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Abstract. We study inclusions between primitive ideals in the universal enveloping
algebra of general linear superalgebras. For classical simple Lie superalgebras, any primi-
tive ideal is the annihilator of a simple highest weight module. It therefore suffices to study
the quasi-order on highest weights determined by the relation of inclusion between primitive
ideals. For the specific case of reductive Lie algebras, this quasi-order is essentially the left
Kazhdan-Lusztig quasi-order. For Lie superalgebras, a description of the poset structure on
the set primitive ideals is at the moment not known, apart from some low dimensional specific
cases. We derive an alternative definition of the left Kazhdan-Lusztig quasi-order which ex-
tends to classical Lie superalgebras. We denote this quasi-order by � and show that a relation
in � implies an inclusion between primitive ideals.

For gl(m|n) the new quasi-order � is defined explicitly in terms of Brundan’s Kazhdan-
Lusztig theory. We prove that � induces an actual partial order on the set of primitive ideals.
We conjecture that this is the inclusion order. By the above paragraph one direction of this
conjecture is true. We prove several consistency results concerning the conjecture and prove
it for singly atypical and typical blocks of gl(m|n) and in general for gl(2|2). An important
tool is a new translation principle for primitive ideals, based on the crystal structure underlying
Brundan’s categorification on category O. Finally we focus on an interesting explicit example;
the poset of primitive ideals contained in the augmentation ideal for gl(m|1).

Introduction. The primitive spectrum for complex semisimple Lie algebras is an in-
teresting and important mathematical structure, which has been well understood since about
1980. Duflo [Du77] proved that each primitive ideal is the annihilator ideal of a simple high-
est weight module. A description of the poset structure on the set primitive ideals was then
obtained through the combined efforts of, principally, Borho, Dixmier, Garfinkle, Jantzen,
Joseph and Vogan, details and references can be found in e.g. [Ja83, Mu12]. The description
involves several reductions. Using central characters and weight lattices, the poset decom-
poses as a disjoint union of finite connected components, described by Weyl groups. The next
step involved a reduction, based on translation functors, to (finitely many) regular orbits of the
Weyl group. Then it remained to consider those regular orbits. A crucial result for these was
conjectured by Joseph in [Jo79] and proved by Vogan in [Vo80]. Together with the validity
of the Kazhdan-Lusztig conjecture, see e.g. [BB81], their result implies that the inclusions
are governed by a partial quasi-order on the Weyl group, known as the left Kazhdan-Lusztig
quasi-order (KL order for short), defined by the combinatorics of the Hecke algebra in [KL79].
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In [Jo79, Vo80], there are two equivalent descriptions of this inclusion order for a regular
orbit, in terms of properties of category O rather than the Hecke algebra. The first is more
direct and uses explicitly the Weyl group structure on the set of weights in a regular orbit, as
well as the composition series of Verma modules. The second one is in terms of the action of
projective functors on simple modules of a regular block in category O, which actually de-
scribes the right KL order. Vogan’s proof that the latter formulation is the correct description
of the inclusion order is intimately related with the equivalence of categories between regular
blocks in categoryO and Harish-Chandra bimodules, see [BG80]. The first formulation seems
impossible to extend to classical simple Lie superalgebras, because the Weyl group does not
provide enough control over primitive ideals. The second formulation does not predict the
correct inclusions for superalgebras, as we demonstrate in Subsection 4.5. This is not sur-
prising, as this formulation classically holds only for regular orbits. Hence there is no reason
to expect it to extend to atypical central characters for Lie superalgebras, which correspond
to both regular and singular Weyl group orbits. Also we do not expect an equivalence with
Harish-Chandra bimodules of the type used in [Vo80] (with the same central character on both
sides of the bimodules), to hold for Lie superalgebras. This is again because the correspond-
ing equivalence already fails for singular blocks in the Lie algebra case, see Theorem 5.9(ii)
in [BG80].

There are further difficulties in passing from Lie algebras to Lie superalgebras. For in-
stance, it is impossible to reduce to finitely many integral blocks in category O, since blocks
with similar characteristics (singularity and atyicality) will still not be equivalent, see [CSe15].
Furthermore, it is possible for an infinite number of primitive ideals to have the same central
character, and a connected component of the primitive spectrum can be infinite.

Despite the difficulties, some interesting results have been obtained. For classical Lie
superalgebras, the analogue of Duflo’s result was established by the second author in [Mu92].
This results in a map from the dual of the Cartan subalgebra to the set of primitive ideals. For
superalgebras of type I, Letzter [Le96] obtained a description of the fibres of this map, and
hence also of the set of primitive ideals. However Letzter’s methods did not yield informa-
tion on inclusions between primitive ideals. An exhaustive list of inclusions has so far only
been obtained for the particular cases of sl(2|1), osp(1|2n) and q(2) in [Mu93, Mu97, Ma10].
Further techniques were developed by the first author and Mazorchuk in [CMa14]. In particu-
lar, twisting functors, see also [CMW13], provide an important tool in establishing inclusions
between annihilator ideals, since it was shown in [CMa14] Lemma 5.15 that the annihilator
ideal of a twisted simple module is the same as that of the original module.

In [CMa14], specific attention was given to the cases of generic and typical weights. A
weight is generic if it is far away from the walls of the Weyl chamber, the precise definition
is given in Definition 7.1 of [CMa14]. In the generic region, equalities between annihilator
ideals of highest weight modules imply that the highest weights are in the same orbit of a new
deformation of the Weyl group action, see Theorems 9.2 and 10.1 in op. cit. These results
state that inclusions within these deformed orbits are governed by the classical left KL order
on the Weyl groups. For gl(m|n), contrary to e.g. osp(m|2n), the deformation of the Weyl
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group action is actually the usual one, when formulated in terms of the distinguished system
of positive roots. The above statement about equalities between ideals for this case is not
restricted to the generic region, which recovers the result in [Le96]. Similarly, for gl(m|n),
when one restricts to an arbitrary Weyl group orbit, the inclusions are described by the left KL
order on the Weyl group, see Theorem 11.1 in [CMa14]. Also one direction of the conjecture
mentioned in the abstract follows from the results in [CMa14].

In the current paper, we mainly focus on the primitive spectrum for gl(m|n). In this case,
integral highest weights are labeled by elements of Zm|n, and we write J (α) for the annihi-
lator of the simple module corresponding to α ∈ Z

m|n, see Section 1. We make two main
contributions to the study of the poset of primitive ideals for gl(m|n). The first is a transla-
tion principle for primitive ideals based on the translation functors introduced by Brundan
[Br03] and studied further by Kujawa [Ku06]. Even though simple modules are generally not
mapped to simple modules, we construct, in Section 2, a translation principle which preserves
inclusions between certain sets of primitive ideals. For semisimple Lie algebras, a transla-
tion principle for primitive ideals was introduced by Borho and Jantzen in [BJ77] and the
reader might detect echoes of their work in our translation principle. However, for gl(m|n),
the combinatorics is governed by a crystal (in the sense of Kashiwara) rather than the Weyl
group.

The second contribution is an alternative formulation of the left KL quasi-order. Instead
of relying on Weyl group combinatorics or projective functors, we find an alternative def-
inition of the KL order, which uses the Ext1-quiver of a block in category O and certain
dominance conditions. The advantage of this definition is that it is directly applicable to sin-
gular blocks and describes all inclusions between annihilator ideals of integral simple highest
weight modules directly, without the need for translation to the walls. Of course the fact that
this predicts the correct inclusion order still relies on the results in [Jo79, Vo80] and hence on
the more standard formulations. The important feature for us is that the definition naturally
extends to classical Lie superalgebras, this leads to a quasi-order which we call the left KL
order for the Lie superalgebra. From [CLW15, BLW13], we know that for the case of gl(m|n),
the Ext1-quiver and thus the KL order, is determined by Brundan’s KL theory in [Br03]. We
also study an analogue of the right KL order in Subsection 4.5, but show that this seems
unrelated to the inclusion order.

We conjecture that our left KL quasi-order, denoted here by �, induces the inclusion
order on the set of primitive ideals for gl(m|n). The evidence which led us to state this con-
jecture is presented as Theorem 4.8. We show that β � α implies that J (β) ⊆ J (α), and that
J (β) = J (α) if and only if β � α and α� β. The latter means the equivalence classes, deter-
mined by our quasi-order �, are indeed the sets of modules with identical annihilator ideal.
We also show that the conjecture is compatible with the translation principle for primitive
ideals and holds for ideals in the same Weyl group orbit. It follows also that the conjecture
is correct in the generic region and for typical modules. Furthermore we show the conjec-
ture holds for gl(2|2) and for all singly atypical blocks for gl(m|n), in particular implying
the conjecture in full for gl(m|1). As a side result we also obtain an algorithmic description
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of all inclusions for singly atypical blocks of gl(m|n), in terms of the known inclusions for
gl(m)⊕ gl(n). Note that our conjecture can be viewed as a natural analogue of the conjecture
of Joseph for Lie algebras referred to earlier.

After the current paper was finished and published online, the first author obtained a
proof of the conjecture, in [Co15]. This was achieved by proving that, for arbitrary basic
classical Lie superalgebras, the inclusion order is equal to a ‘completed’ KL order. This
completed KL order is determined by the action of twisting functors and it can be shown that
it is an extension of our KL order. By the results of [CMa14] mentioned above, a relation in
this completed order implies an inclusion between annihilator ideals. In [Co15] the converse
implication is proved and it is shown that, for gl(m|n), the completed KL order is actually the
same as our KL order. Hence the conjecture is proved to be correct.

We also study, in Section 3, the poset of primitive ideals as a topological space, with
respect to the Jacobson-Zariski topology. This aspect of the primitive spectrum has interest-
ing features which do not appear for Lie algebras. The poset as a topological space is for
instance no longer the disjoint union of its irreducible components. In addition the irreducible
components of the topological space are not identical to the connected components of the
poset. Nevertheless we are able to obtain a classification of the irreducible components of the
topological space.

Finally, for gl(m|1), we focus on an interesting special case, the poset and topological
space X corresponding to the primitive ideals included in the augmentation ideal. Note that
the order on this poset is determined by our general results for singly atypical weights, but we
aim for a more hands-on description. Further motivation is given at the beginning of Section
6. As main results we show that X is a connected component of the poset and that its m
irreducible components (as a topological space) are all isomorphic to the poset of primitive
ideals of U(g0) at a regular integral central character.

Acknowledgments. The authors thank Jonathan Brundan and Volodymyr Mazorchuk for indis-
pensable discussions.

1. Preliminaries. For a basic classical Lie superalgebra (and for a reductive Lie al-
gebra) k, we denote a Borel subalgebra by b and a Cartan subalgebra by h. Denote the
nilradical of b by n, so b = h ⊕ n. For any λ ∈ h∗, we denote the Verma module by
Mλ(k) = U(k) ⊗U(b) Cλ. The top of this module is the simple highest weight module
Lλ(k). We denote the set of roots by Δ and the subset of positive roots by Δ+. We define
ρ(k) = 1

2 (
∑
γ∈Δ+

0
γ )− 1

2 (
∑
γ∈Δ+

1
γ ). For any set of roots Ξ , let Ξ0 (resp. Ξ1) be the set of

even (resp. odd) roots contained in Ξ. Let P0, P+
0 , P++

0 denote the set of integral, integral
dominant and integral regular dominant weights respectively.

The BGG category will be denoted by O. For ν ∈ h∗ and N ∈ O we have

(1) ExtiO(Mν(k),N) ∼= Homh(Cν,H
i(n, N)) ,

see e.g. Theorem 25 (i) and Corollary 14 in [CMa15]. The full Serre subcategory of modules
in the BGG category O with integral weight spaces is denoted by OZ.
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We are interested in primitive ideals. By [Du77, Mu92] any primitive ideal in U(k) has
the form Iλ(k) := annU(k)(Lλ(k)). More generally we set X = {annM|M ∈ O}. The set of
primitive ideals in U(k) is denoted by Prim U(k) ⊂ X . If there is a strict inclusion between
two primitive ideals Iμ(k) and Iλ(k) such that there is no third primitive ideal Iκ (k) for which
there are strict inclusions Iμ(k) ⊂ Iκ (k) ⊂ Iλ(k) we say that Iλ(k) covers Iμ(k) and write
Iμ(k) ≺ Iλ(k).

We will also regard the set Prim U(k) as a topological space for the Jacobson-Zariski
topology. Thus the closed sets are chosen to be

V (Q) := {I ∈ Prim U(k) |Q ⊆ I } ,
for any two-sided ideal Q in U(k).

We will mainly focus on the case where k is a general linear algebra. In this case we
use the notation g = gl(m|n). Unless stated otherwise, we take the Borel subalgebra b corre-
sponding to the distinguished system of positive roots Δ+ = Δ+

0 ∪Δ+
1 , where

Δ+
0 = {εi − εj | 1 ≤ i < j ≤ m} ∪ {δi − δj | 1 ≤ i < j ≤ n} ,

Δ+
1 = {εi − δj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} .

For this case we use the notation Lλ = Lλ(g), Mλ = Mλ(g), Jλ = Iλ(g), Iλ = Iλ(g0),
U = U(g), ρ = ρ(g) and ρ0 = ρ(g0).

We will often restrict to modules with integral weight spaces. The corresponding set of
primitive ideals forms a subposet of Prim U which we denote by Prim ZU . If P ∈ Prim ZU

and Q /∈ Prim ZU , there are no inclusion relations between P andQ.
We choose the form (·, ·) on h∗ by setting (εi, εl) = δij , (δj , δk) = −δjk and (εi, δj ) =

0. We have

(2) ρ = 1

2

m∑

i=1

(m− n− 2i + 1)εi + 1

2

n∑

j=1

(n+m− 2j + 1)δj .

It is sometimes more convenient to use

∂ =
m∑

i=1

(m− i)εi +
n∑

j=1

(1 − j)δj

since the coefficients of ∂ are integers. The difference ρ − ∂ is orthogonal to all roots. The
difference ρ − ρ0 is orthogonal to all even roots.

We say that λ ∈ h∗ is singular if (λ + ρ, γ ∨) = (λ + ∂, γ ∨) = (λ + ρ0, γ
∨) = 0 for

some γ ∈ Δ+
0 , with γ ∨ := 2γ /(γ, γ ). If λ is not singular it is regular. If (λ + ρ, γ ∨) ≥ 0,

resp. (λ + ρ, γ ∨) ≤ 0, for all γ ∈ Δ+
0 , we say that λ is dominant, resp. anti-dominant. If λ

is regular as well we say that it is strictly (anti-)dominant.
The degree of atypicality of λ is the number of different mutually orthogonal odd roots

γ for which (λ+ρ, γ ) = (λ+ ∂, γ ) = 0. We say that λ is typical, resp. atypical if the degree
of atypicality is zero, resp. strictly greater than zero.



230 K. COULEMBIER AND I. MUSSON

The ρ-shifted action of the Weyl group on h∗ is the same as the ∂-shifted or ρ0-shifted
action for gl(m)⊕ gl(n), so

w · λ = w(λ + ρ)− ρ = w(λ+ ∂)− ∂ = w(λ+ ρ0)− ρ0 .

We recall Theorems 6.1 and 11.1 of [CMa14], applied to gl(m|n) with system of positive
roots as above.

THEOREM 1.1. Consider λ,μ ∈ h∗, then we have

(i) Jμ = Jλ ⇔ Iμ = Iλ;
(ii) Jw′·λ ⊂ Jw·λ ⇔ Iw′·λ ⊂ Iw·λ for w,w′ ∈ W ;

(iii) If κ ∈ h∗ is typical, then Jλ ⊂ Jκ or Jκ ⊂ Jμ imply Iλ ⊂ Iκ and Iκ ⊂ Iμ .

Property (i) was first proved by Letzter in [Le96]. Property (iii) is actually a special case of
property (ii), based on central character arguments.

We fix a bijection between integral weights P0 ⊂ h∗ and Z
m|n, by

(3) P0 →̃ Z
m|n , λ �→ αλ with αλi = (λ+ ∂, εi) and αλm+j = (λ+ ∂, δj ) .

Elements of Zm|n are denoted by (α1, . . . , αm|αm+1, . . . , αm+n), where | is referred to as the
separator.

We use the notation L(αλ) := Lλ and J (αλ) := Jλ for any λ ∈ P0. The dot action of the
Weyl groupW on P0 corresponds to the regular action ofW ∼= Sm × Sn on Z

m|n. The longest
element of W is denoted by w0.

We will need some results on the primitive spectrum of a reductive Lie algebra k, see
[Mu12] Subsection 15.3 or [Ja83]. For λ ∈ h∗, let Xλ denote the subset of Prim U(k) con-
sisting of primitive ideals containing the kernel of the central character determined by λ. Let
B be the set of simple roots of k. For w ∈ W , and μ ∈ h∗ set τ (w) = {α ∈ B|wα < 0}, and

B0
μ = {α ∈ B|(μ+ ρ(k), α) = 0} .

For any (possibly singular) λ ∈ P0 we will write τ (λ) for τ (w) with w ∈ W the longest
element of the Weyl group for which w−1 · λ is dominant. Thus for κ ∈ P++

0 , we just have
τ (w · κ) = τ (w) for any w ∈ W .

THEOREM 1.2. Consider k a reductive Lie algebra.

(i) Any primitive ideal in U(k) has the form Iλ(k) for some λ ∈ h∗.
(ii) If λ ∈ P++

0 , there is a well defined map from Xλ to the power set of B, sending
Iw·λ(k) to τ (w). This map is surjective and order-reversing.

(iii) If λ ∈ P++
0 and μ ∈ P+

0 , then there is an isomorphism of posets

ψ : {I ∈ Xλ|B0
μ ⊆ τ (I)} −→ Xμ .

If w ∈ Wλ and B0
μ ⊆ τ (w), then ψ(Iw·λ(k)) = Iw·μ(k).
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As in definition 11.5 of [CMa14], for any α ∈ Z
m|n we set

(4) dα = max{k ∈ Z+| there are γ1, . . . , γk ∈ Δ+
1 with e−γ1 · · · e−γk vα �= 0} ,

where vα represents the highest weight vector of the moduleL(α). We fix an element h in the
center of g0 such that the adjoint action on g1 is given by +1 and on g−1 by −1. By definition
we therefore have that the number of different eigenvalues of h on L(α) is equal to dα + 1.
Note that we have dα ≤ mn, where the equality is reached if and only if α is typical.

We will use the concept of odd reflections, see e.g. [Mu12, Se11]. We will only use this
for the case gl(m|1), so we use the corresponding notation here. In particular we are interested
in going from the distinguished system of positive roots to the antidistinguished system, i.e.
the one with positive rootsΔ+

0 ∪ (−Δ+
1 ). There is a sequence

(5) b(0), b(1), . . . , b(m)

of Borel subalgebras such that b(0) is distinguished, b(m) is antidistinguished and b(i−1), b(i)

are adjacent for 1 ≤ i ≤ m. There are isotropic roots αi = εm−i+1 − δ such that gαi ⊂
b(i−1), g−αi ⊂ b(i) for 1 ≤ i ≤ m, and α1, . . . , αm are the distinct odd positive roots
of gl(m|1). For any λ ∈ h∗, we define λad ∈ h∗ as the highest weight of the simple module
Lλ with respect to the antidistinguished system of positive roots, so Lλ = Lad

λad .
Finally recall that when g = sl(m) (or gl(m)) the set of primitive ideals with a regular

integral central character can be described using the Robinson-Schensted correspondence. To
fix notation we will use the bijection

(6) v −→ (A(v), B(v))

from the symmetric group Sm to the set of all pairs of standard tableaux withm boxes, having
the same shape as defined in [Mu12] Theorem 11.7.1, see also [Ja83] Subsection 5.24. Then
we have by [Mu12] Theorem 15.3.5 that for μ ∈ P++

0 , Iu·μ = Iv·μ if and only if A(u) =
A(v). Note that v is an involution, that is v2 = 1, if and only if A(v) = B(v) in (6). Hence
any ideal contained in Iμ has the form Iv·μ for a unique involution v.

2. A translation principle for primitive ideals. In this section we introduce a trans-
lation principle on the poset of primitive ideals for gl(m|n). In Subsection 2.1 we review the
crystal structure introduced by Brundan. In Subsection 2.2 we derive some immediate conse-
quences of the results on translation functors by Kujawa. This is then used in Subsection 2.3
to introduce the translation principle.

2.1. Crystals. First, we define a crystal (Zm|n, ẽi , f̃i , εi, φi) in the sense of Kashi-
wara [Ka95], as introduced by Brundan in [Br03]. Take i ∈ Z and

α = (a1, . . . , am|am+1, . . . , am+n) ∈ Z
m|n .

The i-signature of α is the tuple (σ1, . . . , σm|σm+1, . . . , σm+n) defined by:

• for j ≤ m : σj =
⎧
⎨

⎩

+ if aj = i ,
− if aj = i + 1 ,
0 otherwise;
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• for j > m : σj =
⎧
⎨

⎩

+ if aj = i + 1 ,
− if aj = i ,
0 otherwise.

We use the crystal operators on Z
m|n defined in [Br03] beginning with equation (2.32).

The reduced i-signature of α is obtained from i-signature of α by successively replacing
sequences of the form −+ (possibly separated by 0’s) with 00 until no − appears to the left
of a +.

We introduce cj to denote (0, . . . , 0,±1, 0, . . . , 0) ∈ Z
m|n where ±1 appears in the j th place

as 1 if j ≤ m and as −1 if j > m. Define

ẽi (α) :=
{∅ if there are no −’s in the reduced i-signature,
α − cj if the leftmost − is in position j ;

f̃i (α) :=
{∅ if there are no +’s in the reduced i-signature,
α + cj if the rightmost + is in position j ;

εi(α) = the total number of −’s in the reduced i-signature;
φi(α) = the total number of +’s in the reduced i-signature.

Consequently, the reduced signature of ẽi (α) is obtained from the reduced signature of α by
replacing the leftmost − by +. This implies that for α ∈ Z

m|n, we have that

εi(α) = max{r ≥ 0 | (ẽi)r(α) �= ∅} ,

φi(α) = max{r ≥ 0 | (f̃i )r (α) �= ∅} .
Note that by definition we have

∑
i∈Z εi(α) = ∑

i∈Z φi(α).
2.2. Translation functors. In this subsection we demonstrate how the action of

translation functors on the integral BGG category OZ can be linked to the crystals in the
previous subsection. This is an immediate consequence of Kujawa’s result in Theorem 2.4 of
[Ku06] together with general results in [Br03, CR08].

Denote the tautological representation of gl(m|n) by E = C
m|n. For an arbitrary central

character χ we set χ ′ = χẽiα and χ ′′ = χf̃iα
for any α such that χα = χ and ẽiα �= ∅ or

f̃iα �= ∅. For M ∈ Oχ we set

ei(M) = (M ⊗ E∗)χ ′ and fi(M) = (M ⊗ E)χ ′′ .

THEOREM 2.1. Let α ∈ Z
m|n and i ∈ Z.

(i) Set s = εi(α), if s = 0 then eiL(α) = 0. If s = 1, then eiL(α) ∼= L(ẽiα). If s > 1,
then eiL(α) is not simple but an indecomposable module with irreducible socle and
top isomorphic to L(ẽi(α)). Furthermore, any simple subquotient of eiL(α) = 0,
different from L(ẽi (α)), is of the form L(β) with es−1

i L(β) = 0.
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(ii) Set t = φi(α), if t = 0 then fiL(α) = 0. If t = 1, then fiL(α) ∼= L(f̃iα). If t > 1,
then fiL(α) is not simple but an indecomposable module with irreducible socle and
top isomorphic to L(f̃i(α)). Furthermore, any simple subquotient of fiL(α) = 0 is
of the form L(β) with f t−1

i L(β) = 0.

PROOF. We only prove (i), since (ii) is proved in the same way. The first paragraph
is precisely Theorem 2.5(i) in [Ku06]. We consider the Lie algebra sl(∞) with tautologi-
cal representation V . The canonical basis of V is labeled by Z. This extends to a mapping
from the vector space Z

m|n to the sl(∞)-representation (⊗mV ) ⊗ (⊗nV ∗). The identifica-
tion M(α) ↔ α for α ∈ Z

m|n yields a bijection between the Grothendieck group K(OΔ
Z
) of

the category of modules in OZ with Verma flag and (⊗mV ) ⊗ (⊗nV ∗). Under this bijection
atypical simple modules are not in (⊗mV ) ⊗ (⊗nV ∗), but in a completion. In order to fix
this, we need to restrict to some finite interval I ⊂ Z. We use the notation of [BLW13]. The
algebra sl(I) is generated by {ei, fi | ∈ I } and this yields a categorification of a corresponding
subquotient OI . Now there is a bijection

(⊗mVI )⊗ (⊗nV ∗
I ) ↔ K(OI ) .

Theorem 4.28 in [Br03] then implies that the translation functors ẽi and f̃i for a fixed i ∈ I act
on (⊗mV )⊗(⊗nV ∗) (or the corresponding tensor space for sl(I)) as the Chevalley generators
of sl(2), yielding a categorification.

The results in [BLW13] imply that this construction is well-behaved with respect to the
limit I → Z. The second paragraph is therefore an immediate consequence of Lemma 4.3 in
[CR08], see also Theorem 4.4 in [BK08]. �

Note that this means that if ẽiα �= 0 we have the property

(7) τ (ẽiα) = τ (α) .

As simple modules in category O have no self-extensions we obtain, by induction, the
following consequence of Lemma 2.1.

COROLLARY 2.2. Let α ∈ Z
m|n and i ∈ Z.

(i) If s = εi(α) > 0, then es+1
i L(α) = 0 while esi L(α) is isomorphic to a non-zero direct

sum of simple modules isomorphic to L(ẽsi (α)).

(ii) If s = φi(α) > 0, then f s+1
i L(α) = 0 while f si L(α) is isomorphic to a non-zero

direct sum of simple modules isomorphic to L(f̃ si (α)).

The following remark is immediate but will be useful for later purposes.

REMARK 2.3. Consider α, β ∈ Z
m|n with χα = χβ . If ẽiα �= ∅ and ẽiβ �= ∅

(respectively f̃iα �= ∅ and f̃iβ �= ∅) we have χẽiα = χẽiβ (respectively χf̃iα = χf̃iβ
).

2.3. Translation functors and primitive Ideals. Now we can discuss the translation
principle for primitive ideals which are annihilators of highest weight modules in the integral
block. This restriction to integral weights is partly justified by the classical case, the results in
[CMW13] and Corollary 8.4 in [CMa14].
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It is easy to see that for all i ∈ Z, there are well defined map of posets E′
i : X −→ X

given byE′
i (annM) = annei(M), see [Ja83] Lemma 5.4, or Lemmata 4.1 and 4.3 in [CMa14].

According to Corollary 2.2 we have

εi(α) = max{n|eni L(α) �= 0}
and hence

(8) εi(α) = max{n|ann(eni L(α)) �= U} = max{n|(E′
i )
nJ (α) �= U}

and this depends only on the ideal J (α).

LEMMA 2.4. If J (β) ⊆ J (α), then εi(β) ≥ εi(α) and φi(β) ≥ φi(α), for each i ∈ Z.

PROOF. We use equation (8). If k = εi(β), then

U = annek+1
i L(β) = (E′

i )
k+1J (β) ⊆ (E′

i )
k+1J (α) = annek+1

i L(α) ,

and it follows that εi(α) ≤ k. The result for φi is proved similarly. �

COROLLARY 2.5. If for α, β, κ ∈ Z
m|n we have J (β) ⊂ J (κ) ⊂ J (α) and εi(α) =

εi(β) and φi(α) = φi(β) for some i, then εi(κ) = εi(α) and φi(κ) = φi(α).

In general, the map E′
i does not take primitive ideals to primitive ideals. Instead we

define Ei : Prim U → Prim U by setting

EiJ (α) = Ei(annL(α)) := annsoc(ei(L(α))) = J (ẽiα) ,

where we used Theorem 2.1(i). In the same way we define Fi from fi . Set

Prim (i)
r,sU = {J (α)|εi(α) = r, φi(α) = s} ⊂ Prim U ⊂ X .

THEOREM 2.6. If r ≥ 1 and s ≥ 0, the map Ei gives a well defined isomorphism of
posets

Prim (i)
r,sU −→ Prim (i)

r−1,s+1U ,

with inverse Fi . Moreover, for r, s ≥ 1, the maps

Ei :
⋃

t≥0

Prim (i)
r,t U →

⋃

t≥1

Prim (i)
r−1,tU , Fi : ∪t≥0Prim (i)

t,sU →
⋃

t≥1

Prim (i)
t,s−1U ,

are bijective and preserve inclusions.

PROOF. The fact that Ei maps bijectively from Prim r,sU to Prim r−1,s+1U follows
from Corollary 2.2. Now we prove that

Ei :
⋃

t≥0

Prim (i)
r,t U →

⋃

t≥1

Prim (i)
r−1,tU

preserves inclusions.
Suppose that α, α′ are such that J (α) ⊆ J (α′) and εi(α) = εi(α

′) = r . Set ẽi (α) = β

and ẽi (α′) = β ′. We write rad (J ) for the radical of an ideal J. For any g-moduleM of finite
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length, rad (annM) is the intersection of the annihilators of the composition factors ofM.We
thus have

rad (ann(eiL(α))) ⊆ rad (ann(eiL(α′))) ⊆ J (β ′) ,

where the second inequality follows from Theorem 2.1(i). In addition, Theorem 2.1(i) implies
that there is a set S ⊂ Z

m|n, where γ ∈ S implies εi(γ ) < εi(β), such that

(9) rad (ann(eiL(α))) = J (β) ∩
⋂

γ∈S
J (γ ) .

The product of the ideals on the right side of (9) is thus contained in J (β ′). Since J (β ′) is
prime, one of these ideals is contained in J (β ′). If J (γ ) ⊆ J (β ′) for some γ ∈ S, then
Lemma 2.4 implies εi(γ ) ≥ εi(β

′) = r − 1 = εi(β), a contradiction. Therefore J (β) ⊆
J (β ′). The same reasoning for Fi concludes the proof. �

3. The irreducible components of the topological space. In this subsection we ob-
tain, as immediate application of our results in Subsection 2.3, a classification of the irre-
ducible components of the space Prim ZU with respect to the Jacobson-Zariski topology. First
we state some immediate facts about the corresponding topological space for Lie algebras.

PROPOSITION 3.1. Consider k a reductive Lie algebra. Then the irreducible com-
ponents of the topological space Prim ZU(k) are the same as the connected components of
Prim ZU(k) as a poset. These are in one to one correspondence with integral central charac-
ters, or dominant weights λ and given by

{I ∈ Prim ZU(k) | Iw0·λ ⊂ I } = {I ∈ Prim ZU(k) | I ⊂ Iλ} .
Almost all these properties no longer hold for gl(m|n), see Proposition 3.4, but the con-

nection between irreducible components and (anti-)dominant weights is still valid as stated in
the following theorem.

THEOREM 3.2. The irreducible components of the topological space Prim ZU are

Z(β) = {J ∈ Prim U | J (β) ⊂ J } ,
for all anti-dominant β ∈ Z

m|n.

PROOF. The fact that Z(β) for β anti-dominant is irreducible is immediate. It remains
to be proven that Z(β) is maximal. Therefore we claim that there are no primitive ideals
properly included in J (β) if β is anti-dominant, from which this statement follows. If there
would be a proper inclusion J (γ ) ⊂ J (β), without loss of generality we can assume that γ is
anti-dominant by Theorem 1.1 (ii). The claim therefore follows from the subsequent Lemma
3.3. �

LEMMA 3.3. Consider antidominant β, γ ∈ Z
m|n, then an inclusion J (γ ) ⊆ J (β)

implies γ = β.
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PROOF. We introduce some notation, for any α ∈ Z
m|n and x ∈ Z we set α0(x) equal

to the number of labels left of the separator equal to x and α1(x) equal to the number of labels
right of the separator equal to x. If α is anti-dominant we have

φx(α)= α0(x)+ max(α1(x + 1)− α0(x + 1), 0)

εx(α)= α1(x)+ max(α0(x + 1)− α1(x + 1), 0) .

For arbitrary β, γ ∈ Z
m|n that satisfy χβ = χγ we have β0(y)− β1(y) = γ0(y)− γ1(y) for

any y ∈ Z.
Applying the considerations in the previous paragraph to two anti-dominant β, γ with

the same central character yields

φx(γ )− φx(β) = γ0(x)− β0(x) and εx(γ )− εx(β) = γ1(x)− β1(x) .

Lemma 2.4 implies that an inclusion J (γ ) ⊆ J (β) would thus imply γ0(x) ≥ β0(x) and
γ1(x) ≥ β1(x) for all x ∈ Z. As we have

∑

x

γ0(x) =
∑

x

β0(x) = m and
∑

x

γ1(x) =
∑

x

β1(x) = n ,

we come to the conclusion that γ0(x) = β0(x) and γ1(x) = β1(x). As both γ and β are
anti-dominant we find β = γ . �

PROPOSITION 3.4. In general, the irreducible components are non-trivial subsets of
the connected components of Prim ZU . The irreducible components can possess more than
one maximal element as a poset. The connected components can possess more than one max-
imal and more than one minimal element.

PROOF. The connected component of Prim ZU(gl(2|2)) containing the augmentation
ideal, considered in Subsection 5.3, provides an example for all of these features. �

4. A super analogue of the left Kazhdan-Lusztig order. In this section we study
analogues of the left and right Kazhdan-Lusztig quasiorder on the Weyl group in the context
of Lie superalgebras. We find that our analogue of the left order seems a good candidate to
describe the inclusion order, supported by an extensive list of correspondences in Theorem
4.8, whereas the right order has a very different nature. In particular the right order is not
interval finite, whereas the inclusion order is interval finite, as is the left order.

4.1. An alternative description of the primitive spectrum of a semisimple Lie alge-
bra. We fix a reductive Lie algebra k. Recall that a quasi-order on a set is a relation that is
reflexive and transitive. We denote the partial ordering on P0 corresponding to the dominance
order by ≤. We define � as the smallest quasi-ordering on P0 such that for λ, ν ∈ P0 and a
simple reflection s ∈ W , we have ν � λ if

(i) s · λ < λ and s · ν ≥ ν;
(ii) Ext1O(Lλ(k), Lν(k)) �= 0 .
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Using Kazhdan-Lusztig theory we reformulate property (ii) in terms of extensions with Verma
modules, see equation (13) below. In particular the value

μ(λ, ν) := dim Ext1O(Lλ(k), Lν(k))

is known as the Kazhdan-Lusztig μ-function, see [KL79] and Subsection 2.1 in [Ma09]. The
μ-function can in turn be expressed through equation (1) in terms of cohomology of the
nilradical of the Borel subalgebra.

THEOREM 4.1. For any λ,μ ∈ P0, we have

Iμ(k) ⊆ Iλ(k) ⇔ μ� λ .

Consequently, for κ ∈ P++
0 and w,w′ ∈ W , we have

w · κ � w′ · κ ⇔ w′ �(l)
KL w ,

with �(l)
KL the left Kazhdan-Lusztig order, see [Ja83, Jo79, MM11].

The proof is based on the next lemma, which is well-known to specialists. We include a
proof for completeness. It is possible to give a proof of Theorem 4.1 avoiding the use of this
lemma, but that requires the fact that twisting functors and coshuffling functors are Koszul
dual.

LEMMA 4.2. For x, y ∈ W we have

(10) dim Ext1O(Lx·0(k), Ly·0(k)) = dim Ext1O(Lx−1·0(k), Ly−1·0(k)) .

PROOF. In the proof we leave out the references to k in notation such asLλ(k) and Iλ(k).
Let H denote the category of Harish-Chandra bimodules that admit generalised trivial central
character on both sides. Also let H1, 1H and H̄ = 1H1 stand for the full subcategories of H
of the modules that admit trivial central character on respectively the right side, left side and
both sides.

For M,N objects of O0, let L(M,N) denote the submodule of Hom(M,N) consisting
of maps which are locally finite under the diagonal action of g. By [BG80] or [Ja83] 6.27 the
functorN −→ L(M(0),N) provides an equivalence of categories from O0 to H1. By restric-
tion, we obtain an equivalence between the full subcategory of O0 consisting of modules that
admit the trivial central character, and the category H̄. The extensions in (10) correspond to
modules which are quotients of Verma modules (or submodules of dual Verma modules) and
therefore admit a central character. Under the equivalence between O0 and H1, these modules
are therefore inside the full subcategory H̄. For x ∈ W set Lx = L(M(0), Lx·0). It follows
that (10) is equivalent to the following

(11) dim Ext1H̄(Lx,Ly) = dim Ext1H̄(Lx−1,Ly−1) .

Let u −→tu denote the antiautomorphism of g defined in [Ja83] 2.1, or [Mu12] Proposition
8.6.1. As in [Ja83] 6.3, given a U(g) bimoduleX, we can define a new bimodule sX which is
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equal to X as a vector space, with a new action ∗ given by

u1 ∗m ∗ u2 =t u2m
tu1 for all u1, u2 ∈ U(g), m ∈ X .

The map η : X −→ sX is an equivalence from H1 to 1H, preserving H̄ and yielding η(Lx) ∼=
Lx−1 , see Satz 6.34 in [Ja83]. So (11) follows from this. �

PROOF OF THEOREM 4.1. We prove this statement first for regular blocks (i.e. the
principal block O0). The poset for this highest weight category is {w · 0 |w ∈ W }. We use the
convention y < x if and only if x · 0 < y · 0 and y � x if and only if x · 0 � y · 0.

By (10) we can reformulate the generating condition for � on the Weyl group by taking
λ = x · 0 and ν = y · 0 as follows. The quasi-order � on W is defined as the smallest
quasi-order such that y � x if

(a) x−1 < x−1s and y−1s < y−1;
(b) Ext1O(Lx−1·0(k), Ly−1·0(k)) �= 0 .

According to equation (2.2) in [Ma09] these two conditions equal

[θsLx−1·0 : Ly−1·0] �= 0 ,

with θs the translation through the s-wall. Lemma 13 in [MM11] and Corollary 7.13 in [Ja83]
therefore imply y � x ⇔ Ix·0 ⊆ Iy·0. So we find � is equal to �(l)

KL on W .
It remains to prove the statement for singular blocks. The property μ � λ ⇒ Jμ ⊆ Jλ

follows from Lemma 5.17 in [CMa14] applied to Lie algebras. We prove the other direction.
Consider an (integral) singular block, with T the translation functor from a regular block to
our singular block, T̃ its adjoint and θ = T̃ T the translation through the wall. Each highest
weight λ for the singular block has a unique highest weight λ′ for the regular block such that
T L(λ′) = L(λ). According to Theorem 1.2 we have

Iμ ⊆ Iλ ⇔ Iμ′ ⊆ Iλ′ .

The proof is therefore completed if we prove that conditions (i) and (ii) hold for μ, λ if they
hold for μ′, λ′. This is trivial for condition (i). For (ii), assume that Ext1O(Lμ′ , Lλ′) �= 0. We
have

Ext1O(Lμ,Lλ) ∼= Ext1O(Lμ′ , θLλ′) ,

and a short exact sequence Lλ′ ↪→ θLλ′ � Q, for some s-finite module Q. This yields the
exact sequence

HomO(Lμ′ ,Q) → Ext1O(Lμ′ , Lλ′) → Ext1O(Lμ,Lλ) .

The first term is zero since Lμ′ is s-free, so the third term is non-zero. �
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4.2. The left Kazhdan-Lusztig order for classical Lie superalgebras. In this sub-
section we generalise the left KL order from reductive Lie algebras to classical Lie superal-
gebras. We fix a classical Lie superalgebra g with system of positive roots Δ+. Any other
system of roots with the same system of even positive rootsΔ+

0 leads to the same category O.
In order to have a connection between the left Kazhdan-Lusztig order and the primitive spec-
trum, the definition can therefore not depend intrinsically on Δ+ (with the assumption that
Δ+

0 remains fixed). Since our definition will only depend on the modules, and not essentially
on their highest weights (which depend onΔ+) this condition is satisfied.

Before introducing the order we need the following definition. For a simple reflection
s ∈ W , we consider the corresponding positive root γ , simple in Δ+

0 . The simple module
Lλ is either X-free or locally X-finite for a non-zero X ∈ g−γ . In the first case Lλ is called
s-free, in the second s-finite.

DEFINITION 4.3. The partial quasi-order � on P0 is transitively generated by the fol-
lowing relation. If for λ,μ ∈ P0 and a simple reflection s ∈ W

(i) Lλ(g) is s-finite and Lμ(g) is s-free;
(ii) Ext1O(Lλ(g), Lμ(g)) �= 0;

are satisfied, we set μ� λ.

We have the following link between � and the inclusion order.

PROPOSITION 4.4. If for λ,μ ∈ P0, we have μ� λ, then Jμ(g) ⊆ Jλ(g).

PROOF. This is a reformulation of Lemma 5.17 in [CMa14]. �

The following proposition confirms that � satisfies a property which is an essential con-
dition to link it with the inclusion order.

PROPOSITION 4.5.

(i) The quasi-order � is interval finite;
(ii) The inclusion order is interval finite.

PROOF. Theorem 5.12(ii) in [CMa14] implies that property (i) would follow if we can
prove that the smallest quasi-order �′ such that μ �′ λ if [TsLμ : Lλ] �= 0 for any simple
reflection s, is interval finite. In other words, the consecutive procedure of taking a simple
subquotient of the action of a twisting functor on a simple module should only yield a fi-
nite number of non-isomorphic modules. This is certainly true for Lie algebras, as twisting
functors preserve central character (Proposition 5.11 in [CMa14]). Moreover as the twist-
ing functors are right exact (Lemma 5.4 in [CMa14]) and intertwine the restriction functor
(Lemma 5.1 in [CMa14]), the restriction to the Lie algebra of all modules generated by the
twisting functors must be composed of a finite number of simple modules for the underlying
Lie algebra. That this only allows a finite number of simple modules for the Lie superalgebra
follows e.g. from Lemma B.2 of [CSe15].

To prove part (ii) consider all μ for which Jμ ⊂ Jλ for a fixed λ. Take any simple sub-
quotient of the g0̄-module Resgg0̄

Lλ. Corollary 4.2 in [CMa14] implies that each Resgg0̄
Lμ
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must contain one of the finitely many non-isomorphic simple g0̄-modules with the same
central character. This allows only a finite number of g-modules, see again Lemma B.2 of
[CSe15]. �

4.3. The left Kazhdan-Lusztig order for gl(m|n). In this subsection we return to
g = gl(m|n) with Δ+ as in Section 1. Lemma 2.1 in [CMa14] implies that in this case
Definition 4.3 can be reformulated as follows.

DEFINITION 4.6. The partial quasi-order � on Z
m|n is transitively generated by the

following relation. If for α, β ∈ Z
m|n and a simple reflection s ∈ W ∼= Sm × Sn

(i) sα < α and sβ ≥ β;
(ii) Ext1O(L(α), L(β)) �= 0;

are satisfied, we set β � α.

Condition (ii) is known in principle and determined by Brundan’s Kazhdan-Lusztig poly-
nomials, see [Br03, BLW13, CLW15]. As in [BLW13], see also the proof of Theorem 2.1, we
denote the monomial basis of the Uq(sl(∞))-module V̇⊗m ⊗ Ẇ⊗m by {v̇α | α ∈ Z

m|n} and
Lusztig’s canonical basis by {ḃβ | β ∈ Z

m|n}. We define the KL polynomials by

ḃβ =
∑

α∈Zm|n
dα,β(q)v̇α and v̇α =

∑

β∈Zm|n
pα,β(−q)ḃβ .

By the characterisation of Lusztig’s canonical basis (see [Br03, BLW13]) we know that dα,α =
1 and if α �= β we have dα,β ∈ qZ[q] and dα,β = 0 unless α ≥ β. According to equation
(5.29) in [BLW13] we have

dim Ext1O(L(α), L(β))=
(
∂

∂q
pα,β

)

q=0
+

(
∂

∂q
pβ,α

)

q=0
.(12)

This implies
(
∂
∂q
pβ,α

)

q=0
=

(
∂
∂q
dα,β

)

q=0
. We can thus define a μ-function given by

μ(α, β) = dim Ext1O(L(α), L(β)) =
(
∂

∂q
dα,β

)

q=0
+

(
∂

∂q
dβ,α

)

q=0
.

Concretely we proved that condition (ii) is equivalent to

(ii’)
(
∂
∂q
dα,β

)

q=0
�= 0 or

(
∂
∂q
dβ,α

)

q=0
�= 0 .

According to equation (3.1) in [CSe15] we have

(13) dim Ext1O(L(α), L(β)) = dim Ext1O(M(α), L(β))+ dim Ext1O(M(β), L(α)).

Only one of the terms on the right-hand side can be non-zero, as for arbitrary highest weight
categories.

4.4. Discussion of the conjectural description of Prim ZU for gl(m|n). The follow-
ing conjecture is based on Theorem 4.1.

CONJECTURE 4.7. For g = gl(m|n) and any α, β ∈ Z
m|n, we have

J (β) ⊆ J (α) ⇔ β � α .
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The evidence for this conjecture is summarised in the following Theorem.

THEOREM 4.8. Consider g = gl(m|n) and α, β ∈ Z
m|n.

(i) β � α ⇒ J (β) ⊆ J (α) .

(ii) J (β) = J (α) ⇔ β � α and α � β .

(iii) If α, β are in the same W -orbit, then J (β) ⊆ J (α) ⇔ β � α .

(iv) If α or β is typical, then J (β) ⊆ J (α) ⇔ β � α .

(v) If εi(α) = εi(β) > 0 and φi(α) = φi(β) for i ∈ Z we have β � α ⇔ ẽiβ � ẽiα .

(vi) Conjecture 4.7 is true for singly atypical blocks and for g = gl(2|2).
(vii) If α and β are generic, then J (β) ⊆ J (α) ⇔ β � α .

Statement (ii) implies that the quasi-order � introduces an actual partial order on the
set of primitive ideals Prim U (for integral weights). Statement (v) shows the conjecture is
consistent with Theorem 2.6.

The remainder of this subsection is devoted to the proof of this theorem, apart from part
(vi), which will be proved in Corollary 5.9 and Corollary 5.17. Note that the conjecture for
gl(2|1) follows immediately from the explicit calculation of the Kazhdan-Lusztig polynomials
in Subsection 9.5 of [CW08] and the description of the primitive spectrum in Section 3 of
[Mu93].

First we remark that (iv) is immediate from Theorem 4.1 since the KL theory of typical
blocks is the same as for the underlying Lie algebra, while (i) is a special case of Proposition
4.4. Property (vii) follows immediately from (iii), since in the generic case J (β) = J (α)

implies that β and α are in the same Weyl group orbit by [CMa14] Lemma 7.4.
Now we find another expression for the extensions between simple modules. The first

claim also follows as a special case of Lemma 3.8 in [CSe15].

LEMMA 4.9. If λ,μ ∈ h∗ are in the same ρ-shifted (or equivalently ρ0-shifted) orbit
of W , we have

dim Ext1O(Lλ,Lμ) = dim Ext1O(Lλ(g0), Lμ(g0)) .

If λ,μ ∈ h∗ are in different orbits of W , we have (with n0 = g0 ∩ n)

dim Ext1O(Lλ,Lμ)=dim Homh

(
Cλ,

(
H 1(g1, Lμ)

)n0
) + dim Homh

(
Cμ,

(
H 1(g1, Lλ)

)n0
)
.

PROOF. By equations (1) and (13), we find

(14) dim Ext1O(Lλ,Lμ) = dim Homh(Cλ,H
1(n, Lμ))+ dim Homh(Cμ,H

1(n, Lλ)) .

Since g1 is an ideal in n, and Lg1
λ

∼= Lλ(g0), the five term exact sequence arising from the
Hochschild-Serre spectral sequence in Example 7.5.3 in [We94] begins with

(15) 0 → H 1(n0, Lλ(g0)) → H 1(n, Lλ) → (
H 1(g1, Lλ)

)n0 → H 2(n0, Lλ(g0)) .

We also have the same exact sequence with λ replaced by μ. Since all h-modules appearing
above are semisimple, applying the functor Homh(Cμ,−) (respectively Homh(Cλ,−)) to the
exact sequences also yields exact sequences.
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First we assume that λ and μ are not in the same orbit. Applying Homh(Cμ,−) to the
first and fourth term in (15) gives zero, based on equation (1) and the central character for g0,
so we find

Homh(Cμ,H
1(n, Lλ)) ∼= Homh

(
Cμ,

(
H 1(g1, Lλ)

)n0
)
.

The same reasoning with roles of λ and μ reversed yields the result.
Now if λ and μ are in the same orbit, we know that applying Homh(Cμ,−) to the third

term in (15) gives zero, since it yields a subset of Homh(Cμ, g−1 ⊗ L(λ)) = 0. So we find

Homh(Cμ,H
1(n, Lλ)) ∼= Homh(Cμ,H

1(n0, Lλ(g0)))

and by applying the analogue of (14) for g0 we obtain the claim. �

Using the Lemma we can prove the following consistency of the conjecture.

LEMMA 4.10. For any α, β ∈ Z
m|n, we have

J (β) = J (α) ⇔ β � α and α � β .

PROOF. One direction is immediate from Proposition 4.4. Now assume we have J (β) =
J (α). By Theorem 1.1 we have I (β) = I (α) and in particular α and β are in the same orbit.
The result therefore follows from the combination of Theorem 4.1 and Lemma 4.9. �

Similarly, Lemma 4.9 and Theorem 1.1 lead to the following result.

LEMMA 4.11. If α, β ∈ Z
m|n are in the same orbit of Sm × Sn ∼= W , then

J (β) ⊆ J (α) ⇔ β � α .

LEMMA 4.12. Consider α, β ∈ Z
m|n with εi(α) = εi(β) and φi(α) = φi(β) for some

i ∈ Z. If εi(α) > 0 (respectively φi(α) > 0 ) we have

β � α ⇔ ẽiβ � ẽiα (respectively β � α ⇔ f̃iβ � f̃iα) .

PROOF. Since β � α, there is a finite number p such that we have elements of Zm|n
denoted by {αi | i = 1, . . . , p} for which

β = αp � αp−1 � · · · � α1 � α ,

and where each two consecutive weights are related by the generating relation of �. Proposi-
tion 4.4 implies that we have

J (β) = J (αp) ⊆ J (αp−1) ⊆ · · · ⊆ J (α1) ⊆ J (α) .

Corollary 2.5, then implies that we have εi(αk) = εi(α) = εi(β) for each 1 ≤ k ≤ p.
The above paragraph thus implies that it suffices to prove the following claim. If α, β

satisfy condition (i) and (ii) in Definition 4.6 for some simple reflection s, and the properties
concerning their signatures in the statement of the result, the weights ẽiα and ẽiβ satisfy
condition (i) and (ii) in Definition 4.6 for the same simple reflection s.



THE PRIMITIVE SPECTRUM FOR gl(m|n) 243

We will use the (right exact) twisting functor Ts as defined and studied in [CMW13,
CMa14]. Theorem 5.12(ii) of [CMa14] implies that

(16) dim HomO(L(α), TsL(β)) �= 0 .

Now consider εi(α) > 0. Since the twisting functor commutes with the exact translation
functor (Lemma 5.9 in [CMa14]) and the functors fi and ei are adjoint to one another we find

HomO(L(ẽiα) , TseiL(β)) ∼= HomO(fiL(ẽiα) , TsL(β)) .

By Theorem 2.1, fiL(ẽiα) has simple top L(α), implying by (16), that the above space has
dimension greater than zero. This means that there must be some simple subquotient L(β ′)
of eiL(β) such that

dim HomO(L(ẽiα), TsL(β ′)) �= 0 .

Lemma 5.15 in [CMa14] then implies that

J (β ′) ⊆ J (ẽiα) .

Now if β ′ �= ẽiβ, Theorem 2.1 implies that εi(β ′) < εi(β) − 1, while εi(ẽiα) = εi(α) − 1,
leading to a contradiction by Lemma 2.4. This means we have

dim HomO(L(ẽiα), TsL(ẽiβ)) �= 0 ,

which through Theorem 5.12 in [CMa14] implies that sẽiα < ẽiα and sẽiβ ≥ ẽiβ. So we find
that ẽiβ� ẽiα by Theorem 5.12 (ii) in [CMa14]. The same procedure for φi and f̃i concludes
the proof. �

4.5. The right order and the classical formulation. In this section we demonstrate
how the more classical formulation of the inclusion order for Lie algebras fails for superal-
gebras. This classical order uses the right KL order �(r)

KL on the Weyl group, which we can

define by x �(r)
KL y if and only if x−1 �(l)

KL y
−1. It follows from Subsection 4.1 that this order

can be described in terms of projective functors on the principal block of category O, see
[BG80] for definition and classification. Consider k a reductive Lie algebra. The quasi-order
�(r)
KL on the Weyl group corresponds to the smallest quasi-order such that y �(r)

KL x if there is
a projective functor T on the principal block, with

[T Lx·0(k) : Ly·0(k)] �= 0 .

Then we have Ix·0(k) ⊆ Iy·0(k) if and only if y−1 �(r)
KL x

−1, see [Ja83, Jo79, MM11, Vo80],
or the proof of Theorem 4.1.

We could introduce an analogue of the right Kazhdan-Lusztig order, by directly extend-
ing the approach via projective functors. The use of the bijection on the set of weights, given
by the inversion on the Weyl group, prevents a canonical formulation of the potential analogue
of the link of this right order with the primitive spectrum for a Lie superalgebra g. Even so,
we argue that any reasonable formulation of the above principle will not give the inclusion
preorder. For clarity, we fix an arbitrary bijection ξ on the set of integral weights correspond-
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ing to a central character. The inclusion order �ξ is then defined as the smallest quasi-order
such that μ�ξ λ if there is a projective functor T on the corresponding block, with

[TLξ(μ)(g) : Lξ(λ)(g)] �= 0 .

Note that by the above �ξ can be seen as a different attempt to generalise the left KL order.
We focus on an example for g = gl(2|1). For k ≥ 2 we consider the finite dimensional

simple module L(k, 1|k). The functors T := f̃k ẽk and T̃ = f̃k+1ẽk+1 are projective functor
on the block corresponding to that module. It follows easily that

(17) [TL(k, 1|k) : L(k + 1, 1|k + 1)] �= 0 . and [T̃ L(k + 1, 1|k + 1) : L(k, 1|k)] �= 0 .

As finite dimensional simple modules correspond to integral dominant weights, they are
fixed points in the above bijection for Lie algebras. Moreover, also for Lie superalgebras
these are modules which are categorically characterised within category O, see Corollary 6.2
in [CSe15] and which have annihilator ideals separated from the others by Gelfand-Kirillov
dimension. It thus seems plausible that they are preserved (as a set) under ξ . However for any
algebra, a primitive ideal with finite codimension is the annihilator of a unique finite dimen-
sional simple module. So equation (17), with the assumption from earlier in this paragraph,
predicts incorrect inclusions. This reasoning extends readily to any gl(m|n).

Assume we do not demand the plausible condition that ξ preserves finite dimensional
modules. For k >> 0 the highest weights of the modules in (17) are generic. As it would
be impossible for ξ to map all these generic weights to non-generic ones, the above principle
shows that �ξ would predict more inclusions (and even equalities) for Lie superalgebras in
the generic region than there are for Lie algebras. This is not true, see e.g. Lemma 7.5 or
Theorem 10.1 in [CMa14]. Also this extends easily to arbitrary gl(m|n).

For the specific case of gl(2|1), we note that for any bijection ξ , the preorder �ξ can-
not be the inclusion preorder, by the following immediate observations. Equation (17) pre-
dicts equalities between annihilator ideals for strictly different integral simple highest weight
modules of gl(2|1). There are no such inclusions by Theorem 1.1 (i) and the classification
for gl(2).

Finally, it is immediate that the right order will in general not be interval finite, already
for singly atypical blocks. This is inherited by any order �ξ , which shows that �ξ can not be
the inclusion order by Proposition 4.5.

5. Singly atypical characters and low-dimensional cases.
5.1. The primitive spectrum for singly atypical characters. In this section we al-

gorithmically classify all inclusions between primitive ideals for singly atypical characters
for gl(m|n) for integral weights. As a consequence of the proof we obtain a confirmation of
Conjecture 4.7 for those blocks.

First we need to introduce some notation. We denote the unique number in α ∈ Z
m|n

which appears on both sides of the separator by aα . We also use π : {1, . . . ,m+ n} → {0, 1}
with π(i) = 0 if and only if i ≤ m.
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For α ∈ Z
m|n we introduce ordered sets

I = {i−1, i0, i1, . . . , ik} ∈ [1,m+ n]⊕k+2

for k ≥ 0 which satisfy the following properties:

(i) αi−1 = a = αi0 and π(i−1)+ π(i0) = 1;
(ii) αij = aα + j if j > 0;

(iii) if π(ij ) = π(il) = 0 with −1 ≤ j < l ≤ k, then ij > il ;
(iv) if π(ij ) = π(il) = 1 with −1 ≤ j < l ≤ k, then ij < il .

We denote the largest k for which we have such a set by pα . Note that we can always
interchange the first two elements of an I to obtain a different ordered set satisfying (i)-(iv).
From now on, if pα > 0 we only consider sets where this freedom is restrained by demanding
π(i0) = 1 − π(i1).

The unique such ordered set I with |I| = pα + 2 in which every ij with π(ij ) = 0 is
chosen to be maximal and every ij with π(ij ) = 1 is chosen to be minimal is denoted by Iα.

For i ∈ Iα , except the first element, we denote by qi the number of consecutive l ∈ Iα
immediately to the right of i which all satisfy π(l) = 1 − π(i). If i is the first element of Iα
we set qi = 0. In particular we have

∑
j∈Iα qj = pα. We consider the example for gl(8|4)

where

(18) α = (7, 6, 2, 3, 6, 1, 3, 1|4, 3, 4, 5) , so Iα = {10, 7, 11, 12, 5, 1} and pα = 4 .

Furthermore we have q10 = 0, q7 = 2, q11 = 0, q12 = 2, q5 = q1 = 0. We will use this α
throughout this section to illustrate certain procedures.

For any p ∈ Z and singly atypical α ∈ Z
m|n we define Θp

α as the W -orbit through

(19) (α1, . . . , αl−1, aα + p, αl+1, . . . , αm|αm+1, . . . , αk−1, aα + p, αk+1, . . . , αm+n) ,
for any l, k with αl = aα = αk . Note that χα = χβ if and only if β ∈ Θ

p
α for some p ∈ Z.

Our main result in this section is the following theorem.

THEOREM 5.1. Consider α, β ∈ Z
m|n singly atypical. We have an inclusion J (β) ⊂

J (α) if and only if the following two conditions are satisfied:

(i) There is a p ∈ N, such that 0 ≤ p ≤ pα and β ∈ Θp
α .

(ii) The inclusion I (δ) ⊂ I (γ ) holds for gl(m)⊕ gl(n),

with γ, δ ∈ Z
m|n defined as

γj =

⎧
⎪⎪⎨

⎪⎪⎩

αj − 1 if αj ≤ aα + p and j �∈ Iα;
min(αj + qj , aα + p) if αj ≤ aα + p and j ∈ Iα;
αj otherwise;

δj =

⎧
⎪⎪⎨

⎪⎪⎩

βj − 1 if βj ≤ aβ = aα + p with βj not one of the two occurrences

of aβ closest to the separator ;
βj otherwise.
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Furthermore γ and δ are in the same Sm-orbit and we have τ (γ ) = τ (α) and τ (δ) = τ (β).
For α, β satisfying (i) we have J (β) ≺ J (α) ⇔ I (δ) ≺ I (γ ).

Explicit examples of the algorithm will be given in Subsection 5.2.

COROLLARY 5.2. If β ∈ Z
m|n is regular, than J (β) ⊂ J (α) implies that α and β are

in the same orbit.

PROOF. Any β ∈ Θp
α with 0 < p ≤ pα (and α arbitrary) is singular. �

For α in equation (18) and p ∈ [0, 4], γ is given by α[p] in equations (20) and (21)
below. The remainder of this section is devoted to proving Theorem 5.1. First we prove in
Lemma 5.3 a certain condition on α ∈ Z

m|n under which we can conclude that there are no
inclusions J (β) ⊂ J (α) for any β not in the orbit of α (by using Lemma 2.4). The remainder
of the proof then consists of using Theorem 2.6 in order to reduce to the situation where either

• we can use Lemma 5.3 to disprove possible inclusions;
• the weights are in the same orbit, so we can use Theorem 1.1 (ii) to prove or disprove

possible inclusions.

LEMMA 5.3. Consider α ∈ Z
m|n singly atypical. If there is a β ∈ Z

m|n, not in the
W -orbit of α, such that J (β) ⊂ J (α), then pα > 0.

PROOF. Assume that pα = 0, then either there is no label equal to aα + 1, or there are
no aα in between appearances of aα + 1 and the separator. In each of these scenarios all the
−signs appear to the right of all the +signs in the aα-signature, so the reduced signature is
equal to the actual signature. In other words εaα (α), resp. φaα(α), is equal to the number of
−signs, resp. +signs, in α.

If β ∈ Θp
α with p �∈ {0, 1}, then equation (19) implies that the a-signature of β contains

fewer − and +signs than that of α. If p = 1, the a-signature of β contains the same number of
signs, but there will always be a cancellation, since there will be a − sign left of the separator
and a + sign right of it. This contradicts Lemma 2.4. The statement follows. �

LEMMA 5.4. Suppose χβ = χα singly atypical, then β ∈ Θp
α where p ∈ Z.

(i) If p ≤ 0, then all labels strictly larger than aα appear an equal number of times in
α and β, and on the same sides.

(ii) If p ≥ 0 then all labels strictly smaller than aα appear an equal number of times
in α and β, and on the same sides.

PROOF. This follows immediately from equation (19). �

LEMMA 5.5. Assume α ∈ Z
m|n singly atypical and β ∈ Θ

p
α where p ∈ Z. Suppose

α′ ∈ Z
m|n (respectively β ′) is obtained from α (respectively β) by raising all labels strictly

bigger than aα by one. Similarly suppose α′′ ∈ Z
m|n (respectively β ′′) is obtained from α

(respectively β) by lowering all labels strictly lower than aα by one.

(i) If p ≤ 0 , we have J (β) ⊂ J (α) ⇔ J (β ′) ⊂ J (α′) .
(ii) If p ≥ 0 , we have J (β) ⊂ J (α) ⇔ J (β ′′) ⊂ J (α′′) .
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By construction all weights on the right-hand side are singly atypical.

PROOF. We prove (i) since (ii) is proved similarly. We use Lemma 5.4(i). Denote
the numbers strictly bigger than aα which appear as labels (in α or β) by {x1, x2, . . . , xk}
in descending order for some k ≥ 0, and the number of times they appear respectively by
{n1, n2, . . . , nk}. The case k = 0 is trivial, so assume k > 0. First we consider the case where
the labels x1 appear on the left side. Then n1 = φx1(α) = φx1(β) and εx1(α) = 0 = εx1(β),
so Theorem 2.6 states that

J (β) ⊂ J (α) ⇔ J (f̃ n1
x1
β) ⊂ J (f̃ n1

x1
α) .

Set α(1) := f̃
n1
x1 α and β(1) := f̃

n1
x1 β. If the labels equal to x1 appear on the right-hand side we

can do the same procedure using ẽx1 .
If k = 1 this proves the lemma. If k > 1, by the previous step there will be no label in

α(1) or β(1) equal to x2 + 1, so φx2(α
(1)) = φx2(β

(1)) and εx2(α
(1)) = εx2(β

(1)), where one
of the values is 0 and the other n2. Theorem 2.6 then again implies that, J (β) ⊂ J (α) if and
only if J (β(2)) ⊂ J (α(2)), where γ (2) is obtained from γ (1) by raising all entries equal to x2

by one for γ ∈ {α, β}. Iterating the procedure we eventually have α′ = α(k), β ′ = β(k) and
Theorem 2.6 implies that J (β) ⊂ J (α) if and only if J (β ′) ⊂ J (α′). �

The first procedure described in the Lemma applied to α in equation (18) yields

α(1) = (8, 6, 2, 3, 6, 1, 3, 1|4, 3, 4, 5) , α(2) = (8, 7, 2, 3, 7, 1, 3, 1|4, 3, 4, 5) ,

α(3) = (8, 7, 2, 3, 7, 1, 3, 1|4, 3, 4, 6) , α(4) = (8, 7, 2, 3, 7, 1, 3, 1|5, 3, 5, 6) = α′ .

The following is obvious from the construction, but useful for future use.

REMARK 5.6. With notation as in Lemma 5.5

(i) α′ and β ′ do not contain any label equal to aα + 1,
(ii) α′′ and β ′′ do not contain any label equal to aα − 1.

COROLLARY 5.7. Consider α, β ∈ Z
m|n singly atypical. If J (β) ⊂ J (α), then β ∈

Θ
p
α for p ≥ 0.

PROOF. Assume that β ∈ Θp
α for p < 0. By Lemma 5.5 (i), the inclusion is equivalent

to J (β ′) ⊂ J (α′). However by Remark 5.6 (i) this contradicts Lemma 5.3. �

LEMMA 5.8. Consider ζ ∈ Z
m|n singly atypical and η ∈ Θ

p
ζ with p > 0, pζ > 0

and such that aζ occurs precisely once on each side of ζ . Set n equal to the number of times
aζ + 1 appears in ζ and T = ẽaζ if aζ + 1 appears on the left and T = f̃aζ if aζ + 1 appears

on the right. We define ζ̂ := T̃ nζ and η̂ := T̃ nη.
Then we have

J (η) ⊂ J (ζ ) ⇔ J (η̂) ⊂ J (ζ̂ ) ,
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where η̂ ∈ Θp−1
ζ̂

, p
ζ̂

= pζ − 1 and a
ζ̂

= aζ + 1. If Iζ = {i−1, i0, i1, . . . , ipζ }, then

I
ζ̂

=
{

{i0, i1, i2, . . . , ipζ } if qi0 = 1 (equivalently π(i1)+ π(i2) = 1)

{i1, i0, i2, . . . , ipζ } if qi0 > 1 (equivalently π(i0)+ π(i2) = 1) ,

where qi0 refers to Iζ .
Furthermore a

ζ̂
occurs precisely once on each side of ζ̂ .

PROOF. By assumption pζ > 0, so there is an aζ + 1 in ζ , for which there is an aζ
between it and the separator. Assume that aζ + 1 appears on the left-hand side then there is
an l > 0 such that the aζ -signature of ζ (respectively reduced aζ -signature) is

l
︷ ︸︸ ︷− − · · · − − +

n−l
︷ ︸︸ ︷− − · · · − − | − →

n−1
︷ ︸︸ ︷− − · · · − − | − .

There is also an l′ ≥ 0 such that the (reduced) aζ -signature of η (using equation (19)) is of
the form

l′
︷ ︸︸ ︷− − · · · − − 0/−

n−l′
︷ ︸︸ ︷− − · · · − − | 0/+ →

n
︷ ︸︸ ︷− − · · · − − |0 ,

where the two zeros appear if p > 1 and the −|+ if p = 1. We thus obtain

εa(ζ ) = εa(η) = n φa(ζ ) = φa(η) = 0 .

The equivalence of inclusions is therefore implied by Theorem 2.6.
The reduced signatures of ζ and η furthermore imply that a

ζ̂
= 1 + aζ and aη̂ = aη.

Together with χ
ζ̂

= χη̂ (Remark 2.3), this implies that η̂ ∈ Θ
p−1
ζ̂

. The proof when aζ + 1

appears on the right-hand side is analogous.
The fact that a

ζ̂
= aζ + 1 appears precisely once on each side of ζ̂ follows from con-

struction, since ζ̂ is obtained from ζ by replacing all but one of the aζ + 1 by aζ on the side
where aζ + 1 appeared, and by raising aζ to aζ + 1 on the side where aζ + 1 did not appear.
This also proves the statement concerning I

ζ̂
. �

PROOF OF THEOREM 5.1. Based on Corollary 5.7 it suffices to determine when we
have J (β) ⊂ J (α) for β ∈ Θp

α for p ≥ 0. We set a := aα.
We use Lemma 5.5 (ii) yielding a condition J (β ′′) ⊂ J (α′′) equivalent to the original

inclusion. Let n + 2 (with n ≥ 0) be the total number of occurrences of a in α. If n = 0
we set α[0] = α′′ and β[0] = β ′′. If a appears more than once on the left-hand side of α′′,
Remark 5.6 (ii) implies εa−1(α

′′) = n = εa−1(β
′′) and φa−1(α

′′) = 0 = φa−1(β
′′); where

the calculation for β ′′ depends on whether p = 0 or p > 0. Then we set α[0] = ẽna−1α
′′

and β[0] = ẽna−1β
′′. If a appears more than once on the right-hand side of α′′, we similarly

have εa−1(α
′′) = 0 = εa−1(β

′′), φa−1(α
′′) = n = φa−1(β

′′) and set α[0] = f̃ na−1α
′′ and

β[0] = f̃ na−1β
′′. By Theorem 2.6

J (β[0]) ⊂ J (α[0]) ⇔ J (β) ⊂ J (α) .
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Note that pα[0] = pα and β[0] ∈ Θp

α[0] . By construction, α[0] contains a precisely once on
each side. Set k = min(p, pα). Then we can iteratively apply Lemma 5.8 to obtain weights

α[1] = α̂[0], α[2] = α̂[1], . . . , α[k] = α̂[k−1], and similarly β[1], . . . , β[k] for which

J (β[k]) ⊂ J (α[k]) ⇔ J (β) ⊂ J (α) with β[k] ∈ Θp−k
α[k] and pα[k] = pα − k .

If p > pα , we have pα[k] = 0 while p − k > 0, so Lemma 5.3 implies there is no
inclusion. This proves that (i) is a necessary condition to have an inclusion.

If p ≤ pα we have k = p, so β[p] and α[p] are in the same orbit. Theorem 1.1 (ii) then
implies that

I (β[p]) ⊂ J (α[p]) ⇔ J (β) ⊂ J (α) .

We claim γ = α[p] and δ = β[p]. This implies the main statement, the fact that γ and δ are
in the same Sm × Sn-orbit and τ (γ ) = τ (α), τ (δ) = τ (β) by equation (7).

To prove this claim, we observe that α[0] is obtained from α by lowering by 1 all of
the labels which are lower than or equal to a, except the two a’s closest to the separator. In
particular we have Iα[0] = Iα . For s ≥ 1, α[s] is constructed from α[s−1] by lowering by 1 all
labels equal to a + s, except at the position included in Iα[s−1] , and by raising by 1 the label
equal to a + s − 1 corresponding to the second position in Iα[s−1] . The claim for α therefore
follows from Lemma 5.8. We also have that β[0] is obtained from β by lowering by 1 all of
the labels which are lower than or equal to a. The procedure in Lemma 5.8 shows that for
0 < k < p, β[k] is obtained from β[k−1] by lowering all labels equal to a + k by one. Finally
β[p] is obtained from β[p−1] by lowering by 1 all labels equal to a + p except the two closest
to the separator.

Finally we prove the statement concerning coverings. Suppose we have a sequence of
inclusions J (β) ⊂ J (κ) ⊂ J (α) for some α, β, κ ∈ Z

m|n. By Corollary 2.5 and Theorem 2.6
the procedure of the proof translates this to J (δ) ⊂ J (κ ′) ⊂ J (γ ) for some κ ′ ∈ Z

m|n. Note
that this implies that κ ′ is in the orbit of γ and δ, by Corollary 5.7. Similarly a sequence of
inclusions like the latter will be translated to one like the former by applying the adjoint of
the procedure. This proves the equivalence of coverings. �

For α in equation (18) we have α′′ = (7, 6, 1, 3, 6, 0, 3, 0|4, 3, 4, 5), and then following the
proof of Theorem 5.1we obtain

(20) α[0] = ẽ2α
′′ = (7, 6, 1, 2, 6, 0, 3, 0|4, 3, 4, 5) ,

and successively α[1] = f̃ 2
3 α

[0], α[2] = f̃4α
[1], α[3] = ẽ2

5α
[2], α[4] = ẽ6α

[3], where

α[1] = (7, 6, 1, 2, 6, 0, 4, 0|3, 3, 4, 5) α[2] = (7, 6, 1, 2, 6, 0, 5, 0|3, 3, 4, 5)(21)

α[3] = (7, 5, 1, 2, 6, 0, 5, 0|3, 3, 4, 6) α[4] = (7, 5, 1, 2, 6, 0, 5, 0|3, 3, 4, 7) .

COROLLARY 5.9. Conjecture 4.7 holds for singly atypical central characters of
gl(m|n).
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PROOF. From the proof of Theorem 5.1 it follows that the quasi-order �′ on Z
m|n de-

fined as the inclusion order, that is

β �′ α ⇔ J (β) ⊆ J (α) ,

is completely determined by the condition β �′ α ⇒ χβ = χα , Theorem 1.1 (ii), Lemma
2.4 and Theorem 2.6; as these properties are the only input for the proof. By Theorem 4.8
(i), (iii) and (v) the quasi-order � satisfies these properties. This implies that �′ and � must
coincide. �

5.2. The primitive spectrum for gl(m|1) and examples. All characters for gl(m|1)
are typical or singly atypical. In this subsection we focus on the atypical ones, simplify The-
orem 5.1 for the case gl(m|1) and provide examples. For this case we write α = (α|αm+1).
First we note a connection between pα and dα as defined in equation (4).

The second entry of Iα is always m+ 1, so we omit it and define I0
α ∈ [1,m]pα+1 as the

resulting ordered set. This set has an important connection to the concept of odd reflections.
Recall the sequence (5). The module L(α) has a unique highest weight λi with respect to b(i)

and we have λi = λi−1 if and only if i ∈ I0
α . Furthermore we can arrange that the highest

weight vectors for the b(i) satisfy vi = vi−1 if i ∈ I0
α and vi = e−αi vi−1 otherwise.

As a consequence we obtain the following lemma.

LEMMA 5.10. For any α ∈ Z
m|1 with λα ∈ h∗ such that αλα = α we have

(i) dα + pα = m− 1;
(ii) dα + λα(h) = λad

α (h) .

PROOF. In the procedure of odd reflections we also have e−αi vi−1 = 0 if i ∈ I0
α . The

first statement therefore follows from the fact that g−1 is supercommutative while {e−αi , i =
1, . . . ,m} span g−1.

Part (ii) then follows immediately from the reasoning before the lemma. �

The combination of this with Lemma 11.6 in [CMa14] yields an alternative proof of the
necessary condition (i) in the following theorem.

THEOREM 5.11. Consider arbitrary α, β ∈ Z
m|1 atypical. We have an inclusion

J (β) ⊂ J (α) if and only if the following conditions are satisfied:

(i) There is a p ∈ N, such that 0 ≤ p ≤ pα and β ∈ Θp
α .

(ii) The inclusion I (δ) ⊂ I (γ ) holds for gl(m),

with γ , δ ∈ Z
m defined as

γj =
{
αj − 1 if αj ≤ αm+1 + p and j �∈ I0

α

αj otherwise;

δj =
{
βj − 1 if βj ≤ αm+1 + p with βj not rightmost occurrence in β of αm+1 + p

βj otherwise.
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Furthermore γ and δ are in the same Sm-orbit, with τ (γ ) = τ (α) and τ (δ) = τ (β). Assuming
J (β) ⊂ J (α), we have J (β) ≺ J (α) ⇔ I (δ) ≺ I (γ ).

We give three applications of to illustrate the algorithm in the theorem. The last two will
also be used in Section 6.

EXAMPLE 5.12. We choose m = 4, set α = (2312|2) and determine all inclusions
J (β) ⊂ J (α) for β not in the orbit of α. Since pα = 1, Theorem 5.11(i) implies β ∈ Θ1

α . An
exhaustive list of these weights is given by

(3321|3) , (3231|3) , (2331|3), (3312|3) , (3213|3) , (2313|3),

(3132|3) , (3123|3) , (2133|3), (1332|3) , (1323|3) , (1233|3).
The corresponding δ are respectively given by

(2310) , (2130) , (1230), (2301) , (2103) , (1203) ,

(2031) , (2013) , (1023) , (0231) , (0213) , (0123).

Since γ = (1302), we need to check which of the above weights corresponds to an
inclusion into I (1302) for gl(4). The Hasse diagram for the poset of primitive ideals with
regular integral central character is given in Example 15.3.36 of [Mu12]. This reveals that
only the ideals I (0123), and I (1230) = I (1203) = I (1023) are contained in I (1302). This
implies that an exhaustive list of inclusions in J (2312|2), not in the same orbit, is given by

J (1233|3) and J (2331|3) = J (2313|3) = J (2133|3) .
EXAMPLE 5.13. Consider α strictly dominant (α1 > α2 > · · · > αm) and β ∈ Θ

p
α

for 0 ≤ p ≤ pα, then γ in Theorem 5.11 is given by

γj =
{
αj − 1 if αj < αm+1

αj otherwise;
since by regularity each of the values αm+1 + i (with 0 ≤ i ≤ p) appears only once in α.
Therefore γ is a (strictly) dominant gl(m)-weight, thus the condition I (δ) ⊂ I (γ ) becomes
trivial (since γ and δ are in the same orbit). This leads to the conclusion that

J (β) ⊂ J (α) ⇔ β ∈ Θp
α with 0 ≤ p ≤ pα .

As an extreme case we can take an α satisfying αi = αm+1 +m− i, then we have

(22) J (β) ⊂ J (α) ⇔ β ∈ Θp
α with 0 ≤ p ≤ m− 1 .

By choosing αm+1 correctly, this particular J (α) is the augmentation ideal gU(g).

EXAMPLE 5.14. Consider β ∈ Z
m|1 antidominant and atypical. Then J (β) ⊂ J (α) if

and only if β ∈ Θp
α with pα ≥ p ≥ 0. This follows immediately since δ is also antidominant.
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5.3. The primitive spectrum for gl(2|2). Up to equivalence, only the principal block
of gl(2|2) is not singly atypical or typical. The techniques for the singly atypical cases do not
lead to a classification of all inclusions for this block, see Remark 5.18 below. However, we
can obtain a complete classification by adding the result in Theorem 4.8 (i). As an extra result
this will prove that Conjecture 4.7 is true for gl(2|2).

LEMMA 5.15. For g = gl(2|2) we have

(11|11)� (10|01) , (21|21)� (10|01) and (12|12)� (10|01) .

PROOF. This follows from calculating ḃ(10|01), which implies

dim Ext1O(L(10|01), L(11|11))= dim Ext1O(L(10|01), L(21|21))

= dim Ext1O(L(10|01), L(12|12))= 1 ,

by equation (12). �

We determine the primitive ideals that are contained in J (α) when α ∈ Z
2|2 is in the

W -orbit of (ab|ab). Since the combinatorics is not affected by adding multiples of (11|11) to
α we assume that b = 0 and a ≥ 0. Inclusions in one orbit are determined by Theorem 1.1
(ii), so we focus on the other inclusions.

THEOREM 5.16. Suppose that α ∈ W(a0|a0) and that β is not in the W -orbit of α.
Then J (β) ⊂ J (α) if and only if α = (10|01) and

(23) β = (11|11) , (21|21) , (12|12) , or (12|21) .

PROOF. Note that since β is doubly atypical it must have the same labels on the left as
on the right.

First suppose that a ≥ 2. Then the reduced 0 and a-signatures of α are both equal to
+−. If J (β) ⊂ J (α) and 0 is not on the left of β, Lemma 2.4 implies that 1 is on the right
(so also on the left), but this produces a −+ pair which cancels, so does not contribute to the
reduced 0-signature of β. Thus 0 appears as a label on both sides of β and similarly so does
a. Thus β is in the W -orbit of α.

Consider a = 0. Since the 0-signature of α = (00|00) is equal to + + −−, Lemma 2.4
implies that there is no primitive ideal strictly contained in J (α).

It remains to consider a = 1. First consider α any element in the orbit except (10|01).
Then the reduced 1-signature of α is +− and the reduced 0-signature +−. Lemma 2.4 implies
that both 1 and 0 must appear on both sides of β.

If α = (10|01) and β is as in (23), there is an inclusion J (β) ⊂ J (α) by Lemma 5.15,
Theorem 4.8 (ii) and the inclusion J (12|21) ⊂ J (21|21) which follows from Theorem 1.1
(ii). Finally we prove that the list (23) is exhaustive. The reduced 1-signature of α is +−, so
if J (β) ⊂ J (α), β must contain a 1 on both sides and thus β ∈ W(c1|c1) for some c ∈ Z.
We have to prove that such an inclusion cannot exist if c �∈ [0, 2] or if β = (21|12). The
last one is excluded by Lemma 2.4 as it has empty reduced 1-signature. In the other cases we
have ε1(β) = 1 = φ1(β), so we can apply Theorem 2.6, which states that J (β) ⊂ J (α) is
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equivalent to J (ẽ1β) ⊂ J (ẽ1α). Since α′ = ẽ1α = (10|02), and β ′ = ẽ1β ∈ W(c1|c2) are
singly atypical we can apply Theorem 5.1 for β ′ ∈ Θc

α′ with c �∈ [0, 2] while pα′ = 2. This
proves there is no inclusion, which concludes the proof. �

COROLLARY 5.17. Conjecture 4.7 is true for g = gl(2|2).
PROOF. By Corollary 5.9 we only need to prove this for the principal block. One di-

rection of the conjecture is implied by Theorem 5.4 (i). The result then follows from Lemma
5.15, Theorem 5.16 and Theorem 4.8 (iii). �

REMARK 5.18. The fact that Theorem 1.1 (ii), Lemma 2.4 and Theorem 2.6 suffice to
classify all inclusions for degree of atypicality at most 1, does not extend to higher degree of
atypicality. For example, consider α = (10|01) and β = (11|11), not in the same orbit, which
satisfy

ε1(α) = 1 , φ1(α) = 1 ε1(β) = 2 , φ1(β) = 2

ε0(α) = 0 , φ0(α) = 0 ε0(β) = 0 , φ0(β) = 0

ε−1(α) = 0 , φ−1(α) = 0 ε−1(β) = 0 , φ−1(β) = 0 .

The inclusion J (β) ⊂ J (α) can not be derived from Theorem 1.1 (ii) and Theorem 2.6.

We can compare the poset structure on Prim ZU for gl(2|2) and gl(2)⊕ gl(2), using the
identification of sets given by J (λ) ↔ I (λ), which is justified by Theorem 1.1 (i) and first
proved in [Le96]. From Theorem 1.1 (ii) we know that any inclusion for gl(2) ⊕ gl(2) is
inherited by gl(2|2). Theorem 5.16 then implies that all ‘extra’ inclusions for gl(2|2) occur
in the connected component of the poset containing the augmentation ideal gU(g). Note that
this is an infinite connected component, based on the remarks before Theorem 5.16. Part of
the Hasse diagram of this connected component is presented underneath.

(10|01) (21|12)

(10|10)

������������������

���������
(01|01)

���������
(11|11) (21|21)

���������

������������������
(12|12)

������������������

���������
(22|22)

(01|10)

���������
(12|21)

���������

By interpreting this diagram we also find that all irreducible components (see Theorem
3.2) of the topological space Prim ZU(gl(2|2)) are isomorphic, as a poset, to some irreducible
component of Prim ZU(gl(2) ⊕ gl(2)), except for Z(k − 1, k|k, k − 1), which contains two
maximal elements.

REMARK 5.19. The fact that we obtain an infinite connected component would no
longer hold if we would consider sl(2|2). This is not a general feature however. This infinite
connected component for gl(2|2) leads to an infinite connected component for any gl(m|n) if
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m ≥ 2 and n ≥ 2 by parabolic induction, see Corollary 4.7 in [CMa14]. This would still lead
to an infinite connected component when looking at sl(m|n), if either m > 2 or n > 2.

6. Primitive ideals contained in the augmentation ideal for gl(m|1). The ideal
J0 = gU(g), known as the augmentation ideal of U(g), is the annihilator of the trivial module
L0 ∼= C. For g = gl(m|1) we define the poset and topological space

X = {J ∈ Prim U(g)|J ⊆ J0} .
Similarly, let X ⊂ Prim U(g0) be the poset of primitive ideals contained in the augmentation
ideal of g0.

The motivation to study the specific example X, in the depth we will, is threefold:

• It provides a good setting to study the behaviour of irreducible components in Prim U

for the Jacobson-Zariski topology, see Theorem 3.2. We find that all the irreducible
components are isomorphic, as posets, to X .

• A tool which can be complementary to the machinery developed in this paper is the
application of different systems of positive roots (linked together by odd reflections),
see e.g. the star actions in [CMa14]. The posetX provides an excellent test case, lead-
ing to two stratifications corresponding to the distinguished and anti-distinguished
system of positive roots. These stratifications also have interesting relations to the
irreducible components. For gl(m|1) with m < 6, we prove that every inclusion in X
can be derived from star actions, through Corollary 8.4 in [CMa14].

• Although the description of the poset Prim U(gl(m|1)) by the validity of Conjecture
4.7 is very satisfactory from a conceptual point of view, and the one in Theorem
5.11 is very useful to quickly check inclusions, we seek more insight into the poset
structure of Prim U(gl(m|1)). It seems that the subposet X is the right candidate
to focus on, as it displays all new phenomena. The stratification mentioned in the
previous item provides a way to see the connected components of the poset as built
out of posets isomorphic to X .

Contrary to the corresponding poset for gl(2|2), we will find that X is also the connected
component of the poset Prim U containing the augmentation ideal.

6.1. The poset X. We introduce some notation. For 0 ≤ i ≤ m− 1, set

λi := εm−i+1 + · · · + εm − iδ ∈ h∗

and, if i ≥ 1, γi := εm−i − εm+1−i . Let si be the reflection corresponding to γi. Denote the
dot orbit of λi by Θi and set Xi = {Jμ|μ ∈ Θi} ⊂ Prim U . Note that λi is in the closure of
the dominant Weyl chamber, and its stabiliser under the dot action is si if i > 0. Since the set
{w ∈ W |γi ∈ τ (w)} is the set of longest coset representatives for (si ) in W , we have

(24) Xi = {Jw·λi |γi ∈ τ (w)} for i > 0 .

Note that the convention on τ -invariants for singular weights in combination with the choice
of longest coset representatives yields τ (w · λj ) = τ (w).
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For i > 0 we also define a subposet of X as

(25) Xi = {Iw·0|γi ∈ τ (w)} ⊂ X .

THEOREM 6.1. We have the disjoint unionX = ⋃m−1
i=0 Xi as sets.

PROOF. This is precisely equation (22), where the disjointness is implied by Theo-
rem 1.1. �

The subposets Xi of X are described by the following theorem.

THEOREM 6.2. There are isomorphisms of posets

X0 −→ X , Jw·0 −→ Iw·0

and for i > 0

Xi −→ Xi , Jw·λi −→ Iw·0 if γi ∈ τ (w) .
PROOF. The first statement follows from Theorem 1.1 (ii). For the second, we use the

parallel descriptions of the posets (24) and (25). Then the statement follows from Theorem
1.1 (ii) and Theorem 1.2 (iii). �

THEOREM 6.3. The poset X is the connected component of Prim U that contains the
augmentation ideal. Consequently, the closed subsets of the topological spaceX are precisely
the subsets of X which are closed in Prim U .

Before proving this we prove the following lemma.

LEMMA 6.4. The poset X contains m − 1 minimal elements, given by Qi := Jw0·λi
for 0 ≤ i ≤ m− 1.

PROOF. By Theorem 6.1, each poset Xi has a minimal element Jw0·λi . By
Lemma 3.3 there are no inclusions between these ideals, meaning that each Jw0·λi is actu-
ally minimal in X. �

Proof of Theorem 6.3. By constructionX is connected, it thus suffices to prove that it is
maximal. By Lemma 6.4, a necessary and sufficient condition to prove that X is a connected
component of Prim U(g) is thus

Jw0·λi ⊂ Jκ ⇒ Jκ ∈ X for all 0 ≤ i ≤ m− 1 .

To prove this we will work with the notation of Section 5.2, so we have

(26) αλj =
{
(m− 1,m− 2, . . . , 1, 0|0) for j = 0 ,

(m− 1,m− 2, . . . , j + 1, j, j, j − 1, . . . , 1, 1|j) for 1 ≤ j ≤ m− 1 .

We define β := αw0·λk . Then we have by (26),

β = (1, 2, . . . , k − 1, k, k, k + 1, . . . ,m− 1|k) .
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According to Corollary 5.7, an inclusion J (β) ⊂ J (α) implies that α ∈ Z
m|1 is in the

orbit of

(1, 2, . . . , k − 1, k − t, k, k + 1, . . . ,m− 1|k − t) with t ≥ 0 .

Example 5.14 implies that in order to have J (α) �∈ X, we need t > k.
Since then k − t < 0 and there is no label equal to 0, all such α have pα = 0. But

t > k ≥ 0 then contradicts Theorem 5.11. �

We end this subsection with a technical lemma concerning the τ -invariants (as defined in
Section 1) of elements of Θj .

LEMMA 6.5. Suppose λ ∈ Θj for 0 ≤ j ≤ m− 1, and set α = αλ ∈ Z
m|1. Then

(i) If j = 0, we have γk ∈ τ (λ) ⇔ k appears to the right of k − 1 in α.
(ii) If j > 0 then γj ∈ τ (λ) and for k �= j , γk ∈ τ (λ) if and only if one of the following

holds
(a) k < j and k + 1 appears to the right of k in α

(b) k = j + 1 and j + 1 appears to the right of both of the j ’s in α

(c) k > j + 1 and k appears to the right of k − 1 in α.

PROOF. The only non-trivial case is where k = j + 1 for j > 0. The reason that
j + 1 needs to be to the right of both of the j ’s corresponds to our chosen convention where
γj ∈ τ (w · λj ) for all w ∈ W . �

6.2. A double stratification. Consider the stratification of X in Theorem 6.1. The
term stratification will be justified in Theorem 6.16. This states that

⋃s
i=0Xi is a closed sub-

space of X for all 0 ≤ s ≤ m− 1, which implies that Theorem 6.1 provides a filtration of X
by closed subspaces. The antidistinguished system of positive roots leads in a similar fashion
to another stratification of X. In this subsection we study the link between both stratifica-
tions. The expression for ρ formed using the distinguished system of positive roots is given
in equation (2). Using the antidistinguished system we have

ρad = 1

2

m∑

i=1

(m+ 2 − 2i)εi − 1

2
mδ .

Clearly the ρad -shifted action of the Weyl group corresponds to the ρ-shifted (and thus the
ρ0-shifted) action, so there is no need to specify which dot action is used.

Now for 0 ≤ j ≤ m− 1 we set

μj := −ε1 − · · · − εj + jδ ,

and denote the dot orbit of μj by Φj and Yj = {Jμ|μad ∈ Φj }. Note that μj is also in the
closure of the dominant Weyl chamber and if j > 0 its stabiliser under the dot action is sm−j .
By symmetry, Theorem 6.1 extends to the following.
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THEOREM 6.6. We have disjoint unions

(27) X =
m−1⋃

i=0

Xi =
m−1⋃

i=0

Yi .

Now we investigate the connection between both stratifications. The main result is stated
in the following theorem, for which we introduce the notation Θ = ⋃m−1

i=0 Θi ⊂ P0 and

Φ = ⋃m−1
i=0 Φi ⊂ P0. We also use the convention max ∅ = 0. Recall the definition of pα for

α ∈ Z
m|n from Subsection 5.1, which we extend to pλ := pαλ for any λ ∈ P0.

THEOREM 6.7. For λ ∈ Θi , that is λ = w · λi for some w ∈ W (where we assume
γi ∈ τ (w) if i > 0), we have

λad = w · μj with j = max{k < m− i | γm−k ∈ τ (w)} = m− i − 1 − pλ .

In particular this demonstrates how the minimal elements Qi of X behave with respect
to the double stratification, i.e. in which Yj the unique minimal element of Xi plays the role
of unique minimal element.

COROLLARY 6.8. The minimal elementQi := Jw0·λi is contained inXi and Ym−i−1.

PROOF. To know which Yj the ideal Qi belongs to we need to calculate (w0 · λi)ad .

Since pw0·λi = 0, Theorem 6.7 gives (w0 · λi)ad = w0 · μm−i−1. �

To state another immediate consequence, for Jλ ∈ Xi ∩ Yj , we set i(λ) = i, j (λ) = j.

COROLLARY 6.9. If i(λ) = i(μ) and τ (μ) = τ (λ), then j (λ) = j (μ).

The remainder of this subsection is devoted to the proof of Theorem 6.7. Recall h ∈ z(g0)

introduced in Section 1.

LEMMA 6.10. We have

(i) i(λ) = −λ(h), j (λ) = λad (h);
(ii) i(λ)+ j (λ) = dλ ≤ m− 1;

(iii) If Jμ ⊆ Jλ then j (μ) ≥ j (λ) and i(μ) ≥ i(λ) .

PROOF. The first property follows since it holds for λi and μj , and h is W -invariant.
Property (ii) follows from (i) and Lemma 5.10 (ii). Property (iii) follows from Lemma 11.6
in [CMa14] or alternatively Corollary 5.7. �

We will need the following general technical lemma.

LEMMA 6.11. Take κ ∈ h∗ regular or such that there are unique 1 ≤ i0 < j0 ≤ m

such that 〈κ + ρ, εi0 − εj0〉 = 0. There is a w ∈ W such that both w−1 · κ and w−1 · κad are
dominant.

PROOF. We consider the case where κ is singular, since the proof for regular κ corre-
sponds to a simplified version of the proof we give below.

There is a u ∈ W such that u−1 · κ is dominant. Then there is a unique 1 ≤ t < m such
that εt − εt+1 = ±u−1(εi0 − εj0) and we let s0 ∈ W be the simple reflection corresponding
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to this simple root. Then s0u−1 · κ = u−1 · κ is also dominant. From the procedure for odd
reflections it follows that for 1 ≤ i ≤ m, either the coefficients of εi in κ and κad are equal,
or the coefficient of εi in κ is one more than the corresponding coefficient in κad . Therefore
we have for any root γ ∈ Δ0,

〈κ + ρ0, γ 〉 > 0 ⇒ 〈κad + ρ0, γ 〉 ≥ 0 .

This implies that for any i excluding t we have

〈u−1 · κad + ρ0, εi − εi+1〉 = 〈κad + ρ0, u(εi − εi+1)〉 ≥ 0 ,

where the same property holds for s0u−1. Finally, since us0(εt − εt+1) = −u(εt − εt+1), we
have

〈u−1 · κad + ρ0, εt − εt+1〉 = − 〈s0u−1 · κad + ρ0, εt − εt+1〉 .
So either u−1 · κad or s0u−1 · κad is dominant. �

LEMMA 6.12. Consider λ ∈ Θi , for 0 ≤ i ≤ m− 1. We have pλ = l − i − 1 with

l :=
{

m if {k|γk ∈ τ (λ) with k > i} = ∅
min{k|γk ∈ τ (λ) with k > i} otherwise.

PROOF. We focus on the case i > 0, which is the more difficult one to prove. If i+ 1 is
to the right of both of the two i in the even part of αλ , then by definition pλ = 0. Otherwise,

pλ = 1 + max{r|i + s + 1 is to the left of i + s for 1 ≤ s ≤ r} .
The result thus follows from Lemma 6.5. �

PROOF OF THEOREM 6.7. We prove the formulation in terms of pλ, the approach using
τ -invariants then follows from Lemma 6.12.

By Lemmata 5.10 and 6.10 (i) we know that λad ∈ Φj for j := m− pλ − i − 1. In case
i = 0, Lemma 6.11 implies that λad = w · μj . In case i > 0, Lemma 6.11 implies that either
λad = w · μj or λad = wsi · μj . The fact that the longer element w must be taken follows
from the procedure of odd reflections, which shows that if 〈λ+ρ0, εa − εb〉 = 0 (with a < b)
implies that 〈λad +ρ0, εa−εb〉 ≤ 0. For the particular case of λ = w ·λj and εa−εb = w(γj )

one can even show that we will always have a strict inequality. �

COROLLARY 6.13. For λ ∈ Θ we have i(λ)+ j (λ)+ pλ = m− 1.

PROOF. This follows from Lemma 5.10 (i) and Lemma 6.10 (ii). �

6.3. The irreducible components of X. In this subsection we study the irreducible
components in Theorem 3.2 of Prim U given by Z(w0 · λk). By Theorem 6.3 we have

Zk := Z(w0 · λk) = {J ∈ X|Qk ⊆ J } .
In combination with Lemma 6.4 this implies that the Zk are precisely the irreducible compo-
nents of the topological space X, as X = ⋃m−1

k=0 Zk.
The main results concerning Zk are presented in the following two theorems.
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THEOREM 6.14. We have the equivalent characterisations

Jλ ∈ Zk ⇔ i(λ) ≤ k ≤ m− 1 − j (λ);
Jλ ∈ Zk ⇔ i(λ) ≤ k ≤ i(λ)+ pλ .

The equivalence of the two statements follows from Corollary 6.13.

THEOREM 6.15. The poset Zk is isomorphic to X0 and thus to X .

PROOF OF THEOREM 6.14. We only need to translate the result in Example 5.14 to our
notation. The condition p ≥ 0 is equivalent to i(λ) ≤ k, the condition pα ≥ p translates to
pλ ≥ k− i(λ). Lemma 5.10(i) and Lemma 6.10(ii) yield pλ = m− i(λ)− j (λ)− 1, showing
that the necessary and sufficient condition becomes i(λ) ≤ k and m− j (λ) > k. �

PROOF OF THEOREM 6.15. We start from the description ofZk given in Theorem 6.14,

(28) Zk =
k⋃

i=0

{Jλ | λ ∈ Θi and pλ ≥ k − i} .

Since the case k = 0 is trivial we focus on k > 0. We will prove that application of
Ek−1Ek−2 · · ·E0 (as defined in Subsection 2.3) mapsZk to the sub-posetX(k)0 of Prim U cor-

responding to theW -orbit through (m− 1,m− 2, . . . , 1, 0|k). We know thatX(k)0 isomorphic
to X by Theorem 1.1 (ii).

We claim that the 0-signatures of weights λ corresponding to equation (28) all satisfy
ε0 = 1 and φ0 = 0. For λ ∈ Θ0 this follows from the fact that there we must have pλ > 0,
implying that the 1 must appear to the left of the 0 in the even part. For λ ∈ Θi with i > 0
this claim is always true, without any condition. This means that E0 yields an isomorphism
of posets Zk

∼−→ E0(Zk) (with inverse F0) by Theorem 2.6. For λ ∈ Θ0, the action of ẽ0 will
raise the odd part of αλ from 0 to 1. For λ ∈ Θi with i > 0, the action of ẽ0 will lower the
leftmost 1 in the even part of αλ to 0.

From similar arguments it follows that Ek−1Ek−2 · · ·E0 gives an isomorphism of posets
between Zk and some poset of primitive ideals where all corresponding weights μ satisfy
α
μ
m+1 = k. Furthermore, since ẽk−1ẽk−2 · · · ẽ0α

λ0 = (m−1,m−2, . . . , 1, 0|k) and all weights
for the poset possess the same central character (remark 2.3), the latter poset corresponds to a
subposet of

X
(k)
0 = {J (w(m− 1,m− 2, . . . , 1, 0|k)) |w ∈ W } .

Therefore it only remains to be proved that the entire poset in the equation above is
reached. By similar arguments as above, the action of F0F1 · · ·Fk−1 yields an injective map of
posets fromX

(k)
0 into some subposet ofX. Since every ideal inX(k)0 contains J (0, 1, . . . ,m−

1|k) and

f̃0f̃1 · · · f̃k−1(0, 1, . . . ,m− 1|k) = (1, 2, . . . , k − 1, k, k, k + 1, . . . ,m− 1|k) = αw0·λk ,
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we have F0F1 · · ·Fk−1(X
(k)
0 ) ⊂ Zk. This concludes the proof and furthermore shows that

Ek−1Ek−2 · · ·E0 and F0F1 · · ·Fk−1, restricted to the domains Zk and X(k)0 respectively, are
inverse to one another. �

6.4. Local closure. Recall that a subset of a topological space is locally closed if it is
the intersection of an open set and a closed set.

THEOREM 6.16. The sets
⋃s
i=0Xi and

⋃s
i=0 Yi are closed in Prim U , whereas the

sets Xi, Yj and Xi ∩ Yj are locally closed in Prim U .

First we prove a relation between the Zariski closed sets Zk and the intersections Xi ∩ Yj
formed from the two stratifications.

PROPOSITION 6.17. For 0 ≤ i, j ≤ m− 1 we have

Xi ∩ Yj =
( ⋂

i≤k≤m−1−j
Zk

)

\
( ⋂

i−1≤k≤m−1−j
Zk ∪

⋂

i≤k≤m−1−j+1

Zk

)

.

PROOF. We start by proving the equality
⋃

0≤s≤i , 0≤t≤j
(Xs ∩ Yt ) =

⋂

i≤k≤m−1−j
Zk .

That the left-hand side is contained in the right-hand side follows immediately from Theorem
6.14. Now assume that the primitive ideal Jλ is contained in the right-hand side. If the value
i(λ)were bigger than i, Jλ could not be contained inZi by Theorem 6.14. The same reasoning
for j (λ) proves the equation.

The result then follows from the equality between Xi ∩ Yj and
( ⋃

0≤s≤i , 0≤t≤j
(Xs ∩ Yt )

)

\
( ⋃

0≤s≤i−1 , 0≤t≤j
(Xs ∩ Yt ) ∪

⋃

0≤s≤i , 0≤t≤j−1

(Xs ∩ Yt )
)

.

�

PROPOSITION 6.18. For 0 ≤ k ≤ m− 1, set

Xk,k = Xk, X0,k = {Jλ ∈ X0|γj /∈ τ (λ) for 1 ≤ j ≤ k} and

Xi,k = {Jλ ∈ Xi |γk, γk−1, . . . , γi+1 /∈ τ (λ), γi ∈ τ (λ)} for 0 < i < k .

Then

(i) We have a disjoint union Zk = ⋃k
i=0Xi,k .

(ii) X0 = Z0 and for 0 < k < m− 1, Xk = Zk\(Zk−1 ∩ Zk).
(iii) Y0 = Zm−1 and for 0 < k < m− 1, Yk = Zm−k−1\(Zm−k ∩ Zm−k+1).

PROOF. Obviously the union in (i) is disjoint since the setsXi are. By Theorem 6.14, if
Jλ ∈ Xi then Jλ ∈ Zk if and only if i ≤ k ≤ i+pλ. Thus (i) follows from Lemma 6.12. Then
since Xi,k ⊆ Xi,k−1 for 0 ≤ i ≤ k − 1, (ii) follows from (i), and (iii) is proved similarly. �

Applying parts (ii) and (iii) yields the following immediate conclusion.
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COROLLARY 6.19. We have

s⋃

i=0

Xi =
s⋃

i=0

Zi and
s⋃

i=0

Yi =
s⋃

i=0

Zm−1−i

for 0 ≤ s ≤ m− 1. This implies in particular that
⋃s
i=0Xi and

⋃s
i=0 Yi are closed.

Note that Theorem 6.16 follows immediately from Propositions 6.17 and 6.18 and Corollary
6.19.

6.5. Covering. Recall the double stratification (27). Theorem 1.1 (ii) applied to both
the distinguished and anti-distinguished system of positive roots then yields a number of in-
clusions on X. It is an interesting question whether the minimal partial order created from
those inclusions coincides with the inclusion order. This question can be reformulated as “do
exceptional coverings exist?”, using the definition below.

DEFINITION 6.20. A covering Jμ ≺ Jλ, where both i(μ) �= i(λ) and j (μ) �= j (λ), is
called exceptional.

When there are no exceptional inclusions, this means that all inclusions can be derived
from the principle of star actions, see Corollary 8.4 in [CMa14].

For Lie algebras we can have strict inclusions between primitive ideals with the same
τ -invariant. This property is of course inherited by gl(m|n) by Theorem 1.1 (ii), for primitive
ideals corresponding to one orbit. We prove that in the poset X inclusions with constant τ -
invariant are only possible for inclusions between two primitive ideals in the same orbit.

LEMMA 6.21. The inclusion Jμ ⊂ Jλ for λ,μ ∈ Θ with i(μ) > i(λ) implies that
γi(μ) �∈ τ (λ) and

τ (μ) ⊇ τ (λ) ∪ {γi(μ)} .
PROOF. This is a direct application of Theorem 5.11. We thus use the identification

P0 ↔ Z
m|n and set β := αμ, α := αλ and i1 = i(λ), i2 = i(μ). In the notation of Theorem

5.11 we have p = i2−i1, so the inclusion J (β) ⊂ J (α) thus implies pα ≥ i2−i1. Lemma 6.5
then yields

(29) γ� �∈ τ (λ) for i1 + 1 ≤ � ≤ i2 .

Now by definition γ is obtained from α by subtracting 1 from the left of the two labels equal
to i1, and from all labels equal to an element in [1, i1 − 1]. Similarly, δ is obtained from β by
subtracting 1 from the left of the two i2 and all labels equal to an element in [1, i2 − 1]. This
immediately implies that for k ∈ [1, i1] ∪ [i2 + 1,m− 1] we have

γk ∈ τ (λ) ⇔ γk ∈ τ (γ ) ⇒ γk ∈ τ (δ) ⇔ γk ∈ τ (μ) ,
where the middle ⇒ is a consequence of Theorem 1.2 (ii) and the inclusion I (δ) ⊆ I (γ ). The
statement then follows from observing that by definition γi2 ∈ τ (μ). �
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LEMMA 6.22. Assume that gl(m) satisfies the property

I2 ≺ I1 ⇒ �τ(I2) ≤ 1 + �τ(I1) ,

for any two I1, I2 ∈ X , with �τ(·) the number of roots in the τ -invariant. Then there are no
exceptional inclusions for gl(m|1).

PROOF. Assume we have a covering in X of the form Jμ ⊂ Jλ with i(μ) > i(λ), we
need to prove that j (μ) = j (λ). Theorem 5.11 implies that (τ (λ), τ (μ)) correspond to the set
of two τ -invariants corresponding to a covering between annihilator ideals for modules with
highest weight in the same orbit.

Theorem 1.1 (ii) and the assumption on gl(m) thus yields �τ(μ) ≤ 1 + �τ(λ). From
Lemma 6.21 we thus obtain (with disjoint union)

(30) τ (μ) = τ (λ) ∪ {γi(μ)} .
Theorem 6.7 states that

j (λ)= max{k < m− i(λ) | γm−k ∈ τ (λ)}
j (μ)= max{k < m− i(μ) | γm−k ∈ τ (μ)} .

Equation (29) applied to the formula for j (λ) and equation (30) applied to the one for j (μ)
then yield

j (λ) = max{k < m− i(μ) | γm−k ∈ τ (λ)} = j (μ) ,

which concludes the proof. �

As we have no proof that the assumption on gl(m) is true for general m, we end this
subsection with four results about situations where we can exclude exceptional coverings.
This justifies the term exceptional covering.

LEMMA 6.23.

(i) If Jμ ⊂ Jλ, then pλ − pμ ≥ i(μ)− i(λ) ≥ 0 .
(ii) There are no exceptional coverings if pμ − pλ ≤ 1, in notation of Definition 6.20.

PROOF. Statement (i) follows from Lemma 6.10 (ii) and (iii) and Lemma 5.10 (i). For
(ii) we assume we have an inclusion Jλ ⊂ Jμ. If pμ = pλ, then i(λ) = i(μ) by item (i).
Assume that pμ = pλ + 1, if i(λ) = i(μ), they are both in Xi(λ), if i(λ) = i(μ)+ 1, they are
in the same Yl , by Corollary 6.13. �

LEMMA 6.24. There are no exceptional coverings (with notation of Definition 6.20) if
either i(μ) = 0, j (μ) = 0, i(λ) = m or j (λ) = m.

PROOF. This is an immediate consequence of Lemma 6.10 (iii). �

PROPOSITION 6.25. There are no exceptional coverings if λ = 0, that is when Jλ is
the augmentation ideal.
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PROOF. We need to prove that the ideals that J0 covers which are not in X0 are in Y0.
From the structure of the posetsXi for i > 0 we know that each of them has a unique maximal
element, corresponding to Jλi . All of these are in Y0. �

PROPOSITION 6.26. There are no exceptional coverings if Jμ = Qk for 0 ≤ k ≤
m− 1.

PROOF. For k = 0, the result is a special case of Lemma 6.24, so we consider k > 0.
Suppose Qk ≺ Jλ with λ ∈ Θl for l < k. We consider Theorem 5.11 with α := αλ and
β := αw0 ·λk . This yields δ = (0, 1, . . . ,m − 1). In order to have an inclusion we need
pα ≥ k − l, meaning that τ (λ) can contain at most m− 1 − k + l elements.

In order to have a covering for gl(m), with I (δ), we need that τ (γ ) contains precisely
m− 2 elements. As τ (λ) = τ (γ ) we find k = l+ 1. By Theorem 5.11 the onlyQk ≺ Jλ with
λ ∈ Θk−1 is

Qk ≺ J (1, . . . , k − 1, k, k − 1, k + 1, . . . ,m− 1|k − 1) .

Clearly, for this case we have j (λ) = j (w0 · λk) = m− 1 − k. �

6.6. The inclusions for gl(3|1). Below we give the Hasse diagram for the poset of
primitive ideals X when g = gl(3|1).

(210|0)

(201|0)

������������������
(120|0)

���������
(211|1)

���������
(221|2)

������������������

(012|0)

���������
(112|1)

���������

���������
(122|2)

���������

Each ideal is labeled by αλ, where λ is the highest weight of the module it annihilates. Note
that we have equalities

J (2, 0, 1|0) = J (0, 2, 1|0) , J (1, 2, 0|0) = J (1, 0, 2|0) ,
J (2, 1, 1|1) = J (1, 2, 1|1) , J (2, 2, 1|2) = J (2, 1, 2|2) .

We describe the double stratification (27) in terms of the diagram. The set Xi consists of all
ideals whose last entry is i. In particular the maximal ideals in X1,X2 have labels

αλ1 = (2, 1, 1|1) , αλ2 = (2, 2, 1|2) .
On the other hand Y1 consists of the annihilators of the simple modules

Lad
μ1

= L(1, 2, 0|0) , Lad
w0·μ1

= L(1, 1, 2|1) ,
and Y2 consists of the annihilators of the simple modules

Lad
μ2

= L(2, 0, 1|0) , Lad
w0·μ2

= L(0, 1, 2|0) ,
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while Y0 consists of the annihilators of the four remaining modules

Lad
0 = L(2, 1, 0|0) , Lad

s1·0 = L(2, 1, 1|1) , Lad
s2·0 = L(2, 2, 1|2) , Lad

w0·0 = L(1, 2, 2|2) .
6.7. The inclusions for gl(4|1) and gl(5|1). The poset X for gl(4|1) and gl(5|1) is

completely determined by the following theorem.

THEOREM 6.27. There are no exceptional coverings when m < 6.

PROOF. That there are no exceptional coverings for gl(2|1) and gl(3|1) follows imme-
diately from Subsection 6.6 and [Mu93].

By Lemma 6.22, it suffices to prove that the poset corresponding to the augmentation
ideal does not contain any coverings between primitive ideals of which the τ -invariant differs
by more than one element in gl(m) for m ∈ {4, 5}. The Hasse diagrams of these posets are
presented on page 39 of [BJ77]. The thick lines connect the primitive ideals corresponding
the same τ -invariant. It can easily be checked that every descending path from top to bottom
contains preciselym−1 vertices that are not thick. As the τ -invariant of the top edge is empty
and that of the bottom one contains m − 1 roots, it follows that in each vertex that was not
thick, the τ -invariant must have grown precisely by one. �

6.8. A generating function. The poset X studied in this section seems to be new to
representation theory. In this subsection we determine the cardinality of |X| as a function of
m. Therefore we denotem explicitly by using the notation X(m) = ⋃m−1

i=0 X
(m)
i , for the poset

and its stratification in Theorem 6.1.
We set tm = |X(m)| and denote the number of involutions in Sm by sm. This is equal to

the number of standard tableau with m entries, and also the cardinality of X(m)0 , by Theorem
6.2. There is a closed expression for sm in [Fu97] Chapter 4, Exercise 6.

LEMMA 6.28. For 1 ≤ i ≤ m− 1 we have |X(m)i | = |X(m)0 |/2.

PROOF. Let S be the set of standard tableaux with m entries. For w ∈ Sm we have, see
[Mu12] Lemma 15.3.32, γi ∈ τ (w−1) if and only if

(31) i + 1 is in a strictly lower row of T than i

where T = B(w) ∈ S, see (6) for notation. We claim that exactly half of the elements of S
satisfy (31). Indeed, there is an involution on S taking a tableau T to its transpose T t , which is
without fixed points if m > 1, and it is easy to see that exactly one of T , T t satisfies (31). �

COROLLARY 6.29. We have tm = (m+ 1)sm/2.

PROOF. Immediate. �

There are nice exponential generating functions for sm and tm.

PROPOSITION 6.30. Set F(x) = ∑∞
m=0

sm
m!x

m andG(x) = ∑∞
m=0

tm
m!x

m. Then

F(x) = exp(x + x2) and G(x) = 1

2
(1 + x + 2x2)F (x) .
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PROOF. The expression for F(x) is Exercise 8.19 in [St13]. The result for G(x) then
follows from a direct calculation based on Corollary 6.29. �
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