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Abstract. We initiate the study of spectral zeta functions ζX for finite and infinite
graphs X, instead of the Ihara zeta function, with a perspective towards zeta functions from
number theory and connections to hypergeometric functions. The Riemann hypothesis is
shown to be equivalent to an approximate functional equation of graph zeta functions. The lat-
ter holds at all points where Riemann’s zeta function ζ(s) is non-zero. This connection arises
via a detailed study of the asymptotics of the spectral zeta functions of finite torus graphs in
the critcal strip and estimates on the real part of the logarithmic derivative of ζ(s). We re-
late ζZ to Euler’s beta integral and show how to complete it giving the functional equation
ξZ(1 − s) = ξZ(s). This function appears in the theory of Eisenstein series although pre-
sumably with this spectral intepretation unrecognized. In higher dimensions d we provide
a meromorphic continuation of ζ

Zd
(s) to the whole plane and identify the poles. From our

aymptotics several known special values of ζ(s) are derived as well as its non-vanishing on
the line Re(s) = 1. We determine the spectral zeta functions of regular trees and show it to
be equal to a specialization of Appell’s hypergeometric function F1 via an Euler-type integral
formula due to Picard.

Introduction. In order to study the Laplace eigenvalues λn of bounded domains D in
the plane, Carleman employed the function

ζD(s) =
∞∑
n=1

1

λsn

taking advantage of techniques from the theory of Dirichlet series including Ikehara’s Taube-
rian theorem [Ca34]. This was followed-up in [P39], and developed further in [MP49] for
the case of compact Riemannian manifolds. These zeta functions have since played a role in
the definitions of determinants of Laplacians and analytic torsion, and they are important in
theoretical physics [Ha77, El12, RV15]. For graphs it has been popular and fruitful to study
the Ihara zeta function, which is an analog of the Selberg zeta function in turn modeled on the
Euler product of Riemann’s zeta function. Serre noted that Ihara’s definition made sense for
any finite graph and this suggestion was taken up and developed by Sunada, Hashimoto, Hori,
Bass and others, see [Su86, Te10].
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The present paper has a three-fold objective. First, we advance the study of spectral zeta
functions of graphs, instead of the Ihara zeta function. We do this even for infinite graphs
where the spectrum might be continuous. For the most fundamental infinite graphs, this study
leads into the theory of hypergeometric function in several variables, such as those of Appell,
and gives rise to several questions.

Second, we study the asymptotics of spectral zeta functions for finite torus graphs as
they grow to infinity, in a way similar to what is often considered in statistical physics (see for
example [DD88]). The study of limiting sequences of graphs is also a subject of significant
current mathematical interest, see [Lo12, Ly10, LPS14]. Terms appearing in our asymptotic
expansions are zeta functions of lattice graphs and of continuous torus which are Epstein
zeta function from number theory. This relies to an important extent on the work of Chinta,
Jorgenson, and the second-named author [CJK10], in particular we quote and use without
proof several results established in this reference.

Third, we provide a new perspective on some parts of analytic number theory, in two
ways. In one way, this comes via replacing partial sums of Dirichlet series by zeta functions
of finite graphs. Although the latter looks somewhat more complicated, they have more struc-
ture, being a spectral zeta function, and are decidedly easier in some respects. We show the
equivalence of the Riemann hypothesis with a conjectural functional equation for graph spec-
tral zeta functions, and this seems substantially different from other known reformulations of
this important problem [RH08]. In a second way, the spectral zeta function of the graph Z en-
joys properties analogous to the Riemann zeta function, notably the relation ξZ(1−s) = ξZ(s),
and it appears incognito as fudge factor in a few instances in the classical theory, such as in
the Fourier development of Eisenstein series.

For us, a spectral zeta function ζX of a space X is the Mellin transform of the heat kernel
of X at the origin, removing the trivial eigenvalue if applicable, and divided by a gamma
factor (cf. [JL12]). Alternatively one can define this function by an integration against the
spectral measure.

Consider a sequence of discrete tori Zd/AnZd indexed by n and where the matrices An
are diagonal with entries ain, and integers ai > 0. The matrix A is the diagonal matrix with
entries ai . We show the following for any dimension d ≥ 1:

THEOREM 0.1. The following asymptotic expansion as n → ∞ is valid for Re(s) <
d/2+ 1, and s �= d/2,

ζZd/AnZd (s) = ζZd (s) detAnd + ζRd/AZd (s)n2s + o(n2s) .

The formula reflects that as n goes to infinity the finite torus graph can be viewed as
converging to Z

d on the one hand, and rescaled to the continuous torus Rd/Zd on the other
hand. For Re(s) > d/2 one has

(1) lim
n→∞

1

n2s ζZd/AnZd (s) = ζRd/AZd (s) ,
as already shown in [CJK10], see also Section 4 below. One can verify that it is legitimate
to differentiate in the asymptotics in Theorem 0.1 and if we then set s = 0, we recover as
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expected the main asymptotic formula in [CJK10] in the case considered. The asymptotics of
the determinant of graph Laplacians is a topic of significant interest, see [RV15, Conclusion]
for a recent discussion from the point of view of quantum field theory, and see [L02] for
related determinants in the context of L2-invariants.

We now specialize to the case d = 1. In particular, the spectral zeta function of the finite
cyclic graph Z/nZ (see e.g. [CJK10] for details and Section 1) is

ζZ/nZ(s) = 1

4s

n−1∑
k=1

1

sin2s(πk/n)
.

The spectral zeta function of the graph Z is

ζZ(s) = 1

Γ (s)

∫ ∞
0

e−2t I0(2t)ts
dt

t
,

where it converges, which it does for 0 < Re(s) < 1/2. From this definition it is not im-
mediate that its meromorphic continuation admits a functional equation much analogous to
classical zeta functions:

THEOREM 0.2. Let the completed zeta function for Z be defined as

ξZ(s) = 2s cos(πs/2)ζZ(s/2) .

Then this is an entire function that satisfies for all s ∈ C

ξZ(s) = ξZ(1− s) .
This raises the question: Are there other spectral zeta functions of graphs with similar

properties?
The function ζZ actually appears implicitly in classical analytic number theory. Let us

exemplify this point. To begin with

ζZ(s) = 1

4s
√
π

Γ (1/2− s)
Γ (1− s) ,

which is the crucial fact behind the result above. Now, in the main formula of Chowla-Selberg
in [SC67] the following term appears:

22sas−1√π
Γ (s)Δs−1/2

ζ(2s − 1)Γ (s − 1/2) .

Here lurks ζZ(1− s), not only by correctly combining the two gamma factors, but also incor-
porating the factor 22s and explaining the appearance of

√
π . In other words, the term above

equals

4πas−1

Δs−1/2
ζ(2s − 1)ζZ(1− s) .

Upon dividing by the Riemann zeta function ζ(s), this term is called scattering matrix
(function) in the topic of Fourier expansions of Eisenstein series, see [JL96, p.111], and is
complicated or unknown for discrete groups more general than SL(2,Z), see [IK04, section
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15.4] and [M08]. We believe that the interpretation of such fudge factors as spectral zeta
functions is new and may provide some insight into how such factors arise more generally.

The Riemann zeta function is essentially the same as the spectral zeta function of the
circle R/Z, more precisely one has

(2) ζR/Z(s) = 2(2π)−2sζ(2s) .

Here is a specialization of Theorem 0.1 to d = 1 with explicit functions and some more
precision, see also Sidi [Si04]:

THEOREM 0.3. For s �= 1 with Re(s) < 3 it holds that

n−1∑
k=1

1

sins (πk/n)
= 1√

π

Γ (1/2− s/2)
Γ (1− s/2) n+ 2π−sζ(s)ns + o(ns)

as n→∞. In the critical strip, 0 < Re(s) < 1, more precise asymptotics can be found, such
as

n−1∑
k=1

1

sins (πk/n)
= 1√

π

Γ (1/2− s/2)
Γ (1− s/2) n+ 2π−sζ(s)ns + s

3
π2−sζ(s − 2)ns−2 + o(ns−2)

as n→∞.

For example, with s = 0 the sum on the left equals n − 1, and the asymptotic formula
hence confirms the well-known values Γ (1/2) = √π and ζ(0) = −1/2. On the line Re(s) =
1, the asymptotics is critical in the sense that the two first terms on the right balance each other
in size as a power of n. As a consequence, for all t �= 0 we have that ζ(1 + it) �= 0 if and
only if

1

n

n−1∑
k=1

1

sin1+it (πk/n)

diverges as n → ∞. The latter sum does indeed diverge. We do not have a direct proof of
this at the moment, but it does follow from a theorem of Wintner [W47] since the improper
integral

∫
sin−1−it (x)dx diverges at x = 0. So we have that the Riemann zeta function has

no zeros on the line Re(s) = 1, which is the crucial input in the standard proof of the prime
number theorem. It should however be said that Wintner’s theorem is known to already be
intimately related to the prime number theorem via works of Hardy-Littlewood.

As suggested to us by Jay Jorgenson, one may differentiate the formula in Theorem 0.1
for d = 1, as can be verified via the formulas in Section 4, and get a criterion for multiple
zeros:

COROLLARY 0.4. Let

c(s) = 1

2
√
π

Γ (1/2− s/2)
Γ (1− s/2)

(
Γ ′(1/2− s/2)
Γ (1/2− s/2) −

Γ ′(1− s/2)
Γ (1− s/2)

)
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and

S(s, n) = c(s)n−
n−1∑
k=1

log(sin(πk/n))

sins (πk/n)
.

Then ζ has a multiple zero at s, 0 < Re(s) < 1 if and only if S(s, n) → 0 as n → ∞, and
otherwise S(s, n)→∞ as n→∞.

It is believed that all Riemann zeta zeros are simple.
Similarily to the above discussion about the prime number theorem, the Riemann hy-

pothesis has a formulation in terms of the behaviour of the sum of sines (here we can refer
to [So98] for comparison). It turns out that with some further investigation there is, what we
think, a more intriguing formulation of the Riemann hypothesis. This is in terms of functional
equations and provides perhaps some further heuristic evidence for its validity. Let

hn(s) = (4π)s/2Γ (s/2)n−s
(
ζZ/nZ(s/2)− nζZ(s/2)

)
.

CONJECTURE. Let s ∈ C with 0 < Re(s) < 1. Then

lim
n→∞

∣∣∣∣hn(1− s)hn(s)

∣∣∣∣ = 1 .

This is an asymptotic or approximative functional equation, and it is true almost every-
where as follows from the asymptotics above, see Corollary 0.5 below. Although we came to
this via graph zeta functions, it is important to emphasize, as a referee pointed out, that the
asymptotics in one dimension hold with the same proofs for more general sums, instead of the
inverse sine sums coming from cyclic graphs. More precisely, let f be an analytic function
being real and positive on the open interval (0, 1), satisfying f (z) = f (1− z) for any z ∈ C,
with f (0) = 0, f ′(0) > 0, f ′′(0) = 0 and f (3)(0) �= 0.

Now let for 0 < Re(s) < 1

hn[f ](s) = f ′(0)sπ−s/2Γ (s/2)n−s
[ n−1∑
j=1

1

f (j/n)s
− n

∫ 1

0

dx

f (x)s

]
.

As in Section 5 applying [Si04] one gets

hn[f ](s) = 2ξ(s)− f (3)(0)

f ′(0)π2
α(s)n−2 + o(n−2)

as n → ∞ and where α is the function appearing in Section 8. So one may formulate the
same conjecture above, and Corollary 0.5 and Theorem 0.6 below hold for hn[f ]. This being
said, we still feel that there might be something special with the sum of reciprocal sines in
this context since, as discussed above, ζZ(s/2) has a functional equation of the desired type,
s ←→ 1 − s, and also ζZ/nZ(s/2) in an asymptotic sense, see Section 7. These functional
relations do not depend on the Riemann zeta function and may not hold for the corresponding
sum and integral defined by f as above. Independently of number theory, we are interested
in functional equations for graph zeta functions, which ultimately may also reflect similar
relations for spectral zeta functions of manifolds. See also our concluding remarks below.
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COROLLARY 0.5. The conjecture holds in the crticial strip wherever ζ(s) �= 0.

So the question is whether it also holds at the Riemann zeros. Here is the relation to the
Riemann hypothesis:

THEOREM 0.6. The conjecture is equivalent to the Riemann hypothesis.

Section 8 is devoted to the proof of this statement. This relies in particular on properties
of the logarithmic derivative of ζ , in the proof of Lemma 8.4, and the Riemann functional
equation.

Some concluding remarks. Why do we think that the study of sums like

n−1∑
k=1

1

sins (πk/n)

could in some ways be better than the standard Dirichlet series
∑n

1 k
−s , or some other sum

of similar type for that matter? For example, it has been pointed out to us that we could also
derive version of Theorems 0.3 and 0.6 for more general functions, as described above, for
example replacing sine with x − 2x3 + x4 = x(1− x)(1+ x − x2). In this case the function
corresponding to our ζZ(s), say in the definition of hn, would be

∫ 1

0

1

x2s(1− x)2s(1+ x − x2)2s
dx ,

which is a less standard function.
Let us now address this legitimate question with several answers that reinforce each

other:

1. The graph zeta functions are defined in a parallel way to the definition of Riemann’s
zeta. Functions arising in this way may have greater chance to have more symmetries
and structure, for example, keep in mind the remarkable relation

ξZ(1− s) = ξZ(s) ,
which is far from being just an abstract generality. Furthermore, it appears in the
theory of Eisenstein series as observed above in a way that is difficult to deny, and in
our opinon, unwise to dismiss. On the other hand, it is not clear whether the integral
above satisfies a functional equation. In Section 7, we obtain an asymptotic functional
relation of the desired type for the completed finite 1/ sin sums:

lim
n→∞

1

n

(
ξZ/nZ(1− s)− ξZ/nZ(s)

) = 0

in the critical strip. We do not see a similar relation for, say

n−1∑
k=1

1(
(k/n)(1− k/n)(1+ k/n− k2/n2

)2s
.
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Relations when s ←→ 1− s is at the heart of the matter for our reformulation of the
Riemann Hypothesis.

2. Symmetric functions of graph eigenvalues often have combinatorial interpretations as
counting something (starting with Kirchhoff’s matrix tree theorem), see our Section
6.2 for a small illustration. This also motivates further study of spectral zeta functions
for graphs. In particular, the analogous functions for manifolds play a role in vari-
ous branches of mathematical physis. In this connection, Theorem 0.1 is of definite
interest, see the comments after this theorem.

3. It is also noteworthy to recall that for s = 2m, the even positive integers, our finite
sums admit a closed form expression as a polynomial in n, for example (which can
be shown combinatorially in line with the previous point),

n−1∑
k=1

1

sin2(πk/n)
= 1

3
n2 − 1

3
,

while
∑n

1 k
−2m does not admit such a formula. The sine series evaluation implies, in

view of (1) and (2) above, Euler’s formulas for ζ(2m), for example ζ(2) = π2/6. See
Section 6 for more about how our asymptotical relations imply known special values,
and also references to contexts where the finite 1/ sin sums are studied.

Higher dimensions. For d > 1 the torus zeta functions are Epstein zeta functions also
appearing in number theory. Some of these are known not to satisfy the Riemann hypothesis,
the statement that all non-trivial zeros lie on one vertical line (see [RH08] and [PT34]). It
seems interesting to understand this difference between d = 1 and certain higher dimensional
cases from our perspective. Theorem 0.1 gives precise asymptotics in higher dimensions, but
to get even further terms in the expansion, as in Theorem 0.3, there are some complications,
especially when trying to assemble a nice expression, like ζ(s− 2) as in Theorem 0.3. There-
fore this is left for future study.

Generalized Riemann Hypothesis (GRH). In a forthcoming sequel about Dirichlet L-
functions [F15], by the first-named author, it similarily emerges that the GRH is essen-
tially equivalent to an expected asymptotic functional equation of the corresponding graph
L-function. More precisely, spectral L-functions for graphs (different from those considered
in [H92] and [STe00]) are introduced, and in the case of Z/nZ, the L-functions completed
with suitable fudge factors, and denotedΛn(s, χ), satisfy

lim
n→∞

∣∣∣∣ Λn(s, χ)

Λn(1− s, χ)
∣∣∣∣ = 1 ,

for 0 < Re(s) < 1 and Im(s) ≥ 8, if and only if the GRH holds (for s in the same range) for
Dirichlet’s L-function L(s, χ).

Zeta functions of graphs. As recalled in the beginning, the more standard zeta function
of a graph is the one going back to a paper by Ihara. Ihara zeta functions for infinite graphs
appear in a few places, three recent papers are [D14, CJK15, LPS14], which contain further
generalizations and where references to papers by Grigorchuk-Zuk and Guido, Isola, and
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Lapidus on this topic can be found. A two variable extension of the Ihara zeta function was
introduced by Bartholdi [B99] developed out of a formula in [G78]. Zeta functions more
closely related to the ones considered in the present paper, are the spectral zeta functions of
fractals in works by Teplyaev, Lapidus and van Frankenhuijsen.

Acknowledgements. The second-named author thanks Jay Jorgenson, Pär Kurlberg and Andreas
Strömbergsson for valuable discussions related to this paper. We thank Franz Lehner for suggesting the
use of the spectral measure in the calculation of the spectral zeta function of regular trees. We thank the
referee for insightful comments.

1. Spectral zeta functions. At least since Carleman [Ca34] one forms a spectral zeta
function ∑

j

1

λsj

over the set of non-zero Laplace eigenvalues, convergent for s in some right half-plane. For
a finite graph the elementary symmetric functions in the eigenvalues admit a combinatorial
interpretation starting with Kirchhoff, see e.g. [CL96] for a more recent discussion. For infi-
nite graphs or manifolds one does at least not a priori have such symmetric functions (since
the spectrum may be continuous or the eigenvalues are infinite in number). This is one reason
for defining spectral zeta functions, since these are symmetric, and via transforms one can get
the analytic continued intepretations of the elementary symmetric functions, such as the (re-
stricted) determinant. As has been recognized at least for the determinant, the combinatorial
intepretation persists in a certain sense, see [Ly10].

As often is the case, since Riemann, in order to define its meromorphic continuation
one writes the zeta function as the Mellin transform of the associated theta series, or trace
of the heat kernel. For this reason and in view of that some spaces have no eigenvalues
but continuous spectrum, a case important to us in this paper, we suggest (as advocated by
Jorgenson-Lang, see for example [JL12]) to start from the heat kernel to define spectral zeta
functions. Recall that the Mellin transform of a function f (t) is

Mf (s) =
∫ ∞

0
f (t)ts

dt

t
.

For example when f (t) = e−t , the transform is Γ (s).
More precisely, for a finite or compact space X we can sum over x0 of the unique

bounded fundamental solution KX(t, x0, x0) of the heat equation (see for example [JL12,
CJK10] for more background on this), which gives the heat trace T r(KX), typically on the
form

∑
e−λt , and define

ζX(s) = 1

Γ (s)

∫ ∞
0
(T r(KX)− 1)ts

dt

t
.

When the spectrum is discrete this formula gives back Carleman’s definition above. For
a non-compact space with a heat kernel independent of the point x0, for example a Cay-
ley graph of an infinite, finitely generated group, it makes sense to take Mellin transform
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of KX(t, x0, x0) without the trace. Moreover since zero is no longer an eigenvalue for the
Laplacian acting on L2(X) we should no longer subtract 1, so the definition in this case is

ζX(s) = 1

Γ (s)

∫ ∞
0

KX(t, x0, x0)t
s dt

t
.

Let us also note that in the graph setting as shown in [CJK15], it holds that if we start
with the heat kernel one may via instead a Laplace transform obtain the Ihara zeta function
and the fundamental determinant formula.

An alternative, equivalent, definition is given by the spectral measure dμ = dμx0,x0 , see
[MW89],

ζX(s) =
∫
λ−sdμ(λ) .

Here and in the next two sections we provide some examples:

EXAMPLE 1.1. For a finite torus graph defined as in the introduction we have by cal-
culating the eigenvalues (see for example [CJK10])

ζZd/AZd (s) =
1

22s

∑
k

1(
sin2(πk1/a1)+ · · · + sin2(πkd/ad)

)s ,

where the sum runs over all 0 ≤ ki ≤ ai − 1 except for all kis being zero.

EXAMPLE 1.2. For real tori we have again by calculating the eigenvalues (see
[CJK12]) as is well known

ζRd/AZd (s) =
1

(2π)2s
∑

k∈Zd\{0}

1

‖A∗k‖2s ,

where A∗ = (
A−1

)t
.

In the following sections we will discuss the zeta function of some infinite graphs,
namely the standard lattice graphs Zd . Before that let us mention yet another example, that
we again do not think one finds in the literature.

EXAMPLE 1.3. The (q + 1)-regular tree Tq+1 with q ≥ 2 is a fundamental infinite
graph (q = 1 corresponds to Z treated in the next section). Also here the spectral measure is
well-known, our reference is [MW89]. Thus

ζTq+1(s) =
∫ 2
√
q

−2
√
q

1

(q + 1− λ)s
(q + 1)

2π

√
4q − λ2

((q + 1)2 − λ2)
dλ

= q + 1

2π

∫ 2
√
q

−2
√
q

1

(q + 1− λ)s+1

√
4q − λ2

(q + 1+ λ)dλ .
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We change variable u = 2
√
q − λ. So

ζTq+1(s) =
q + 1

2π

∫ 4
√
q

0

1

(q + 1− 2
√
q + u)s+1

√
4
√
qu− u2

(q + 1+ 2
√
q − u)du

= q + 1

2π

∫ 4
√
q

0

u1/2

(q + 1− 2
√
q + u)s+1

√
4
√
q − u

(q + 1+ 2
√
q − u)du .

We change again: u = 4
√
qt, so

ζTq+1(s) =
q + 1

2π

∫ 1

0

(4
√
q)1/2t1/2

(q + 1− 2
√
q + 4

√
qt)s+1

√
4
√
q − 4

√
qt

(q + 1+ 2
√
q − 4

√
qt)

4
√
qdt

= d

2π

16q

(q + 1− 2
√
q)s+1(q + 1+ 2

√
q)

∫ 1

0

t1/2
√

1− t
(1− ut)s+1(1− vt) dt ,

where u = −4
√
q/(q+1−2

√
q) and v = 4

√
q/(q+1+2

√
q). This is an Euler-type integral

that Picard considered in [Pi1881] and which lead him to Appell’s hypergeometric function
F1,

ζTq+1(s)=
q + 1

2π

16q

(q + 1− 2
√
q)s+1(q + 1+ 2

√
q)

Γ (3/2)Γ (3/2)

Γ (3)
F1(3/2, s+1, 1, 3; u, v) .

Simplifing this somewhat we have proved:

THEOREM 1.4. For q > 1, the spectral zeta function of the (q + 1)-regular tree is

ζTq+1(s) =
q(q + 1)

(q − 1)2(
√
q − 1)2s

F1(3/2, s + 1, 1, 3; u, v) ,

with u = −4
√
q/(
√
q − 1)2 and v = 4

√
q/(
√
q + 1)2, and where F1 is one of Appell’s

hypergeometric functions.

The topic of functional relations between hypergeometric functions is a very classical
one. In spite of the many known formulas, we were not able to derive a functional equation
for ζTq+1 with s ←→ 1− s.

2. The spectral zeta function of the graph Z . The heat kernel of Z is e−2t Ix(2t)
where Ix is a Bessel function (see [CJK10] and its references). Therefore

ζZ(s) = 1

Γ (s)

∫ ∞
0

e−2t I0(2t)ts
dt

t
,

which converges for 0 < Re(s) < 1/2. It is not so clear why this function should have a
meromorphic continuation and functional equation very similar to Riemann’s zeta.
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PROPOSITION 2.1. For 0 < Re(s) < 1/2 it holds that

ζZ(s) = 1

4s
√
π

Γ (1/2− s)
Γ (1− s) =

1

4sπ
B(1/2, 1/2− s) ,

where B denotes Euler’s beta function. This formula provides the meromorphic continuation
of ζZ(s).

PROOF. By formula 11.4.13 in [AS64], we have

M(e−t Ix(t))(s) = Γ (s + x)Γ (1/2− s)
2sπ1/2Γ (1+ x − s) ,

valid for Re(s) < 1/2 and Re(s + x) > 0. This implies the first formula. Finally, using that
Γ (1/2) = √π and the definition of the beta function the proposition is established. �

We proceed to determine a functional equation for this zeta function. Recall that

Γ (z)Γ (1− z) = π

sin(πz)
.

Therefore

2s
√
πζZ(s/2) = Γ (1− (1/2+ s/2))

Γ (1− s/2) = sin(πs/2)Γ (s/2)

π

π

sin(π(s + 1)/2)Γ (1/2+s/2)

= tan(πs/2)
Γ (1/2− (1− s)/2)
Γ (1− (1− s)/2) = 21−s√π tan(πs/2)ζZ((1− s)/2) .

Hence in analogy with Riemann’s case we have

ζZ(s/2) = 21−2s tan(πs/2)ζZ((1− s)/2) .
(The passage from s to s/2 is also the same.) If we define the completed zeta to be

ξZ(s) = 2s cos(πs/2)ζZ(s/2) ,

then one verifies that the above functional equation can be written in the familiar more sym-
metric form

ξZ(s) = ξZ(1− s)
for all s ∈ C. Moreover, note that this is an entire function since the simple poles coming
from Γ are cancelled by the cosine zeros and it takes real values on the critical line. We call
ξZ the entire completion of ζZ.

Let us determine some special values. In view of that for integers n ≥ 0,

Γ (1/2+ n) = (2n)!
4nn!
√
π

and Γ (1+ n) = n!, we have for s = −n,

ζZ(−n) = 1

4−n
√
π

Γ (1/2+ n)
Γ (1+ n) =

(2n)!
n!n! =

(
2n
n

)
.

This number equals the number of paths of length 2n from the origin to itself in Z.
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Furthermore, in a similar way for n ≥ 1,

ζZ(−n+ 1/2) = 1

4−n
√
π

Γ (n)

Γ (1/2+ n) =
42n

2πn

n!n!
(2n)! =

42n

2πn

(
2n
n

) .

It is well-known that the gamma function is a meromorphic function in the whole com-
plex plane with simple poles at the negative integers and no zeros. Note that if we pass from
s to s/2 we have that ζZ(s/2) has simple poles at the positive odd integers, and the special
values determined above appear at the even negative numbers.

We may thus summarize:

THEOREM 2.2. The spectral zeta function ζZ(s) can be extended to a meromorphic
function on C satisfying

ζZ(s) = 1

4s
√
π

Γ (1/2− s)
Γ (1− s) .

It has zeros for s = n, n = 1, 2, 3, . . . , and simple poles for s = 1/2 + n, n = 0, 1, 2, . . .
Moreover, its completion ξZ, which is entire, admits the functional equation

ξZ(s) = ξZ(1− s) .
Finally we have the special values

ζZ(−n) =
(

2n
n

)
and ζZ(−n+ 1/2) = 42n

2πn

(
2n
n

) ,

where n ≥ 0 is an integer.

3. The spectral zeta function of the lattice graphs Zd . The heat kernel on Z
d is the

product of heat kernels on Z and this gives that

ζZd (s) =
1

Γ (s)

∫∞
0 e−2dtI0(2t)d ts dt

t
,

which converges for 0 < Re(s) < d/2. For d = 2 taking instead the equivalent definition
with the spectral measure, the spectral zeta function is a variant of the Selberg integral with
two variables.

The integrals like ∫ ∞
0

e−zt I0(2t)d ts
dt

t
,

and more general ones, have been studied by Saxena in [Sa66], see also the discussion in
[SK85, sect. 9.4]. For Re(z) > 2d and Re(s) > 0 one has∫ ∞

0
e−zt I0(2t)d ts

dt

t
=2s−1
√
π
z−s+1/2Γ

(
s+1

2

)
F
(d)
C (s/2,(s+1)/2;1,1,. . . ,1;4/z2,4/z2,. . . ,4/z2) ,
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where F (d)C is one of the Lauricella hypergeometric functions in d variables [Ex76]. The
condition Re(z) > 2d can presumably be relaxed by the principle of analytic continuation
giving up the multiple series definition of F (d)C . This point is discussed in [SE79]. Formally
we would then have that

ζ
Zd (s) =

d−s+1/2

√
2π

Γ ((s + 1)/2)

Γ (s)
F
(d)
C (s/2, (s + 1)/2; 1, 1, . . . , 1; 1/d2, 1/d2, . . . , 1/d2) ,

which is rather suggestive as far as functional relations go. It is however not clear at present
time that for d > 1 there is a relation as nice as the functional equation in the case d = 1.
Related to this, it is remarked in [Ex76, p. 49] that no integral representation of Euler type
has been found for FC . We note that if one instead of the heat kernel start with the spectral
measure in defining ζ

Zd (s), we do get such an integral representation, at least for special
parameters. This aspect is left for future investigation.

We will now provide an independent and direct meromorphic continuation of these func-
tions. To do this, we take advantage of the heat kernel definition of the zeta function. Fix a
dimension d ≥ 1. Recall that on the one hand there are explicit positive non-zero coefficients
an such that

e−2dtI0(2t)d =
∑
n≥0

ant
n

which converges for every positive t , and on the other hand we similarily have an expansion
at infinity,

e−2dtI0(2t)d =
N−1∑
n=0

bnt
−n−d/2 +O(t−N−d/2)

as t →∞ for any integer N > 0.
Therefore we write

∫ ∞
0

e−2dtI0(2t)d ts−1dt =
∫ 1

0

N−1∑
n=0

ant
nts−1dt +

∫ 1

0

∑
n≥N

ant
nts−1dt

+
∫ ∞

1

(
e−2dtI0(2t)

d −
N−1∑
n=0

bnt
−n−d/2

)
ts−1dt +

∫ ∞
1

N−1∑
n=0

bnt
−n−d/2ts−1dt

=
N−1∑
n=0

an

s + n −
N−1∑
n=0

bn

s − (n+ d/2) +
∫ 1

0
O(tN)ts−1dt +

∫ ∞
1

O(t−N−d/2)ts−1dt .

This last expression defines a meromorphic function in the region −N < Re(s) < N + d/2,
with simple poles at s = −n and s = n+ d/2.

The spectral zeta function ζZd (s) is the above integral divided by Γ (s). In view of that the
entire function 1/Γ (s) has zeros at the non-positive integers, this will cancel the simple poles
at s = −n. Since we can take N as large as we want we obtain in this way the meromorphic
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continuation of ζZd (s). Moreover, thanks to that the coefficients bn are non-zero we have
established:

PROPOSITION 3.1. The function ζZd (s) admits a meromorphic continuation to the
whole complex plane with simple poles at the points s = n+ d/2 with n ≥ 0.

It is natural to wonder whether this function also for d > 1 can be completed like in the
case d = 1 giving an entire function with functional relation ξZd (1 − s) = ξZd (s). Indeed,
more generally we find the question interesting for which graph, finite or infinite, the zeta
functions have a functional relation in some way analogous to the classical type of functional
equations.

Finally we point out a non-trivial special value that we derive in a later section:

ζZd (0) = 1 .

4. Asymptotics of the zeta functions of torus graphs. We consider a sequence of
torus graphs Zd/AnZd indexed by n and where the matrices An are diagonal with entries ain,
with integers ai > 0. (A more general setting could be considered (cf. [CJK12]) but it will not
be important to us in the present context.) We denote by ζn the corresponding zeta function
defined as in the previous section. We let the matrix A be the diagonal matrix with entries ai .
In this section we take advantage of the theory developed in [CJK10] without recalling the
proofs which would take numerous pages.

Following [CJK10] we have

θn(t) :=
∑
m

e−λmt = det(An)
∑
k∈Zd

∏
1≤j≤d

e−2t Iaj nkj (2t) ,

where λm denotes the Laplace eigenvalues. From the left hand side it is clear that this function
is entire. Let

θA(t) =
∑
λ

e−λt ,

where the sum is over the eigenvalues of the torus Rd/AZd . The meromorphic continuation
of the corresponding spectral zeta function is, as is well-known (see e.g. [CJK10]),

ζRd/AZd (s) =
1

Γ (s)

∫ ∞
1

(θA(t)− 1) ts
dt

t
+ 1

Γ (s)

∫ 1

0

(
θA(t)− detA(4πt)−d/2

)
ts
dt

t

+ (4π)
−d/2 detA

Γ (s)(s − d/2) −
1

sΓ (s)
.

Recall the asymptotics for the I-Bessel functions:

In(x) = ex√
2πx

(
1− 4n2 − 1

8x
+O(x−2)

)

as x →∞.
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For 0 < Re(s) < d/2 we may write

Γ (s)ζn(s) =
∫ ∞

0
(θn(t)− 1) ts

dt

t
= n2s

∫ ∞
0

(
θn(n

2t)− 1
)
ts
dt

t
.

We decompose the integral on the right and let n→∞, the first piece being

S1(n) :=
∫ ∞

1

(
θn(n

2t)− 1
)
ts
dt

t
→

∫ ∞
1

(
θA(t)− 1

)
ts
dt

t

for every s ∈ C as n → ∞. The convergence is proved in [CJK10]. The second piece is for
Re(s) > −n,

S2(n) :=
∫ 1

0

(
θn(n

2t)− detAne−2dn2t I0(2n2t)d
)
ts
dt

t
→

∫ 1

0

(
θA(t)− detA(4πt)−d/2

)
ts
dt

t
,

as n→∞ which is proved in [CJK10].
What remains is now the third piece

S3(n) :=
∫ 1

0

(
detAne

−2dn2t I0(2n
2t)d − 1

)
ts
dt

t
= n−2s

∫ n2

0

(
detAne

−2dtI0(2t)
d − 1

)
ts
dt

t
.

This we write as follows

S3(n)=
(

detAn

∫ ∞
0

e−2dtI0(2t)d ts
dt

t
− detAn

∫ ∞
n2

e−2dtI0(2t)d ts
dt

t
−

∫ n2

0
ts
dt

t

)
n−2s .

The first integral is the spectral zeta of Zd times Γ (s) and the last integral is
∫ n2

0
ts
dt

t
= n2s

s
.

We continue with the middle integral here:∫ ∞
n2

e−2dtI0(2t)d ts
dt

t
=

∫ ∞
n2

(
e−2dtI0(2t)d − (4πt)−d/2

)
ts
dt

t
+

∫ ∞
n2
(4πt)−d/2ts dt

t
,

hence∫ ∞
n2

e−2dtI0(2t)
d ts
dt

t
=

∫ ∞
n2

(
e−2dtI0(2t)

d − (4πt)−d/2)ts dt
t
− (4π)−d/2 n2s−d

s − d/2 .
We denote

Srest (n) =
∫ ∞
n2

(
e−2dtI0(2t)d − (4πt)−d/2

)
ts
dt

t
,

which is a convergent integral for Re(s) < d/2 + 1 in view of the asymptotics for I0(t).
Notice also that for fixed s with Re(s) < d/2+ 1 the integral is of order n2s−2−d as n→∞.

Taken all together we have

n−2sζn(s) = 1

Γ (s)
S1(n)+ 1

Γ (s)
S2(n)− 1

sΓ (s)
+ (4π)−d/2 detA

Γ (s)(s − d/2)

+ nd−2s detAζZd (s)− nd−2s detA

Γ (s)
Srest (n) .
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This is valid for all s in the intersection of where ζZd (s) is defined, −n < Re(s) < d/2+ 1,
and s �= d/2. As remarked above coming from [CJK10] as n → ∞ the first four terms
combines to give ζRd/AZd (s). This means that we have in particular proved Theorem 0.1.

5. The one dimensional case. We now specialize to d = 1 and An = n. In this case
recall that

ζn(s) = ζZ/nZ(s) = 1

4s

n−1∑
k=1

1

sin(πk/n)2s

and

ζR/Z(s) = 2(2π)−2sζ(2s) ,

where ζ is the Riemann zeta function. Moreover,

ζZ(s) = 1

4s
√
π

Γ (1/2− s)
Γ (1− s) .

In view of the previous section the first part of Theorem 0.3 is established. Let us remark
that this can also be viewed as a special case of Gauss-Chebyshev quadrature but with a more
precise error term.

With more work one can also find the next term in the asymptotic expansion in the critical
strip. This can be achieved with some more detailed analysis, in particular of Proposition
4.7 in [CJK10] and an application of Poisson summation. For the purpose of the present
discussion we only need to look at the more precise asymptotics in the critical strip and here
for d = 1 there is an alternative approach available by using a non-standard version of the
Euler-Maclaurin formula established in [Si04]. The asymptotics is:

n−1∑
k=1

1

sin(πk/n)s
= 1√

π

Γ (1/2− s/2)
Γ (1− s/2) n+ 2π−sζ(s)ns + s

3
π2−sζ(s − 2)ns−2 + o(ns−2)

where 0 < Re(s) < 1 as n→∞. This is the second statement in Theorem 0.3.

EXAMPLE 5.1. Although we did not verify this asymptotics outside of the critical
strip, it may nevertheless be convincing to specialize to s = 2 , we then would have

1

3
n2 − 1

3
= 1√

π
0 · n+ 2π−2ζ(2)n2 + 2

3
ζ(0)+ o(1) ,

which confirms the values ζ(0) = −1/2 and ζ(2) = π2/6. As remarked in the introduction,
from [CJK10], the value of ζ(2) can also be derived via

2

π2
ζ(2) = lim

n→∞
1

n2

(
1

3
n2 − 1

3

)
.
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6. Special values.
6.1. The case of s = 0. Setting s = 0 in Theorem 0.1 we clearly have

detA nd − 1 = ζZd (0) detA nd + ζRd/AZd (0)+ o(1) ,
which implies that ζZd (0) = 1, and that ζRd/AZd (0) = −1, which is a known special value of
Epstein zeta functions.

6.2. The case of s being negative integers. Let us now recall some known results
about the sums:

n−1∑
k=1

1

sin(πk/n)s

for special s. We begin with a simple calculation (see for example [BH10, Lemma 3.5])
namely that for integers 0 < m < n

n−1∑
k=1

sin2m(πk/n) = n

4m

(
2m
m

)
.

In view of the asymptotics in Theorem 0.3 this immediately imply that ζ(−2m) = 0, the
so-called trivial zeros of Riemann’s zeta function. It also verifies with the special values of ζZ
stated in Section 2. There is a probabilistic interpretation for this: when the number of steps
m is smaller than n, the random walker cannot tell the difference between the graphs Z and
Z/nZ.

Conversely, for s being an odd negative integer our asymptotic formula gives information
about the sine sum which is somewhat more complicated in this case, as the fact that ζ does
not vanish implies. For low exponent m one can find formulas in [GR07], the simplest one
being

n−1∑
k=1

sin(kπ/n) = cot(π/2n) .

6.3. The case of s being even positive integers. In view of the elementary equality

1

sin2 x
= 1+ cot2 x,

one sees that for positive integers a,

n−1∑
k=1

1

sin2a(πk/n)

can be expresed in terms of higher Dedekind sums considered by Zagier [Z73]. There is also
a literature more specialized on this type of finite sums which can be evaluated with a closed
form expression already mentioned in the introduction (see [CM99, BY02]):

n−1∑
k=1

1

sin2a(πk/n)
= −1

2

2a∑
m=0

(−4)a

nm

(
2a + 1
m+ 1

)
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×
m+1∑
k=0

(−1)k
(
m+ 1
k

)
m+ 1− 2k

m+ 1

(
a + kn+ (m− 1)/2

2a +m
)
.

These sums apparently arose in physics in Dowker’s work and in mathematical work of Ver-
linde (see [CS12]). The first order asymptotics is known to be

n−1∑
k=1

sin−2m(πk/n) ∼ (−1)m+1(2n)2m
B2m

(2m)! ,

where m is a positive integer, see for example [BY02, CS12] and their references. As ex-
plained in the introduction these evaluations together with the asymptotics formulated in the
introduction re-proves Euler’s celebrated calculations of ζ(2m).

At s = 1, the point where our asymptotic expansion does not apply because of the pole
of ζ , one has (see [He77, p. 460] attributed to J. Waldvogel)

ζZ/nZ(1) = 2n

π
(log(2n/π)− γ )+O(1) ,

where as usual γ is Euler’s constant.
6.4. Further special values. Recall the values Γ (1/2) = √π , Γ ′(1) = −γ and

Γ ′(1/2) = −γ√π − log 4, or in the logaritheoremic derivative, the psi-function,ψ(1) = −γ
and ψ(1/2) = −γ − 2 log 2. We differentiate ζZ(s) which gives

ζ ′
Z
(s) = ζZ(s) (−2 log 2− ψ(1/2− s)+ ψ(1− s)) .

Setting s = 0 and inserting the special values mentioned we see that

ζ ′
Z
(0) = 0 .

This value has the interpretation of being the tree entropy of Z, which is the exponential
growth rate of spanning trees of subgraphs converging to Z, see e.g. [DD88, Ly10, CJK10],
studied via the Fuglede-Kadison determinant of the Laplacian. This has also a role in the
theory of operator algebras, but in any case it is not evaluated in this way in the literature. Of
course one could in our way compute other special values of ζ ′

Z
. For example, at positive inte-

gers and half-integers this function has zeros and poles, respectively, and at negative integers
we have for integers n > 0 the following:

PROPOSITION 6.1. It holds that

ζ ′
Z
(−n) =

(
2n
n

) (
1+ 1

2
+ · · · + 1

n
− 2

(
1+ 1

3
+ · · · + 1

2n− 1

))

and

ζ ′
Z
(−n+1/2)= 42n

2πn

(
2n
n

)
(
−4 log 4−1−1

2
− 1

3
−· · ·− 1

n−1
+2

(
1+ 1

3
+· · ·+ 1

2n−1

))
.

We remark that this section concerned mostly d = 1, we have not investigated the case
of higher dimensions.
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6.5. No real zero in the crticial strip. The non-vanishing of number theoretic zeta
functions on the real line in the critical strip is of importance, see e.g. [SC67]. We outline
one possible strategy for this problem in general from our asymptotics. We treat here only
Rieman’s zeta function for illustration, in this case there are however other more elementary
arguments available.

Already the beginning of this section indicates that certain Epstein zeta functions have
a tendency to be negative on the real line in the critical strip. It is as if the number of terms
in the finite graph zeta is not enough to account for the limit graph zeta function, leaving the
relevant Epstein zeta function negative.

The function sin(πx)−s for 0 < s < 1 is positive, convex and symmetric around x =
1/2. The graph zeta funciton in question, ζZ(s) is via a change of variables∫ 1

0
sin−s (πx)dx .

If we compare this with the sum, using the symmetry, we have for odd n

2

(
1

n

(n−1)/2∑
k=1

sin−s (πk/n)−
∫ 1/2

0
sin−s (πx)dx

)
= 2ζ(s)

πs
ns−1 + o(ns−1) .

If we interpret the sum as the Riemann sum of the integral (with not enough terms) the integral
can be thought of as always lying above the rectangles. Ignoring all but one rectangle then
gives

1

n

(n−1)/2∑
k=1

sin−s (πk/n)−
∫ 1/2

0
sin−s(πx)dx

<
1

n
sin−s(π/n)−

∫ 1/n

0
sin−s (πx)dx = 1

n

ns

π2
− 1

πs

∫ 1/n

0
x−sdx + o(ns−1)

= ns−1

πs

(
1− 1

1− s
)
+ o(ns−1) .

This shows by letting n go to infinity that

ζ(s) ≤ − s

1− s < 0 ,

which is consistent with numerics, for example, ζ(1/2) = −1.460 . . . < −1.
As with several other aspects of this paper, we leave higher dimensions to future study.

7. Approximative functional equations. It is natural to wonder about to what extent
ζZ/nZ has a functional equation. In view of our asymptotics and the, in this context crucial,
relation ξZ(s) = ξZ(1 − s), one could expect at least an asymptotic version. Indeed, we start
by completing the finite torus zeta functions as ξZ/nZ(s) := 2s cos(πs/2)ζZ/nZ(s/2), and
multiply the asymptotics at s in the critical strip with the corresponding fudge factors, and
do the similar thing for the corresponding formula at 1 − s. After that, we subtract the two
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expressions, the one at s with the one at 1 − s, and obtain after further calculations, notably
using ξZ(s) = ξZ(1− s):

ξZ/nZ(s)− ξZ/nZ(1− s) = X(s)ns −X(1− s)n1−s

− s
6
X(s − 2)ns−2 + 1− s

6
X((1− s)− 2)n(1−s)−2 + o(na) ,

where a = max {Re(s)− 2,−1− Re(s)} and X(s) = 2π−s cos(πs/2)ζ(s). Thus:

COROLLARY 7.1. The Riemann zeta function has a zero at s in the critical strip iff

lim
n→∞

(
ξZ/nZ(1− s)− ξZ/nZ(s)

) = 0

as n→∞, unless s = 1/2. In any case, for all s in the critical strip

lim
n→∞

1

n

(
ξZ/nZ(1− s)− ξZ/nZ(s)

) = 0 .

As is well known there is a very useful approximative functional equation for ζ(s), some-
times called the Riemann-Siegel formula, which states that

ζ(s) =
n∑
k=1

1

ks
+ πs−1/2Γ ((1− s)/2)

Γ (s/2)

m∑
k=1

1

k1−s + Rn,m(s) ,

where Rm,n is the error term. Notice that the two partial Dirichlet series here have the same
sign, which is a different feature from the formulas above. A question here is what functional
equations prevail in higher dimension d .

8. The Riemann hypothesis. From the asymptotics given in the theorems above
there is a straightforward reformulation of the Riemann hypothesis in terms of the asymp-
totical behaviour of

n−1∑
k=1

1

sin(πk/n)s

as n→∞ as a function of s. It turns out however, that there is a more unexpected, nontrivial,
and, what we think, more interesting equivalence with the Riemann hypothesis.

To show this we begin from the second asymptotical formula in Theorem 0.3:

n−1∑
k=1

1

sin(πk/n)s
= 1√

π

Γ (1/2− s/2)
Γ (1− s/2) n+ 2π−sζ(s)ns + s

3
π2−sζ(s − 2)ns−2 + o(ns−2)

for 0 < Re(s) < 1 as n→∞.
Let

hn(s) = (4π)s/2Γ (s/2)n−s
(
ζZ/nZ(s/2)− nζZ(s/2)

)

= πs/2Γ (s/2)n−s
(
n−1∑
k=1

1

sin(πk/n)s
− 1√

π

Γ (1/2− s/2)
Γ (1− s/2) n

)
.
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Using the completed Riemann zeta function ξ(s) := π−s/2Γ (s/2)ζ(s) the above asymptotics
can be restated as

hn(s) = 2ξ(s)+ α(s)n−2 + o(n−2) ,

where α(s) := s
3π

2−s/2Γ (s/2)ζ(s − 2).
From this asymptotics and in view of ξ(1− s) = ξ(s) we conclude immediately:

PROPOSITION 8.1. Let s ∈ C with 0 < Re(s) < 1 and ζ(s) �= 0. Then hn(1 − s) ∼
hn(s) in the sense that

lim
n→∞

hn(1− s)
hn(s)

= 1 .

We now conjecture that a weakened version of this asymptotic functional relation is valid
even at zeta zeros:

CONJECTURE. Let s ∈ C with 0 < Re(s) < 1. Then

lim
n→∞

∣∣∣∣hn(1− s)hn(s)

∣∣∣∣ = 1 .

From now on we will prove that this is equivalent to the Riemann hypothesis:

THEOREM. The conjecture above is equivalent to the statement that all non-trivial
zeros of ζ have real part 1/2.

We begin the proof with a simple observation:

LEMMA 8.2. Suppose ζ(s) = 0. Then the asymptotic relation

lim
n→∞

∣∣∣∣hn(1− s)hn(s)

∣∣∣∣ = 1

is equivalent to |α(1 − s)| = |α(s)|.
Next we have:

LEMMA 8.3. The equation |α(1− s)| = |α(s)| holds for all s on the critical line
Re(s) = 1/2.

PROOF. Recall that

α(s) = s

3
π2−s/2Γ (s/2)ζ(s − 2) .

Since ζ(s) = ζ(s) and Γ (s) = Γ (s), we have that α(s) = α(s). Therefore if s = 1/2 + it ,
then

α(1 − s) = α(1 − 1/2− it) = α(1/2+ it) = α(s) ,
which implies the lemma. �
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Note that using ξ((1−s)−2) = ξ(s+2) and Euler’s reflection formula Γ (z)Γ (1−z) =
π/ sin(πz) we have

∣∣∣∣α(1 − s)α(s)

∣∣∣∣ =
∣∣∣∣∣
(s−1)(s+1)

6 ππ−(s+2)/2Γ ((s + 2)/2)ζ(s + 2)
s(s−2)

6 ππ−(s−2)/2Γ ((s − 2)/2)ζ(s − 2)

∣∣∣∣∣ =
∣∣∣∣ζ(s + 2)(s − 1)(s + 1)

ζ(s − 2)4π2

∣∣∣∣ .

As a consequence |α(1− s)| = |α(s)| is equivalent to
∣∣∣∣ζ(s + 2)

ζ(s − 2)

∣∣∣∣ = 4π2∣∣s2 − 1
∣∣ .

We will study the right and left hand sides as functions of σ , in the interval 0 < σ < 1,
with s = σ + it and t > 0 fixed. In view of that

1∣∣s2 − 1
∣∣2 =

1

σ 4 + 2σ 2 + (t2 − 1)2
,

we see that the right hand side is strictly decreasing in σ . On the other hand we have the
following:

LEMMA 8.4. Let s = σ + it , with t fixed such that |t| > 26. Then the function
∣∣∣∣ζ(s + 2)

ζ(s − 2)

∣∣∣∣
is strictly increasing in 0 < σ < 1.

PROOF. As remarked in [MSZ14], for a homolorphic function f , a simple calculation,
using the Cauchy-Riemann equation, leads to

Re(f ′(s)/f (s)) = 1

|f (s)|
∂ |f (s)|
∂σ

,

in any domain where f (z) �= 0. This implies that for |f | to be increasing in σ we should
show that the real part of its logarithmic derivative is positive.

We begin with one of the two terms in the logarithmic derivative of ζ(s + 2)/ζ(s − 2):

Re(ζ ′(s + 2)/ζ(s + 2)) = −Re
( ∑
n≥1

Λ(n)n−s−2
)
= −

∑
n≥1

Λ(n)n−σ−2 cos(t logn) ,

where Λ(n)is the von Mangoldt function. So

∣∣Re(ζ ′(s + 2)/ζ(s + 2))
∣∣ ≤∑

n≥1

Λ(n)n−2 = −ζ
′(2)
ζ(2)

= γ + log(2π)− 12 logA < 0.57 ,

by known numerics. We are therefore left to show that the other term

Re(−ζ ′(s − 2)/ζ(s − 2)) ≥ 0.57 .



SPECTRAL ZETA FUNCTIONS OF GRAPHS 607

On the one hand, following the literature, see [L99, SD10, MSZ14], from the Mittag-
Leffler expansion we have

ξ̃ ′(s)
ξ̃ (s)

=
∑
ρ

1

s − ρ
where the sum is taken over the zeros which all lie in the critical strip. (The function ξ̃ (s) is
defined by ξ̃ (s) = (s−1)Γ (1+s/2)π−s/2ζ(s).) This implies by a simple termwise calculation
([MSZ14]) that since s−2 is to the left of the critical strip, we haveRe(ξ̃ ′(s−2)/ξ̃(s−2)) < 0
in the interval 0 < σ < 1. On the other hand

0 > Re(ξ̃ ′(s−2)/ξ̃ (s−2))=Re(1/(s−3))+1

2
Re(ψ(s/2))−1

2
logπ+Re(ζ ′(s−2)/ζ(s−2)) ,

where ψ is the logarithmic derivative of the gamma function. We estimate

Re(1/(s − 3)) = σ − 3

(σ − 3)2 + t2 >
−3

4+ t2 > −
3

4+ 144
> −0.03

and − logπ > −1.2. Hence

Re(−ζ ′(s − 2)/ζ(s − 2)) > −0.7+ Re(ψ(s/2))/2 .
The last thing to do is to estimate the psi-function. Following [MSZ14], we have using Stir-
ling’s formula for ψ ,

Re(ψ(s)) = log |s| − σ

2 |s|2 + Re(R(s)) ,

where |R(s)| ≤ √2/(6 |s|2). This is valid for any s = σ + it in the critical strip. We observe
that

− σ

2 |s|2 ≥ −
1

2t2

so

Re(ψ(s/2)) ≥ log
|t|
2
− 2

t2
− 2
√

2

3t2
≥ 2.56

if |t| ≥ 26. This completes the proof. �

Note that by numerics one can see that the lemma does not hold for small t . The lemma
implies that the left and right hand sides can be equal only once for a fixed t , and this occurs at
Re(s) = 1/2 as shown above. We summarize this in the following statement which concerns
just the Riemann zeta function:

PROPOSITION 8.5. For s ∈ C with 0 < Re(s) < 1, with |Im(s)| > 26, the equality
|α(1 − s)| = |α(s)| holds if and only if Re(s) = 1/2.

Therefore, since it is known that the Riemann zeta zeros in the critical strip having imag-
inary part less than 26 in absolute value all lie on the critcal line and in view of Lemma 8.2,
the equivalence between the graph zeta functional equation and the Riemann hypothesis is
established.
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