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Abstract. Toponogov’s triangle comparison theorem and its generalizations are im-
portant tools for studying the topology of Riemannian manifolds. In these theorems, one as-
sumes that the curvature of a given manifold is bounded from below by the curvature of a
model surface. The models are either of constant curvature, or, in the generalizations, rota-
tionally symmetric about some point. One concludes that geodesic triangles in the manifold
correspond to geodesic triangles in the model surface which have the same corresponding
side lengths, but smaller corresponding angles. In addition, a certain rigidity holds: Whenever
there is equality in one of the corresponding angles, the geodesic triangle in the surface embeds
totally geodesically and isometrically in the manifold.

In this paper, we discuss a condition relating the geometry of a Riemannian manifold to
that of a model surface which is weaker than the usual curvature hypothesis in the generalized
Toponogov theorems, but yet is strong enough to ensure that a geodesic triangle in the manifold
has a corresponding triangle in the model with the same corresponding side lengths, but smaller
corresponding angles. In contrast, it is interesting that rigidity fails in this setting.

1. Introduction. Let us briefly recall the statement of Toponogov’s Triangle Com-
parison Theorem, also known as the Alexandrov–Toponogov Theorem.

THEOREM 1.1. Let M be a complete Riemannian manifold whose curvature is bounded
below by the constant κ , and let M̃ be the complete, simply connected surface of constant
curvature κ . Given a geodesic triangle �opq in M , there exists a geodesic triangle �õp̃q̃ in
M̃ whose corresponding sides have the same lengths as those in �opq and which satisfy the
following three properties:

(1) Angle comparison: Each of the three angles in �õp̃q̃ are less than or equal to the
corresponding angles of �opq , that is � õ ≤ � o, � p̃ ≤ � p, and � q̃ ≤ � q .

(2) Alexandrov convexity: dist(õ, σ̃ (t)) ≤ dist(o, σ (t)) for all 0 < t < l where σ and
σ̃ are the minimal geodesics of length l = dist(p, q) joining p to q and p̃ and q̃

respectively.
(3) Rigidity: If equality holds in (1) or (2), then the interior of �õp̃q̃ can be isometrically

embedded as a totally geodesic surface in M .

Over the years, numerous differential geometers have developed generalizations of To-
pogonov’s Theorem in which the constant curvature surface is replaced by a surface M̃ that
is rotationally symmetric about a vertex õ with variable curvature κ(r) depending on the dis-
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tance r from õ, and in which the curvature of M at a distance r from a fixed base point o ∈ M

is bounded from below by κ(r). For a sampling of the literature, see [4, 1, 7, 12, 13, 14, 9]. In
this setting one only considers geodesic triangles in M having a vertex at the base point o. The
most general version [9], for which the existence of a geodesic triangle �õp̃q̃ in M̃ satisfying
the conclusion of Toponogov’s Theorem is obtained for every geodesic triangle �opq in M ,
requires the cut points of every p̃ ∈ M̃ to lie on the meridian opposite from p̃. This holds,
for example, when M̃ is a von Mangoldt surface [18, 17]. On the other hand, some recent
versions relax the restriction on cut points in M̃ , but then impose other restrictions [10, 6].

In this paper we replace the lower curvature bound by a weaker condition that we call
(M̃, õ) has weaker radial attraction than (M, o). If Lo and Lõ denote the distance func-
tions from o and õ respectively, having weaker radial attraction means that given any pair of
geodesics, σ̃ in M̃ and σ in M satisfying (Lõ ◦ σ̃ )(0) = (Lo ◦ σ)(0) and (Lõ ◦ σ̃ )′+(0) =
(Lo ◦σ)′+(0), then there exists an ε > 0 such that (Lõ ◦ σ̃ )(t) ≥ (Lo ◦σ)(t) for all 0 ≤ t < ε.

We motivate the terminology by imagining a geodesic to be the path of a free particle
and thinking of a base point as a point of attraction. The condition on the pair of geodesics
can be interpreted as saying that if the distances of the particles from the base points and the
radial components of their velocities are equal at an initial time, then for a short time later, the
particle experiencing the stronger attraction moves so as to be closer to the base point than the
particle that is experiencing the weaker attraction.

Our main theorem, proved in Section 4, is the following:

THEOREM 1.2. Let M be a complete Riemannian manifold with a base point o, and
let M̃ be a complete, simply connected surface which is rotationally symmetric about the
vertex õ such that the cut locus of every point p̃ lies in the opposite meridian of p̃. Assume
that (M̃, õ) has weaker radial attraction than (M, o). Then, for every geodesic triangle �opq

in M , there exists a geodesic triangle �õp̃q̃ in M̃ whose corresponding sides are equal and
which satisfies the angle comparison and Alexandrov convexity in Toponogov’s Theorem.

Interestingly, rigidity fails in this setting. See Example 2 in Section 6. This shows that
the radial attraction condition is more flexible than the lower curvature bound and highlights
the essential role that curvature plays in the rigidity portion of Toponogov’s Theorem and its
generalizations.

In the course of proving Theorem 1.2, we establish a Maximal Radius Theorem [Re-
mark 4.8] when M̃ is compact.

In Section 5 we relate having weaker radial attraction to a comparison of the Hessians
of Lo and Lõ, and as well as to a comparison of the principal curvatures of the geodesic
spheres about o to the curvature of the geodesic circles about õ of the same radius. From this,
on account of the Hessian Comparison Theorem of Green and Wu [5], we conclude that if
the radial curvature of (M, o) is bounded from below by the curvature of the surface (M̃, õ),
then (M̃, õ) has weaker radial attraction than (M, o). The converse in general is false. (See
Remark 4.2 and Example 1 in Section 6.)
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In view of Proposition 4.13, (M̃, õ) necessarily has weaker radial attraction than (M, o),
if every geodesic triangle �opq in M has a corresponding geodesic triangle �õp̃q̃ in M̃ with
equal corresponding sides but smaller corresponding angles. This can be regarded as a partial
converse to Theorem 1.2.

2. Distance functions from a point. If M is a complete Riemannian manifold, the
distance between two points p and q in M will be denoted dist(p, q). The set of all min-
imizing geodesics joining p to q will be denoted Geod(p, q). Any γ ∈ Geod(p, q) has
length dist(p, q) and will be parameterized by arclength. The distance function from p is the
function Lp : M → R

+ defined by Lp(q) = dist(p, q).

2.1. The first derivative of Lp along curves.

LEMMA 2.1. Let M be a complete Riemannian manifold, p ∈ M and c : (a, b) → M

a C∞ curve. Then for each s ∈ (a, b) the left and right hand derivatives of Lp ◦ c exist and
are given by

(Lp ◦ c)′+(s) = min
{〈c′(s), γ ′(l)〉 : γ ∈ Geod(p, c(s))

}
(Lp ◦ c)′−(s) = max

{〈c′(s), γ ′(l)〉 : γ ∈ Geod(p, c(s))
}

where l = dist(p, c(s)).

REMARK 2.2. Let C(p) denote the cut locus of p. If c(s) /∈ C(p), then (Lp ◦ c)′(s)
exists and equals 〈c′(s), γ ′(Lp(c(s)))〉 where γ is the unique minimizing geodesic from p

to c(s). This is a consequence of the first variation formula. Thus the lemma gives new
information when c(s) ∈ C(p). For a more general lemma of this type, see [8, Lemma 2.1].

PROOF. Set f = Lp ◦ c. Fix s0. Let γ be any minimizing geodesic joining p to c(s0).
Let p̄ be a point on γ between p and c(s0). Then c(s0) /∈ C(p̄), and setting

(2.1) f̄ (s) = dist(p̄, c(s)) + dist(p, p̄) ,

one obtains

f̄ ′(s0) = 〈c′(s0), γ
′(f (s0))〉

by the first variation formula (see above remark). By the triangle inequality

f (s) ≤ f̄ (s) for all s.

Also f̄ (s0) = f (s0) because γ is minimizing. Hence, if h > 0,

(2.2)
f (s0 + h) − f (s0)

h
≤ f̄ (s0 + h) − f̄ (s0)

h

and

(2.3)
f (s0 − h) − f (s0)

−h
≥ f̄ (s0 − h) − f̄ (s0)

−h
.

Taking lim suph→0+ of equation (2.2) and lim infh→0+ of equation (2.3) give

D+f (s0) ≤ D+f̄ (s0) = f̄ ′(s0)
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and

D−f (s0) ≥ D−f̄ (s0) = f̄ ′(s0)

where D+ and D− denote the upper right and lower left Dini derivates respectively. Conse-
quently, since γ ∈ Geod(p, c(s0)) is arbitrary,

(2.4) D+f (s0) ≤ min
{〈c′(s0), γ

′(f (s0))〉 : γ ∈ Geod(p, c(s0))
}

and

(2.5) D−f (s0) ≥ max
{〈c′(s0), γ

′(f (s0))〉 : γ ∈ Geod(p, c(s0))
}

.

On setting

μ̌(s) = min
{〈c′(s), γ ′(f (s))〉 : γ ∈ Geod(p, c(s))

}
and

μ̂(s) = max
{〈c′(s), γ ′(f (s))〉 : γ ∈ Geod(p, c(s))

}
it follows that

(2.6) lim inf
s→s+

0

μ̂(s) ≥ μ̌(s0) .

To prove this, let sn be a decreasing sequence converging to s0 such that μ̂(sn) converges to
lim infs→s+

0
μ̂(s). Then there exists a sequence of minimizing geodesics γn from p to c(sn)

such that μ̂(sn) = 〈c′(sn), γ ′
n(f (sn))〉, which on passing to a subsequence may be supposed

to converge to a γ0 ∈ Geod(p, c(s0)). On passing to the limit we have

lim inf
s→s+

0

μ̂(s) = 〈c′(s0), γ
′
0((f (s0))〉 ≥ μ̌(s0)

by definition of μ̌(s0). Consequently, for every m < μ̌(s0) there exists a δ > 0 such that

μ̂(s) > m if s0 < s < s0 + δ .

Thus by equation (2.5)

D−f (s) > m if s0 < s < s0 + δ .

Therefore, for every s0 < s < s0 + δ, there exists an η = η(s) > 0 such that

f (s) − f (s − h)

h
> m whenever 0 < h < η .

Consequently,

f (s) > f (s0) + m(s − s0) for all s0 < s < s0 + δ

because f is continuous, that is,

f (s) − f (s0)

s − s0
> m if s0 < s < s0 + δ .

Therefore D+f (s0) ≥ m. But m < μ̌(s0) is arbitrary, so that D+f (s0) ≥ μ̌(s0). Therefore

μ̌(s0) ≤ D+f (s0) ≤ D+f (s0) ≤ μ̌(s0)
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where we used (2.4). Therefore

(2.7) f ′+(s0) = μ̌(s0) .

By a similar argument

(2.8) f ′−(s0) = μ̂(s0) .

�

COROLLARY 2.3. Under the hypothesis and notation of the previous lemma, for all
s ∈ (a, b),

f ′−(s) ≥ f ′+(s) .

Equality holds, that is, f is differentiable at s, if and only if tangent vectors γ ′(f (s)) at
c(s) to every γ in Geod(p, c(s)) make the same angle with c′(s), that is, they lie in the set
{X ∈ Tc(s)M : 〈X, c′(s)〉 = μ} where μ = μ̌(s) = μ̂(s).

REMARK 2.4. Since the function f is locally Lipschitz, f ′(s) exists for almost all s

[15, pp.105–108]. Moreover, f ′ is integrable, f ′+ = f ′ almost everywhere, and

f (s1) − f (s0) =
∫ s1

s0

f ′+(s)ds .

2.2. The second derivative of Lp along geodesics. Let σ : (a, b) → M be a unit
speed geodesic in M . If σ(s0) /∈ C(p) ∪ {p}, then Lp ◦ σ is smooth near s0, and its second
derivative at s0 can be computed by means of the second variation formula. Let γ : [0, l] →
M be the unique minimizing geodesic joining p to σ(s0), and let J be the Jacobi field along
γ satisfying J (0) = 0 and J (l) = σ ′(s0). We have

(2.9) (Lp ◦ σ)′′(s0) =
∫ l

0
〈∇T J,∇T J 〉 − 〈R(J, T )T , J 〉 − 〈∇T J, T 〉2dt

where T = γ ′ is the tangent velocity vector field along γ . It might be noted that the term
〈∇T J, T 〉 is a constant equal to (Lp ◦ σ)′(0)/ l. (See [3, p. 19].)

Since Lp is smooth in the open complement of C(p) ∪ {p}, its Hessian ∇2Lp is the
symmetric tensor field defined by

(2.10) ∇2Lp(X, Y ) = X(Y (Lp)) − dLp(∇XY )

for two smooth vector fields X and Y in the complement of C(p)∪{p}. Thus if σ is a geodesic
in M with σ(s0) in M\C(p) ∪ {p}, then

(2.11) (Lp ◦ σ)′′(s0) = ∇2Lp(σ ′(s0), σ
′(s0)) .

On the other hand, when σ(s0) is in the cut locus of p, Lp ◦ σ may fail to be smooth
near s0. However in this case we can construct smooth upper support functions for Lp ◦ σ

near s0, that is, smooth functions F with F(s) ≥ Lp ◦ σ(s) for all s near s0 and which satisfy
F(s0) = Lp ◦ σ(s0). The construction goes as follows: Let γ : [0, l] → M be a minimizing
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geodesic joining p to σ(s0) and let V be a piecewise smooth vector field along γ that satisfies
V (0) = 0 and V (l) = σ ′(s0). Let vs(t) be the variation of γ defined by

(2.12) vs(t) = expγ (t)(sV (t))

and set

(2.13) FV (s) = L(vs) =
∫ l

0
〈v′

s (t), v
′
s (t)〉

1
2 dt

where L denotes the arclength. Obviously, FV satisfies the conditions of being an upper
support function for Lp ◦ σ near s0. Applying the second variation formula gives

PROPOSITION 2.5.

F ′′
V (s0) =

∫ l

0
〈∇T V,∇T V 〉 − 〈R(V, T )T , V 〉 − (〈∇T V, T 〉)2dt .

PROOF. The boundary terms in the second variation formula [3, p. 20] vanish since the
transverse curves are geodesics. �

By choosing nice vector fields V we can obtain useful formulas for the second derivative
of certain upper support functions. For example, let P denote the parallel transport of σ ′(s0)

along γ . For any t0 between 0 and l, γ (t0) /∈ C(p). Thus it is possible to define a unique
Jacobi field J satisfying J (0) = 0 and J (t0) = P(t0).

COROLLARY 2.6. Let V (t) = J (t) for 0 ≤ t ≤ t0 and V (t) = P(t) for t0 ≤ t ≤ l.
Then V is piecewise smooth and

F ′′
V (s0) = ∇2Lp(P (t0), P (t0)) − (

1 − 〈P, T 〉2) ∫ l

t0

κ(P ∧ T )dt

where κ(P ∧ T ) is the sectional curvature of the 2-plane spanned by P and T .

PROOF. Using additivity, write the integral in the Proposition 2.5 as the sum
∫ t0

0 + ∫ l

t0
.

The first integral reduces to ∇2Lp(P (t0), P (t0)) by (2.9) and (2.11) because J is a Jacobi

field. Since P is parallel, the second integral reduces to
∫ l

t0
−〈R(P, T )T , P 〉dt . Finally recall

that

κ(P ∧ T ) = 〈R(P, T )T , P 〉
|P |2|T |2 − 〈P, T 〉2

= 〈R(P, T )T , P 〉
1 − 〈P, T 〉2

.

It is important to note that the denominator is constant for t0 ≤ t ≤ l because P and T are
parallel unit vector fields. �

The integral of the curvature in Corollary 2.6 can be made arbitrarily small by choosing
t0 sufficiently close to l.

As an aside we point out that the upper support function f̄ defined in equation (2.1) can
be obtained through the construction of Proposition 2.5 by taking V to be equal to 0 between
p and p̄, and equal to the Jacobi field J with J (p̄) = 0 and J (σ(s0)) = σ ′(s0) between p̄ and
σ(s0).
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2.3. Geodesic spheres and the Hessian of Lp. If q ∈ M is not in the cut locus of
p ∈ M , there is a unique geodesic γ ∈ Geod(p, q). We will let T be the tangent vector to γ

at q . Through such points q there passes the geodesic sphere centered at p of radius dist(p, q)

which is a smooth hypersurface in a neighborhood of q with unit normal T at q . We will let
IIq denote the second fundamental form of that hypersurface at q .

PROPOSITION 2.7. If X and Y are tangent at q to the geodesic sphere centered at p

passing through q then

∇2Lp(X, Y ) = −〈T , IIq(X, Y )〉 .

PROOF. Extend X and Y to smooth vector fields denoted by the same letters in a neigh-
borhood of q which are tangent to the geodesic spheres centered at p in that neighborhood.
By definition of the Hessian we have

∇2Lp(X, Y ) = X(Y (Lp)) − dLp(∇XY ) = −〈T ,∇XY 〉
= −〈T , IIq(X, Y )〉

when evaluated at q , since Y (Lp) = 0 because Y is tangent to the geodesic spheres on which
Lp is constant, and since T is equal to the gradient of Lp at q . �

3. Model surfaces. Let M̃ be a simply connected, complete surface which is rota-
tionally symmetric about the vertex õ. If M̃ is compact, then M̃ is diffeomorphic to the sphere
S2. In this case, we let õ′ denote the point which is at the maximum distance � from õ. If M̃

is not compact, then M̃ is diffeomorphic to the plane R2, and we set � = ∞.
In the normal polar coordinate system centered at õ, the Riemannian metric on M̃ takes

the form:

ds2 = dr2 + y(r)2dθ2

where y is a smooth function that satisfies y(0) = 0 and y ′(0) = 1, and is strictly positive
for r in the open interval (0, �). Since the Riemannian metric on M̃ is smooth, the function
y extends to a smooth odd function y : R → R, that is, y(−r) = −y(r). In addition,
when � is finite, y satisfies y(�) = 0 and y ′(�) = −1, and is antisymmetric about �, that is,
y(r − �) = −y(� − r). Consequently, the extended function y is periodic with period 2�.

In polar coordinates, geodesics γ (t) = (r(t), θ(t)) satisfy the differential equations:

r̈ = y(r)y ′(r)θ̇2

θ̈ = −2
y ′(r)
y(r)

θ̇ ṙ

where the dot indicates differentiation with respect to t . Since γ is assumed to be unit speed,
we also have ṙ2 + y(r)2θ̇2 = 1. Besides this, it is well known that the quantity

(3.1)
〈
γ̇ (t),

∂

∂θ

〉
= y(r(t))2θ̇

is constant along γ . It is known as Clairaut’s constant. ([16, pp. 212–213] is one reference for
this material.)
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We will be concerned with the set M̃+ of points in M̃ that satisfy 0 ≤ θ ≤ π and
0 ≤ r ≤ � and its interior int(M̃+) of points satisfying 0 < θ < π and 0 < r < �.

DEFINITION 3.1. For 0 ≤ θ ≤ π and 0 ≤ φ ≤ π , define the functions

Dθ : (0, �) × [0, �) → R
+

Rφ : (0, �) × [0,∞) → R
+

as follows: Dθ(r1, r2) = Lp̃(q̃) where p̃ has coordinates (r1, 0) and q̃ ∈ M̃+ has coordinates
(r2, θ). Rφ(r1, t) = Lõ(σ (t)) where σ is the unit speed geodesic starting at p̃ = (r1, 0)

making an angle φ with the meridian θ = 0. In particular cos φ = 〈 ∂
∂r

, σ ′(0)〉.
PROPOSITION 3.2. Dθ and Rφ have the following monotonicity properties.

(1) For fixed (r1, r2) ∈ (0, �) × (0, �), Dθ(r1, r2) is strictly increasing for 0 ≤ θ ≤ π .
(cf. [9, Lemma 2.1] or [16, Lemma 7.3.2].)

(2) For fixed r1 ∈ (0, �), if t is less than the injectivity radius of p̃, then Rφ(r1, t) is
strictly decreasing for 0 ≤ φ ≤ π . (cf. [11, Lemma 5.1].)

PROOF. (1) Fix (r1, r2) ∈ (0, �) × (0, �) and set f (θ) = Dθ(r1, r2). Let p̃ = (r1, 0),
and let q̃(θ) = (r2, θ) for 0 ≤ θ ≤ π . Then f (θ) = Lp̃(q̃(θ)) and f ′(θ) = 〈q̃ ′(θ), γ ′

θ (f (θ)〉
for some minimizing geodesic γθ joining p̃ to q̃(θ). Thus f ′+(θ) = 〈 ∂

∂θ
, γ ′

θ (f (θ))〉 is equal to
Clairaut’s constant for the geodesic γθ . Hence f ′+(θ) > 0 when 0 < θ < π , because by (3.1)
the Clairaut constant of any geodesic from p̃ entering int(M̃+) is strictly positive. Therefore
f is strictly increasing on [0, π].

(2) Setting p̃ = (r1, 0) and σφ equal to the unit speed geodesic from p̃ making the angle
φ with the meridian θ = 0, it is clear that if t is less than the injectivity radius of p̃, then σφ(t),
0 ≤ φ ≤ π , traces out a smooth geodesic semicircle centered at p̃ in M̃+. Obviously the only
critical points of Lõ restricted to this semicircle are a maximum at φ = 0 and a minimum at
φ = π . �

The above proof shows that for fixed (r1, r2) ∈ (0, �) × (0, �), the function Dθ has a
positive right-hand partial derivative ∂+

θ Dθ(r1, r2). We can say more.

LEMMA 3.3. Fix r1 ∈ (0, �), and let K be a compact subset of int(M̃+). Then there
exists a constant C > 0 depending on r1 and K such that ∂+

θ Dθ (r1, r2) ≥ C whenever
(r2, θ) ∈ K .

PROOF. The constant C is the infimum of the set of Clairaut constants of the minimizing
geodesics joining the point p̃ = (r1, 0) to the points of K . The infimum is positive because no
sequence of minimizing geodesics from p̃ to points of K converges to a geodesic contained
in the union of the meridians θ = 0 and θ = π . �

COROLLARY 3.4. Let K = {q̃ ∈ M̃+ : q̃ = (r, θ) ∈ I1 × I2} where I1 ⊂ (0, �)

and I2 ⊂ (0, π) are closed bounded intervals. Suppose p̃ = (r1, 0), q̃1 = (r2, θ1), and
q̃2 = (r2, θ2). If q̃1, q̃2 ∈ K and θ2 > θ1, then

Lp̃(q̃2) − Lp̃(q̃1) ≥ C(θ2 − θ1)
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where C > 0 is the constant associated with K in Lemma 3.3. (cf. [10, Lemma 4.2].)

PROOF. The curve c(θ) = (r2, θ) for 0 < θ < π is smooth in M̃ . By definition
(Lp̃ ◦ c)′+(θ) = ∂+

θ Dθ(r1, r2). Thus, by Remark 2.5 and Lemma 3.3,

Lp̃(q̃2) − Lp̃(q̃1) = Lp̃(c(θ2)) − Lp̃(c(θ1)) =
∫ θ2

θ1

(Lp̃ ◦ c)′+(θ)dθ ≥
∫ θ2

θ1

C dθ .

�

4. A generalized Toponogov theorem. The sides of a geodesic triangle �opq in a
Riemannian manifold will always be minimizing geodesics joining the vertices, which are
assumed to be distinct points. Although the notation �opq is ambiguous when there are more
than one minimizing geodesic joining a pair of the vertices, there should be no confusion as
it will always be clear which geodesic is part of the triangle. If the lengths of the sides of a
geodesic triangle �õp̃q̃ in the model surface are equal to the lengths of the corresponding
sides of �opq , that is, dist(õ, p̃) = dist(o, p), dist(õ, q̃) = dist(o, q), and dist(p̃, q̃) =
dist(p, q), then �õp̃q̃ will be called a corresponding triangle of �opq .

DEFINITION 4.1. The model surface (M̃, õ) is said to have weaker radial attraction
than the pointed complete Riemannian manifold (M, o), if, for any unit speed geodesics σ, σ̃

in M, M̃ respectively satisfying Lo ◦σ(0) = Lõ ◦ σ̃ (0) < � and (Lo ◦σ)′+(0) = (Lõ ◦ σ̃ )′+(0),
then there exists an ε > 0 such that Lo ◦ σ(t) ≤ Lõ ◦ σ̃ (t) for all 0 ≤ t < ε. Recall
� = maxx̃∈M̃ dist(õ, x̃) in the case that M̃ is compact, and � = ∞ if M̃ is not compact.

REMARK 4.2. If the radial curvature of M is bounded below by M̃ , then M̃ has weaker
radial attraction than M by the corollary to the Berger-Rauch Theorem [3]. An alternative
argument is given in Section 5. It is possible for M̃ to have weaker radial attraction than M

but not to bound the radial curvature from below. For this see Remark 5.2 and Example 1 in
Section 6.

The portion of a geodesic ray emanating from o ∈ M up to and including the cut point
to o is a maximal minimizing geodesic emanating from o. Of course, if there is no cut point
on the ray, then the entire ray is a maximal minimizing geodesic.

DEFINITION 4.3. We define an axis of (M, o) to be the union of two maximal min-
imizing geodesics emanating from o whose initial tangent vectors are the negatives of each
other. Clearly, given a minimizing geodesic segment γ in M joining o to a point p �= o, then
there exists a unique axis A of (M, o) containing γ .

From now on assume that the model surface (M̃, õ) has weaker radial attraction than
the complete pointed manifold (M, o) and that for each p̃ in M̃ the cut locus C(p̃) of p̃

is contained in the opposite meridian. Thus for each q̃ ∈ int(M̃+) there exists exactly one
minimizing geodesic from p̃ to q̃ contained in M̃+. Fix p ∈ M with dist(o, p) < �, and let
�opq be a geodesic triangle in M . Let A denote the axis containing the side op of �opq .
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LEMMA 4.4. Assume q /∈ A, and suppose Lo(q) < � and dist(p, q) < Dπ(Lo(p),

Lo(q)). Then there exists a corresponding triangle �õp̃q̃ which satisfies Alexandrov convex-
ity.

PROOF. The hypotheses on q imply that there exists a unique corresponding triangle
�̃ = �õp̃q̃ with θ(p̃) = 0 and q̃ ∈ int(M̃+). Following the argument in (Section 4.1, [12]),
we deform �̃ through a family �s for 0 ≤ s ≤ 1 with �1 = �̃.

During the first stage of the deformation, we shorten the two sides meeting õ, but keep the
length of p̃q̃ fixed. In detail, set l0 = dist(p, q) = dist(p̃, q̃). Since l0 < Dπ(Lo(p), Lo(q)),
there exists an s̄ ∈ (0, 1) such that for all s̄ ≤ s ≤ 1, l0 < Dπ(sLo(p), sLo(q)). Conse-
quently, if s̄ ≤ s ≤ 1, there exists a unique geodesic triangle �õp̃s q̃s such that θ(p̃s) = 0,
q̃s ∈ int(M̃+), Lõ(p̃s) = sLo(p), Lõ(q̃s) = sLo(q), and dist(p̃s , q̃s) = l0. For such s, set
�s = �õp̃s q̃s , and let σ s : [0, l0] → M̃+ be the minimizing geodesic joining p̃s to q̃s .

During the second stage of the deformation, the lengths of the two sides meeting õ are
fixed while the base angle decreases to 0, and the side opposite õ is a broken geodesic of
total length dist(p, q). In detail, for every 0 ≤ s ≤ s̄, let p̃s = p̃s̄ , and let q̃s be the unique
point in M̃+ satisfying Lõ(q̃s) = Lõ(q̃s̄) and θ(q̃s) = s

s̄
θ(q̃s̄). If γ̃s denotes the minimizing

geodesic joining õ to q̃s , then by the triangle inequality, the function Fs(t) = dist(p̃s, γ̃s (t))+
dist(q̃s, γ̃s (t)) is strictly decreasing. Since by Proposition 3.2

Fs(0) = Lõ(p̃s) + Lõ(q̃s) ≥ Dπ(s̄Lo(p), s̄Lo(q)) > l0

and

l0 = Dθ(q̃s̄ )(s̄Lo(p), s̄Lo(q)) ≥ Dθ(q̃s)(s̄Lo(p), s̄Lo(q)) = dist(p̃s , q̃s) = Fs(dist(õ, q̃s)) ,

there exists a unique ts such that Fs(ts) = l0. Set ds = dist(p̃s , γ̃s(ts )). Thus the broken
geodesic σ s : [0, l0] → M̃+ consisting of the minimizing geodesic σ s

1 : [0, ds] → M̃+ from
p̃s to γ̃s(ts ) followed by the minimizing geodesic σ s

2 : [ds, l0] → M̃+from γ̃s(ts ) to q̃s has
total length l0 and will be regarded as the side of �s joining p̃s to q̃s .

Let σ : [0, l0] → M be the side of the triangle �opq joining p to q . Set f (t) =
dist(o, σ (t)) and f s(t) = dist(õ, σ s(t)) for 0 ≤ t ≤ l0 = dist(p, q). Then, by construction,

(1) f s(0) < f (0) and f s(l0) < f (l0) for 0 ≤ s < 1,
(2) f s(t) < f (t) for ds ≤ t ≤ l0 when 0 ≤ s ≤ s̄,
(3) f s(t) is continuous in s and t , and
(4) f 0 < f .

Continuity (3) holds because we have assumed there are no cut points of p̃s in int(M̃+) so
that σ s , σ s

1 , and σ s
2 depend uniquely and continuously on their endpoints.

We must show that f 1 ≤ f . Let s0 = sup{s ∈ [0, 1] : f s < f }. If s0 = 1, we are
done. If not, by (1), (3) and (4), then (i) f s0(t) ≤ f (t) for all t ∈ [0, l0], and (ii) there exists a
t0 ∈ (0, l0) such that f s0(t0) = f (t0). Moreover, by (2) we even have t0 ∈ (0, ds0) if s0 ≤ s̄.
Thus f s0 is smooth at t0. Using Corollary 2.3, it follows that

(f s0)′(t0) ≥ f ′−(t0) ≥ f ′+(t0) ≥ (f s0)′(t0) .
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Thus f ′−(t0) = f ′+(t0) = (f s0)′(t0). By the hypothesis of weaker radial attraction, there
exists an ε > 0 such that f (t) ≤ f s0(t) for all |t − t0| < ε. Thus by (i), f (t) = f s0(t) for all
|t − t0| < ε. Consequently the set where f = f s0 is both open and closed, as well as being
nonempty, and thus equals the entire interval [0, l0]. But this contradicts (1) because s0 < 1.
Therefore s0 = 1 and f 1 ≤ f , thereby establishing Alexandrov convexity. �

REMARK 4.5. The proof shows that either f 1(t) < f (t) for all 0 < t < l0, or f 1(t) =
f (t) for all t ∈ [0, l0].

LEMMA 4.6. Alexandrov convexity implies the angle comparison at the top angles.

PROOF. Starting with Lo ◦ σ(t) ≥ Lõ ◦ σ̃ (t) and Lo ◦ σ(0) = Lõ ◦ σ̃ (0) ≤ � we have

cos(π − α) ≥ (Lo ◦ σ)′+(0) ≥ (Lõ ◦ σ̃ )′+(0) = cos(π − α̃)

where α and α̃ are the angles at the top left corner of the triangles. Thus α̃ ≤ α. Similarly for
the upper right vertex, but now using the left-hand derivatives. �

LEMMA 4.7. If q /∈ A and Lo(q) < �, then dist(p, q) < Dπ(Lo(p), Lo(q)). (cf. [6,
Assertion 25].)

PROOF. Consider the triangle �opq in M . We need only consider the case that for each
q ′ on the geodesic γ joining o to q , then dist(p, q ′) < Dπ(Lo(p), Lo(q

′)). For each γ (t)

for 0 < t < dist(o, q), let γ̃ (t) be the vertex of the triangle corresponding to �opγ (t). One
proves that θ(γ̃ (t)) is nonincreasing, and consequently that θ(γ̃ (t)) ≤ β where β < π is the
angle at o in �opq . Thus dist(p, γ (t)) ≤ Dβ(Lo(p), t). Thus letting t approach dist(o, q),
we have by Proposition 3.2

dist(p, q) ≤ Dβ(Lo(p), Lo(q)) < Dπ(Lo(p), Lo(q)) .

To show that the function θ̂ (t) = θ(γ̃ (t)) is decreasing, it suffices to show its upper right
Dini derivate satisfies D+θ̂ (t) ≤ 0 for all t ∈ (0, dist(o, q)). If not, suppose that D+θ̂ (t0) > 0
at some t0. Let γ̂ be the meridian from õ running through γ̃ (t0). Then Lõ(γ̂ (t)) = Lõ(γ̃ (t)) =
Lo(γ (t)) = t and θ(γ̂ (t)) = θ̂ (t0) for all t . Set C0 = 1

2D+θ̂ (t0) > 0. Thus there exists a

sequence hk > 0 converging to 0 as k → ∞ such that θ̂ (t0 + hk) − θ̂ (t0) > C0hk for all
k. Taking a compact neighborhood K of γ̃ (t0) = γ̂ (t0) contained in int(M̃+) of the form in
Corollary 3.4, there exists by that corollary a constant C1 > 0 such that Lp̃(γ̃ (t0 + hk)) −
Lp̃(γ̂ (t0 + hk)) ≥ C1(θ̂ (t0 + hk) − θ̂ (t0)) > C0C1hk for all sufficiently large k. Since

Lp̃(γ̃ (t0 + h)) − Lp̃(γ̂ (t0 + h))

h

= Lp̃(γ̃ (t0 + h)) − Lp̃(γ̃ (t0))

h
− Lp̃(γ̂ (t0 + h)) − Lp̃(γ̂ (t0))

h

= Lp(γ (t0 + h)) − Lp(γ (t0))

h
− Lp̃(γ̂ (t0 + h)) − Lp̃(γ̂ (t0))

h

it follows that (Lp ◦ γ )′+(t0) − (Lp̃ ◦ γ̂ )′+(t0) ≥ C0C1 > 0. On the other hand, if α is the
upper right vertex angle of �opγ (t0) and α̃ that of �õp̃γ̃ (t0), then by Lemma 4.6 , α̃ ≤ α.



316 J. HEBDA AND Y. IKEDA

Thus (Lp̃ ◦ γ̂ )′+(t0) = cos α̃ ≥ cos α ≥ (Lp ◦ γ )′+(t0) which is a contradiction. Thus θ̂ is
decreasing.

To finish the proof, we will show that θ̂ (0+) = limt→0+ θ̂ (t) ≤ β where β is the base
angle of �opq . Pick an arbitrary angle β̂ > β and let γ̂ be the meridian with θ(γ (t)) = β̂ in
M̃+. Then

(Lp ◦ γ )′+(0) ≤ cos(π − β) < cos(π − β̂) = (Lp̃ ◦ γ̂ )′+(0) .

Thus there exists an ε > 0 such that Lp̃(γ̃ (t)) = Lp(γ (t)) < Lp̃(γ̂ (t)) for all 0 ≤ t < ε.
Thus, for all such t , θ̂ (t) = θ(γ̃ (t)) < β̂ by Proposition 3.2(1), and hence θ̂ (0+) < β̂.
Therefore θ̂ (0+) ≤ β because β̂ > β was arbitrary. �

LEMMA 4.8. If q /∈ A then Lo(q) < �.

PROOF. We may assume � < ∞ as otherwise there is nothing to prove. If Lo(q) �< �,
there exists a point q ′ on the minimizing geodesic joining o to q such that Lo(q

′) = �.
Since q /∈ A, neither is q ′. Choose a sequence of points qn along the geodesic from o to q ′
converging to q ′. Then qn /∈ A and Lo(qn) < �. Hence dist(p, qn) < Dπ(Lo(p), Lo(qn)) by
Lemma 4.7. Thus on taking limits as n approaches infinity,

dist(p, q ′) ≤ Dπ(Lo(p), �) = � − dist(o, p) .

Therefore dist(o, p) + dist(p, q ′) = � = dist(o, q ′) by the triangle inequality. Thus q ′ lies on
the axis A. This is a contradiction. �

REMARK 4.9. By taking arbitrary points p, every maximal minimizing geodesic em-
anating from o can be considered to be part of an axis. Thus if there exists a point q with
dist(o, q) = �, the above argument implies that q is the cut point at distance � along every
geodesic emanating from o. We can conclude that M is homeomorphic to a sphere. (See [2,
Chapter 5].) This is a version of the Maximal Radius Theorem.

The next statement is an immediate consequence of the previous lemmas.

COROLLARY 4.10. If q /∈ A, there exists a corresponding triangle satisfying Alexan-
drov convexity and the angle comparison. Moreover, Lo(q) < � and dist(p, q) < Dπ(Lo(p),

Lo(q)).

THEOREM 4.11. For every geodesic triangle �opq with dist(o, p) < �, there exists a
corresponding triangle satisfying Alexandrov convexity and the angle comparison. Moreover,
Lo(q) ≤ � and dist(p, q) ≤ Dπ(Lo(p), Lo(q)).

PROOF. By Corollary 4.10, it suffices to let q ∈ A. Since q is in the closure of
M\A, it follows from Lemma 4.8 that Lo(q) ≤ � and |Lo(p) − Lo(q)| ≤ dist(p, q) ≤
Dπ(Lo(p), Lo(q)). There are three cases to consider.

Case 1 : dist(p, q) = |Lo(p) − Lo(q)|. (a) If dist(p, o) = dist(p, q) + dist(o, q), �opq

is degenerate with � q = π and � p = 0 = � o. The corresponding geodesic triangle �õp̃q̃

exists and is a similarly degenerate triangle in which equality holds in Alexandrov convexity
and the corresponding angles are equal. (b) If dist(o, p) + dist(p, q) = dist(o, q), which by
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Remark 4.9, occurs when Lo(q) = �, then � p = π . The corresponding geodesic triangle
is a degenerate triangle whose sides are all contained in the meridian through p̃ and satisfies
� p̃ = π and � õ = � q̃ = 0. Thus the angle comparison holds and Alexandrov convexity is
easily checked.

Case 2: Lo(q) < � and |Lo(p) − Lo(q)| < dist(p, q) < Dπ(Lo(p), Lo(q)). In this
case there exists a corresponding geodesic triangle �õp̃q̃ with q̃ ∈ int(M̃+), and thus the
argument of Lemma 4.4 proves Alexandrov convexity, and consequently the angle comparison
by Lemmas 4.6 and 4.7.

Note that if there is a minimizing geodesic joining o to q which is not contained in A,
then Case 2 occurs, assuming we are not in Case 1. Let γ be a minimizing geodesic joining o

to q and not contained in A. Consider the geodesic triangles �opγ (t) for 0 < t < dist(o, q).
Then γ (t) /∈ A, and the base angles of these triangles are a constant β with 0 < β < π . Thus
by Lemma 4.7, dist(p, γ (t)) ≤ Dβ(Lo(p), Lo(γ (t))). On taking the limit as t approaches
dist(o, q) we obtain dist(p, q) ≤ Dβ(Lo(p), Lo(q)) < Dπ(Lo(p), Lo(q)).

Case 3: Lo(q) < �, dist(p, q) = Dπ(Lo(p), Lo(q)) and the minimizing geodesic join-
ing o to q is unique and contained in A. In this case � o = π . There are two subcases
to consider. (a) If dist(p, q) = dist(o, p) + dist(o, q) then there exists a degenerate corre-
sponding triangle �õp̃q̃ with � õ = π and � p̃ = � q̃ = 0. Hence the angle comparison
holds and one checks that so does Alexandrov convexity. (Note that q̃ lies in the segment of
the meridian opposite to p̃ between the vertex õ and the first conjugate point to p̃.) (b) If
dist(p, q) < dist(o, p) + dist(o, q), then the minimal geodesic σ from p to q is not con-
tained in A. We may then take a sequence of points qn along σ which converge to q . Thus
qn ∈ M\A, and the sides and angles of the sequence of the geodesic triangles �opqn converge
to the corresponding sides and angles of �opq , since by construction, the sides pqn converge
to the side pq , which is σ , and the sides oqn converge to oq by uniqueness of the side oq .
Since qn /∈ A, there exist corresponding Alexandrov triangles �õp̃q̃n which satisfy both the
angle comparison and Alexandrov convexity. By taking a subsequence we may assume that
the �õp̃q̃n converge to a geodesic triangle �õp̃q̃ which therefore is a corresponding triangle
for �opq . (Note that q̃ lies in the interior of the cut locus of p̃.) �

REMARK 4.12. In the above argument we assumed that dist(o, p) < �. If dist(o, p) =
�, then by Remark 4.9, {p} = C(o). Thus in the triangle �opq , we would have dist(o, q) < �,
and could argue as above with q instead of p to complete the proof of Theorem 1.2.

We conclude this section by noting that weaker radial attraction is the optimal hypothesis
to prove Toponogov’s theorem.

PROPOSITION 4.13. Let (M, o) be a pointed Riemannian manifold, and let (M̃, õ) be
a model surface. Assume that for every geodesic triangle �opq in M there exists a geodesic
triangle �õp̃q̃ in M̃ whose corresponding sides have the same length and smaller angles than
those in �opq . Then (M̃, õ) has weaker radial attraction than (M, o).
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PROOF. Let σ and σ̃ be geodesics in M and M̃ respectively that satisfy Lo(σ(0)) =
Lõ(σ̃ (0)) < � and (Lo ◦ σ)′+(0) = (Lõ ◦ σ̃ )′+(0). Pick geodesics γ and γ̃ in M and M̃

respectively joining o to p = σ(0) and õ to p̃ = σ̃ (0) respectively such that 〈γ ′(p), σ ′(o)〉 =
(Lo ◦ σ)′+(0) and 〈γ̃ ′(p), σ̃ ′(0)〉 = (Lõ ◦ σ̃ )′+(0). Thus the angle between γ and σ at p

equals the angle between γ̃ and σ̃ at p̃. Let t be less than the injectivity radius of M̃ at p̃,
and consider the geodesic triangle �opσ(t). By hypothesis there exists a geodesic triangle
�õp̃q̃ in M̃ corresponding to �opσ(t) such that dist(p̃, q̃) = t , dist(õ, q̃) = dist(o, σ (t))

and � p̃ ≤ � p. Since t is less than the injectivity radius at p̃, Proposition 3.2(2) implies

Lõ(σ̃ (t)) ≥ Lõ(q̃) = Lo(σ(t)) .

Thus the weaker radial attraction condition holds taking ε equal to the injectivity radius at
p̃. �

5. Hessian comparison. Again let M be a complete Riemannian manifold with base
point o, and let M̃ be a model surface of revolution with vertex õ. Recall that the radial cur-
vature of M is bounded from below by M̃ if for every p ∈ M and p̃ ∈ M̃ with dist(o, p) =
dist(õ, p̃) the sectional curvature of every 2-plane at p containing a tangent vector to a mini-
mizing geodesic from o to p is greater than or equal to the curvature of M̃ at p̃.

The next proposition is an immediate consequence of the Hessian Comparison Theorem
in [5] and serves to motivate Theorem 5.3.

PROPOSITION 5.1. Assume that the radial curvature of M is bounded below by M̃ ,
then the Hessian of Lõ dominates the Hessian of Lo, that is, if p ∈ M and p̃ ∈ M̃ with
Lo(p) = Lõ(p̃) are not cut points of o and õ respectively, and X ∈ TpM , X̃ ∈ Tp̃M̃ , satisfy
|X| = |X̃| and 〈T ,X〉 = 〈T̃ , X̃〉, where T and T̃ are the tangents to the minimizing geodesics
joining o and õ to p and p̃ respectively, then

∇2Lo(X,X) ≤ ∇2Lõ(X̃, X̃) .

REMARK 5.2. The converse is false. As a counter example take M̃ to be the Euclidean
plane with metric in polar coordinates dr2 + r2dθ2 and M to be the surface of revolution with
metric dr2 + (re−r2

)2dθ2. Then the Hessian of Lõ dominates that of Lo because

ỹ ′(r)
ỹ(r)

= 1

r
≥ y ′(r)

y(r)
= 1 − 2r2

r
.

However, M̃ is flat, while the curvature of M satisfies κ(r) = 6 − 4r2 < 0 when r >
√

3/2.
In fact the negative curvature is unbounded. More examples are constructed in Section 6.

THEOREM 5.3. The following are equivalent:

(1) The Hessian of Lõ dominates the Hessian of Lo.
(2) The principal curvatures of the geodesic spheres about o are bounded from below by

the curvature of the geodesic circles about õ of the same radius.
(3) M̃ has weaker radial attraction than M .
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PROOF. (1) and (2) are equivalent on account of Proposition 2.7. Clearly (3) implies
(1). The proof that (1) implies (3) will be broken down into a sequence of lemmas.

LEMMA 5.4. Given 0 < r1 < r2 < �, then for all sufficiently small δ > 0 there exists
a model surface M̃δ such that the Hessian of Loδ dominates the Hessian of Lõ and moreover
satisfies

∇2
δ Loδ = ∇2Lõ + δ

on the interval [r1, r2]. Furthermore, as δ → 0+, M̃δ converges to M̃ in the disk of radius r2

about the vertex.

PROOF. In a model surface M̃ with metric dr2 + y(r)2dθ2, the Hessian of Lõ takes the
form

∇2Lõ(X, Y ) = y ′(r)
y(r)

(〈X,Y 〉 − 〈X,T 〉〈Y, T 〉) .

(See [5, Prop. 2.20].) Thus we need to construct a yδ that defines M̃δ such that

(5.1)
y ′(r)
y(r)

≤ y ′
δ(r)

yδ(r)

for all r and

(5.2)
y ′(r)
y(r)

+ δ = y ′
δ(r)

yδ(r)

for r1 ≤ r ≤ r2. The details are presented in Example 3 in Section 6. �

LEMMA 5.5. Given 0 < r1 < r2 < �, let δ > 0 be sufficiently small so that M̃δ

satisfies Lemma 5.4. Let σ , σ̃ , and σδ , be geodesics in M , M̃ , and M̃δ respectively such that

r1 < Lo ◦ σ(0) = Lõ ◦ σ̃ (0) = Loδ ◦ σδ(0) < r2

and (Lo ◦ σ)′+(0) = (Lõ ◦ σ̃ )′+(0) = (Loδ ◦ σδ)
′+(0). Then there exists an ε > 0 such that

Loδ ◦ σδ(t) ≥ Lo ◦ σ(t) for all 0 ≤ t < ε. In other words, M̃δ has weaker radial attraction
than M in the region r1 < r < r2.

PROOF. Set σ(0) = p, σ ′(0) = X, σ̃ ′(0) = X̃ and σ ′
δ(0) = Xδ . We may assume

X �= ±T , where T ∈ TpM is the tangent vector to the minimizing geodesic γ from o to p

such that 〈X,T 〉 = (Lo ◦ σ)′+(0), otherwise the result is immediate. Under this assumption,
we have

(5.3) ∇2Lo(X,X) ≤ ∇2Lõ(X̃, X̃) < ∇2Lõ(X̃, X̃)+δ(|X̃|2 −〈X̃, T̃ 〉2) = ∇2Loδ (Xδ,Xδ) ,

by Lemma 5.4, where T̃ is the unit radial tangent vector at σ̃ (0).
First suppose p /∈ C(o), then Lo ◦ σ is smooth in a neighborhood of 0. By equations

(2.11) and (5.3),

(Lo ◦ σ)′′(0) = ∇2Lo(X,X) < ∇2Loδ (Xδ,Xδ) = (Loδ ◦ σδ)
′′(0) .

Thus there exists an ε > 0 such that Lo ◦ σ(t) ≤ Loδ ◦ σδ(t) when 0 ≤ t < ε.
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On the other hand, if p ∈ C(o), then it is possible to use Corollary 2.6 to construct an
upper support function FV for Lo ◦ σ that satisfies

(5.4) F ′′
V (0) < ∇2Loδ(Xδ,Xδ) = (Loδ ◦ σδ)

′′(0) ,

and therefore there would exist an ε > 0 such that Lo ◦ σ(t) ≤ FV (t) ≤ Loδ ◦ σδ(t) when
0 ≤ t ≤ ε. To accomplish this, observe that η = ∇2Loδ(Xδ,Xδ) − ∇2Lo(X,X) > 0 by
equation (5.3). It then suffices to choose t0 in Corollary 2.6 close enough to l = dist(o, p) so
that both |∇2Lo(X,X) − ∇2Lo(P (t0), P (t0))| < η/2 and∣∣∣∣(1 − 〈P, T 〉2) ∫ l

t0

κ(P ∧ T )dt

∣∣∣∣ < η/2

where P is the parallel vector field along γ . For then by Corollary 2.6,

(5.5) F ′′
V (0) = ∇2Lo(P (t0), P (t0)) − (

1 − 〈P, T 〉2) ∫ l

t0

κ(P ∧ T )dt < ∇2Loδ (Xδ,Xδ) .

�

LEMMA 5.6. Given 0 < r1 < r2 < �, let δ > 0 be sufficiently small so that M̃δ

satisfies Lemma 5.4. Let �opq be a geodesic triangle in M such that r1 < Lo(p) < r2,
dist(o, p) − dist(p, q) > r1, dist(o, p) + dist(p, q) < r2, and dist(p, q) is strictly less than
the injectivity radius of pδ in M̃δ whose polar coordinates are (Lo(p), 0). Then there exists a
corresponding triangle �oδpδqδ in M̃δ satisfying Alexandrov convexity. The angle compari-
son holds for the top angles.

PROOF. The main point here is that the construction of the collapsing family �s in the
proof of Lemma 4.4 works as long as the construction stays away from the cut loci of p̃ = pδ

and nearby points p̃s . Under the given assumptions, there exist ε1, ε2 > 0 such that

(5.6) dist(o, p) − dist(p, q) = r1 + ε1

and

(5.7) dist(o, p) + dist(p, q) = r2 − ε2 .

We may arrange the construction of �s so that the points p̃s satisfy dist(p̃s , p̃) < min(ε1, ε2)

and dist(p, q) remains strictly less than the injectivity radius of p̃s for all s. Since the length
of the (broken) geodesic σ s is dist(p, q), we have, by the triangle inequality,

(5.8) dist(p̃, σ s(t)) ≤ dist(p̃, p̃s) + dist(p̃s , σ
s(t)) < min(ε1, ε2) + dist(p, q)

for every point σ s(t) on σ s . Therefore, by the triangle inequality and by (5.8) and (5.6),

dist(õ, σ s(t)) ≥ dist(õ, p̃) − dist(p̃, σ s(t))

> dist(o, p) − dist(p, q) − min(ε1, ε2)

= r1 + ε1 − min(ε1, ε2)

≥ r1 ,
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and similarly, by (5.8) and (5.7),

dist(õ, σ s(t)) ≤ dist(õ, p̃) + dist(p̃, σ s(t))

< dist(o, p) + dist(p, q) + min(ε1, ε2)

= r2 − ε2 + min(ε1, ε2)

≤ r2 .

This proves that σ s is contained in the region r1 < r < r2 in M̃δ . Thus on account of
Lemma 5.5, the argument in Lemma 4.4 goes through completely to prove Alexandrov con-
vexity holds. The angle comparison for the top angles follows from Lemma 4.5. �

LEMMA 5.7. M̃ has weaker radial attraction than M .

PROOF. Let σ and σ̃ be geodesics satisfying Lo ◦ σ(0) = Lõ ◦ σ̃ (0) < � and (Lo ◦
σ)′+(0) = (Lõ ◦ σ̃ )′+(0).

If p = σ(o) and p̃ = σ̃ (0), choose ε > 0 to be less than the injectivity radius of p̃

in M̃ . Because the M̃δ converge to M̃ , for all sufficiently small δ, ε will be smaller than the
injectivity radius of the corresponding points pδ in M̃δ . In accordance with Lemma 2.1, let
γ ∈ Geod(o, p) be chosen so that (Lo ◦ σ)′(0) = 〈γ ′(Lo(p)), σ ′(0)〉. For all sufficiently
small δ, let σδ be the geodesic starting at pδ making the same angle with the meridian through
pδ as σ makes with γ . Fix 0 < s < ε and set q = σ(s). For each δ > 0, find the geodesic
triangle in M̃δ corresponding to �opq according to Lemma 5.6. Its angle at pδ is smaller
than the angle at p. By the monotonicity for small hinges, Proposition 3.2(2), Lo ◦ σ(s) ≤
Lõ ◦ σδ(s). Letting δ → 0, σδ approaches σ̃ . It follows that Lo ◦ σ(s) ≤ Lõ ◦ σ̃ (s). �

This completes the proof that (1) implies (3). �

6. Examples. In order to construct examples of smooth model surfaces whose metric
in polar coordinates is given by ds2 = dr2+y(r)2dθ2, it suffices to produce smooth functions
y : R → R that satisfy all the conditions enunciated in Section 3.

Given two surfaces of revolution M with metric dr2 + y(r)2dθ2, 0 < r < � and M with
metric dr2 + ȳ(r)2dθ2, 0 < r < �̄, it follows from [5, Prop. 2.20] and Theorem 5.3 that M

has weaker radial attraction than M provided

(6.1)
y ′(r)
y(r)

≤ ȳ ′(r)
ȳ(r)

for 0 < r < �̄. Note that � ≤ �̄ ≤ ∞. If we set y(r) = m(r)ȳ(r), then y ′(r) = ȳ ′(r)m(r) +
ȳ(r)m′(r) so that

(6.2)
y ′(r)
y(r)

= ȳ ′(r)
ȳ(r)

+ m′(r)
m(r)

.

Thus M has weaker radial attraction than M if m′(r) ≤ 0. Because ȳ(0) = y(0) = 0 and
ȳ ′(0) = y ′(0) = 1 it follows that m(0) = 1. In case � is finite, since y(�) = 0 and y ′(�) = −1,
we also have that m(�) = 0 and m′(�) = −1

ȳ(�)
. Because y and ȳ are odd functions, m is even.

Moreover, if � is finite, m(r)ȳ(r) must be antisymmetric about �. By choosing m with these
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properties we can construct examples of manifolds with stronger radial attraction than the
given M .

LEMMA 6.1. Suppose f1 and f2 are smooth functions defined on the interval [a, b].
Let ϕ : [a, b] → [0, 1] be a smooth decreasing function that equals 1 in a neighborhood of a

and equals 0 in a neighborhood of b. Consider the function

f = ϕf1 + (1 − ϕ)f2 .

Clearly f equals f1 in a neighborhood of a and equals f2 in a neighborhood of b.

(1) If f1 ≥ f2 and both f1 and f2 are decreasing, then f is decreasing.
(2) If f1 ≤ f2 and both f1 and f2 are increasing, then f is increasing.

PROOF. Consider

f ′ = ϕ′(f1 − f2) + ϕf ′
1 + (1 − ϕ)f ′

2 .

In the case (1), f ′ ≤ 0 because ϕ′ ≤ 0, f1 − f2 ≥ 0, ϕ ≥ 0, f ′
1 ≤ 0, 1 − ϕ ≥ 0, and f ′

2 ≤ 0.
Similarly, in the case (2), f ′ ≥ 0. �

EXAMPLE 1. Given any M, here is how to construct an M with stronger radial attrac-
tion than M whose radial curvature is not bounded from below by M. First note that since
ȳ(0) = 0 and ȳ ′(0) = 1 there exists a b > 0 such that ȳ(r) > 0 and ȳ ′(r) > 0 for all
0 < r < b. Moreover, there exists a r0 ∈ (0, b) such that

(6.3)

(
ȳ ′

ȳ

)′
(r0) �= 0 .

For if not, ȳ ′
ȳ

= k on (0, b) for some constant k. The solution of this differential equation

takes the form ȳ(r) = Cekr on (0, b) for some constant C. But this is incompatible with
ȳ(0) = 0 and ȳ ′(0) = 1. Set A = 2 ȳ ′(r0)

ȳ(r0)
> 0.

Now pick � between r0 and �̄. Then

e−A� > 0 = � − �

ȳ(�)
and

d

dr

(
� − r

ȳ(r)

)∣∣∣∣
r=�

= −1

ȳ(�)
< 0 .

Thus by continuity there exists an r1 ∈ (r0, �) such that

(6.4) e−Ar ≥ � − r

ȳ(r)
and

d

dr

(
� − r

ȳ(r)

)
< 0 for all r ∈ [r1, �] .

Let ϕ1 be a smooth decreasing function on [0, r0] that equals 1 in a neighborhood of 0
and equals 0 in a neighborhood of r0, and let ϕ2 be a smooth decreasing function on [r1, �]
that equals 1 in a neighborhood of r1 and equals 0 in a neighborhood of �. By construction,
the function m : [0, �] → R defined by

(6.5) m(r) =

⎧⎪⎨
⎪⎩

ϕ1(r) + (1 − ϕ1(r))e
−Ar r ∈ [0, r0]

e−Ar r ∈ [r0, r1]
ϕ2(r)e

−Ar + (1 − ϕ2(r))
�−r
ȳ(r)

r ∈ [r1, �]
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equals 1 in a neighborhood of 0, e−Ar in a neighborhood of r0, and �−r
ȳ(r)

in a neighborhood of
�. The hypotheses of Lemma 6.1(1) are clearly satisfied on [0, r0] and on [r1, �] by (6.4). We
conclude that m is a smooth decreasing function on [0, �].

Consequently y(r) = m(r)ȳ(r) equals ȳ(r) in a neighborhood of 0, e−Ar ȳ(r) in a neigh-
borhood of r0, and � − r in a neighborhood of �. Thus y extends smoothly to an odd function
on R with period 2� which is antisymmetric about �. The curvature function near r0 satisfies

κM(r) = κM(r) + A

(
2
ȳ ′(r)
ȳ(r)

− A

)
which shows that the two curvatures are equal at r0 but that their difference has different signs
on different sides of r0.

EXAMPLE 2. This example shows that it is possible that the top angles in the corre-
sponding triangle can be equal without the base angles being equal so that rigidity fails. Let
M̃ be the standard sphere of radius 1. Thus we have ȳ(r) = sin(r). Let � be between π

2 and
π . Because

1

2
> 0 = � − �

sin(�)
and

d

dr

(
� − r

sin(r)

)∣∣∣∣
r=�

= −1

sin(�)
< 0 ,

by continuity there exists an r1 between π
2 and � such that

(6.6)
1

2
≥ � − r

sin(r)
and

d

dr

(
� − r

sin(r)

)
< 0 for all r ∈ [r1, �] .

Let ϕ1 be a smooth decreasing function on [0, π
2 ] that equals 1 in a neighborhood of 0

and equals 0 in a neighborhood of π
2 , and let ϕ2 be a smooth decreasing function on [r1, �]

that equals 1 in a neighborhood of r1 and equals 0 in a neighborhood of �. Lemma 6.1(1) can
be applied to show that the function m : [0, �] → R defined by

(6.7) m(r) =

⎧⎪⎨
⎪⎩

ϕ1(r) + (1 − ϕ1(r))
1
2 r ∈ [0, π

2 ]
1
2 r ∈ [π

2 , r1]
ϕ2(r)

1
2 + (1 − ϕ2(r))

�−r
sin(r) r ∈ [r1, �]

is a smooth decreasing function that equals 1 in a neighborhood of 0, 1
2 in a neighborhood of

π
2 , and �−r

sin(r)
in a neighborhood of �. Thus y(r) = m(r)ȳ(r) defines a smooth rotationally

symmetric surface on the sphere M with stronger radial attraction than M̃. Consider the
triangle �opq where p = (π

2 , 0) and q = (π
2 , θ) in polar coordinates on M . Then the

corresponding triangle �õp̃q̃ has p̄ = (π
2 , 0) and q̃ = (π

2 , θ/2). The top angles in �õp̃q̃ are
right angles equal to those of the original triangle �opq in M but the base angle is half of that
of the original triangle. Clearly, the interior of �õp̃q̃ does not embed isometrically into M .

If on the other hand we start with a surface of revolution M with metric ds2 = dr2 +
y(r)2dθ2 for 0 < r < � and wish to construct a surface of revolution M with metric ds̄2 =
dr2 + ȳ(r)2dθ for 0 < r < �̄ (with � < �̄) with weaker radial attraction than M , then if we
write ȳ(r) = m̄(r)y(r) for 0 < r < �, by a calculation like that above we need m̄(0) = 1,
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m̄(r) to be increasing, and in case � is finite, near �, m̄(r) is asymptotic to k
�−r

for some
constant k. More precisely we need m̄(r)y(r) to be smooth near �.

EXAMPLE 3. In this example we explain how to construct the surface M̃δ needed in
Lemma 5.4. We are given the model surface M̃ with metric ds2 = dr2 + y(r)2dθ2 and
0 < r1 < r2 < �. Let δ > 0.

First consider the case � = ∞. Since 1 ≤ eδr and both the constant function 1 and eδr

are increasing for r ≥ 0, by using Lemma 6.1(2) we can paste 1 and eδr together to obtain
an increasing function m̄δ : [0,∞) → R which equals 1 in a neighborhood of 0 and equals
eδr on [r1, r2]. Indeed, let ϕ be a smooth desreasing function on [0, r1] which equals 1 in a
neighborhood of 0 and equals 0 in a neighborhood of r1, and define

(6.8) m̄δ(r) =
{

ϕ(r) + (1 − ϕ(r))eδr 0 ≤ r ≤ r1

eδr r1 ≤ r .

Then on setting yδ(r) = m̄δ(r)y(r) we have that yδ = y in a neighborhood of 0 and

(6.9)
y ′(r)
y(r)

+ δ = y ′
δ(r)

yδ(r)
for r1 ≤ r ≤ r2 .

Next consider the case � < ∞. Since y(�) = 0 and y ′(�) = −1, limr→�− 1
y(r)

= ∞.

Hence there exists a r3 with r2 < r3 < � such that 1
y(r3)

> 1 and 1
y(r)

is increasing on [r3, �).

Thus if δ > 0 is small enough so that eδ� < 1
y(r3)

, then eδr ≤ eδ� < 1
y(r3)

≤ 1
y(r)

on [r3, �].
Now define

(6.10) m̄δ(r) =

⎧⎪⎨
⎪⎩

ϕ1(r) + (1 − ϕ1(r))e
δr 0 ≤ r ≤ r1

eδr r1 ≤ r ≤ r3

ϕ2(r)e
δr + (1 − ϕ2(r))

1
y(r)

r3 ≤ r < �

where ϕ1 a smooth decreasing function on [0, r1] which equals 1 in a neighborhood of 0 and
equals 0 in a neighborhood of r1, and ϕ2 a smooth decreasing function on [r3, �] which equals
1 in a neighborhood of r3 and equals 0 in a neighborhood of �. Then by Lemma 6.1(2) m̄δ(r)

is an increasing function which by construction equals 1 in a neighborhood of 0, equals eδr

on [r1, r2] and equals 1
y(r)

in a neighborhood of �. On setting yδ = m̄δ(r)y(r) we have that
yδ = y in a neighborhood of 0,

(6.11)
y ′(r)
y(r)

+ δ = y ′
δ(r)

yδ(r)
for r1 ≤ r ≤ r2 ,

and equals 1 in a neighborhood of �. Thus we may extend yδ smoothly as we like beyond � to
produce a complete model surface. Indeed, setting yδ(r) = 1 for r > � would work.

In either case the surface M̃δ with metric ds2 = dr2 + yδ(r)
2dθ2 has the properties

needed in Lemma 5.4. Clearly by construction yδ and its derivatives converge to y and its
derivatives as δ → 0+ uniformly on [0, r2].
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