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WORPITZKY PARTITIONS FOR ROOT SYSTEMS AND
CHARACTERISTIC QUASI-POLYNOMIALS
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Abstract. For a given irreducible root system, we introduce a partition of (coweight)
lattice points inside the dilated fundamental parallelepiped into those of partially closed sim-
plices. This partition can be considered as a generalization and a lattice points interpretation
of the classical formula of Worpitzky.

This partition, and the generalized Eulerian polynomial, recently introduced by Lam
and Postnikov, can be used to describe the characteristic (quasi)polynomials of Shi and Linial
arrangements. As an application, we prove that the characteristic quasi-polynomial of the Shi
arrangement turns out to be a polynomial. We also present several results on the location
of zeros of characteristic polynomials, related to a conjecture of Postnikov and Stanley. In
particular, we verify the “functional equation” of the characteristic polynomial of the Linial
arrangement for any root system, and give partial affirmative results on “Riemann hypothesis”
for the root systems of type E6, E7, E8, and F4.
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1. Introduction.
1.1. Arrangements of hyperplanes. Let A = {H1, . . . , Hn} be an arrangement of

affine hyperplanes in a vector space V . The intersection poset of A is the set L(A) = {∩S |
S ⊂ A} of intersections of A. The intersection poset L(A) is partially ordered by reverse
inclusion, which has a unique minimal element 0̂ = V . The arrangement A is called essential
if the maximal elements of L(A) are 0-dimensional subspaces. The characteristic polynomial
of A is defined by

χ(A, q) =
∑

X∈L(A)

μ(X)qdimX ,

where μ is the Möbius function on L(A), defined by

μ(X) =
{

1, if X = 0̂
−∑

Y<X μ(Y ), otherwise .

The characteristic polynomial χ(A, q) ofA is one of the most fundamental invariants. Indeed,
χ(A, q) captures combinatorial and topological properties of A as follows.

THEOREM 1.1. (i) (Zaslavsky [28]). Suppose that V is a real vector space. Then the
number of connected components of V � ∪A is equal to (−1)�χ(A,−1). If A is essential,
then the number of bounded connected components of V � ∪A is equal to (−1)�χ(A, 1).

(ii) (Orlik and Solomon [17]). Suppose that V is a complex vector space. Then the
Poincaré polynomial of V � ∪A is equal to (−t)�χ(A,− 1

t
).

1.2. Main results. Let � be a root system of rank �, with exponents e1, . . . , e� and
Coxeter number h. Fix a set of positive roots �+ ⊂ �. The structures of truncated affine
Weyl arrangements

A[a,b]
� = {Hα,k | α ∈ �+, a ≤ k ≤ b}

(see also §2.3 for the notation) have been intensively studied, because of their intriguing com-
binatorial properties [20, 2, 21]. The characteristic polynomial of the Coxeter arrangement
A� = A[0,0]

� was computed in [7]. Later, this was generalized to the extended Catalan ar-

rangement A[−k,k]
� and the extended Shi arrangement A[1−k,k]

� . The characteristic polynomial
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of these arrangements factor as follows

χ(A[−k,k]
� , t) =

�∏
i=1

(t − ei − kh) ,

χ(A[1−k,k]
� , t) = (t − kh)� ,

([9, 1, 4, 27]). For other parameters a ≤ b, e.g., the Linial arrangement A[1,n]
� , the char-

acteristic polynomial χ(A[a,b]
� , t) does not factor in general. However there are a number

of beautiful conjectures concerning χ(A[a,b]
� , t). Among others, Postnikov and Stanley [19]

conjectured that

(a) χ(A[1−k,n+k]
� , t) = χ(A[1,n]

� , t − kh) (“h-shift reduction”).

(b) χ(A[1,n]
� , nh − t) = (−1)�χ(A[1,n]

� , t) (“Functional equation”).

(c) All the roots of the polynomial χ(A[1,n]
� , t) have the same real part nh

2 (“Riemann
hypothesis”).

Postnikov and Stanley verified these assertions for � = A� in [19]. Later, Athanasiadis gave
proofs for � = A�,B�, C�,D� in [1, 3].

Recently, Kamiya, Takemura and Terao [15] introduced the notion of the characteristic
quasi-polynomial for an arrangement A defined over Q. The characteristic quasi-polynomial
χquasi(A, t) is a periodic polynomial (see §2.2 for details) that may be considered as a refine-
ment of the characteristic polynomial χ(A, t).

Our main result concerns the characteristic quasi-polynomial for A[a,b]
� : “h-shift reduc-

tion” and the “functional equation” hold at the level of characteristic quasi-polynomials.

THEOREM 1.2. Let � be an arbitrary irreducible root system.

(i) The characteristic quasi-polynomial of the extended Shi arrangement is a polynomial,
χquasi(A[1−k,k]

� , t) = (t − kh)� (Theorem 5.1).

(ii) The characteristic quasi-polynomial satisfies “h-shift reduction”χquasi(A[1−k,n+k]
� , t)

= χquasi(A[1,n]
� , t −kh) (Theorem 5.3). In particular, this holds for the characteristic

polynomial (Corollary 5.4).
(iii) The characteristic quasi-polynomial satisfies “Functional equation” χquasi(A[1,n]

� ,

nh − t) = (−1)�χquasi(A[1,n]
� , t) (Theorem 5.6). In particular, this holds for the

characteristic polynomial (Corollary 5.7).
(iv) Suppose � ∈ {E6, E7, E8, F4}. Let ñ be the period of the Ehrhart quasi-polynomial

of the fundamental alcove (see §3.2 and Table 1). If n ≡ −1 mod rad(̃n), then the
“Riemann hypothesis” holds for A[1,n]

� (Theorem 5.8).

1.3. Outline of the proof. We follow the strategy adopted in [6, 1, 4, 15] for the com-
putation of χquasi(A�, q), where A� := A[0,0]

� is the Coxeter arrangement (see §3.3). The
idea is to relate the characteristic quasi-polynomial to the Ehrhart quasi-polynomial LA◦(q)

of the fundamental alcove A◦. Consider the associated hyperplane arrangement A in the quo-
tient Z(�)/qZ(�), where Z(�) is the coweight lattice. Then, by definition, χquasi(A�, q) is
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the number of points in the complement of A, for q 	 0. If we define P♦ = ∑�
k=1(0, 1]�i ,

(where �∨
i is the basis dual to the simple basis), then there is a bijective correspondence be-

tween the points in Z(�)/qZ(�) and the lattice points in the dilated parallelepiped qP♦. The
parallelepiped P♦ is dissected by the affine Weyl arrangement into open simplices (alcoves).
Thus χquasi(A�, q) can be expressed as the sum of Ehrhart quasi-polynomials of these al-
coves. Since A� is Weyl group invariant, the above dissection is into simplices of the same
size (Figure 1), which yields the simple formula

(1) χquasi(A�, q) = f

|W | · LA◦(q)

(see Corollary 3.5, Corollary 3.6 and Proposition 3.7). The formula (1) first appeared explic-
itly in [6], where it was proved using the classification of root systems. A case free proof was
given in [1]. The argument was later extended to the case A[−m,m]

� in [4].
If we apply the same strategy for the case of Shi and Linial arrangements, then χquasi

(A[a,b]
� , q) can again be expressed as the sum of Ehrhart quasi-polynomials. However the

sizes of simplices are no longer uniform (see Figure 4). This difficulty can be overcome by
looking at a disjoint partition of P♦ into partially closed alcoves

(2) P♦ =
⊔
ξ∈�

A
♦
ξ ,

(see §2.4 for details). Then obviously we have a partition of lattice points

(3) qP♦ ∩ Z(�) =
⊔
ξ∈�

(qA
♦
ξ ∩ Z(�)) ,

which we will call a Worpitzky partition. The number of lattice points contained in qA
♦
ξ is

expressed as

(4) L
A

♦
ξ
(q) = LA◦(q − asc(A◦

ξ )) ,

(Lemma 4.9), where asc(A◦
ξ ) is a certain integer (Definition 4.1 and (35)). The key result

(Theorem 4.7) in the proof of our main results is that the distribution of the quantity asc(A◦
ξ )

is given by the generalized Eulerian polynomial R�(t) (Definition 4.4) introduced by Lam
and Postnikov [16]. Using the shift operator S (§2.5), the partition (3) implies the formula,

(5) q� = (R�(S) LA◦)(q) .

In the case � = A�, the polynomial R�(t) is equal to the classical Eulerian polynomial. Then
the above formula (5) is known as the Worpitzky identity [26, 8]. Hence (5) can be considered
as a generalization of Worpitzky identity and (3) as its lattice points interpretation.

Using these results, the characteristic quasi-polynomials for Shi and Linial arrangements
have expressions similar to the Worpitzky identity (5). We have

χquasi(A[1−k,k]
� , q) =(Skh R�(S) LA◦)(q) = (q − kh)� ,

χquasi(A[1−k,n+k]
� , q) =(Skh R�(Sn+1) LA◦)(q) ,

(6)
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(Theorem 5.1, Theorem 5.3). Using these expressions, the functional equation is obtained
from the duality of the generalized Eulerian polynomial

(7) th R�

(1

t

)
= R�(t) ,

(Proposition 4.5).
If n ≡ −1 mod rad(̃n), then 1 + n is divisible by rad(̃n). Hence gcd(q, ñ) = 1 implies

gcd(q − k(n + 1), ñ) = 1 for k ∈ Z. This enables us to simplify the expression of the
characteristic polynomial χ(A[1,n]

� , t). Using techniques similar to those in Postnikov, Stanley
and Athanasiadis [19, 3], we can verify the “Riemann hypothesis” for such parameters n.

The paper is organized as follows. §2 contains background materials on root systems,
characteristic quasi-polynomials and the Eulerian polynomial. The partition of the funda-
mental parallelepiped, which will play an important role later, is introduced in §2.4 (Defini-
tion 2.3). In §3 the relation between the Ehrhart quasi-polynomial of the fundamental alcove
and the characteristic quasi-polynomial is discussed. In §4 we first summarize basic properties
of the generalized Eulerian polynomial R�(t) introduced by Lam and Postnikov [16]. Then
we introduce Worpitzky partitions of the lattice points which provide a Worpitzky-type iden-
tity (Theorem 4.8). We also give an explicit example of the Worpitzky partition for � = B2.
In §5, we obtain formulae for characteristic quasi-polynomials by modifying the Worpitzky-
type identity. Using these formulae, we prove our main results.

2. Background.
2.1. Quasi-polynomials with gcd-property. A function f : Z −→ Z is called a

quasi-polynomial if there exist ñ > 0 and polynomials g1(t), g2(t), . . . , gñ(t) ∈ Z[t] such
that

f (q) = gr (q), if q ≡ r mod ñ ,

(1 ≤ r ≤ ñ). The minimal such ñ is called the period of the quasi-polynomial f .
Moreover, the function f : Z −→ Z is said to be a quasi-polynomial with gcd-property

if the polynomial gr (t) depends on r only through gcd(r, ñ). In other words, gr1(t) = gr2(t)

if gcd(r1, ñ) = gcd(r2, ñ).
2.2. Arrangements and characteristic quasi-polynomials. Let L  Z� be a lattice

and L∨ = HomZ(L,Z) be the dual lattice. Given α1, . . . , αn ∈ L∨ and integers k1, . . . , kn ∈
Z, we can associate a hyperplane arrangement A = {H1, . . . , Hn} in R�  L ⊗A R, with
Hi = {x ∈ L ⊗ R | αi(x) = ki}. For a positive integer q > 0, define

(8) M(A; q) := {x ∈ L/qL | ∀i, α(x) �≡ ki mod q} .

Kamiya, Takemura and Terao proved the following.

THEOREM 2.1 ([13, 14]). There exist q0 > 0 and a quasi-polynomial χquasi(A, t)

with gcd-property such that #M(A, q) = χquasi(A, q) for q > q0.



44 M. YOSHINAGA

More precisely, there exists a period ñ and a polynomial gd (t) ∈ Z[t] for each divisor
d |̃n such that

#M(A; q) = gd(q) ,

for q > q0, where d = gcd(̃n, q).
One of the most important invariants of a hyperplane arrangementA is the characteristic

polynomial χ(A, t) ∈ A[t] (see [18] for the definition and basic properties). The characteris-
tic polynomial is one of the polynomials given by Theorem 2.1 (see also [3, Theorem 2.1]),
specifically,

(9) χ(A, t) = g1(t) .

2.3. Root systems. Let V = R� be the Euclidean space with inner product (·, ·). Let
� ⊂ V be an irreducible root system with exponents e1, . . . , e�, Coxeter number h and Weyl
group W . For any integer k ∈ Z and α ∈ �+, the affine hyperplane Hα,k is defined by

(10) Hα,k = {x ∈ V | (α, x) = k} .

Fix a positive system �+ ⊂ � and the set of simple roots 	 = {α1, . . . , α�} ⊂ �+. The
highest root, denoted by α̃ ∈ �+, can be expressed as a linear combination α̃ = ∑�

i=1 ciαi

(ci ∈ Z>0). We also set α0 := −α̃ and c0 := 1. Then we have the linear relation

(11) c0α0 + c1α + · · · + c�α� = 0 .

The coweight lattice Z(�) and the coroot lattice Q̌(�) are defined as follows.

Z(�) = {x ∈ V | (αi , x) ∈ Z, αi ∈ 	} ,

Q̌(�) =
∑
α∈�

Z · 2α

(α, α)
.

The coroot lattice Q̌(�) is a finite index subgroup of the coweight lattice Z(�). The index
# Z(�)

Q̌(�)
= f is called the index of connection.

Let �∨
i ∈ Z(�) be the dual basis to the simple roots α1, . . . , α�, that is, (αi ,�

∨
j ) = δij .

Then Z(�) is a free abelian group generated by �∨
1 , . . . ,�∨

� . We also have ci = (�∨
i , α̃).

A connected component of V �
⋃

α∈�+
k∈Z

Hα,k is called an alcove. Let us define the funda-

mental alcove A◦ by

A◦ =
{
x ∈ V

∣∣∣∣ (αi , x) > 0, (1 ≤ i ≤ �)

(̃α, x) < 1

}
=
{
x ∈ V

∣∣∣∣ (αi , x) > 0, (1 ≤ i ≤ �)

(α0, x) > −1

}
.

The closure A◦ = {x ∈ V | (αi, x) ≥ 0 (1 ≤ i ≤ �), (̃α, x) ≤ 1} is the convex hull

of 0,
�∨

1
c1

, . . . ,
�∨

�

c�
∈ V . The closed alcove A◦ is a simplex. The supporting hyperplanes of
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facets of A◦ are Hα1,0, . . . , Hα�,0,Hα̃,1. We note that A◦ is a fundamental domain of the
affine Weyl group Waff = W � Q̌(�).

Let P♦ denote the fundamental domain of the coweight lattice Z(�) defined by

P♦ =
�∑

i=1

(0, 1]�∨
i

= {x ∈ V | 0 < (αi, x) ≤ 1, i = 1, . . . , �} .

(12)

Here we summarize without proofs some useful facts on root systems [12].

PROPOSITION 2.2. (i) c0 + c1 + · · · + c� = h.

(ii) |W |
f

= vol(P♦)
vol(A◦) = l! · c1 · c2 · · · c�.

(iii) |�+| = �h
2 .

2.4. Partition of the fundamental parallelepiped. Let us consider the set of alcoves
contained in P♦, denoted by {A◦

ξ | ξ ∈ �}, where � is a finite set with |�| = |W |
f

(by
Proposition 2.2 (ii)). In other words,

(13) P♦ �
⋃

α∈�+,k∈Z
Hα,k =

⊔
ξ∈�

A◦
ξ .

Each A◦
ξ can be written uniquely as

(14) A◦
ξ =

{
x ∈ V

∣∣∣∣ (α, x) > kα for α ∈ I

(β, x) < kβ for β ∈ J

}
,

for some positive roots I, J ⊂ �+ with |I � J | = � + 1, and kα, kβ ∈ Z (α ∈ I, β ∈ J ).
By definition, the facets of A◦

ξ are supported by the hyperplanes Hα,kα (α ∈ I ) and Hβ,kβ

(β ∈ J ).

DEFINITION 2.3. With notation as above, let us define the partially closed alcove A
♦
ξ

by

(15) A
♦
ξ :=

{
x ∈ V

∣∣∣∣ (α, x) > kα for α ∈ I

(β, x) ≤ kβ for β ∈ J

}
.

Obviously, the interior of A
♦
ξ is A◦

ξ . Although A
♦
ξ is not a closure of A◦

ξ , A
♦
ξ may be

considered as the partial closure of A◦
ξ .

PROPOSITION 2.4. Let ρ = ∑�
i=1 �∨

i . Then x ∈ A
♦
ξ if and only if for sufficiently

small 0 < ε � 1, x − ε · ρ ∈ A◦
ξ , (that is, there exists ε0 > 0 such that if 0 < ε < ε0, then

x − ε · ρ ∈ A◦
ξ ).

PROOF. Straightforward. �

From Proposition 2.4, we have a partition of P♦.
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PROPOSITION 2.5.

(16) P♦ =
⊔
ξ∈�

A
♦
ξ .

PROOF. It is enough to show that each x ∈ P♦ is contained in the unique A
♦
ξ . Let

x ∈ P♦. Then for sufficiently small ε > 0, (α, x − ε · ρ) /∈ Z for all α ∈ �+, hence x − ε · ρ
is contained in the unique alcove A◦

ξ . By Proposition 2.4, x is contained in the corresponding

A
♦
ξ . �

2.5. Shift operator and “Riemann hypothesis”. Let a, b ∈ Z be integers with a ≤
b. Let us denote by A[a,b]

� the hyperplane arrangement

A[a,b]
� = {Hα,k | α ∈ �+, k ∈ Z, a ≤ k ≤ b} .

By Proposition 2.2 (iii), we have |A[a,b]
� | = �·h·(b−a+1)

2 . For special cases, the characteristic

polynomial χ(A[a,b]
� , t) factors.

THEOREM 2.6. (i) If k ≥ 0, then χ(A[−k,k]
� , t) = ∏�

i=1(t − ei − kh).

(ii) If k ≥ 1, then χ(A[1−k,k]
� , t) = (t − kh)�.

The above result had been conjectured by Edelman and Reiner [9]. Theorem 2.6 (i) was
proved in [4] by using lattice point counting techniques, which will be developed further in
this paper. Theorem 2.6 (ii) was proved in [27] by use of the theory of free arrangements
([9, 18, 24, 25]).

For an interval [a, b] �= [−k, k], [1 − k, k], the characteristic polynomial χ(A[a,b]
� , t)

does not factor in general. Postnikov and Stanley pose the following “Riemann hypothesis”.

CONJECTURE 2.7 ([19, Conjecture 9.14]). Let a, b ∈ Z with a ≤ 1 ≤ b. Suppose
a + b ≥ 1. Then every root t ∈ C of the equation χ(A[a,b]

� , t) = 0 satisfies Re t = h(b−a+1)
2 .

Conjecture 2.7 has been proved by Stanley, Postnikov and Athanasiadis in [3, 19] for
� ∈ {A�,B�, C�,D�,G2}. We recall their results.

Let f : N −→ R be a partial function, that is, a function defined on a subset of N. Define
the action of the shift operator S by

(Sf )(t) = f (t − 1) .

More generally, for a polynomial P(S) = ∑
k akS

k in S, the action is defined by

(P (S)f )(t) =
∑

k

akf (t − k) .

PROPOSITION 2.8. Let g(S) ∈ R[S] and f (t) ∈ R[t]. Suppose deg f = n. Then
g(S)f = 0 if and only if (1 − S)n+1|g(S).

PROOF. First note that since (1 − S)f (t) = f (t) − f (t − 1) is the difference operator,
deg((1 − S)f ) = n − 1. Suppose (1 − S)n+1|g(S). Then by induction, it is easily seen that
(1 − S)n+1f = 0. Hence g(S)f = 0.
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Conversely, suppose g(S)f = 0. Consider the Taylor expansion of g(S) at S = 1. Set
g(S) = b0+b1(S−1)+b2(S−1)2+· · ·+bn(S−1)n+(S−1)n+1̃g(S). Since (S−1)n+1f = 0,
we have

(17) (b0 + b1(S − 1) + b2(S − 1)2 + · · · + bn(S − 1)n)f = 0 .

Set f (t) = r0t
n + r1t

n−1 + · · · + rn with r0 �= 0. The coefficient of the term of degree
n in (17) is b0r0. Hence b0 = 0. Similarly, b1 = · · · = bn = 0, and we have g(S) =
(S − 1)n+1g̃(S). �

The shift operator can be used to express characteristic polynomials.

THEOREM 2.9 ([3, 19]).

(1) Let n ≥ 1 and k ≥ 0. For the cases � ∈ {A�,B�, C�,D�}, χ(A[1−k,n+k]
� , t) =

χ(A[1,n]
� , t − kh).

(2) Let n ≥ 1. Then the characteristic polynomial χ(A[1,n]
� , t) has the following expres-

sion.
(i) For � = A�,

(18) χ(A[1,n]
A�

, t) =
(

1 + S + S2 + · · · + Sn

1 + n

)�+1

t� .

(ii) For � = B� or C�,

(19) χ(A[1,n]
� , t) =

⎧⎪⎪⎨⎪⎪⎩
4S(1+S2+S4+···+S2n)�−1(1+S2+S4+···+Sn−1)2

(1+n)�+1 t�, if n odd ,

(1+S2+S4+···+S2n)�−1(1+S1+S2+···+Sn)2

(1+n)�+1 t�, if n even .

(iii) For � = D�,

(20) χ(A[1,n]
D�

, t) =

⎧⎪⎪⎨⎪⎪⎩
8S(1+S2)(1+S2+S4+···+S2n)�−3(1+S2+S4+···+Sn−1)4

(1+n)�+1 t�, if n odd ,

(1+S2+S4+···+S2n)�−3(1+S1+S2+···+Sn)4

(1+n)�+1 t�, if n even .

Owing to the next result, the above expressions implies Conjecture 2.7 for A[a,b]
� with

� = A�,B�, C�, or D� and a + b ≥ 2.

LEMMA 2.10 ([19, Lemma 9.13]). Let f (t) ∈ C[t]. Suppose all the roots of the equa-
tion f (t) = 0 have real part equal to a. Let g(S) ∈ C[S] be a polynomial such that every
root of the equation g(z) = 0 satisfies |z| = 1. Then all roots of the equation (g(S)f )(t) = 0
have real part equal to a + deg g

2 .

REMARK 2.11. (1) The “Riemann hypothesis” for the special case a + b = 1 is
a consequence of Theorem 2.6 (ii).

(2) Conjecture 2.7 implies the “functional equation” ([19, (9.12)])

(21) χ(A[a,b]
� , h(b − a + 1) − t) = (−1)�χ(A[a,b]

� , t) ,
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for a ≤ 1 ≤ b satisfying a + b ≥ 1. The relation (21) for characteristic quasi-
polynomials will be proved later (Theorem 5.6 and Corollary 5.7).

(3) The “functional equation ” (21) is also valid for the case [a, b] = [−k, k], owing to
the duality of exponents ei + e�−i+1 = h.

2.6. Eulerian polynomial. The Eulerian polynomial was originally introduced by
Euler for the purpose of describing the special value of the zeta function ζ(n) at negative
integers n < 0 [11]. Currently, it plays an important role in enumerative combinatorics [22].

DEFINITION 2.12. For a permutation σ ∈ Sn, define

a(σ) = #{i | 1 ≤ i ≤ n − 1, σ (i) < σ(i + 1)} ,

d(σ ) = #{i | 1 ≤ i ≤ n − 1, σ (i) > σ(i + 1)} .

Then

A(n, k) = #{σ ∈ Sn | a(σ) = k − 1} ,

(1 ≤ k ≤ n − 1) is called the Eulerian number and the generating polynomial

An(t) =
n∑

k=1

A(n, k)tk =
∑

σ∈Sn

t1+a(σ )

is called the Eulerian polynomial. It is easily seen that A(n, k) = A(n, n − k + 1). It follows
immediately that tn+1 An(

1
t
) = An(t).

The next formula is one of the classical results concerning Eulerian numbers.

THEOREM 2.13 (Worpitzky [26], see also [8]).

(22) tn =
n∑

k=1

A(n, k)

(
t + k − 1

n

)
.

REMARK 2.14. Using the shift operator S (in §2.5), the Worpitzky identity (22) can
be reformulated as

(23) tn = An(S)
(t + n)(t + n − 1) · · · (t + 1)

n! .

In §4.2 we will give another proof of (23). The polynomial (t+n)(t+n−1)···(t+1)
n! is the Ehrhart

polynomial of the fundamental alcove for the root system of type An. If we replace it with the
Ehrhart quasi-polynomial of the fundamental alcove then we obtain similar formulae for root
systems. (See Theorem 4.8 and Remark 4.10.)

3. Ehrhart quasi-polynomial for the fundamental alcove.
3.1. Ehrhart quasi-polynomial. A convex polytope P is a convex hull of finitely

many points in Rn. A polytope P ⊂ Rn is said to be integral (resp. rational) if all vertices of
P are contained in Zn (resp. Qn). We denote by P◦ the relative interior of P .

Let P be a rational polytope. For a positive integer q ∈ Z>0, define

(24) LP (q) = #(qP ∩ Zn) .
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Similarly, define LP◦(q) = #(qP◦ ∩Zn). These functions are known to be quasi-polynomials
([5, Theorem 3.23]). (Moreover, the minimal period of the quasi-polynomial divides the least
common multiple of the denominators of vertex coordinates.) Thus the value LP (q) makes
sense for negative q and is related to LP◦(q) by the following reciprocity property

(25) LP (−q) = (−1)dimP LP◦(q) ,

for q > 0.
3.2. Ehrhart quasi-polynomial for A◦. Let A◦ be the closed fundamental alcove

of type � (§2.3). Suter computes the Ehrhart quasi-polynomial LA◦(q) (with respect to the
coweight lattice Z(�)) in [23] (see also [6, 1, 4, 10, 15]). See Example 3.2 for (some of) the
explicit formulae. Several useful conclusions may be summarized as follows.

THEOREM 3.1 (Suter [23]).

(i) The Ehrhart quasi-polynomial LA◦(q) has the gcd-property.

(ii) The leading coefficient of LA◦(q) is f
|W | .

(iii) The minimal period ñ is as given in the table (Table 1).
(iv) If q is relatively prime to the period ñ, then

LA◦(q) = f

|W | (q + e1)(q + e2) · · · (q + e�) .

(v) rad(̃n)|h, where rad(̃n) = ∏
p:prime,p|̃n p is the radical of ñ.

� e1, . . . , e� c1, . . . , c� h f |W | ñ rad(̃n)

A� 1, 2, . . . , � 1, 1, . . . , 1 � + 1 � + 1 (� + 1)! 1 1
B�,C� 1, 3, 5, . . . , 2� − 1 1, 2, 2, . . . , 2 2� 2 2� · �! 2 2

D� 1, 3, 5, . . . , 2� − 3, � − 1 1, 1, 1, 2, . . . , 2 2� − 2 4 2�−1 · �! 2 2
E6 1, 4, 5, 7, 8, 11 1, 1, 2, 2, 2, 3 12 3 27 · 34 · 5 6 6
E7 1, 5, 7, 9, 11, 13, 17 1, 2, 2, 2, 3, 3, 4 18 2 210 · 34 · 5 · 7 12 6
E8 1, 7, 11, 13, 17, 19, 23, 29 2, 2, 3, 3, 4, 4, 5, 6 30 1 214 · 35 · 52 · 7 60 30
F4 1, 5, 7, 11 2, 2, 3, 4 12 1 27 · 32 12 6
G2 1, 5 2, 3 6 1 22 · 3 6 6

TABLE 1. Table of root systems.

EXAMPLE 3.2. (1) � = A�. The closed fundamental alcove A◦ is the convex
hull of 0,�∨

1 , . . . ,�∨
� , which is an integral simplex. Hence the period is ñ = 1.

Moreover,

(26) LA◦(t) = (t + 1)(t + 2) · · · (t + �)

�! .
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(2) � = B� or C�. The closed fundamental alcove A◦ is the convex hull of 0,
�∨

1
2 ,�∨

2 ,

. . . ,�∨
� . The period is ñ = 2.

LA◦(t) =

⎧⎪⎨⎪⎩
(t+1)(t+3)···(t+2�−1)

2�−1·�! , if t is odd

(t+�)
∏�−1

i=1 (t+2i)

2�−1·�! , if t is even .

(3) � = D�. The period is ñ = 2.

LA◦(t) =

⎧⎪⎪⎨⎪⎪⎩
(t+�−1)

∏�−1
i=1 (t+2i−1)

2�−3·�! , if t is odd

(t2+2(�−1)t+ �(�−1)
2 )·∏�−2

i=1 (t+2i)

2�−3·�! , if t is even .

(4) � = E6. The period is ñ = 6.

LA◦(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t+1)(t+4)(t+5)(t+7)(t+8)(t+11)

23·3·6! , if t ≡ 1, 5 mod 6

(t+3)(t+9)(t4+24t3+195t2+612t+480)

23·3·6! , if t ≡ 3 mod 6

(t+2)(t+4)(t+8)(t+10)(t2+12t+26)

23·3·6! , if t ≡ 2, 4 mod 6

(t+6)2(t4+24t3+186t2+504t+480)

23·3·6! , if t ≡ 0 mod 6 .

Let � be an arbitrary root system. For a positive integer q ∈ Z>0, the simplex qA◦ has
� + 1 facets, which will be denoted by

F0 =A◦ ∩ Hα̃,q ,

F1 =A◦ ∩ Hα1,0 ,

F2 =A◦ ∩ Hα2,0 ,

...

F� =A◦ ∩ Hα�,0 .

We shall count the lattice points after removing a facet.

LEMMA 3.3. Let 0 ≤ i ≤ �. Suppose q 	 0 (indeed q > ci is sufficient). Then,

(27) #
(
(qA◦ ∩ Z(�)) � Fi

) = LA◦(q − ci) .

PROOF. First we consider the case i = 0. Let

x ∈ (qA◦ ∩ Z(�)) � F0 .

Then (̃α, x) < q . Since (̃α, x) is an integer, we have (̃α, x) ≤ q − 1. Therefore,

(qA◦ ∩ Z(�)) � F0 = (q − 1)A◦ ∩ Z(�) .

Since c0 = 1, the number of lattice points is LA◦(q − c0).
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Next we consider the case i = 1. By an argument similar to that in the case i = 0,
(qA◦ ∩ Z(�)) � F1 is described as

(qA◦ ∩ Z(�)) � F1 =
{x ∈ Z(�) | (α1, x) ≥ 1, (α2, x) ≥ 0, . . . , (α�, x) ≥ 0, (̃α, x) ≤ q} .

Since (̃α,�∨
1 ) = c1, the map x �−→ x + �∨

1 induces a bijection between

(q − c1)A◦ ∩ Z(�)
−→ (qA◦ ∩ Z(�)) � F1 .

Hence #
(
(qA◦ ∩ Z(�)) � F1

) = LA◦(q −c1). This completes the proof for i = 1. The proof
for i ≥ 2 is similar. �

Applying Lemma 3.3 repeatedly, we obtain the following.

COROLLARY 3.4. Let {i1, . . . , ik} ⊂ {0, 1, 2, . . . , �}. Suppose q 	 0 (indeed q >

ci1 + · · · + cik is sufficient). Then

#
(
(qA◦ ∩ Z(�)) � (Fi1 ∪ · · · ∪ Fik

) = LA◦(q − ci1 − · · · − cik ) .

COROLLARY 3.5 ([23, 4]). Let q ∈ Z. Then

(28) LA◦(q) = LA◦(q − h) .

PROOF. Since both sides of (28) are quasi-polynomials, it is sufficient to check the
equality for q 	 0.

(qA◦) ∩ Z(�) = (qA◦) ∩ Z(�) �

�⋃
i=0

Fi .

Hence (28) follows from Corollary 3.4 and the equality
∑�

i=0 ci = h. �

Finally, combining Corollary 3.5 and the reciprocity of Ehrhart quasi-polynomials (25),
we obtain the following duality of LA◦(q).

COROLLARY 3.6. If q ∈ Z, then

LA◦(q − h) = (−1)� LA◦(−q) .

3.3. Characteristic quasi-polynomial. In this section, we recall the relation between
the Ehrhart quasi-polynomial of A◦ and the characteristic quasi-polynomial of the Weyl ar-
rangement A�, following [6, 1, 4, 15] (which will be refined later). Recall the definition (12)
of the fundamental parallelepiped P♦ = {x ∈ V | 0 < (αi, x) ≤ 1, i = 1, . . . , �}. Let q > 0.
Let us consider the projection

(29) π : Z(�) −→ Z(�)/qZ(�) .

The restriction of π to qP♦ induces a bijection

(30) π |qP♦∩Z(�) : qP♦ ∩ Z(�)
−→ Z(�)/qZ(�) .
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To compute the characteristic quasi-polynomial, let us define Xq by

(31) Xq = Z(�) �
⋃

α∈�+
k∈Z

Hα,kq .

Then the projection π induces a bijection between qP♦ ∩ Xq and M(A�; q).
The set qP♦ ∩ Xq is a disjoint union of qA◦

ξ ∩ Z(�), (ξ ∈ �). Therefore, by using the
reciprocity (25), we have

|P♦ ∩ Xq | = |W |
f

LA◦(q)

= |W |
f

· (−1)� LA◦(−q) .

(The case � = B2, q = 6 is described in Figure 1. See Example 4.11 for the notation.) Thus
we have the following.

PROPOSITION 3.7 ([15]). The characteristic quasi-polynomial ofA� is

χquasi(A�, q) = |W |
f

· (−1)� LA◦(−q) .

FIGURE 1. χquasi(A�, q) = 4 L
A◦ (q − 4), (� = B2, q = 6).

We also have the duality of characteristic quasi-polynomial of the Weyl arrangement.

COROLLARY 3.8. χquasi(A�, q) = (−1)� · χquasi(A�, h − q).
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PROOF. Suppose q 	 0. Using Corollary 3.6 and Proposition 3.7, we have

χquasi(A�, q) = |W |
f

· (−1)� LA◦(−q)

= |W |
f

· LA◦(q − h)

= (−1)�χquasi(A�; h − q) .

�

4. Generalized Eulerian polynomial.
4.1. Definition and basic property. Using the linear relation (11) in §2.3, we define

the function asc, dsc : W −→ Z.

DEFINITION 4.1. Let w ∈ W . Then asc(w) and dsc(w) ∈ Z are defined by

asc(w) =
∑

0≤i≤�
w(αi)>0

ci ,

dsc(w) =
∑

0≤i≤�
w(αi)<0

ci .

REMARK 4.2. Note that dsc(w) in this paper is equal to cdes(w) in [16].

Let w0 ∈ W be the longest element. Since w0 exchanges positive and negative roots, we
have

asc(w0w) = dsc(w) = h − asc(w) ,

dsc(w0w) = asc(w) = h − dsc(w) .
(32)

LEMMA 4.3. (1) Let w ∈ W . Suppose that w induces a permutation on {α0, α1,

. . . , α�}. If w(αi) = αpi , then ci = cpi .
(2) Let w1, w2 ∈ W . If there exists γ ∈ V (actually γ ∈ Q̌(�)) such that w2A

◦ =
w1A

◦ + γ , then asc(w1) = asc(w2).

PROOF. (1) Applying w to the linear relation (11), we have

(33)
�∑

i=0

ciw(αi) =
�∑

i=0

ciαpi = 0 .

Note that any � distinct members of {α0, α1, . . . , α�} are linearly independent. Therefore, the
space of linear relations has dimension 1. Both (11) and (33) are linear relations with positive
coefficients normalized in such a way that the minimal coefficient is equal to 1 (c0 = 1).
Hence (11) and (33) are identical, which yields ci = cpi .
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(2) Suppose w2A
◦ = w1A

◦ + γ . Each side is

w1A
◦ + γ =

{
x ∈ V

∣∣∣∣ (w1α0, x) > (w1α0, γ ) − 1,

(w1αi, x) > (w1αi, γ ), i = 1, . . . , �

}
,

w2A
◦ =

{
x ∈ V

∣∣∣∣ (w2α0, x) > −1,

(w2αi, x) > 0, i = 1, . . . , �

}
.

Since the supporting hyperplanes should coincide, we have

{w1α0, w1α1, . . . , w1α�} = {w2α0, w2α1, . . . , w2α�} .

Thus (a modified version of) (1) enables us to deduce asc(w1) = asc(w2). �

DEFINITION 4.4. The generalized Eulerian polynomial R�(t) is defined by

R�(t) = 1

f

∑
w∈W

tasc(w) .

The following proposition gives some basic properties of R�(t). We omit the proof,
since they are immediate consequences of Theorem 4.6 by Lam and Postnikov. (Direct proofs
are also easy. In particular, the duality (2) is immediately deduced from (32).)

PROPOSITION 4.5. (1) deg R�(t) = h − 1.
(2) (Duality) th · R�( 1

t
) = R�(t).

(3) R�(t) ∈ Z[t].
(4) RA�(t) = A�(t).

The polynomial R�(t) was introduced by Lam and Postnikov in [16]. They proved that
R�(t) can be expressed in terms of cyclotomic polynomials and the classical Eulerian poly-
nomial.

THEOREM 4.6 ([16, Theorem 10.1]). Let � be a root system of rank �. Then

(34) R�(t) = [c1]t · [c2]t · · · [c�]t · A�(t) ,

where [c]t = t c−1
t−1 .

Let A′ ⊂ V �
⋃

α∈�+,k∈Z Hα,k be an arbitrary alcove. We can write A′ = w(A◦) + γ

for some w ∈ W and γ ∈ Q̌(�). Then let us define

(35) asc(A′) := asc(w) ,

which is indeed well-defined because of the translational invariance (Lemma 4.3 (2)). Thus
we can extend asc as a function on the set of all alcoves. Using this extension, we have another
expression for R�(t).

THEOREM 4.7.

(36) R�(t) =
∑

A′⊂P♦
tasc(A′) =

∑
ξ∈�

t
asc(A◦

ξ )
.
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PROOF. For any w ∈ W , there exists a unique γ ∈ Q̌(�) such that w(A◦) + γ ⊂ P♦.
This induces a map ϕ : W −→ {A◦

ξ | ξ ∈ �}. The map is surjective and #ϕ−1(A◦
ξ ) = f

holds for any alcove A◦
ξ ⊂ P♦ (see [12, page 99]). The assertion follows from the definition

of R�(t). �

4.2. Worpitzky partition. From the definition P♦ = ∑�
i=1(0, 1]�∨

i ,

(37) qP♦ ∩ Z(�) = {t1�∨
1 + · · · + t��

∨
� | ti ∈ Z, 0 < ti ≤ q} .

Hence we have

(38) LP♦(q) = #(qP♦ ∩ Z(�)) = q� .

The partition (16) P♦ = ⊔
ξ∈� A

♦
ξ in Proposition 2.5 induces a partition of lattice points,

(39) qP♦ ∩ Z(�) =
⊔
ξ∈�

qA◦
ξ ∩ Z(�) ,

which we shall call the Worpitzky partition.

THEOREM 4.8. Suppose q 	 0 (indeed q > h is sufficient). Then

(40) q� = (R�(S) LA◦)(q) .

Before the proof of this theorem, we will analyze the case of a single alcove.

LEMMA 4.9. Suppose q 	 0 (indeed q > h is sufficient). Then

(41) #(qA
♦
ξ ∩ Z(�)) = LA◦(q − asc(A◦

ξ )) .

PROOF. In the notation of §2.3 (see (15)), qA
♦
ξ is expressed as

(42) qA
♦
ξ =

{
x ∈ V

∣∣∣∣ (α, x) > qkα for α ∈ I

(β, x) ≤ qkβ for β ∈ J

}
.

Hence we have

(43) qA
♦
ξ ∩ Z(�) =

{
x ∈ Z(�)

∣∣∣∣ (α, x) ≥ qkα + 1, for α ∈ I

(β, x) ≤ qkβ, for β ∈ J

}
.

From Corollary 3.4 and the definition (35) of asc(A◦
ξ ), we have the equality (41). �

We now turn to the proof of Theorem 4.8. Using the partition (39) and Lemma 4.9, we
have

q� = #(qP♦ ∩ Z(�))

=
∑
ξ∈�

#(qA
♦
ξ ∩ Z(�))

=
∑
ξ∈�

LA◦(q − asc(A◦
ξ )) .

(44)

Then applying Theorem 4.7 and the shift operator, the right-hand side can be written as
(R�(S) LA◦)(q), which completes the proof.
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REMARK 4.10. As we noted in Proposition 4.5 (4), if � = A� then the Eulerian
polynomial is equal to the classical one. Furthermore, the Ehrhart polynomial is explicitly
known (26). Theorem 4.8 gives the classical Worpitzky identity (23).

EXAMPLE 4.11. Let � = B2. Set the simple roots α1, α2 as in Figure 2. Then
α̃ = �1. Since f = 2 and |W | = 8, P♦ contains 4 alcoves, say {Aξ | ξ ∈ �} =
{A◦

ξ1
, A◦

ξ2
, A◦

ξ3
, A◦

ξ4
} with the fundamental alcove A◦

ξ1
= A◦. Figure 3 is the Worpitzky par-

tition of qP♦ ∩ Z(B2) for q = 6. The dots in Figure 3 are the set 6P♦ ∩ Z(B2), which is
decomposed into a disjoint sum of simplices of sizes 3, 4, 4, and 5. The Eulerian polynomial
is RB2(t) = t + 2t2 + t3. Hence

62 = LA◦(5) + 2 LA◦(4) + LA◦(3)

=((S + 2S2 + S3) LA◦)(6)

=(RB2(S) LA◦)(6) .

We can apply the above techniques to the Shi and Linial arrangements. The number of
lattice points in qP♦ minus corresponding hyperplanes are expressed in terms of the general-
ized Eulerian polynomial and the Ehrhart quasi-polynomial. (See the next section for details.)

EXAMPLE 4.12. Figure 4 shows the lattice points of (qP♦ ∩ Z(B2))�
⋃

α,k(Hα,kq ∪
Hα,kq+1) and (qP♦ ∩ Z(B2))�

⋃
α,k Hα,kq+1 with q = 10, which correspond to the Shi and

Linial arrangements, respectively. In both cases, the decomposition can be described by using
the shift operator, the Eulerian polynomial and the Ehrhart quasi-polynomial.

LA◦(5) + 2 LA◦(4) + LA◦(3) = ((S5 + 2S6 + S7) LA◦)(10)

=(S4 RB2(S) LA◦)(10) .

LA◦(8) + 2 LA◦(6) + LA◦(4) = ((S2 + 2S4 + S6) LA◦)(10)

=(RB2(S
2) LA◦)(10) .

FIGURE 2. Root system of type B2.
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FIGURE 3. Worpitzky partition for � = B2 with q = 6.

FIGURE 4. Shi and Linial arrangements (� = B2, q = 10).

These computations will be generalized to all the root systems in the next section.

5. Shi and Linial arrangements. We will apply the Worpitzky partition from the
previous section to the computation of characteristic quasi-polynomials for the Shi and Linial
arrangements.
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5.1. Shi arrangements.

THEOREM 5.1. Let k ∈ Z>0. The characteristic quasi-polynomial χquasi(A[1−k,k]
� , t)

of the extended Shi arrangementA[1−k,k]
� is equal to the polynomial (t − kh)�.

PROOF. Suppose q 	 0 (indeed q > (k + 1)h is sufficient). Set

(45) Xq := Z(�) �
⋃

α∈�+ ,
i,m∈Z ,

1−k≤i≤k

Hα,mq+i .

We have to compute (cf. §3.3),

(46) χquasi(A[1−k,k]
� , q) = #(qP♦ ∩ Xq) .

Consider the Worpitzky partition qP♦ ∩ Z(�) = ⊔
ξ∈�(qA

♦
ξ ∩ Z(�)). We have

(47) χquasi(A[1−k,k]
� , q) =

∑
ξ∈�

#(qA
♦
ξ ∩ Xq) .

In the notation of Definition 2.3, we have

(48) qA
♦
ξ ∩ Xq =

{
x ∈ Z(�)

∣∣∣∣ (α, x) ≥ qkα + k + 1 for α ∈ I

(β, x) ≤ qkβ − k for β ∈ J

}
.

Hence by Corollary 3.4 and Lemma 4.9,

(49) #(qA
♦
ξ ∩ Xq) = LA◦(q − kh − asc(A◦

ξ )) .

Then, applying Theorem 4.7,

(50) χquasi(A[1−k,k]
� , q) = (R�(S) LA◦)(q − kh) .

By Theorem 4.8, the right-hand side is equal to (q − kh)�. �

By considering the case that q is relatively prime to ñ, we can conclude that the charac-
teristic polynomial is

χ(A[1−k,k]
� , t) = (t − kh)� .

This gives an alternative proof of Theorem 2.6 (ii).
5.2. Linial arrangements. In this section, we express the characteristic quasi-poly-

nomial for the Linial arrangement A[1,1+n]
� (with n ≥ 1) and its extension A[1−k,1+n+k]

� (with
n ≥ 1, k ≥ 0) in terms of generalized Eulerian polynomials and Ehrhart quasi-polynomials.

THEOREM 5.2. Let n ≥ 1. The characteristic quasi-polynomial of the Linial arrange-
ment A[1,n]

� is

(51) χquasi(A[1,n]
� , q) = (R�(Sn+1) LA◦)(q) .
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PROOF. Suppose q 	 0 (indeed q > (n + 1)h is sufficient). Set

(52) Xq := Z(�) �
⋃

α∈�+ ,
i,m∈Z ,
1≤i≤n

Hα,mq+i .

In view of the bijection (30), we have to compute (cf. §3.3)

(53) χquasi(A[1,n]
� , q) = qP♦ ∩ Xq .

By the Worpitzky partition qP♦ ∩ Z(�) = ⊔
ξ∈�(qA

♦
ξ ∩ Z(�)), we have

(54) χquasi(A[1,n]
� , q) =

∑
ξ∈�

#(qA
♦
ξ ∩ Xq) .

In the notation of Definition 2.3, we have

(55) qA
♦
ξ ∩ Xq =

{
x ∈ Z(�)

∣∣∣∣ (α, x) ≥ qkα + n + 1 for α ∈ I

(β, x) ≤ qkβ for β ∈ J

}
.

Hence by Corollary 3.4 and Lemma 4.9,

(56) #(qA
♦
ξ ∩ Xq) = LA◦(q − (n + 1) asc(A◦

ξ )) .

Then, applying Theorem 4.7, we obtain

(57) χquasi(A[1,n]
� , q) = (R�(Sn+1) LA◦)(q) .

�

Moreover, by an argument similar to that in the proof of Theorem 5.1, we have the
following.

THEOREM 5.3. Let n ≥ 1 and k ≥ 0. The characteristic quasi-polynomial of the
Linial arrangementA[1−k,n+k]

� is

(58) χquasi(A[1−k,n+k]
� , q) = χquasi(A[1,n]

� , q − kh) .

Recall that by Theorem 2.1, χquasi(A[1−k,n+k]
� , q) is a quasi-polynomial with gcd-

property. Furthermore, the Coxeter number h is divisible by the radical rad(̃n) of the pe-
riod ñ (Theorem 3.1 (v)). Hence if q is relatively prime to the period ñ, then q − kh is also
relatively prime to ñ. Hence #M(A[1,n]

� , q) and #M(A[1,n]
� , q − kh) are computed by using

the same polynomial, the characteristic polynomial. Thus we obtain the following.

COROLLARY 5.4.

(59) χ(A[1−k,n+k]
� , t) = χ(A[1,n]

� , t − kh) .
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Now we have obtained two expressions of χ(A[1,n]
� , t) for � = A�. The comparison of

these two expressions yields a useful congruence relation concerning the classical Eulerian
polynomial A�(t). Let � = A�. Set g(t) = (t+1)(t+2)···(t+�)

�! . Then Theorem 5.2 asserts that

(60) χ(A[1,n]
� , t) = A�(S

n+1)g(t) .

On the other hand, by formula (18) and the Worpitzky identity (23), we have another expres-
sion

(61) χ(A[1,n]
� , t) =

(
1 + S + S2 + · · · + Sn

1 + n

)�+1

A�(S)g(t) .

By comparing the two formulae (60) and (61) and using Proposition 2.8, we have the follow-
ing congruence relation.

PROPOSITION 5.5. Let � ≥ 1,m ≥ 2. Then

(62) A�(S
m) ≡

(
1 + S + S2 + · · · + Sm−1

m

)�+1

A�(S) mod (S − 1)�+1 .

5.3. The functional equation. Next we prove the functional equation at the level of
characteristic quasi-polynomials. The duality of the generalized Eulerian polynomial plays a
crucial role in the proof.

THEOREM 5.6.

(63) χquasi(A[1,n]
� , nh − t) = (−1)�χquasi(A[1,n]

� , t) .

PROOF. Let q ∈ Z. We set R�(t) = ∑h−1
i=1 ait

i . Using Corollary 3.6,

χquasi(A[1,n]
� , nh − q) = R�(Sn+1) LA◦(nh − q)

=
h−1∑
i=1

ai LA◦(nh − q − (n + 1)i)

= (−1)�
h−1∑
i=1

ai LA◦(q + (n + 1)i − nh − h)

= (−1)�
h−1∑
i=1

ai LA◦(q − (n + 1)(h − i)) .

By applying the duality of ai = ah−i (Proposition 4.5 (2)), the right-hand side is equal to

(−1)�
h−1∑
i=1

ai LA◦(q − (n + 1)i) =(−1)� R�(Sn+1) LA◦(q)

=(−1)�χquasi(A[1,n]
� , q) .

�
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Recall that if q is relatively prime to ñ, then mh − q is also relatively prime to ñ (Theo-
rem 3.1 (v)). By combining Theorem 2.6, Theorem 5.3, and Theorem 5.6, we can formulate
the functional equation.

COROLLARY 5.7. Let a ≤ 1 ≤ b. Then

χ(A[a,b]
� , (b − a + 1)h − t) = (−1)�χ(A[a,b]

� , t) .

5.4. Partial results on the “Riemann hypothesis”. We will prove the “Riemann
hypothesis” for several cases in � = E6, E7, E8 and F4. Recall that

rad(̃n) =
{

6, for � = E6, E7, F4

30, for � = E8 .

THEOREM 5.8. Let � be either E6, E7, E8 or F4. Suppose

n ≡ −1 mod rad(̃n) .

Then each root of the equation χ(A[1,n]
� , t) = 0 satisfies Re = nh

2 .

PROOF. We give the proof only for the case � = E6. The proof for the other cases are
similar. Let n = 6m − 1 (m ∈ Z). By Theorem 5.2 χquasi(A[1,6m−1]

� , q) = R�(S6m) LA◦(q)

for q 	 0. Set g(t) = (t+1)(t+4)(t+5)(t+7)(t+8)(t+11)

23·3·6! and recall Example 3.2 that if q is prime
to rad(̃n) = 6 then

LA◦(q) = g(q) .

In this case q − 6k is also relatively prime to 6. Hence

χquasi(A[1,6m−1]
� , q) = R�(S6m)g(q) .

Thus we have a formula for the characteristic polynomial.

χ(A[1,6m−1]
� , t) = R�(S6m)g(t) .

Set c(t) = [2]3
t · [3]t . Using the formula proved by Lam and Postnikov (Theorem 4.6),

RE6(t) = c(t) · A6(t). Hence

χ(A[1,6m−1]
� , t) = c(S6m) A6(S

6m)g(t) .

Now we employ Proposition 5.5; replacing S by S6, we have

A6(S
6m) ≡

(
1 + S6 + S12 + · · · + S6(m−1)

m

)7

A6(S
6) mod (S6 − 1)7 .

Therefore, using Proposition 2.8, χ(A[1,6m−1]
� , t) can be written as

c(S6m)

(
1 + S6 + S12 + · · · + S6(m−1)

m

)7

A6(S
6)g(t) .
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The first two factors are clearly cyclotomic polynomials in S. In view of Lemma 2.10, it is
sufficient to check A6(S

6)g(t) satisfies the Riemann hypothesis. The explicit computation of
A6(S

6)g(t) (up to constant factor) gives

29288834 − 8855550t + 1159185t2 − 84600t3 + 3660t4 − 90t5 + t6 .

We can check by explicit computation that the six complex roots of this polynomial have
common real part 15. �
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