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Abstract. Let Fλ, λ ∈ C, be the space of tensor densities of degree λ on the supercircle
S1|1. We consider the superspace Dλ1,λ2,μ of bilinear differential operators from Fλ1 ⊗ Fλ2
to Fμ as a module over the orthosymplectic superalgebra osp(1|2). We prove the existence
and the uniqueness of a canonical conformally equivariant symbol map from Dkλ1,λ2,μ

to the
corresponding space of symbols. An explicit expression of the associated quantization map is
also given.

1. Introduction. Let M be an n-dimensional manifold and T ∗M be the cotangent
bundle over the manifold M . Usual quantization procedure consists of building a map Q
from the space Pol(T ∗M) of polynomials on T ∗M to the space D(M) of linear differential
operators on M called a quatization map. The inverse σ = Q−1 is thus called a symbol map.
Generally, there is no quantization and symbol map equivariant with respect to the action of
the Lie algebra Vect(M) of vector fields on M (or the group Diff(M) of diffeomorphisms
of M) on the two spaces D(M) and Pol(T ∗M). Thus, we restrict ourselves to equivariant
symbols and quantization maps with respect to the action of a given subalgebra of Vect(M).

Let, for every λ ∈ C, Fλ(M) be the space of tensor densities of degree λ on M:

ϕ = f (x1, . . . , xn)|dx1 ∧ · · · ∧ dxn|λ ,
that is, of sections of the line bundle Δλ(M) = |Λn(T ∗M)|⊗λ over M . This provides a
one-parameter family of representations of Vect(M). Any differential operator on M can be
viewed as a linear mapping from Fλ(M) to Fμ(M) (λ,μ ∈ C). Thus, the space of differ-
ential operators is a Vect(M)-module, denoted Dλ,μ(M) := Homdiff(Fλ(M),Fμ(M)), i.e.,
it is in turn a representation of the Lie algebra Vect(M), we thus have a two-parameter fam-
ily of representations of Vect(M). On the other hand, the space Pol(T ∗M) is isomorphic as
a Vect(M)-module to the space S(M) of symmetric contravariant tensor fields on M (i.e.,
S(M) = Γ (STM)) which is a Poisson algebra with a natural graduation given by the decom-
position

S(M) =
∞⊕

k=0

Sk(M) ,
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where Sk(M) is the space of k-th order tensor fields. The algebra S(M) is naturally identified
with the associated graded algebra gr(Dλ,μ(M)), that is

Dk
λ,μ(M)/Dk−1

λ,μ (M)
∼= Sk(M) .

The concept of equivariant quantization over Rn was introduced by P. Lecomte and V.
Ovsienko in [15]. In this seminal work, they considered spaces of differential operators acting
between densities and the Lie algebra of projective vector fields over Rn, sl(n + 1). In this
situation, they showed the existence and uniqueness of an equivariant quantization. These
results were generalized in many references (see for instance [6], [13]). In [14], P. Lecomte
globalized the problem of equivariant quantization by defining the problem of natural invariant
quantization on arbitrary manifolds. In [4], [5], [9], [11], [12], [18], [19], [20], [21], the
authors proved the existence of such quantizations by using different methods in more and
more general contexts. Finally, explicit expressions of equivariant symbol and quatization
maps have been used in the study of classical modules of differential operators on tensor
densities in different situations (see for examples [2], [7], [8] and [13]).

Recently, several papers dealt with the problem of equivariant quantizations in the con-
text of supergeometry: the papers [16] and [22] exposed and solved respectively the problems
of the pgl(p + 1|q)-equivariant quantization over the superspace R

p|q and of the osp(p +
1; q + 1|2r)-equivariant quantization over Rp+q|2r , whereas in [17], the authors define the
problem of the natural and projectively invariant quantization on arbitrary supermanifolds and
show the existence of such a map. In [10], [23], [24] the problem of equivariant quantizations
over the supercircles S1|1 and S1|2 endowed with canonical contact structures was considered,
these quantizations are equivariant with respect to Lie superalgebras osp(1|2) and osp(2|2)
of contact projective vector fields respectively. The results stated in [10] have been used in
[1] to give a full classification of the K(1)-modules Dk

λ,μ of linear differential operators of
order k acting on the superspaces of weighted densities, where K(1) is the Lie superalgebra
of contact vector fields on S1|1.

Our motivation in this work is the extension of the results proved in [10] and [1] to the
binary case. Namely we consider the superspace Dλ1λ2,μ of bilinear differential operators
A : Fλ1 ⊗ Fλ1 → Fμ, where Fλ, λ ∈ C, is the space of tensor densities on the supercircle
S1|1 of degree λ. The analogue, in the super setting, of the projective algebra sl(2) is the
orthosymplectic Lie superalgebra osp(1|2), which is the smallest simple Lie superalgebra,
can be realized as a subalgebra of VectC(S1|1). Naturally, the Lie superalgebra VectC(S1|1),
and therefore osp(1|2), acts on Dλ1λ2,μ, the osp(1|2)-module Dλ1λ2,μ is filtered as:

D0
λ1λ2,μ

⊂ D
1
2
λ1λ2,μ

⊂ D1
λ1λ2,μ

⊂ D
3
2
λ1λ2,μ

⊂ · · · ⊂ D
k− 1

2
λ1λ2,μ

⊂ Dk
λ1λ2,μ

⊂ · · · .

The graded module gr(Dλ1,λ2,μ), also called the space of symbols and denoted by Sλ1,λ2,μ,
depends only on the shift, δ = μ − λ1 − λ2, of the weights. Moreover, as a VectC(S1|1)-
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module, Sλ1,λ2,μ is decomposed as
⊕

k∈ 1
2N

Skλ1,λ2,μ
where

Skλ1,λ2,μ
=

2k⊕

	=0

D	
λ1,λ2,μ

/D
	− 1

2
λ1,λ2,μ

=
2k⊕

	=0

F
(	)

δ− 	
2
,

F(	)
δ− 	

2
stands for the sum

⊕
F
δ− 	

2
where F

δ− 	
2

is counted 2	+ 1 times.

Moreover, in the main theorem of the paper (Theorem 4.1), we prove that, if δ = μ−λ1−λ2 
=
1
2 , 1, 3

2 , 2, 5
2 , . . . , k, then Dk

λ1,λ2,μ
is isomorphic to Skλ1,λ2,μ

as an osp(1|2)-module. This iso-
morphism, called a a conformally equivariant symbol map, is unique (once we fix a principal
symbol). Explicit expressions of the normalized symbol and its inverse, the conformally
equivariant quatization map, are given. To confirm the importance and the usefulness of our
results, we use them to give a classification of the modules Dk

λ1,λ2,μ
, k = 1

2 , 1, 3
2 , 2. The case

where k > 2 seems to be more intricate.

2. Basic definitions and tools.
2.1. Geometry of the supercircle S1|1. The supercircle S1|1 is the simplest super-

manifold of dimension 1|1 generalizing S1. It can be defined in terms of its superalgebra of
functions, denoted by C∞

C
(S1|1) and consisting of elements of the form:

(1) F : (x, θ) �−→ f0(x)+ f1(x)θ ,

where x is an arbitrary parameter on S1 (the even variable), θ is the odd variable (θ2 = 0) and
f0, f1 are C∞ complex valued functions. We denote by F ′ the derivative of F with respect
to x, i.e., F ′ : (x, θ) �→ f ′

0(x)+ f ′
1(x)θ . Let Vect(S1|1) be the superspace of vector fields on

S1|1:

(2) VectC(S
1|1) = {

F0∂x + F1∂θ | Fi ∈ C∞
C
(S1|1)

}
,

where ∂θ (resp. ∂x ) means the partial derivative ∂
∂θ

(resp. ∂
∂x

).
Consider the vector fields D and D defined by (see [25] for the interpretation of these

fields):

(3) D = ∂θ + θ∂x and D = ∂θ − θ∂x ,

these vector fields satisfy the condition

(4) D
2j = −D2j = (−1)j ∂jx ,∀j ∈ N .

One can easily check the super Leibniz formula:

(5) D
j ◦ F =

j∑

i=0

(
j

i

)

s

(−1)|F |(j−i)Di(F )Dj−i ,
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where the notions
(
j
i

)

s
and | | stand respectively for the super combination defined by

(6)

(
j

i

)

s

=
⎧
⎨

⎩

(
[ j2 ]
[ i2 ]

)
if i is even or j is odd

0 otherwise ,

and for the parity function ([x] denotes the integer part of a real number x).
The distribution generated by D defines a codimension 1 non-integrable distribution on

S1|1 called the standard contact structure on S1|1 which is equivalently the kernel of differen-
tial 1-form

α = dx + θdθ .

A vector field X is said to be contact if it preserves the contact distribution, i.e.,

[X,D] = FXD ,(7)

where FX ∈ C∞
C
(S1|1) is a function depending onX. We denote by K(1) the Lie superalgebra

of contact vector fields on S1|1. An element in K(1) can be expressed for any f ∈ C∞
C
(S1|1)

as (see [10]):

Xf = −fD2 + 1

2
D(f )D .(8)

The contact bracket is defined by

[Xf ,Xg ] = X{f,g}(9)

and the space C∞
C
(S1|1) is thus equipped with a Lie superalgebra structure (isomorphic to

K(1) ) thanks to the bracket:

{f, g} = f g ′ − f ′g + 1

2
(−1)|f |(|g |+1)D(f )D(g) .(10)

The action of K(1) on C∞
C
(S1|1) is defined by:

LXf (g) = f g ′ + 1

2
D(f )D(g) = f g ′ + 1

2
(−1)|f |+1D(f )D(g) .(11)

2.2. The orthosymplectic Lie superalgebra osp(1|2). We consider the orthosym-
plectic Lie superalgebra osp(1|2), which is the smallest simple Lie superalgebra. It can be
defined as the real algebra with basis (H,X, Y,A,B), the elementsH ,X and Y are even (with
parity 0) and the elements A, B are odd (with parity 1), the bracket is graded skewsymmetric,
it satisfies the graded Jacobi identity

(−1)|U ||W |[[U,V ],W ] + (−1)|V ||U |[[V,W ], U ] + (−1)|W ||V |[[W,U ], V ] = 0 .(12)
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The commutation relations are:

[H,X] = X , [H,Y ] = −Y , [X,Y ] = 2H ,

[H,A] = 1
2A , [X,A] = 0 , [Y,A] = −B ,

[H,B] = − 1
2B , [X,B] = −A , [Y,B] = 0 ,

[A,A] = 2X , [A,B] = 2H , [B,B] = −2Y .

(13)

The even subalgebra (osp(1|2))0 of osp(1|2) is of course the simple Lie algebra sl(2), with
basis {X, Y, H }. From the relations, it is clear that, as a Lie superalgebra, osp(1|2) is gener-
ated by its odd part (osp(1|2))1 = Span(A,B).
We can realize the superalgebra osp(1|2) as a subalgebra of K(1) (and evidently of
VectC(S1|1)) by setting

(14) (−Xx,X1,−Xx2, 2Xθ,Xxθ ) = (H,X, Y,A,B) .

It is well known that if we identify S1 with RP
1 with homogeneous coordinates (x1 : x2) and

choose the affine coordinate x = x1/x2, the vector fields d
dx
, x d

dx
, x2 d

dx
are globally defined

and correspond to the standard projective structure on RP
1. In this adapted coordinates the

action of the algebra sl(2) viewed as the subalgebra Span
(
d
dx
, x d

dx
, x2 d

dx

)
of the Lie algebra

Vect(S1) is well defined.
As in the S1-case, there exist adapted coordinates (x, θ) for which the osp(1|2)-action is

well defined (see [10] for more details).
2.3. The space of weighted densities on S1|1. In the super setting, by replacing dx

by the 1-form α, we get an analogous definition for weighted densities, i.e., we define the
space of λ-densities as

(15) Fλ = {
Fαλ | F ∈ C∞

C
(S1|1)

}
.

As a vector space, Fλ is isomorphic to C∞
C
(S1|1).

LetXF a contact vector field , we define a one-parameter family of first order differential
operators on C∞

C
(S1|1)

(16) LλXF = LXF + λF ′, λ ∈ C .

One easily checks that the map XF �→ LλXF is a homomorphism of Lie superalgebra , that

is, [LλXF ,LλXG ] = Lλ[XF ,XG], for every λ. Thus Fλ becomes a K(1)-module on C∞
C
(S1|1).

Evidently, the Lie derivative of the densityGαλ along the vector fieldXF in K(1) is given by:

(17) LλXF (Gα
λ) := LλXF (G)α

λ =
(
FG′ + 1

2
D(F)D(G)+ λF ′G

)
αλ.

One can easily see that:

(1) The adjoint K(1)-module, is isomorphic to F−1.

(2) As a Vect(S1)-module, Fλ � Fλ ⊕Π(F
λ+ 1

2
).
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2.4. Bilinear differential operators on weighted densities. Obviously, ∀λ1, λ2 ∈
R, Fλ1 ⊗ Fλ2 also a K(1)-module with the action

(18) Lλ1,λ2
XF

(Φ1 ⊗Φ2) = Lλ1
XF
(Φ1)⊗Φ2 + (−1)|F ||Φ1|Φ1 ⊗ Lλ2

XF
(Φ2) .

Thus, we consider a family of K(1)-actions on the superspace of bilinear differential operators
Dλ1,λ2,μ := Homdiff(Fλ1 ⊗ Fλ2,Fμ):

(19) L
λ1,λ2,μ
XF

(A) = L
μ
XF

◦ A− (−1)|A||F |A ◦ Lλ1,λ2
XF

.

Since D
2 = −∂x , every differential operator A ∈ Dλ1,λ2,μ can be expressed in the form (see

[10])

(20) A =
2k∑

	=0

∑

i+j=	
ai,j (x, θ)D

i ⊗D
j

where the coefficients ai,j are arbitrary functions and 	 ∈ N. That is, forall F = f αλ1 ∈
Fλ1,G = gαλ2 ∈ Fλ2 ,

(21) A(F ⊗G) =
( 2k∑

	=0

∑

i+j=	
ai,j (x, θ)(−1)j |f |Di(f )Dj (g)

)
αμ .

Moreover, if A ∈ Dk
λ1,λ2,μ

then 	 = 2k. For short, we will write the operator A as:

(22) A =
2k∑

	=0

∑

i+j=	
ai,jD

i ⊗D
j
.

Thus, we have a K(1)-invariant finer filtration:

(23) D0
λ1,λ2,μ

⊂ D
1
2
λ1,λ2,μ

⊂ D1
λ1,λ2,μ ⊂ D

3
2
λ1,λ2,μ

⊂ · · ·Dk− 1
2

λ1,λ2,μ
⊂ Dk

λ1,λ2,μ
⊂ · · · .

2.5. Principal symbol map. The quotient module Dk
λ1,λ2,μ

/D
k− 1

2
λ1,λ2,μ

, k ∈ 1
2N, can

be decomposed into 2k + 1 components that transform under coordinates change as δ − k
2

densities, where δ = μ− λ1 − λ2. Therefore, the multiplication of these components by any
non-singular matrix, say ω, gives rise to an isomorphism

(24) σω : Dk
λ1,λ2,μ

/D
k− 1

2
λ1,λ2,μ

�−−−−→ Fδ− k
2

⊕ Fδ− k
2

⊕ · · · ⊕ Fδ− k
2
(2k + 1 copies) .

The map σω is what we call the principal symbol map. By the very definition, a principal
symbol map is K(1)-invariant but, unlike the unary case, is not unique. Let us consider the
space of symbols, i.e., the graded space

(25) Sδ = Sμ−λ1−λ2 =
∞⊕

k=0

Dk
λ1,λ2,μ

/D
k− 1

2
λ1,λ2,μ

,
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associated to the filtration (23) of Dλ1,λ2,μ. The space of symbols of order ≤ k, k ∈ 1
2N, is

(26) Skδ =
2k⊕

	=0

D	
λ1,λ2,μ

/D
	− 1

2
λ1,λ2,μ

=
2k⊕

	=0

F(	)
δ− 	

2
,

here the notation F(i)λ , i ∈ N and λ ∈ C, stands for the sum
⊕

Fλ where Fλ is counted 2i + 1
times. Thanks to the isomorphism (24), an element P of Skδ can be written in a unique way in
the form

(27) P = αδ
2k∑

	=0

∑

i+j=	
āi,j (x, θ) α

− i+j
2

where āi,j are arbitrary functions in C∞
C
(S1|1). Obviously, the space of symbols Sδ is a mod-

ule over the orthosymplectic superalgebra osp(1|2).
3. Modules of bilinear differential operators.
3.1. Left and right conjugations. Let us denote by B the Berezin integral B : F 1

2
→

C given, for any f = f0 + θf1, by the formula [3]

(28) B(fα 1
2 ) =

∫

S1
f1(x)dx .

It is well known that the Berezin integral B is K(1)-invariant, that is

(29) B
(
L

1
2
XF
(f α

1
2 )

)
= 0, ∀F, f ∈ C∞

C
(S1|1) .

So, the product of densities composed with B yields a bilinear K(1)-invariant form:

(30) 〈. , .〉 : Fλ ⊗ F 1
2 −λ → C , λ ∈ C ,

given by

(31) 〈f αλ, gα 1
2 −λ〉 =

∫

S1
(f1g0 + f0g1)(x)dx,

where f = f0 + θf1 ∈ Fλ and g = g0 + θg1 ∈ F 1
2 −λ.

THEOREM 3.1. For each value of k ∈ 1
2N, there exist the following isomorphisms of

K(1)-modules:

(32)
Dk
λ1,λ2,μ

∼= Dk
1
2 −μ,λ2,

1
2 −λ1

∼= Dk

λ1,
1
2 −μ, 1

2 −λ2

∼= Dk
1
2 −μ,λ1,

1
2 −λ2

∼= Dk

λ2,
1
2 −μ, 1

2 −λ1

∼= Dk
λ2,λ1,μ

given respectively by the osp(1|2)-invariant maps C1, C2, C1 ◦ C2, C2 ◦ C1 and C2 ◦ C1 ◦
C2(or C1 ◦ C2 ◦ C1) where C1 (respectively C2) is the left conjugation (respectively right
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conjugation) given for a bilinear operator A = ∑2k
	=0

∑
i+j=	 ai,jD

i ⊗D
j

by the rule

(33) C1(A) =
2k∑

	=0

∑

i+j=	
(−1)[

i+1
2 ]+i|ai,j |

i∑

	=0

(−1)	|ai,j |
(
i

	

)

s

D
i−	 ◦ ai,j ⊗D

j+	
,

(respectively by C2(A) = ∑2k
	=0

∑
i+j=	(−1)[

j+1
2 ]+j |ai,j | ∑j

	=0(−1)	|ai,j |
(
j
	

)

s
D
i+	

⊗D
j−	 ◦ ai,j ) .

PROOF. Let A ∈ Dk
λ1,λ2,μ

. Then there exists a unique bilinear differential operator

C1(A) ∈ Dk
1
2 −μ,λ2,

1
2 −λ1

such that

(34) 〈A(F ⊗G),Ψ 〉 = (−1)|A||f |+|g ||ψ |〈F,C1(A)(Ψ ⊗G)〉
where F = f αλ1 ∈ Fλ1,G = gαλ2 ∈ Fλ2 and Ψ = ψα

1
2 −μ ∈ F 1

2 −μ. Thus we can easily

show that we get a K(1)-invariant linear bijective map C1 : Dk
λ1,λ2,μ

→ Dk
1
2 −μ,λ2,

1
2 −λ1

.

Now, we shall prove that the operator given in (33) satisfies the condition (34). Indeed,

let A = aD
i ⊗ D

j ∈ Dλ1,λ2,μ and suppose that i = 2p + 1 is odd. Then aD
i
(f )D

j
(g) =

(−1)pa0f
(p)

1 D
j
(g)0 + (−1)pθ

(
a0f

(p)

1 D
j
(g)1 − a0f

(p+1)
0 D

j
(g)0 + a1f

(p)

1 D
j
(g)0

)
. Thus

〈A(F ⊗G),Ψ 〉 = (−1)|f |j (−1)p
∫

S1

(
a0f

(p)

1 D
j
(g)0ψ1

)
(x)dx

+(−1)|f |j (−1)p
∫

S1

(
a0f

(p)
1 D

j
(g)1−a0f

(p+1)
0 D

j
(g)0+a1f

(p)
1 D

j
(g)0

)
(x)ψ0(x)dx

=
∫

S1
f0(x)

(
a0D

j
(g)0ψ0

)(p+1)
(x)dx

+ (−1)j
∫

S1
f1(x)

(
a0D

j
(g)0ψ1 + a0D

j
(g)1ψ0 + a1D

j
(g)0ψ0

)(p)
(x)dx .

On the other hand, using (5) and (6), we have

C1(A)= (−1)p+1+(2p+1)|a|
2p+1∑

	=0

(−1)	|a|
(

2p + 1

	

)

s

D
2p+1−	 ◦ a ⊗D

j+	

= (−1)p+1+|a|
[ p∑

	=0

(p
	

)
D

2p−2	+1 ◦ a ⊗D
j+2	

+
p∑

	=0

(−1)|a|
(p
	

)
D

2p−2	 ◦ a ⊗D
j+2	+1

]
,

that is

C1(A)(Ψ ⊗G) =
p∑

	=0

(p
	

) [
(a1ψ0 − (−1)j a0ψ1)

(p−	)Dj (g)(	)0

+ θ
(
(a1ψ0 + (−1)j a0ψ1)

(p−	)Dj (g)(	)1 + (a0ψ0)
(p−	+1)D

j
(g)

(	)
0

)]
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−
p∑

	=0

(−1)(j+1)|ψ |+p (p
	

) [
(a0ψ0)

(p−	)Dj (g)(	)1

+ θ

(
− (a0ψ0)

(p−	)Dj (g)(	+1)
0 + (a1ψ0 + (−1)j+1a0ψ1)

(p−	)Dj (g)(	)1

)]
.

Therefore

〈F,C1(A)(Ψ ⊗G)〉 =
p∑

	=0

(p
	

) ∫

S1
f1(x)(a1ψ0 − (−1)ja0ψ1)

(p−	)(x)Dj (g)(	)0 (x)dx

+
p∑

	=0

(p
	

) ∫

S1
f0(x)

(
(a1ψ0 − (−1)j a0ψ1)

(p−	)(x)Dj (g)(	)1 (x)

+ (a0ψ0)
(p−	+1)(x)D

j
(g)(	)0 (x)

)
dx

−
p∑

	=0

(p
	

) ∫

S1
f1(a0ψ0)

(p−	)(x)Dj (g)(	)1 (x)dx

−
p∑

	=0

(p
	

) ∫

S1
f0

(
− (a0ψ0)

(p−	)(x)Dj (g)(	+1)
0 (x)

+ (a1ψ0 + (−1)j+1a0ψ1)
(p−	)(x)Dj (g)(	)1 (x)

)
dx .

Now, given that

(−1)|g ||ψ |ψ(p−	)
1 D

j
(g)

(	)
0 = (−1)jψ(p−	)

1 D
j
(g)

(	)
0

(−1)|g ||ψ |ψ(p−	)
1 D

j
(g)

(	)
1 = (−1)j+1ψ

(p−	)
1 D

j
(g)

(	)
0 ,

one has

(−1)|A||f |+|g ||ψ |〈F,C1(A)(Ψ ⊗G)〉 = (−1)(|a|+j+1)|f |+|g ||ψ |〈F,C1(A)(Ψ ⊗G)〉

= (−1)j
p∑

	=0

(p
	

) ∫

S1
f1(x)

[
(a1ψ0 − a0ψ1)

(p−	)Dj (g)(	)0 + (a0ψ0)
(p−	)Dj (g)(	)1

]
dx

+
p∑

	=0

(p
	

) ∫

S1
f0(x)

[
(a0ψ0)

(p−	+1)(x)D
j
(g)

(	)
0 (x)

+ (a0ψ0)
(p−	)(x)Dj (g)(	+1)

0 (x)
]
dx .

Since

p∑

	=0

(p
	

) (
(a0ψ0)

(p−	+1)D
j
(g)(	)0 + (a0ψ0)

(p−	)Dj (g)(	+1)
0

)
=

(
a0D

j
(g)0ψ0

)(p+1)
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and

p∑

	=0

(p
	

) [
(a1ψ0 − a0ψ1)

(p−	)Dj (g)(	)0 + (a0ψ0)
(p−	)Dj (g)(	)1

]

=
(
a0D

j
(g)0ψ1 + a0D

j
(g)1ψ0 + a1D

j
(g)0ψ0

)(p)
,

we clearly see that 〈A(F ⊗G),Ψ 〉 = (−1)|A||f |+|g ||ψ |〈F,C1(A)(Ψ ⊗G)〉.
Finally, a more easy calculation can be made when i = 2p is even. Formula (33) is thus

proved. �

DEFINITION 3.2.
1) We call the modules Dk

1
2 −μ,λ2,

1
2 −λ1

,Dk

λ1,
1
2 −μ, 1

2 −λ2
,Dk

1
2 −μ,λ1,

1
2 −λ2

,Dk

λ2,
1
2 −μ, 1

2 −λ1
,

Dk
λ2,λ1,μ

the adjoint modules of Dk
λ1,λ2,μ

. Especially, Dk
1
2 −μ,λ2,

1
2 −λ1

(respectively

Dk

λ1,
1
2 −μ, 1

2 −λ2
, Dk

λ2,λ1,μ
) is called the left-adjoint (respectively the right-adjoint, the sym-

metric) module of Dk
λ1,λ2,μ

.

2) A module of the form Dk

λ,λ, 1
2 −λ, λ ∈ C will be said a self-adjoint module.

3) A module will be said singular if it is not isomorphic to any module other than itself
and previously mentioned modules.

3.2. Explicit formulas for the action of K(1) on Dk
λ1,λ2,μ

. Let XF ,F ∈ C∞
C
(S1|1),

an arbitrary contact vector field and A = ∑2k
	=0

∑
i+j=	 ai,jD

i ⊗ D
j ∈ Dk

λ1,λ2,μ
. The fol-

lowing result gives the expression of the action of XF on A.

PROPOSITION 3.3. The action of the vector field XF on the operator A is given by

(35) L
λ1,λ2,μ
XF

(A) =
2k∑

	=0

∑

i+j=	
aXi,jD

i ⊗D
j

where:

(36)

aX0,0 = LδXF (a0,0)−
2k∑

n=1

(−1)n(|F |+|an,0|)λ1D
n
(F ′)an,0

−
2k∑

n=1

(−1)n(|F |+|a0,n|)λ2D
n
(F ′)a0,n
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and

(37)

aXi,j = L
δ− i+j

2
XF

(ai,j )

−
2k−(i+j)∑

n=1

(−1)n(|F |+|an+i,j |)
[(

n+ i

n+ 2

)

s

− 1

2
(−1)i

(
n+ i

n+ 1

)

s

+ λ1

(
n+ i

n

)

s

]
D
n
(F ′)an+i,j

−
2k−(i+j)∑

n=1

(−1)n(|F |+|ai,n+j |+i)
[(

n+ j

n+ 2

)

s

− 1

2
(−1)j

(
n+ j

n+ 1

)

s

+ λ2

(
n+ j

n

)

s

]
D
n
(F ′)ai,n+j

PROOF. Let Φ1 = ϕ1(x)α
λ1 ∈ Fλ1,Φ2 = ϕ2(x)α

λ2 ∈ Fλ2 . Upon using (17), (18) and
(19), we get

L
λ1,λ2,μ
XF

(A)
(
Φ1 ⊗Φ2

)
= L

μ
XF

(
A(Φ1 ⊗Φ2)

)
− (−1)|A||F |A

(
Lλ1
XF
(Φ1)⊗Φ2

)

− (−1)|A|(|F |+|Φ1|)A
(
Φ1 ⊗ Lλ2

XF
(Φ2)

)

=
[ 2k∑

	=0

∑

i+j=	
F

(
ai,j (−1)j |ϕ1|Di(ϕ1)D

j
(ϕ2)

)′

+ 1

2
D(F)D

(
ai,j (−1)j |ϕ1|Di(ϕ1)D

j
(ϕ2)

)
+ μF ′(−1)j |ϕ1|Di(ϕ1)D

j
(ϕ2)

− (−1)|A||F |(−1)
j |Lλ1

XF
(Φ1)|ai,jD

i
(
Fϕ′

1 + 1

2
D(F)D(ϕ1)+ λ1F

′ϕ1

)
D
j
(ϕ2)

− (−1)|A|(|F |+|Φ1|)(−1)j |ϕ1|ai,jD
i
(ϕ1)D

j
(
Fϕ′

2 + 1

2
D(F)D(ϕ2)+ λ2F

′ϕ2

)]
αμ .

Using the super Leibniz formula (5) and by writing (35) in the form

L
λ1,λ2,μ
XF

(A)
(
Φ1 ⊗Φ2

) =
[ 2k∑

	=0

∑

i+j=	
(−1)j |ϕ1|aXi,jD

i
(ϕ1)⊗D

j
(ϕ2)

]
αμ ,

formulas (37) are easily obtained by identification. �

4. Conformally equivariant symbol and quantization maps. We fix a principal
symbol map σω as in (24), where ω is a non singular matrix. A map σωλ1,λ2,μ

is called a
symbol map if it is a linear bijection

σωλ1,λ2,μ
: Dλ1,λ2,μ → Sδ(38)

such that the highest-order term of σωλ1,λ2,μ
(A), where A ∈ Dλ1,λ2,μ coincides with the prin-

cipal symbol σω(A). Hence, the inverse map,Q = (σωλ1,λ2,μ
)−1, will be called a quantization
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map. Unlike the unary case, the problem of existence and uniqueness of osp(1|2)-equivariant
symbol (and so quantization) map can be tackled once the symbol map σω is fixed.

The following statement is the main result of this paper, it shows that for generic values of
δ, the osp(1|2)-module Dk

λ1,λ2,μ
is isomorphic to Skδ . The osp(1|2)-equivariant map is called

a conformally equivariant symbol mapping. The main theorem of the paper is the following

THEOREM 4.1. If δ is non-resonant, i.e., δ = μ−λ1 −λ2 
= 1
2 , 1, 3

2 , 2, 5
2 , . . . , k then,

there exits a family of osp(1|2)-equivariant maps σωλ1,λ2,μ
: Dk

λ1,λ2,μ
→ Skδ

(39) A =
2k∑

p=0

∑

i+j=p
ai,jD

i ⊗D
j �−→ αδ

2k∑

p=0

∑

i+j=p

2k∑

	=p

∑

s+t=	
ω
s,t
i,jD

	−p(as,t )α− i+j
2

where ωs,ti,j are constants given by the induction formula

(40)
(−1)	−p

(
[ 	−p2 ] + (1 − (−1)	−p)(δ − 	

2 )
)
ω
s,t
i,j −

(
[ s2 ] + (1 − (−1)s)λ1

)
ω
s−1,t
i,j

−(−1)s
(
[ t2 ] + (1 − (−1)t )λ2

)
ω
s,t−1
i,j = 0.

The “normalized” symbol map σ 0
λ1,λ2,μ

:= σ Id
λ1,λ2,μ

is given by the rule

(41) σ 0
λ1,λ2,μ

(A) = αδ
2k∑

p=0

∑

i+j=p

2k∑

	=p

∑

s+t=	
s≥i,t≥j

γ
s,t
i,j D

	−p(as,t )α− i+j
2

where

(42) γ
s,t
i,j = (−1)[

	−p+1
2 ]+(t−j)s

(
	−p
t−j

)

s

(
[ s2 ]
[ i2 ]

) (
[ t2 ]
[ j2 ]

) (
2λ1+[ s−1

2 ]
[ 2(s−i)+1+(−1)i

4 ]

) (
2λ2+[ t−1

2 ]
[ 2(t−j)+1+(−1)j

4 ]

)

(
[ 	−p2 ]
[ t−j2 ]

) (
[ 	−p+1

2 ]
[ t−j+1

2 ]

) (
2δ−p−1
[ 	−p+1

2 ]

)

and the binomial coefficients in (42) are defined by
(
ν
q

)
= ν(ν−1)···(ν−q+1)

q! , this expression

makes sense for arbitrary ν ∈ C. Moreover, once the principal symbol is fixed, the symbol
map σωλ1,λ2,μ

is unique.

PROOF. We begin the proof by proving the osp(1|2)-equivariance of the map σ 0
λ1,λ2,μ

.
Indeed, Let X = XF ∈ K(1). We have

σ 0
λ1,λ2,μ

(
L
λ1,λ2,μ
X (A)

) = αδ
2k∑

p=0

∑

i+j=p
aXi,j α

− i+j
2 .

Then, we readily see that

aXi,j =
2k∑

	=p

∑

s+t=	
γ
s,t
i,j D

(	−p)(aXi,j ), p = i + j .



MODULES OF BILINEAR DIFFERENTIAL OPERATORS 331

Thanks to Proposition 3.3, forall 0 ≤ p = i + j ≤ k, we get

aXi,j =
2k∑

	=p

∑

s+t=	
(−1)|aXs,t |(	−p)+

(	−p)(	−p+1)
2 γ

s,t
i,j D

(	−p)
(aXs,t )

=
2k∑

	=p

∑

s+t=	
(−1)|aXs,t |(	−p)+

(	−p)(	−p+1)
2 γ

s,t
i,j D

(	−p)
[
L
δ− s+t

2
XF

(as,t )

−
2k−(s+t )∑

n=1

(−1)n(|F |+|an+s,t |)
((
n+s
n+2

)

s
− 1

2 (−1)s
(
n+s
n+1

)

s
+ λ1

(
n+s
n

)
s

)
D
n
(F ′)an+s,t

−
2k−(s+t )∑

n=1

(−1)n(|F |+|as,n+t |+s)
((

n+t
n+2

)

s
− 1

2 (−1)t
(
n+j
n+1

)

s
+ λ2

(
n+t
n

)
s

)
D
n
(F ′)as,n+t

]
.

Thus

aXi,j − L
(δ− p

2 )

X (ai,j ) =
2k∑

	=p

∑

s+t=	
(−1)|as,t |+|F |+(	−p)γ s,ti,j

[
(δ − l

2 )
(
	−p

1

)

s

+ 1
2 (−1)	−p

(
	−p

2

)

s
+

(
	−p

3

)

s

]
D(F ′)D	−p−1(ai,j )

−
2k∑

	=p

∑

s+t=	
(−1)|as,t |+|F |

[
γ
s−1,t
i,j

( (
s
3

)
s
+ 1

2 (−1)s
(
s
2

)
s
+ λ1

( (
s
3

)
s

)

+ (−1)sγ s,t−1
i,j

( (
t
3

)
s
+ 1

2 (−1)t
(
t
2

)
s
+ λ2

(
t
3

)
s

)
D(F ′)D	−p−1(ai,j )

]

+ higher terms in D
n
(F ′).

Now, through a simple calculation, one can check out that the scalars γ s,ti,j satisfie the relation-
ship

(−1)	−pϒ
(
δ − 	

2
, 	− p

)
γ
s,t
i,j − ϒ(λ1, s)γ

s−1,t
i,j − (−1)sϒ(λ2, t)γ

s,t−1
i,j = 0

where for λ ∈ C and m ∈ N we put

ϒ(λ,m) = 1

2

([
m

2

]
+ (1 − (−1)m)λ

)
.

Therefore, the term in D(F ′) vanishes, the map σ 0
λ1,λ2,μ

is clearly osp(1|2)-equivariant.
Now, the main ingredient of the proof of the first point of our theorem is the locality

property of an osp(1|2)-equivariant symbol map, that is, such map is given by differential
operators. Indeed we can easily adapt the proof of locality given in [10] for the unary case to
our case. Thus, in addition, from the expression of “normalized” symbol map σ 0

λ1,λ2,μ
we can

suppose that a general symbol map σωλ1,λ2,μ
have the form

(43) A =
2k∑

p=0

∑

i+j=p
ai,jD

i ⊗D
j �−→ αδ

2k∑

p=0

∑

i+j=p

2k∑

	=p

∑

s+t=	
ω
s,t
i,j (x, θ)D

	−p(as,t )α− i+j
2 .
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Clearly, to calculate the condition of osp(1|2)-equivariance, it suffices to impose invariance
with respect to the vector fields D = 2Xθ and xD = 2Xxθ . Effortlessly, we can get that,
firstly, a symbol map (43) commutes with the action of D if and only if the coefficients ωs,ti,j
are constants (i.e., do not depend on x, θ ), secondly that it commutes with the action of xD if
and only if the coefficients ωs,ti,j satisfy the induction formula (40).

If δ = μ− λ1 − λ2 is non-resonant, i.e., δ = μ− λ1 − λ2 
= 1
2 , 1, 3

2 , 2, 5
2 , . . . , k , then,

it is easy to see that the solution of the equation (40) and once the principal symbol σω where
ω = (w

i,j
i,j )i+j=2k is fixed, the symbol map σωλ1,λ2,μ

is unique. �

REMARK 4.2. By setting ζ i,js,t = γ
i,j
i−s,j−t , we can write the the symbol map σ 0

λ1,λ2,μ

as in [10] (Theorem 6.1). That is, for A = ai,jD
i ⊗D

j ∈ Dk
λ1,λ2,μ

and i + j = 2k,

(44) σωλ1,λ2,μ
(A) = αδ

2k∑

	=0

∑

s+t=	
ζ
s,t
i,j D

	(ai,j )α
s+t−i−j

2

where

(45) ζ
i,j
s,t =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(−1)[ 	+1
2 ]+it

(
	
t

)

s

(
[ i2 ]

[ i−s2 ]

)(
[ j2 ]

[ j−t2 ]

) (
2λ1+[ i−1

2 ]
[ 2s+1+(−1)i+s

4 ]

) (
2λ2+[ j−1

2 ]
[ 2t+1+(−1)j+t

4 ]

)

(
[ 	2 ]
[ t2 ]

) (
[ 	+1

2 ]
[ t+1

2 ]

) (
2δ+	−(i+j)−1

[ 	+1
2 ]

)

if i ≥ s , j ≥ t ,

0 otherwhise.

Let us now give the explicit formula for the quantization map Q0
λ1,λ2,μ

.

PROPOSITION 4.3. The quantization mapQ0
λ1,λ2,μ

, i.e., the inverse of the symbol map

σ 0
λ1,λ2,μ

given in Theorem 4.1 associates to a polynomial P = αδ
∑2k
	=0

∑
i+j=	 b̄i,j α− i+j

2 ∈
Skδ the differential operatorQ0

λ1,λ2,μ
(P ) = ∑2k

	=0
∑
i+j=p b̃i,jD

i ⊗D
j ∈ Dk

λ2,λ1,μ
such that

b̃i,j = ∑2k
	=p

∑
s+t=	 β

s,t
i,j D

	−p(b̄s,t), where

(46)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

β
s,t
i,j = (−1)[

	−p−1
2 ]+(t−j)s

(
	−p
t−j

)

s

(
[ s2 ]
[ i2 ]

) (
[ t2 ]
[ j2 ]

) (
2λ1+[ s−1

2 ]
[ 2(s−i)+1+(−1)i

4 ]

) (
2λ2+[ t−1

2 ]
[ 2(t−j)+1+(−1)j

4 ]

)

(
[ 	−p2 ]
[ t−j2 ]

) (
[ 	−p+1

2 ]
[ t−j+1

2 ]

) (
2δ−l

[ 	−p+1
2 ]

)

if 	 = s + t > p = i + j

β
s,t
i,j = γ

s,t
i,j if s + t = i + j .

REMARK 4.4. Following [10] (Section 6.2), we can see that, if δ = μ − λ1 − λ2 is
resonant, then the equation (40) can also be easily solved for special values of (λ1, λ2, μ).
Namely

(47)

(
1 − s

4
,

1 − t

4
,
s + t

4

)
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where s, t are odd. The solution in this case is no longer unique. However, if (λ1, λ2, μ) are
not the same as above, there is no osp(1|2)-isomorphism between Dk

λ1,λ2,μ
and Skδ .

5. K(1)-isomorphisms and intertwining operators. The following result is adapted
from the unary case.

PROPOSITION 5.1. For the K(1)-module Dk
λ1,λ2,μ

, the difference δ = μ− λ1 − λ2 of
weights is an invariant. That is:

(48) Dk
λ1,λ2,μ

∼= Dk
ρ1,ρ2,ν

⇒ μ− λ1 − λ2 = ν − ρ1 − ρ2 .

PROOF. This is an immediate consequence of the equivariance with respect to the vector
field Xx . �

Let now δ 
= 1, 3
2 , 2, 5

2 , . . . , k and let denote by σ 0
λ1,λ2,μ

:= σ Id
λ1,λ2,μ

the osp(1|2)-
equivariant symbol map (associated with ω = Id). Consider T : Dk

λ1,λ2,μ
→ Dk

ρ1,ρ2,ν
an

isomorphism of K(1) modules . As T is K(1)-equivariant, it follows that the composition

Dk
λ1,λ2,μ

→ Dk
ρ1,ρ2,ν

σ 0
ρ1,ρ2 ,ν−−−−→ Skδ = ⊕2k

	=0 F
(	)

δ− 	
2
,

is osp(1|2)-equivariant. Therefore, it coincides with the symbol map σωλ1,λ2,μ
for some ω.

Namely, σ 0
λ1,λ2,μ

◦ T = σωλ1,λ2,μ
. It follows that

σ 0
λ1,λ2,μ

◦ T ◦Q0
λ1,λ2,μ

= σωλ1,λ2,μ
◦Q0

λ1,λ2,μ
.

Now, it is a matter of a direct computation of the map

σωλ1,λ2,μ
◦Q0

λ1,λ2,μ
:

2k⊕

	=0

F
(	)

δ− 	
2

→
2k⊕

	=0

F
(	)

δ− 	
2

to see that the isomorphism T : Dk
λ1,λ2,μ

→ Dk
ρ1,ρ2,ν

is block diagonal in terms of the
osp(1|2)-equivariant symbols in the following sense:

Let A =
2k∑

p=0

p∑

i=0

ai,p−iD
i ⊗D

p−i
in Dk

λ1,λ2,μ
, we denote by

σ
p
λ1,λ2,μ

(A) = αδ
p∑

i=0

ai,p−iα− p
2 and σpλ1,λ2,μ

(
T (A)

) = αδ
p∑

i=0

aTi,p−iα− p
2(49)

the homogeneous components of order p of σ 0
λ1,λ2,μ

(A) and σ 0
λ1,λ2,μ

(
T (A)

)
respectively.

Then, T is osp(1|2)-equivariant if and only if, for all p ∈ {0, 1, . . . , k} the symbols
σ
p
λ1,λ2,μ

(A) and σpλ1,λ2,μ

(
T (A)

)
are proportional, that is there exits a non singular matrix

ϒp =
(
ε
j,p−j
i,p−i

)
0≤i≤p
0≤j≤p

∈ GLp+1(R) such that

(aT0,p, a
T
1,p−1, . . . , a

T
p,0)

t = ϒp(a0,p, a1,p−1, . . . , ap,0)
t(50)
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where the notation ut means the transpose of the vector u ∈ Rn. Equivalently,

aTi,p−i =
p∑

j=0

ε
j,p−j
i,p−i aj,p−j ; ∀i ∈ {0, 1, . . . , p} .(51)

6. Modules of bilinear differential operators of order ≤ 2. Throughout this sec-
tion, using the results of the previous section, we plan the cases of the modules Dk

λ1,λ2,μ
,

k = 1
2 , 1, 3

2 , 2 with δ = μ− λ1 − λ2 non resonant.
Let

A =
2k∑

	=0

∑

i+j=	
ai,jD

i ⊗D
j ∈ Dk

λ1,λ2,μ
, P = αδ

2k∑

	=0

∑

i+j=	
bi,jα

− i+j
2 ∈ Skδ ,(52)

we set

σ 0
λ1,λ2,μ

(A) = αδ
2k∑

p=0

∑

i+j=p
ai,j α

− i+j
2 ,Q0

λ1,λ2,μ
(P ) =

2k∑

	=0

∑

i+j=	
b̃i,jD

i ⊗D
j
.(53)

THEOREM 6.1. 1) All the K(1)-modules D
1
2
λ1,λ2,μ

with δ 
= 1
2 are isomorphic.

2) All the K(1)-modules D1
λ1,λ2,μ

with δ 
= { 1
2 , 1} are isomorphic.

PROOF. 1) Let T : D
1
2
λ1,λ2,μ

→ D
1
2
ρ1,ρ2,ν be an isomorphism of K(1)-modules then

obviously δ = μ−λ−_2 = ν−ρ1−ρ2. Let denote by T̃ := σ 0
ρ1,ρ2,ν

◦T ◦Q0
λ1,λ2,μ

: S
1
2
δ → S

1
2
δ .

Since T̃ is diagonal, there exit ε0 ∈ R∗, ϒ1 =
(
ε
j,1−j
i,1−i

)
0≤i≤1
0≤j≤1

∈ GL2(R) such that

aT0,0 = ε0a0,0 , (a
T
0,1, a

T
1,0)

t = ϒ1(a0,1, a1,0)
t .(54)

Following (37), (42) and (4.3) we have

aX0,0 = LδXF (a0,0) , aX0,1 = L
δ− 1

2
XF

(a0,1) , aX1,0 = L
δ− 1

2
XF

(a1,0) ,(55)

⎧
⎨

⎩

a0,0 = a0,0 − 2λ2
2δ−1D(a0,1)− 2λ1

2δ−1D(a1,0)

a0,1 = a0,1

a1,0 = a1,0 ,

(56)

⎧
⎪⎨

⎪⎩

b̃0,0 = b0,0 + 2λ2
2δ−1D(b0,1)+ 2λ1

2δ−1D(b1,0)

b̃0,1 = b0,1

b̃1,0 = b1,0 .

Thus, the conclusion can easily be stated.
2) By similar reasoning. �
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THEOREM 6.2. Let A = {(λ, 0, 1
2 ), (0, λ,

1
2 ), (0, 0, 1

2 − λ), λ 
= 0,− 1
2 ,−1}. Then

(i) All the K(1)-modules D
3
2
λ1,λ2,μ

with δ 
= { 1
2 , 1, 3

2 } and (λ1, λ2, μ) /∈ A are isomorphic.
(ii) The modules of the form

D
3
2

λ,0, 1
2

∼= D
3
2

0,λ, 1
2

∼= D
3
2

0,0, 1
2 −λ ; λ 
= 0 , − 1

2
,−1(57)

are singular. Moreover, the module D
3
2

0,λ, 1
2

(respectively D
3
2

λ,0, 1
2
) is a self-left-adjoint (respec-

tively self-right-adjoint) module.

PROOF. Let T : D
3
2
λ1,λ2,μ

→ D
3
2
ρ1,ρ2,ν be an isomorphim of K(1)-modules. The diago-

nally property of T̃ reads

aT0,0 = ε0a0,0 , (a
T
0,1, a

T
1,0)

t = ϒ1(a0,1, a1,0)
t , (aT0,2, a

T
1,1, a

T
2,0)

t

=ϒ2(a0,2, a1,1, a2,0)
t , and (aT0,3, a

T
1,2, a

T
2,1, a

T
3,0)

t = ϒ3(a0,3, a1,2, a2,1, a3,0)
t

where ε0 ∈ R∗ and ϒi ∈ GL(i + 1,R), i = 1, 2, 3. Unlike the cases k = 1
2 and k = 1, we

obtain here an additional condition that expresses a relationship between ε0 and ϒ3, namely

ϒ3Γ (ρ1, ρ2, ν)
t = ε0Γ (λ1, λ2, μ)

t

were Γ stands for the function defined by

Γ (a, b, c) =
(
a(2c − 2b − 1)

2(c − a − b − 1)
,

2ab

2(c − a − b − 1)
,

2ab

2(c − a − b − 1)
,
b(2c − 2a − 1)

2(c − a − b − 1)

)
.

Since T is an isomorphism, two cases arise:
• Γ (ρ1, ρ2, ν) 
= 0 and Γ (λ1, λ2, μ) 
= 0, that is (ρ1, ρ2, ν), (λ1, λ2, μ) /∈ A. Thus we get a

family of K(1)-isomorphisms given by the conditions

ε0 = 1 , ϒ1 ∈ GL(2,R) , ϒ2 ∈ GL(3,R) , and ϒ3Γ (ρ1, ρ2, ν)
t = Γ (λ1, λ2, μ)

t ,

• Γ (ρ1, ρ2, ν) = Γ (λ1, λ2, μ) = 0, then (ρ1, ρ2, ν), (λ1, λ2, μ) ∈ A and ii) is clearly obtained.
This concludes the proof of the theorem. �

THEOREM 6.3. Let B = B1 ∪B2 where B1 = {(λ, 0, 1
2 ), (0, λ,

1
2 ), (0, 0, 1

2 −λ) ; λ 
=
0,− 1

2 ,−1,− 3
2 } andB2 = {(λ, 0, 1

2 −λ), (0, λ, 1
2 −λ), (λ, λ, 1

2 ) ; λ 
= 0,− 1
4 ,− 1

2 ,− 3
4 }. Then

(i) All the K(1)-modules D2
λ1,λ2,μ

with δ 
= { 1
2 , 1, 3

2 , 2} and (λ1, λ2, μ) /∈ B are isomorphic.
(ii) The modules of the form

D2
λ,0, 1

2

∼= D2
0,λ, 1

2

∼= D2
0,0, 1

2 −λ ; λ 
= 0 , −1

2
, −1,−3

2
(58)

and

D2
λ,0, 1

2 −λ
∼= D2

0,λ, 1
2 −λ

∼= D2
λ,λ, 1

2
; λ 
= 0 , −1

4
, −1

2
, −3

4
(59)

are singular.
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PROOF. In this case, the isomorphism T : D2
λ1,λ2,μ

→ D2
ρ1,ρ2,ν

satisfy the following
equations

ϒ3Γ1(ρ1, ρ2, ν)
t = ε0Γ1(λ1, λ2, μ)

t

ϒ4Γ2(ρ1, ρ2, ν)
t = ε0Γ2(λ1, λ2, μ)

t

ϒ4Γ3(ρ1, ρ2, ν)
t = ε

1,0
1,0Γ3(λ1, λ2, μ)

t + ε
0,1
1,0Γ4(λ1, λ2, μ)

t

ϒ4Γ4(ρ1, ρ2, ν)
t = ε

1,0
0,1Γ3(λ1, λ2, μ)

t + ε
0,1
0,1Γ4(λ1, λ2, μ)

t

where ε0 ∈ R∗, ϒ1 =
(
ε
j,1−j
i,1−i

)
0≤i≤1
0≤j≤1

∈ GL2(R),ϒi ∈ GL(i + 1,R), i = 2, 3, 4 and the

functions Γi, i = 1, . . . , 4 are respectively given by

Γ1(a, b, c) =
(
a(2c − 2b − 1)

2(c − a − b − 1)
,

2ab

2(c − a − b − 1)
,

2ab

2(c − a − b − 1)
,
b(2c − 2a − 1)

2(c − a − b − 1)

)
,

Γ2(a, b, c) = (Γ 1
2 (a, b, c), . . . , Γ

5
2 (a, b, c)) where

Γ 1
2 (a, b, c)= 3a(2c − 2b − 1)

(2c − 2a − 2b − 1)(2c − 2a − 2b − 4)
,

Γ 5
2 (a, b, c) = 3b(2c − 2b − 1)

(2c − 2a − 2b − 1)(2c − 2a − 2b − 4)
,

and

Γ 2
2 (a, b, c) = Γ 3

2 (a, b, c) = Γ 4
2 (a, b, c) = 6ab

(2c − 2a − 2b − 1)(2c − 2a − 2b − 4)
,

Γ3(a, b, c) =
(−(2c + 2a − 2b − 1)

2(2c − 2a − 2b − 3)
,

b(2a + 1)

2c − 2a − 2b − 3
,

−b
2c − 2a − 2b − 3

,
b(2c − 2a − 2)

2c − 2a − 2b − 3
, 0

)

and

Γ4(a, b, c)=
(

0,
−a(2c − 2b − 2)

2c − 2a − 2b − 3
,

−a
2c − 2a − 2b − 3

,
−a(2b + 1)

2c − 2a − 2b − 3
,
−(2c − 2a + 2b − 1)

2(2c − 2a − 2b − 3)

)
.

Thus, the following cases arise
• Γi(ρ1, ρ2, ν) 
= 0 and Γi(λ1, λ2, μ) 
= 0, ∀i = 1, 2, 3, 4, that is (ρ1, ρ2, ν), (λ1, λ2, μ) /∈ B,

then we get a family of K(1)-isomorphisms given by the conditions
ε0 = 1, ϒ1 = I2, ϒ2 ∈ GL(3,R), and

ϒ3Γ1(ρ1, ρ2, ν)
t = Γ1(λ1, λ2, μ)

t , ϒ4Γi(ρ1, ρ2, ν)
t = Γi(λ1, λ2, μ)

t , i = 1, 2, 3.

• Γ1(ρ1, ρ2, ν) = Γ1(λ1, λ2, μ) = Γ2(ρ1, ρ2, ν) = Γ2(λ1, λ2, μ) = 0 , then (ρ1, ρ2, ν),

(λ1, λ2, μ) ∈ B1, which leads to (58).
• Γ3(λ1, λ2, μ) = 0, that is (λ1, λ2, μ) ∈ B2. Then Γ4(λ1, λ2, μ) 
= 0 and

ε
0,1
0,1Γ3(ρ1, ρ2, ν)

t − ε
1,0
1,0Γ4(ρ1, ρ2, ν)

t = 0 (since it belongs to the Kernel of ϒ4). So we get

ε
0,1
0,1(2ν + 2ρ1 − 2ρ2 − 1) = 0 and ε0,1

1,0(2ν − 2ρ1 + 2ρ2 − 1) = 0.
Then, the following situations appear:
(ρ1, ρ2, ν) = (λ, λ, 1

2 ) if ε0,1
0,1 
= 0 and ε0,1

1,0 
= 0

(ρ1, ρ2, ν) = (0, λ, 1
2 − λ) if ε0,1

0,1 = 0 and

ϒ4Γ4(ρ1, ρ2, ν) = ε
0,1
0,1Γ4(λ1, λ2, μ) with ε0,1

0,1 
= 0.
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• Γ4(λ1, λ2, μ) = 0, that is (λ1, λ2, μ) ∈ B2. Then Γ3(ρ1, ρ2, ν) 
= 0, by a similar reasoning we
end up with the following situations
(ρ1, ρ2, ν) = (λ, λ, 1

2 ) if ε1,0
1,0 
= 0 and ε1,0

0,1 
= 0

(ρ1, ρ2, ν) = (λ, 0, 1
2 − λ) if ε1,0

1,0 = 0 and

ϒ4Γ3(ρ1, ρ2, ν) = ε
1,0
1,0Γ3(λ1, λ2, μ) with ε1,0

1,0 
= 0.
Thanks to the latter two cases, (59) is promptly proved. This achieves the proof of the theorem. �

REMARK 6.4. For the resonant case, we may conjecture that, using the notion of nor-
mal symbol instead of equivariant symbol, (see [1], [7] and [8]), the singular modules are the
following (and their adjoint):

(0, 0, 1
2 ) if k = 1

2 or k = 1.
(0, 0, μ), μ = 1

2 , 1, 3
2 and (− 1

2 , 0, 1) if k = 3
2 .

(0, 0, μ), μ = 1
2 , 1, 3

2 , 2 and (λ, 0, λ + 2), λ ∈ C if k = 2.
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