in Ui with boundary values vNj+i−1 on ∂pUi .
Existence and continuity of ṽNj+i−1 are provided by [13]. Thus vk is a continuous weak
subsolution for each k.
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We want to show that the sequence vk converges to a continuous weak solution. Since
vNj+i−1 is a continuous weak subsolution in Ui and vNj+i is a continuous weak solution in
Ui , we may use the comparison principle for subsolutions in Ui . By construction, vNj+i−1

and vNj+i coincide on ∂pUi and thus vNj+i−1 ≤ vNj+i in Ui . Hence vk is an increasing
sequence.

The function v0 has been chosen in such a way, that v0 ≤ ϕ ≤ u in K . Suppose
vNj+i−1 ≤ u in K . Now vNj+i ≤ u on ∂pUi by construction and therefore since u satis-
fies the comparison principle in U by assumption, vNj+i ≤ u in Ui . It follows by induction,
that vk ≤ u in K for all k. Now vk is bounded and increasing and thus vk → w ≤ u for some
w in K .

Weak solutions are locally Hölder continuous (see [7]), so for each z ∈ K , there are
iz ∈ N and rz > 0 such that B(z, rz) ⊂ Uiz and vNj+iz is Hölder continuous in B(z, rz) for
every j . Therefore the subsequence vNj+iz converges to a continuous function in B(z, rz).
Since vk → w, we conclude that w is continuous in K . To show the continuity of w up to the
boundary, let hϕ be the continuous weak solution in K , with boundary values ϕ on ∂pK . By
construction v0 ≤ w and by the comparison principlew ≤ hϕ inK ∪ ∂pK . Since v0 = hϕ on
∂pK and v0, hϕ are continuous, we conclude that w is continuous in K ∪ ∂pK .

Finally, we need to show that w is indeed a continuous weak solution in K . It suffices to
show that w is a continuous weak solution in Uρi = Bi0 × (t1, t2 − ρ) for every 1 ≤ i0 ≤ N

and ρ > 0. The sequence vk is increasing, each vk is continuous in K and w is continuous in
K ∪ ∂pK . Therefore vk → w uniformly in K ∩ {t ≤ t2 − ρ}. Thus for every ε > 0 there is
jε such that for j ≥ jε, we have

|w − vNj+i0 | < ε in Uρi0 .

Let w′ be a continuous weak solution in Uρi0 with boundary values w on ∂pU
ρ
i0

. Now

vNj+i0 ≤ w′ + ε , and w′ ≤ vNj+i0 + ε on ∂pU
ρ
i0
.

Let wε be the continuous weak solution in Uρi0 with boundary values w′ + ε on ∂pU
ρ
i0

and let vε be the continuous weak solution in Uρi0 with boundary values vNj+i0 + ε on ∂pU
ρ
i0

.

Then by the comparison principle for weak solutions vNj+i0 ≤ wε and w′ ≤ vε in Uρi0 . Since

|w′ − vNj+i0 | = (w′ − vNj+i0 )+ + (vNj+i0 − w′)+
≤ (wε − vNj+i0 )+ (vε −w′) ,

we may use Lemma 3.5 to conclude |vNj+i0 − w′| → 0 uniformly in Uρi0 (passing to a
subsequence, if necessary). Therefore we may assume

vNj+i0 − ε ≤ w′ ≤ vNj+i0 + ε in U
ρ
i0
.

Now

|w −w′| ≤ |w − vNj+i0 | + |vNj+i0 −w′| < 2ε in U
ρ
i0
.
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Letting ε → 0 shows that w′ = w and thus w is a continuous weak solution in Uρi0 . Denote
by wδ the continuous weak solution in K with boundary values ϕ + δ on ∂pK . Then wδ ≥ h

on ∂pK and thus by comparison principle for the continuous weak solutions, the inequality
holds in K . Therefore

0 ≤ (h−w)+(hm −wm)+ ≤ (wδ − w)(wmδ − wm) .

Lemma 3.5 gives us

0 ≤
∫

K

(h−w)+(hm − wm)+ dx dt ≤
∫

K

(wδ −w)(wmδ −wm) dx dt

≤ δ|K|(supϕ + 1)+ δ|K|(supϕ + 1)m .

Since this holds for any δ > 0, letting δ → 0 shows that h ≤ w in K . On the other hand,
w ≤ u by construction and thus h ≤ u as we wanted. �

5. m-superporous functions. Another important class of supersolutions is the class
of m-superporous functions, defined in terms of a comparison principle with respect to con-
tinuous weak solutions. This class is analoguous to superharmonic functions in classical po-
tential theory, where the definition is due to Riesz.

DEFINITION 5.1. A function u : ΩT → [0,∞] is m-superporous, if

(1) u is lower semicontinuous,
(2) u is finite in a dense subset of ΩT , and
(3) the following parabolic comparison principle holds: Let Ut1,t2 � ΩT , and let h be a

weak solution to the PME which is continuous in Ut1,t2 . Then, if h ≤ u on ∂pUt1,t2 ,
h ≤ u also in Ut1,t2 .

Our aim in this section is to is to connect m-superporous functions to the notions of
weak and very weak supersolutions, i.e. to prove Theorem 1.1. The first step is the next
lemma, which shows that continuous very weak supersolutions are m-superporous. This is
essentially a consequence of Lemma 4.5, but some care is again required due to the fact that
constants may not be added to solutions.

LEMMA 5.2. Let u be a continuous very weak supersolution to (1.1) inΩT . Then u is
m-superporous.

PROOF. Let Ut1,t2 � ΩT and let h be a continuous weak solution such that h ≤ u on
∂pUt1,t2 . We want to show, that h ≤ u in Ut1,t2 . Take ε > 0 and define the set

D = {(x, t) ∈ Ut1,t2 : h ≥ u+ ε} .
Now D is compact and by the assumptionD ⊂ U × [t1, t2]. ThusD has a finite covering

K =
N⋃

i=1

Bi × [t1, t2] ,
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where Bi are balls, such that Bi ⊂ U . SinceD ⊂ K , we have ∂pK ⊂ Ut1,t2 \D and therefore
h < u + ε on ∂pK . Let uε be the continuous weak solution with boundary values u + ε

on ∂pK . Then by the comparison principle h ≤ uεin K . By Lemma 4.4 and Lemma 4.5, u
satisfies the comparison principle in K and thus u ≤ uε in K . Now

0 ≤ (h− u)+(hm − um)+ ≤ (uε − u)(umε − um)

and so by Lemma 3.5

0 ≤
∫

K

(h− u)+(hm − um)+ dx dt ≤
∫

K

(uε − u)(umε − um) dx dt

≤ ε|K|(supu+ 1)+ ε|K|(supu+ 1)m.

By construction of the setD, we have h ≤ u+ ε in Ut1,t2 \D. Thus letting ε → 0 shows that
h ≤ u in Ut1,t2 . We conclude that u is m-superporous in ΩT . �

The other nontrivial fact needed for Theorem 1.1 is that locally boundedm-superporous
functions are weak supersolutions. For this purpose, we next present a Caccioppoli type esti-
mate for the weak supersolutions.

LEMMA 5.3. Let um ∈ L2(0, T ;H 1(Ω)) be a weak supersolution, such that u ≤ M

in ΩT for some M > 0. Then
∫

ΩT

ζ 2|∇um|2 dx dt ≤ 16M2mT

∫

Ω

|∇ζ |2 dx + 4Mm+1
∫

Ω

ζ 2 dx,

for every non-negative ζ ∈ C∞
0 (Ω). Note that ζ depends only on x.

PROOF. Formally, we use the test function ϕ = (Mm− um)ζ 2 in the definition of weak
supersolutions. However, since no regularity for u is assumed in the time variable, we need to
use a time-regularized inequality to avoid the appearance of the possibly nonexistent quantity
ut . The proof is then just a straightforward computation. For the details, we refer to [11,
Lemma 2.15]. �

The next step is to show that locally boundedm-superporous functions are weak superso-
lutions. The idea of the proof is from [16]: one approximates a givenm-superporous function
pointwise by solutions to the obstacle problem. The approximants are weak supersolutions,
so the claim then follows from the Caccioppoli estimate. For the PME, this argument has been
carried out in [11].

LEMMA 5.4. Let u be a locally bounded m-superporous function in ΩT . Then u is a
weak supersolution in ΩT .

PROOF. We give the main points of the argument, referring to the proof of Theorem
3.2 in [11] for the full details. Since u is lower semicontinuous, there exists a sequence of
functions ψk ∈ C∞(ΩT ), such that

ψi < ψi+1 for every i ,
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and limk→∞ ψk(x, t) = u(x, t) for every (x, t) ∈ ΩT . Without loss of generality, we may
consider a set Qt1,t2 � ΩT . For each k, let uk be the solution to the obstacle problem with
obstacle function ψk . By Theorem 2.6 in [4], a solution uk exist, such that

uk = ψk on ∂pQt1,t2 ,

uk ≥ ψk in Qt1,t2 and

umk ∈ L2(t1, t2;H 1(Q)) .

Moreover, uk is a continuous weak supersolution in Qt1,t2 , and a weak solution in the open
set {uk > ψk}. The latter fact and the comparison principle of Remark 3.4 imply that

u1 ≤ u2 ≤ · · · and

uk ≤ u for every k .

Now we have uk → u due to the inequalities

ψk ≤ uk ≤ u ;
recall that limk→∞ ψk(x, t) = u(x, t).

Finally, the fact that u is indeed a weak supersolution to the porous medium equation
follows from the Caccioppoli estimate (Lemma 5.3) and weak compactness. �

We now have everything we need to prove the second main result.

PROOF OF THEOREM 1.1. Let u be a continuous weak supersolution in ΩT . By the
definition of weak derivatives, it is clear that u is also a very weak supersolution. Let then u
be a continuous very weak supersolution. The comparison property with respect to continuous
weak solutions for any space-time cylinder Ut1,t2 � ΩT is the content of Lemma 5.2. Thus
continuous very weak supersolutions arem-superporous. Finally, a continuousm-superporous
function u is locally bounded, and hence a weak supersolution by Lemma 5.4. �
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