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CONTIGUITY RELATIONS OF LAURICELLA’S F;, REVISITED
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Abstract. We study contiguity relations of Lauricella’s hypergeometric function Fp,
by using the twisted cohomology group and the intersection form. We derive contiguity rela-
tions from those in the twisted cohomology group and give the coefficients in these relations
by the intersection numbers. Furthermore, we construct twisted cycles corresponding to a fun-
damental set of solutions to the system of differential equations satisfied by Fp, which are
expressed as Laurent series. We also give the contiguity relations of these solutions.

1. Introduction. Lauricella’s hypergeometric series Fp of m variables xi, ..., x,
with complex parameters a, by, . .., by, c is defined by

i @ ni+- - +n)bin) - Gnnm) w0

Fp(a,b,c;x) = P T T P S X

Ny, =0
where x = (x1,...,Xm), b = (b1,...,by), c & {0,—1,-2,...}, and (a,n) = I'(a +
n)/ I (a). This series converges in the domain {x € C" | |x;| < 1 (1 <i <m)}. Itis known
that Fp(a, b, c; x) admits an Euler-type integral representation:

m
) Foa b cx) = — 7 Tiinieq _ o [ [ —xn"dr.

F@r—a )y i
The contiguity relations of Lauricella’s Fp have been studied from several points of
view. In the 1970s, W. Miller Jr. [6] gave the contiguity relations of Fp as a representation
of a Lie algebra, and Aomoto [1] studied the contiguity relations of Fp and its generalization
to the hypergeometric functions of type (k, n). In 1991, Sasaki [11] studied the contiguity
relations in the framework of the Aomoto-Gel’fand system on the Grassmannian manifold. In
1989, an algorithmic method that used Grobner bases to derive the contiguity relations was
given by Takayama [12]. Recently, Ogawa, Takemura, and Takayama [7] have illustrated that
the Pfaffian system and the contiguity relations for Fp combine to give a method to evaluate
the normalizing constant of the hypergeometric distribution on the 2 by N contingency tables
with given marginal sums. On the other hand, Matsumoto [5] recently proposed a method that
utilizes the intersection numbers of twisted cohomology groups to derive Pfaffian systems. In
this paper, we reconsider the problem of the contiguity relations of Fp, in order to produce
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formulas for application to statistics [7]. Matsumoto’s method can be applied to derive the
contiguity relations for our purpose, and further generalizations will be possible.

We derive the contiguity relations of Fp by considering the twisted cohomology groups
associated with the integral representation (1). We regard the contiguity relations as those
between the twisted cocycles. To obtain the coefficients in the contiguity relations, we use
the intersection form of the twisted cohomology group. In the way, we are able to derive the
contiguity relations for the basis given in [5], which was also used in [7]. An advantage of
our method is that it makes it easy to systematically derive the contiguity relations for a given
basis of the twisted cohomology group.

This paper is arranged as follows. In Sections 2, 3, and 4, we introduce our method for
using the intersection form to derive the contiguity relations. By evaluating the intersection
numbers, we obtain explicit forms for the contiguity relations. In Section 5, we introduce
the system Ep(a, b, c) of differential equations satisfied by Fp(a, b, c; x), and we introduce
the Laurent series solution f ®(a, b, c;x) to Ep(a, b, c) and construct a fundamental set
of solutions. In Section 6, we construct the twisted cycle ry corresponding to the solution
f®(a, b, c; x). Since our contiguity relations are obtained from those in the twisted coho-
mology group, the integration on r; gives the contiguity relations of f®). In Section 7, we
present an application of our formula, in which we evaluate the normalizing constant of the
hypergeometric distribution on the 2 by m + 1 contingency tables; this is also explained in
[7] in the context of statistics. We also explain how to apply our results when the parameters
(a, b, c) are integers. This assumption is necessary for our applications to statistics. The dis-
cussion of twisted cycles in Section 6 as well as Theorem 3.4 are fully utilized to evaluate the
normalizing constant with arbitrary marginal sums.

Although the contiguity relations of Fp have been studied by several authors, those of
the other solutions f®) that appear in applications to statistics have not been studied.

Acknowledgments. The author thanks Professor Nobuki Takayama for posing this prob-
lem and for his constant encouragement.

2. Twisted cohomology group and intersection pairing. We summarize some re-
sults in [2], [3], and [5] that will be used in this paper. We consider the twisted cohomology
group for

Ty :=C —{x0, X1, -+ - Xms Xm+1)}

and the multivalued function

m+1
e (t) = [ ] —x)™,
i=0

where

x0:=0, xpp1:=1,
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m
2) ozo::—c—i—ij, ap:=—br (1 <k<m), opy1:=c—a, opy2:=a.
j=1

Except in Section 7, we assume the condition
3) o €7 0<k<m+2).

We denote the vector space consisting of the smooth k-forms on 7 and that with compact
support by E¥(T) and EX(Ty), respectively. We set @ := d logu, and V,, := d + wA, where
d is the exterior derivative with respect to the variable 7 (note that this is not with respect to

X1, - .., Xm, which are regarded as parameters). The twisted cohomology group and that with
compact support are defined as

H'(Tx, Vi) = Ker(Vy, : £1(T) > EX(T:)/VoE(T2)
H!(Ty, Vo) = Ker(Vy, : £(Ty) — E2(T0))/ Vo (E(T2))
respectively. The expression (1) means that the integral

/0" dt
u , =
. x%P0, ¥0 f—1

represents Fp(a, b, c; x) modulo Gamma factors. By [2], H 1 (Ty, V) has m + 1 dimensions,
and there is a canonical isomorphism j : HY Ty, Vy) — Hcl(Tx, V,); see also [5, Fact 6.1].
Hereafter, we identify H! (T, V,,) with H!(Ty, V,,).

The intersection form /. on the twisted cohomology groups is the pairing between
HY(Ty, V,) and H'(Ty, V_,), and it is defined as follows:

(Y, ¥) :=/T JUAY . Y e H(Ty, V), ¥ € H(Ty, V_y).

We put
dt (x; — )Cj)dt
Pi,m+2 = f—x Qi,j = Pim+2 — Pjm+2 = m,
dt (1 — xp)dt
P0 = Pm+1,m+2 = : » Pk = Pm+1k = m )

where 0 < i, j <m+1and 1 <k < m. The intersection numbers among these 1-forms are
evaluated in [3]; see also [5, Fact 6.2].

Fact 2.1 ([3]). We have

Sip—8ia Sip—0;
I(i,js ¥p.q) =2n\/—_1< SLANELL A /’pa‘ M) ,
j

o

where i, j, p,q € {0,1,...,m + 2}, and §; , is the Kronecker delta. Thus, the intersection
matrix C(a, b, ¢) := (Ic(gol-, wj))i,jzo,.‘.,m is

1 1 1 1
C(a,b,c)=2nV—1{ N—I—diag< ——)}
OUm41 U2 O] O
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where
| |
| |
Under assumption (3), we have
—ap
det(C(a, b)) = Quv/=1)" —— #0,
[T5 e

and hence @y, . . ., o form a basis of H'(Ty, V).

3. Contiguity relations. In this section, we derive the contiguity relations by using
the intersection form. We define two column vectors of size m + 1:

t
-1 9 -1 0
F(a5bac;x):= FD(a7b5C;x)5XI _FD(aabaC;x)a”'axm —FD(a,b,C;x) )
dx1 Q. 0xpy
- (e —
F(a,b,c;x) = MF(a, b, c; x).
I'(c)
For (vg, ..., vm) € C"HL we regard v; as the i-th entry. For example, the O-th entry of

F(a,b,c;x)is Fp(a, b, c; x). By [5, Corollary 7.2], we have

t 00 00 B
</ fopo,.--,/ uxgom)zF(a,b,c;x).
1 1

Our main theorem (Theorem 3.4) states the contiguity relations of the vector-valued function
F(a,b,c; x).
For 0 < k < m + 1, there exist pgc) (a, b, c; x)’s such that

m
) (t—x0)-¢i= Y pi@b.cix) g
=0

as elements in the twisted cohomology group H 1(Tx, Vo). We put Pi(a,b,c,x) =
k
(pi(j)(a, b, c; x))l.’j and Qx(a, b, ¢; x) == (I ((t — xp) i, wj))i,j' Because of

m
I ((t = x0)@i 0j) = > piy (@ b.cix) - 1. 9)) .
[=0

we obtain Qi (a, b, c; x) = Px(a, b, c; x)C(a, b, ¢), that is,
) Pe(a,b,c;x) = Qrla, b, c; x)Cla, b, ).

In the next section, we will show the following proposition.
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PROPOSITION 3.1. We have

Ok(a, b, c; x)
1-— 1
:27[«/—1{ ka—i— diag (0,1 —xy,...,1 —x,) - N -diag(1,0,...,0)
Um+1 Um42
— diag (1,0,...,0)- N -diag (0, 1 — x1,..., 1 —xy)
1 — a2
1T —xx 1 Z’,’Zf XpXp X1 — Xk Xm — Xk
+d1ag< — < +1), e )}
Am+2 1 —ami2 Um+2 o] QU
Note that
poqo  poqgir -+ Poqm
. . piqo piq1r -+ Pldm
dlag(p01 7pm) 'N'dlag(q(L va) = . . . .
Pmq0 Pmql - Pmdm
We give the contiguity relations by using the matrices Py, Qk, and C. Let ey be the k-th
unit vector in C". For example, we have b — ey = (b1 — 1, b2, ..., by).

LEMMA 3.2.
F(a—1,b,¢;x) = Puii(a,b,c;x)F(a, b, c; x),
F(a —1,b,c—1;x)=Py(a,b,c; x)F(a,b, c;x),
F(a—1,b—ep,c—1;x)=Pu(a,b,c;x)F(a,b,c;x) (1<k<m).

PROOF. Recall that x,,41 = 1. We consider the integration of (4) on (1, 0o). By (1),
we have

o0 o0 m
/ uy - (t = Do = / N e il [ (RO
! ! i=1
_Tla—DI'(c—a+1)
B r(c)
which is the O-th entry of F (a — 1, b, c; x). Then, the first equality follows. The other ones
are shown in an analogous way. O

FD(a_l,b,C;x),

The following lemma is obvious.
LEMMA 3.3.
F(a—1,b,¢; x) = Puyi(a, b, c; x)F(a, b, c; x),
F(a,b,c—1:x)=Pyla+1,b,c; X)Ppy1(a+1,b,c; x)'F(a, b, c;x),
F(a,b—ex,c;x)=Pla+1,b,c+1;x)Po(a+1,b,c+ 1;x) " F(a, b, c; x) .

We can reduce this lemma to the relations between the F(a, b, c; x)’s by the formulas
I'(s+1)=s-1I(s)and(5).
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THEOREM 3.4 (Contiguity relations). We have

F(a—1,b,c;x)=Dy(a,b,c;x)F(a,b,c; x),
F(a,b,c—1;x)=D¢(a,b,c;x)F(a,b,c; x),
F(a,b—eg,c;x)=Di(a,b,c;x)F(a,b,c;x) (1 <k=<m),

where

—1
Da(a. b, c;x)i= ——— . Quit(a.b,c;x)- Cla, b,c)~",
Cc—a

a

c—a—1
De(a, b, ¢; x) 1= ——— Qo@+ 1,b,¢;) - Quer@+ 1,b,¢;07",

Di(a,b,c;x):=Qrla+1,b,c+1;x)- Qola+1,b,c+1;x)7".

The explicit forms for C(a, b, c) and Qi (a, b, c; x) are given in Fact 2.1 and Proposition
3.1, respectively.
EXAMPLE 3.5. If m = 2, the matrices C(a, b, c) and Qx(a, b, c; x) are as follows:

1
L1 s 00
Cla,byc;x)y=2nv/=1{—| 1 1 1 |+ 050 ,
a3
1 00L
QOk(a, b, c; x)
Lo 1 axtooxdtostes  1-xp  1-xp
1 1 1 oy 1—ay oy 1—ay 1—ay
_ l—Xk 1—x; X1 —Xk
o
3 111 1—x 0 f-u
oy o
The first equality in Theorem 3.4 is written as
FD(a - 17b17b21 C; x11x2)
1—
T Fp(a = 1,b1, b2, ¢; x1, x2)
- .
hZXZ ° QLXZFD(a - 17b17b21 C; x11x2)
—byxj—byxy+e— b b
S, = p—r Fp(a, by, by, c; x1, x2)
—(1- —1)(x;—1 l—x; 9 .
@-LC-m) @=-Lxn-]) 0 b ax Ip(a b1, ba, ¢ x1, x2)
1—x i)
(a=1)(1=xp) (a=D -1 2.2 Fp(a,by, by, c;x1,x
= 2 0 C—az h2 3)(2 D( 1 2 1 2)

The 3 x 3 matrix on the right-hand side is equal to D,(a, b, c; x) = % - Q3(a,b,c;x) -
C(a,b,c) L.
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REMARK 3.6. The determinant of Q(a, b, c; x) is as follows:

ao(l + 8poag) "
det(Qx(a. b, ¢; x)) = @r/=D)" 1 - TREL T () —xp) -

m+2

J=0
l_[aj (mt2 — 1) J#k
/#k

4. Proof of Proposition 3.1. In this section, we evaluate the intersection numbers
that are the entries of Q(a, b, c; x), by using Fact 2.1.
We denote ¢ ~ ¢, if ¢ is V,,-cohomologous to v, that is,

o~ <<= p=v%+V,f forsome f e 9Ty,
<= ¢ and  give the same element in H ! (T, V).

LEMMA 4.1.
1 m+1
dt ~ ———— oUpX
1 — tmro Z pXpPp,m+2 -
p=
PROOF. This lemma follows from
m+1 m+1 — X, +x
0~ V() =dt PP
= +Z“ﬂ d’+ZP s, &
p=0
m+1 m+1 m+1
<1+ Zap>dt+ Zapxp _— = (1 — apg2)dt + Xgapxpgop 42 -
p
Here, we use xo = 0 and Z;":g ap =0. O
Then, we have
t— Xk t—x;+x — Xk
(t —XK) - Prm+2 = dt = dt
t— X t— X
m—+1

1
~ (X — XK)Plm42 — Z UpXpPp,m+2 -

1 - Um+2 =l
Fact 2.1 and a straightforward calculation show the following lemma.

LEMMA 4.2.

L ((t = X @1, m425 ©)

m+1
271\/_<(x1 — Xx) (8’ ] ! ) S— <ZP:1 el 1)) (j=0),

Am+1 am+2 I—ami2 p+2

2w /—1 ((xl — Xk) 5"’”:;_5” _ ) I<j<m).

I—ami2
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PROOF OF PROPOSITION 3.1. Let Qk(i, j) be the (i, j) entry of Qk(a, b, c; x), that s,
Or(i, j) =1 ((t —xk) - @i, ¢j). For 1 < i, j < m, we have
01(0,0) = I ((t — X&) * @m+1.m+2. 90)
1— 1— 1 mla,x
:27“/_—1( i Xk (Zp_l pXp +1>>’

Apm+1 Am+2 1 —ami2 O +2

010, j) =1I. ((t = XK) * Pm+1.m42. @)

1 - 1—x;
:27'[\/_1( Al xj )1

Um+1 1 - Um+2

Ok (i, 0) = I ((t = xi) - Pmt1.m2, 90) — Lo ((t = X1) - @im+2. 90)
- 1 —x;
= 2m/—1 < Ty x’) :

Um+1 Um+2

Ok, j)=1Ic ((t = x1) - mt1.m42. 9j) — Le ((t = xi) - Pim+2, @)

1— L
=27/~1 < Sl x"s,,,),

Um+1 o

by Lemma 4.2. These equalities imply Proposition 3.1. O

5. Differential equations and solutions. Lauricella’s Fp(a, b, c; x) satisfies the dif-
ferential equations

(i@ +c—1)—x;(0+a) +Db)] f(x)=0 (A =<i=<m),
[(xi —x))0i0j — bj0; + bid;] f(x) =0 (1<i<j<m),

where 9; = 3%_, 6; = x;0;, and 6 = Z;": 1 0. The system generated by them is called
Lauricella’s hypergeometric system Ep(a, b, ¢) of differential equations. It is known that
the A-hypergeometric system associated with the matrix A(A; x A,) can be transformed
into the system Ep(a, b, ¢), and combinatorial methods for constructing a fundamental set of
solutions to the A-hypergeometric system are known [4], [10]. Thus, we can use the general
method for constructing series solutions to A-hypergeometric systems to obtain a fundamental
set of solutions to Ep(a, b, c) with generic parameters (a, b, c).

FAcT 5.1 ([4, Section 3.3], [10, Section 1.5]). For 1 <k < m, we put

k=1 -
- Sl —ct1
f®a, b, c;x):= | |xl b cxp et

=1
00

k—1 m
1 x\ M nk x\™
ST [ TN

(k) ’
N1 sere =0 Fnl,‘.‘,nm(aa b,c) I=1
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=I(c—a-n)- [[ TA=br—n) [T A+m)

1<l<m I=1
£k
k k m k—1 k m
- —ZbH—c—Zm—i—Zn[ - 2+Zb1—c+2n1—2n1
=1 I=1 I=k+1 I=1 =1 I=k+1

Then, each f(k)(a, b, c; x) is a solution to Ep(a, b, c). Moreover, the set of Fp(a, b, c; x)
and f(k) (a,b,c; x) (1 <k <m)is a set of fundamental solutions to Ep(a, b, c).

6. Twisted cycles corresponding to solutions. We consider the twisted homology
group Hi (T, uy) on T, that is associated with the multivalued function u, (). For the defini-
tion of the twisted homology groups, refer to [2] and [5]. By [2], H; (T, u,) has m + 1 dimen-
sions. If (a, b, c; x) are generic, then the local solution space Sol, of Ep(a, b, ¢) around x
can be identified with the twisted homology group H; (7%, u,) by the integration of u,¢p; see
[5, Proposition 4.1]. Thus, there exists a twisted cycle that corresponds to the series solution
f &) (a, b, c; x). In this section, we construct such a cycle explicitly.

Let ¢ and & be real numbers satisfying

1 1
0 -, min 4 &, .
<e< > & < mi {8 T 8}
We construct the twisted cycle ry in 7, with x belonging to a small neighborhood of
N SN T A L)

Once we construct the twisted cycle in T, this cycle is uniquely continued to the twisted
cycle in each T,. Thus, we may assume x = x® . We put

S :=C— {__ S 1},
Xm Xk+1 Xk—1 X1
k—1 Xp o m X 7%}
Vi (8) := l_[ (s - —) (s — xp)®mr L l—[ (1 - —s)
I=1 u I=k+1 Yk

§Omt2 L (] — g)%t]

— 1 7] 1 Ay —1 m o
= (1—ﬁ_) -<1—xk—> . l_[ <1_ﬂs>
I=1 S s I=k+1 Tk
.lek;II otoy 1 tomyr—1 (l _ S)Otk+l .
The last equality holds when 0 < s < 1. We define the twisted cycle 7 that gives an element
in Hi(Sx, vx). Weput A = e2V=1e) and
~ 1

1
Pk = — CoQuy+ e, 1 —e]lQ@v, —
=1 M Amptdmt2 — 1 Ak —

1C1®Ux.
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X e X
Xk Xk

Xm Ak+1 \Xk—1

FIGURE 1. 7.

Here, Cy (resp. C) is the circle of center O (resp. 1) and radius & with starting point ¢ (resp. 1 —
€), which turns in the counterclockwise direction, and the branch of v, is obtained by the
analytic continuation along Cy (resp. C1). Let us verify that 7 is a twisted cycle. Let D; be
the disk whose boundary is C; (i =0, 1). Since

1
e =f<e<l<-—= M
Xk—1 Xk+1
we have
Dom«C—Sx):{x—",...,x—",xk,o}, DN (C— S = {1};
Xk—1 X1

see Figure 1. Then, the difference between the branches of vy at the ending and starting points
of the circle Cy (resp. C1) is ]—[;:11 AL Am+1Amo2 (resp. Ag), which implies that 7y is a twisted
cycle (cf. [2, Example 2.1]).

LEMMA 6.1.
ds m k—1 k—1
(6)/vxﬁzl“(c—a)-nf(l—bﬂ-F(Zb;—c)-F(l—Zb;—i—c)
A SUTS =1 =1 =1

00 k—1 n m n
1 xe\M x\"
E : I | | e | | M )
o . (a,b,o) X1 k X
nyeesity=0 L 1,y (G5 D5 C) g I=k+1

PROOF. Note thatif s belongsto CoU[e, | —e]UCy, it satisfies € < |s| < 1+ ¢. Since

1 1
gkl o1 (<l<k—1),
X] s £
| 1
Xk — <.§k-—<l,
S &
Xl I—k
—s| <& (A4+e <1 k+1=1=<m),
Xk
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the following power series expansions are uniformly and absolutely convergenton CoU[e, 1 —
elUCq:

e Y o (=, my) Xk 1>n'
1 — —- = — [ —- 1<l<k-1)),
< x1s> Z n;! X; 8 (I=l= )

n;=0

DN SN A =) T\
1 — X~ =y T =)
< ka) Z n! <Xk5)

ng=0
o (e8] _ ny

(1-2) = X (2) arrzizm.

Xk o ny! Xk

We replace the power functions on the left-hand side of (6) by these expansions, and exchange
the sum and the integral. Then, the coefficient of [f_ (2% )" T (52)" s

(I — o1, k) (—ay, ny)
k! Ik 1!
/ Sr et a2 — 1= A a- s)“k‘f‘l ds
s(1—s)"

By the construction of 7, the twisted cycle 7 of this integral can be identified with the usual
regularization of the open interval (0, 1) loaded with the multivalued function

s 1ot oo 2= 1= Y0 A (1 — s)%+!

on C — {0, 1}. Hence the integral in (7) is equal to
I (lek—l )+ omyl + a2 — 1 — Zlgk m+ lek+1 ”l) I" (ax + 1)
r (Zzgk o + g1 + Q2 — Zlgk n+ lek+l ”l) '
By (2)and (a,n) =I' (a+n) /T (a), (7)is equal to
d—c+a+nk) l—[ I (by +np)

Fl—cta) 4 T@)
( Zl<k 1bi+e—1- Zz<kn1 +Z,>k+1nz I (1 —by) ﬁ
F(_ lekbl+C—Zl<k”l+21>k+1”1) =1 F(1~|—n1)
By using I" (z) I' (1 — z) = m/sin(;r z), we obtain, for example,
I (b +ny) _ 1 T
L) T I'(l—b —n)sing(b +n)
1 I'il-»
= (=" T - (_1)’”#,
I'(l—b,—mn) I'(by)sinmh; ' (l—b —np)

In an analogous way, other Gamma functions with 7;’s in the numerator can be moved to the
denominator. Thus, we obtain the lemma. O
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We will construct a twisted cycle standing for the series solution f *) (a, b, c; x) by the
bijection
Xk
-
Let ¢ be the twisted cycle defined as r¢ := t,(F¢), which gives an element in Hy (T, uy).

128y > Ty, s>t =

THEOREM 6.2.

m k—1 k—1
/ upo="r(-a)-[]ra —bz)'F<Zb1—C)-F<l—sz+c>
Tk =1 =1 =1

oV bi—cta) O b, e x).
PROOF. Note that arg(xx) = —m. We have

ux (1(s)) - "o

k=1
e\ [ xk fmtl Xk M Xk e I X o
() () () () T (2
s s j=g \ S § 1=kt N Y

—xrds
s2(E-1)
k-1 1 —1
m X,
_ X e v (_k B 1>

- 1
N
=1

k—1 o m 7] d
.H(x_k_l) (1 = s)mtl l—[ <1_ﬂ) . 5
jp \s Ikt Xk s(1 —s)
N ton kol s 1 ds
_ N1 ety ) | op ot —potl
e l_[xl X vx(s)s(l "

=1
Here, we use —ag — Y joy 0m = Zf:ll a; + am+1 + Q2. By Lemma 6.1 and the relations
ap=—-b (1=<l<k-1),

k—1 k—1

m
@+ o+ l==) a—amit —ami2+1=) b—c+l,
I=k I=1 I=1

k—1 k—1
Zam + eyl = _Zbl +c—a,
=1 =1
we obtain the identity of the theorem. |

By replacing the cycle (1, co) in Section 3 with ¢, we can obtain the contiguity relations
of f® We put
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F(k)(a, b, c; x)

t
a <f“‘)(a,b,0; x), -1

-1 9
O, b x), . e Wb e x) )
T 8x1f (a,b,c;x),..., b axmf (a, ,c,X)>

By Theorem 6.2 and [5], we have

t
I:"(k)(a,b, c;Xx) = </ uxgoo,...,/ uxgom)
Tk Tk

m k—1 k—1
=r(c—a).]_[ra—b,)-r(Zb,—c)-r(l—Zb,+c>
=1 =1

I=1
VI bi—c+a) | F®@, b, x).

It is clear that Lemmas 3.2 and 3.3 hold even if F is replaced by F®_ Therefore, we obtain
the following corollary.

COROLLARY 6.3.
F(k)(a —1,b,c;x)= Dc(lk)(a, b, c; x)F(k)(a, b,c;x),
F(k)(a, b,c—1;x)= Dék)(a, b, c; x)F(k)(a, b,c;x),
F®O@,b—e,c;x)= Dl(k)(a, b,e:x)F®a,b,e;x) (1<l<m),

where
*) N . 1
Da (a7 bs C; -x) = a4—c : Qm-‘rl(as bvcv x) : C(as bvc) )
D®(a,b,c;x) :==(c—a—1)-Qola+1,b,¢;x) Qmiila+1,b,c;x)7",
|
Dz(k)(a,b, c;x) = T Qi@+ 1,b,c+1;x)- Qola+1,b,c+ 1;x)7".
— D]

In fact, ka) is independent of k.

7. Application—Normalizing constant for 2 x (m + 1) contingency tables. Con-
tiguity relations of Fp and f® are applied to the numerical evaluation of the normalizing
constant of the hypergeometric distribution of the 2 x (m + 1) contingency tables with fixed
marginal sums. In this section, we explain how our results are applied.

We consider the 2 x (m + 1) contingency table

<u10 Uil e Uim
u =

) € Mo yy1(Z>0)
U0 U2l - Udm

with row sums i and B, and columns sums yp, ..., ym. Weputt := B1 + fo = > /L, Vi
We use the multi-index notation
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where p is the 2 x (m + 1) matrix variable. The polynomial
pu
©p) =1l 2
ZBvip =11y
u

is called the normalizing constant, where the sum is taken over all contingency tables u with
marginal sums 8 = (B1, B2) and y = (o, . .., ¥m). It is a fundamental problem in statistics
to evaluate Z(8, y; p) numerically, where §;, y; € Z>¢ and p;; € Qx>o.

The normalizing constant Z can be expressed by Fp or f®). To explain this, we will
first define some notation. We put

By = {(,31, B2y V05 -+ s Yim) € (Zmg)™

Bi+Br=) v ,31—1/050},

By = {(ﬂl, B V0, - Ym) € (Zng)™

m
Bi+Br=Y v
i=0

k—1 k
> v>0, ﬁl—ZViSO},
i=0 i=0

where 1 < k < m. Then, {(B1, B2, Y0, -, ¥m) € (Z=0)"T | B + B2 = Y ILo i} is the
disjoint union of By, ..., B;,. We also put

g (-1 1 0 -0 b (1O 1 0 0
"“\1 10 .- 0)0 271 0 <10 ... 0) "

0 1
b = < 1 0 —1) ’
< Bi 0 --- 0 )
ug = ,
w—pB vi V2  Vm
k_l . IRy
up = Vk—l 'Blk > im0 Vi 0 0 (1<k<m,
0 YicoVi— Bl Vet 0 Vm
G Plzpzo
=p
plOPZz
If (B1, B2, v0, - - - » Ym) € B, then all of the entries of u; are non-negative integers, and hence

itis one of the contingency tables with marginal sums § and y . By straightforward calculation,
we can prove the following lemma.

LEMMA 7.1. (1) If (B, y) € Bo, then
t!
ZB,y;p) = ol P - Fp(=B1, (=1, ..., =¥Ym) Yo — Br+ Lix1, ..., xm) .
Q) If (B,y) € By with 1 <k < m, then

ZB,y;p) =11 p - fFOBL, (=y1, s —Ym)s o — Br+ L X1, oy Xm) .
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In [7], our contiguity relations are applied for the difference holonomic gradient method,
which evaluates the numerical value of the column vector F(a,b,c;x) or that of
F®(a,b,c;x), with a, b; € Z_g. For example, it follows from the below discussion of
contiguity relations for integer parameters a, b, ¢ that we can easily evaluate the numerical
value of F(a, b, c; x) from that of F(—1, b, c; x) by using the matrix D, in the contiguity
relation. Note that

m bi
Fp(—1,b,c;x)=1— —Xj .
2
For details of the difference holonomic gradient method, see [7].

We now consider the case in which the parameters are integers. Since 1, 82, Y0, - - -» Ym
are integers, the parameters (a, b, c) = (—B1, (—V1,---s —¥Ym), Yo — B1 + 1) do not satisfy
the condition (3). For the above application, we need to give the contiguity relations that are
valid even when the parameters are integers.

PROPOSITION 7.2. (1) If (B, y) € Bo, then the relation
-1
Fla—1,b,c;x) = " Pypi(a.b,cix) - F(a,b,cix)
c—a
holds when the generic parameter vector is specialized to an integral point
(as bv C) - (_,311 (_7/11 ceey _ym)s Yo — ,31 + 1)-

(2) When (B, y) € By with 1 < k < m, we consider the relation
F(k)(a —1,b,c—1;x) = —Py(a,b,c;x)- F(k)(a, b,c; x).

If (B1+1, Bo—1, 90, - .., Ym) € By, then this relation holds when the generic param-
eter vector is specialized to an integral point (a, b,c) — (—B1, (=Y1, .-, —Vm),
vo—B1+ 1.

We put
0
r ) (@, b, )

::F(l—a—2n1>~F<c+Zn1>-HF(I—b;—n;)-HF(l—i—nz).
=1 =1

=1 =1
To prove this proposition, we will use the following lemma.

LEMMA 7.3. (1) Let a, 151, ..., by, C be integers, and assume ¢ > 0. Then, there
exists X € C™ such that the power series

o0 1 m
ny
Z O b Hx,
Moty =0 L 150y (@, b, ) 1

as a function in (a, b, c; x) is holomorphic on a small neighborhood of (a, 15, ¢; X).
In particular, if x € C™ belongs to a small neighborhood of X, then this series has a
limit as (a, b, c) — (a, b, ).
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2) For1 <k <m, let a, 151, ..., by, C be integers that satisfy
=Y bhi+é>0, 24 Y bh-é>0.
1<k I<k—1

Then, there exists x € C™ such that the Laurent series

o]

S e B LG

(k) ' X
npoim=0 L1sen (@5 0,0) 57 1>kl MK

as a function in (a, b, c; x) is holomorphic on a small neighborhood of (a, 15, ¢; X).
In particular, if x € C™ belongs to a small neighborhood of X, then this series has a
limit as (a, b, c) — (a, b, C).

Further, we can differentiate these series term by term, and the partial derivatives of
them also have limits as (a, b, ¢) — (@, b, &).

We can show this lemma in a way that is analogous to that used for [9, Lemma 1]; see
also [8, pp. 18-21]. Although, in [9], the parameter vector (a, b, ¢) belongs to a neighborhood
of a generic point, an analogous estimation of Gamma functions can be done in our case.

SKETCH OF PROOF. Let 0 < j < m. First, we can show that there exist C, p1, ...,
pm > 0 such that the inequality

1

holds on a small neighborhood of (&, 15, ¢). Next, we put

. 1
p:zmax{plv-~-1p}’rh2'}s Xi :zﬁv

and X := (X1, ..., Xn). We can show that there exists 0 < 1 < 1 such that the series in the
lemma has the form

o0 m
> (IT)
niyeny=0 ~I=1

for a majorant on a small neighborhood of (a, 15, ¢; x). Therefore, the series is uniformly and
absolutely convergent, and it defines a holomorphic function. O

PROOF OF PROPOSITION 7.2. If (a,b,c) = (—B1, (—=V1,---» —Vm), Yo—B1+1), then
the «;’s are expressed as follows:

m
w=p-Y y—-l=—p—1. ax=nl<k=m),
=0

amr1=yo+1, opmp=-P1.
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Since these values and 1 — o, 42 = B1 + | are not zero, it follows from Fact 2.1, Proposition
3.1, and Remark 3.6 that both of the matrices Qx(a, b, ¢; x) and C(a, b, ¢) are well-defined
and invertible.
(1) The definition of Fp(a, b, c; x) can be expressed by the Gamma function:
m o0 1 m
Fpa.b,c;x)y=T(1—a)-T'()-[[TA=b)- Y

=1 nyye.,ny=0

— | |
0 .
F}’l(l ,).‘.,nm (a5 ba C) =1

By (8, y) € Bo, we have ¢ = yp — 1 + 1 > 0. Then we can apply Lemma 7.3 (1)
to F(a,b,c;x). Notethata — 1 = -1 —1#0,andc—a=y+ 1 #0.
(2) LetobeQorl. (81 + 0, B2 —0,%0,--.,¥Ym) € By implies

k k
—Y bi+c—o)=—Bi+o)+) n+1>0,

I=1 1=0
k—1 k—1
24) bi—(c—o)=Bi+o) =) n+1>0.
=1 =0
Then we can take the limit of F®) (a, b, ¢; x) as (a, b, ¢) — (=B1, (V1 —Vm),

vo — B1 + 1) by Lemma 7.3 (2).

By the identity theorem for holomorphic functions, it is sufficient to prove the proposition on
a small neighborhood of some x € C™. Therefore, the proof is completed. O
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