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Abstract. We adapt the theory of non-Archimedean uniformization to construct a
smooth surface from a lattice in PGL3(Q2) that has nontrivial torsion. It turns out to be a
fake projective plane, commensurable with Mumford’s fake plane yet distinct from it and the
other fake planes that arise from 2-adic uniformization by torsion-free groups. As part of the
proof, and of independent interest, we compute the homotopy type of the Berkovich space of
our plane.

The original definition of a fake projective plane is a compact complex surface that has the
same Betti numbers as CP 2, but is not CP 2. The first example was given by Mumford [15],
and all fake planes have recently been classified by Prasad-Yeung [17] and Cartwright-Steger
[8]: there are 100 of them up to isomorphism, in 50 complex-conjugate pairs.

Mumford used the theory of 2-adic uniformization, beginning with a well-chosen dis-
crete subgroup of PGL3(Q2). His construction yields a fake projective plane over Q2. For
this to make sense, we use Mumford’s definition of a fake plane X over a general field K ,
which specializes to the above definition when K = C. Namely: X is a smooth and geometri-
cally connected proper surface over K , such that its base change to X

K
satisfies Pg = q = 0,

c2
1 = 3c2 = 9 and has ample canonical class. Here K denotes the algebraic closure of K . To

get a fake plane in the original sense, one identifies Q2 with C by some isomorphism.
The machinery used by Mumford required his discrete subgroup of PGL3(Q2) to be

torsion-free, and there are exactly two additional fake planes that can be constructed this
way [13]. The purpose of this paper is to show that torsion can be allowed in the construction,
leading to a “new” fake plane. Of course, it occurs in the Prasad-Yeung–Cartwright-Steger
enumeration; what is new is that there is another fake plane realizable by 2-adic uniformiza-
tion.

This is interesting for two reasons. First, it shows that uniformization by groups contain-
ing torsion is possible and yields varieties with interesting properties. Second, in the 2-adic
approach, X is the generic fiber of a flat family over the 2-adic integersZ2, and the central fiber
gives a great deal of geometric information about X that is not available in the Prasad-Yeung
approach. For example, Ishida [12] showed that Mumford’s fake plane covers an elliptic sur-
face whose singular fibers have specific types, and Keum was able to use this to construct
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another fake plane [14]. The main open problem about fake planes is to construct one by
non-transcendental methods. Since 2-adic uniformization yields additional information about
the planes that may be constructed using it, we may reasonably hope that it will help solve
this problem.

1. Non-Archimedean uniformization. In this section we give background material
on non-Archimedean uniformization and recall how this guided Mumford in choosing the
torsion-free lattice in PGL3(Q2) that uniformizes his fake plane. We call his lattice �M ; his
notation in [15] was �. In the next section we will describe another lattice �L ⊆ PGL3(Q2)

and show how to use it to build a fake plane, even though �L contains torsion.
Let R be a complete discrete valuation ring, K its field of fractions and k = R/πR the

residue field, where π ∈ R is a fixed uniformizer. We assume k is finite with say q elements.
We write BK for the Bruhat–Tits building of PGL3(K). This is a 2-dimensional simplicial
complex whose vertices are the homothety classes of rank-three R-submodules of K3. Two
vertices are joined by an edge if (after scaling) one module contains the other with quotient
a 1-dimensional k vector space. Three vertices span a triangle if they are pairwise joined by
edges. PGL3(K) acts on BK in the obvious way.

The Drinfeld upper-half plane �2
K over K means the set of closed points of P2

K , minus
those that lie on K-rational lines. It is an admissible open subset of the rigid analytic space
P

2,an
K , hence a rigid analytic space itself. We write �̂2

K for the ‘standard’ formal model of �2
K

from [16, Prop. 2.4], where it is denoted P(�∗) with �∗ = BK . This is a formal scheme,
flat and locally of finite type over Spf R, and equipped with a PGL3(K)-action. It has the
following properties.

• The closed fiber �̂2
K,0 is normal crossing, with each component a non-singular ra-

tional surface over k, isomorphic to P2
k blown up at all k-rational points.

• The double curves of �̂2
K,0 that lie in one of these components are the exceptional

curves of this blowup, which are (−1)-curves, and the proper transforms of k-
rational lines of P2

k, which are (−q)-curves. Each double curve has different self-
intersection numbers in the two components containing it.

• The dual complex of the closed fiber �̂2
K,0 is PGL3(K)-equivariantly isomorphic to

BK .

The second property allows us to orient the edges of BK , a property we will use only in Sec-
tion 3. An edge corresponds to a curve where two components of �̂2

K meet; we orient the edge
so that it goes from the component in which the curve has self-intersection −1 to the one in
which it has self-intersection −q . The mnemonic is that the arrow on the edge can be thought
of as a greater-than sign, indicating −1 > −q . Obviously PGL3(K) respects the orientations
of edges. A triangle in BK corresponds to an intersection point of 3 components of �̂2

K , and
from the description of the double curves it is easy to see that the edges corresponding to the
three incident double curves form an oriented circuit. This induces a cyclic ordering on the set
of these double curves. (Everything in this paragraph could alternately be developed in terms
of R-submodules of K3 containing each other.)
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Now suppose � is a torsion-free lattice in PGL3(K); all lattices are uniform, so the
coset space is compact [19]. Because � is discrete and torsion-free, it acts freely on BK .
By the correspondence between the vertices of BK and the components of �̂2

K , � also acts
freely on �̂2

K , and properly discontinuously with respect to the Zariski topology. The quotient
X̂� := �̂2

K/� is a proper flat formal R-scheme, whose closed fiber X̂�,0 is a normal crossing
divisor [16, Thm. 3.1].

Its relative dualizing sheaf ωX̂�/R over R is thus the sheaf of relative log differential 2-
forms. Since there are ‘enough’ double curves on each component one can show that ωX̂�/R

is relatively ample ([16, p. 204]). This implies that the formal scheme X̂� is algebraizable,
that is, isomorphic to the π-adic formal completion of a proper flat R-scheme X� , which
is uniquely determined up to isomorphism. The generic fiber X� := X�,η is then a proper
smooth surface over K , and has ample canonical class. See [11, §5.4] for background.

On the other hand, � also acts freely and properly discontinuously on �2
K . This allows

the construction of the rigid analytic quotient �2
K/�, which turns out to be K-isomorphic to

the rigid analytic surface Xan
� got from X� by analytification. In other words, �2

K/� is the

Raynaud generic fiber of the formal scheme X̂� . In particular, the closed points of X� are in
bijection with those of �2

K/�.
Now we come to Mumford’s construction of his fake plane:

PROPOSITION 1.1 ([15, §1]). Let N be the number of �-orbits on the vertices of BK ,
and as usual write q(X) := dim H1(X,OX) for the irregularity and Pg (X) := dim H2(X,OX)

for the geometric genus of X = X� . Then

(a) χ(OX) := 1 − q(X) + Pg (X) is equal to N
3 (q − 1)2(q + 1);

(b) c2
1(X) = 3c2(X) = 3N(q − 1)2(q + 1);

(c) q(X) = 0;
(d) the canonical class KX is ample.

Mumford took R = Z2 (so q = 2) and chose a lattice in PGL3(Q2) we call �M , which is
vertex-transitive (so N = 1) and torsion-free (so the machinery applies). Abbreviating X�M

to XM , it follows that XM is a fake projective plane over Q2.
We have now provided all the background necessary for the construction of “our” fake

plane XL, so the reader could skip to Section 2 immediately. We will use the same ideas, but
more work is required because the group �L uniformizing XL contains torsion.

The rest of this section is preparation for Section 3, which shows that XL is distinct from
the three fake planes that can be obtained by using torsion-free groups in Mumford’s construc-
tion. (Besides Mumford’s example [15], there are exactly two more [13].) We will prove this
distinctness by comparing their Berkovich spaces; here is the necessary background, cf. [4],
[5].

For a rigid space or an algebraic variety Z over a complete non-Archimedean field, we
denote by ZBerk the associated Berkovich space; see [5, 1.6] for the relation between rigid
geometry and Berkovich geometry, and [4, 3.4] for Berkovich GAGA. In both cases, the
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associated Berkovich space ZBerk is uniquely determined, and the functor Z �→ ZBerk is fully
faithful.

Let X be a quasi-projective variety over K , and G a finite group acting on X by automor-
phisms over K . It is well known that the quotient X/G is represented by a quasi-projective
variety over K .

LEMMA 1.2. The quotient XBerk/G, under the canonically induced action of G on
XBerk, is represented by a Berkovich K-analytic space, and is naturally isomorphic to
(X/G)Berk. Moreover, the underlying topological space of XBerk/G coincides with the topo-
logical quotient of the topological space XBerk by G.

PROOF. We may assume that X is affine, say X = Spec A where A is a finite type
algebra over K . By [4, Remark 3.4.2], we know that XBerk is the set of all multiplicative
seminorms | · | on A that extend the valuation ‖ · ‖ on K . Set B = AG, the G-invariant part,
which is again a finite type algebra over K . Consider Y = Spec B and the map π : XBerk →
Y Berk given by the restriction of seminorms.

First we show that π is surjective. Take y = | · |y ∈ Y Berk, and let q be the kernel of | · |y ,
which is a prime ideal of B. Since A/B is finite, there exists a prime ideal p of A such that
p ∩ B = q. Let H(y) be the completion of the residue field κ = Frac(B/q) by the valuation
induced from |·|y . Since κ = Frac(B/q) ↪→ Frac(A/p) is finite, H(y) ↪→ Frac(A/p)⊗κH(y)

is a finite extension of fields, and hence the valuation | · |y extends (uniquely) to a valuation on
the latter field. We thus have a multiplicative seminorm x = | · |x on A, which extends | · |y ,
which shows the surjectivity of π .

For injectivity, suppose x = | · |x and x ′ = | · |x ′ are points of XBerk and satisfy x|B =
x ′|B . Let p and p′ be the kernels of | · |x and | · |x ′ , and q the kernel of their common restriction
on B. Since q = p ∩ B = p′ ∩ B, there exists g ∈ G such that g−1(p) = p′. Replacing x ′ by
its g-image, we may assume p = p′. Then, by the uniqueness of the extension of valuations,
| · |x and | · |x ′ coincide on Frac(A/p) ⊗κ H(y), and hence we have x = x ′.

Thus the map XBerk/G → Y Berk is set-theoretically bijective. By the construction, it is
clearly continuous. Since XBerk is compact and Y Berk is Hausdorff, XBerk/G → Y Berk is a
homeomorphism. Hence one can endow XBerk/G with the structure of a Berkovich strictly
K-analytic space induced from that of Y Berk = (X/G)Berk. It is now clear that the resulting
K-analytic space XBerk/G gives the quotient of XBerk by G in the category of Berkovich
K-analytic spaces. �

Let � be a lattice in PGL3(K). (One could replace 3 by any n by making trivial changes
below.) By Selberg’s lemma [2] we know there exists a torsion free normal subgroup �0 ⊆ �

of finite index. Set G = �/�0. As discussed earlier in this section, the quotient �2
K/�0 is

algebraizable, and is of the form Xan
�0

for a smooth projective variety X�0 over K , which is

obtained as the generic fiber of the algebraization X�0 of the formal scheme X̂�0 = �̂2
K/�0.

The rigid analytic space Xan
�0

/G (∼= �2
K/�) is then isomorphic to (X�0/G)an, hence is alge-

braized by the projective variety X�0/G. We define X� as X�0/G. It is independent of the
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choice of �0 because if �′
0 were another torsion free normal subgroup of � of finite index,

then both X�0/(�/�0) and X�′
0
/(�/�′

0) are naturally identified with X�0∩�′
0

/(
�/(�0 ∩�′

0)
)
.

We call a retraction τ , from a topological space X to a subspace Z, a deformation retrac-
tion if there is a homotopy from idX to τ that is constant on Z. (Usually the homotopy, rather
than its time 1 map, is called the deformation retraction. So we are slightly abusing standard
terminology.) We say that X deformation-retracts to Z if such a τ exists. In this case it is
standard that X and Z are homotopy equivalent.

LEMMA 1.3. Let � be a lattice in PGL3(K), and X� the projective variety over K

obtained as above. Then, for any finite field extension K ′/K , XBerk
� ⊗K K ′ deformation-

retracts to the quotient of the geometric realization of BK by �.
In particular, the homotopy type of XBerk

� ⊗K K ′ is the same as that of the topological
space BK/�.

PROOF. For the proof, we use the PGL3(K)-equivariant deformation retraction τ :
�

2,Berk
K ⊗K K ′ → BK constructed by Berkovich; see below for details. Since the quotient

map �
2,Berk
K ⊗K K ′ → (

�
2,Berk
K ⊗K K ′)/�0 is a topological covering map, we have the in-

duced deformation retraction XBerk
�0

⊗K K ′ = (
�

2,Berk
K ⊗K K ′)/�0 → BK/�0. The lemma

follows from this and Lemma 1.2. �

The rest of this section is devoted to a description of the deformation retraction τ :
�

2,Berk
K ⊗K K ′ → BK for any finite extension K ′/K , cf. [6] and [7, §5] (see also [9, XI,

§3]). Following convention, for a seminorm x = | · |x on a Banach algebra A and an element
f ∈ A, we often write |f (x)| in place of |f |x .

Set A = K[T0, T1, T2], and denote by Ad for d ≥ 0 the K-vector subspace of A con-
sisting of homogeneous polynomials of degree d . By Goldman-Iwahori [10], the geometric
realization of BK is naturally identified with the quotient of the space N of norms on the
vector space A1 over K , by the obvious scaling action of R>0. Here the topology on N is
the weakest one such that all real valued functions of the form | · | �→ |f |, for f ∈ A1, are
continuous.

If L = {L0, L1, L2} is a K-basis of A1, then we write ̃(L) for the subset of N consist-
ing of all norms | · | that have L as an orthogonal basis (i.e., | ∑2

i=0 aiLi | = maxi ‖ai‖ · |Li |).
The image of ̃(L) in BK = N /(R>0) is the apartment (L) corresponding to L. The
fact that BK is covered by apartments reflects the fact that any K-vector space norm has an
orthogonal basis. Let �̃ be the subset of ̃(L) defined by

�̃ = {| · | ∈ ̃(L)
∣∣ |L0| ≥ |L1| ≥ |L2| ≥ |πL0|

}
.

We define � as �̃/(R>0), which is the chamber in the apartment  = (L) whose three
vertices | · |0 and | · |1 and | · |2 are characterized by

|L0|0 = 1, |L1|0 = 1 and |L2|0 = 1 ;
|L0|1 = 1, |L1|1 = 1 and |L2|1 = ‖π‖ ;
|L0|2 = 1, |L1|2 = ‖π‖ and |L2|2 = ‖π‖ .
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These vertices correspond respectively to the R-modules

M0 = R L0 + R L1 + R L2

M1 = R L0 + R L1 + π−1R L2

M2 = R L0 + π−1R L1 + π−1R L2 .

The correspondence is that |·|i is the π-adic norm with unit ball Mi , i.e., for non-zero L ∈ A1,
|L|i = ‖π‖k , where k = max{l | L ∈ πlMi}. Notice that, in terms of the inhomogeneous
coordinates t1 = L1/L0, t2 = L2/L0, the chamber � is described as

� = {
x = | · |x ∈ 

∣∣ 1 ≥ |t1|x ≥ |t2|x ≥ ‖π‖} .

(For this to make sense, one must observe that |ti |x is invariant under scaling | · |x by elements
of R>0.)

Let us construct the retraction map τ : �
2,Berk
K ⊗K K ′ → BK . Recall that the affine

space A
3,Berk
K ′ is the set of all multiplicative seminorms on AK ′ = K ′[T0, T1, T2] that extend

the valuation ‖ · ‖ on K ′. It is endowed with the weakest topology with respect to which
all real valued functions on AK ′ of the form | · | �→ |f | for f ∈ AK ′ are continuous. Let
0 = | · |0 ∈ A

3,Berk
K ′ be the point corresponding to the origin, i.e., the seminorm that vanishes

on the ideal (T0, T1, T2). The projective plane P2,Berk
K ′ is, as a topological space, the quotient of

A
3,Berk
K ′ \{0} divided by the equivalence relation ∼ defined as follows: For x, y ∈ A

3,Berk
K ′ \{0},

x ∼ y if there exists a positive real number λ > 0 such that, for any d ≥ 0 and f ∈ AK ′,d , we
have |f (x)| = λd |f (y)|. Now, let �̃ be the pull-back of �

2,Berk
K ⊗K K ′ by the projection map

A
3,Berk
K ′ \ {0} → P

2,Berk
K ′ . Then �̃ is the subspace of A3,Berk

K ′ consisting of seminorms x = | · |x
whose restriction to A1 gives a norm on A1. Indeed, the restriction of x = | · |x to A1 fails
to be a norm if and only if there exists a non-zero K-rational linear form L ∈ A1 such that
|L(x)| = 0. That is, if and only if x lies outside �

2,Berk
K ⊗K K ′. By restricting seminorms

on AK ′ to seminorms on A, we therefore have a continuous map τ̃ : �̃ → N . This is the
promised retraction τ : �

2,Berk
K ⊗K K ′ → BK .

We next construct an inclusion j : BK ↪→ �
2,Berk
K ⊗K K ′. For any | · | ∈ N , take

an orthogonal basis L = {L0, L1, L2} of A1, i.e., one with the property | ∑2
i=0 aiLi | =

max ‖ai‖ · |Li |. Then one can extend | · | to a multiplicative seminorm on A = K[L0, L1, L2]
in an obvious way. Namely, for f = ∑

ν aνL
ν , written with the multi-index ν = (ν0, ν1, ν2),

we set |f | = maxν ‖aν‖ · |L|ν . This gives N → �̃, and thus the continuous map j : BK →
�

2,Berk
K ⊗K K ′ by passage to the quotients. It is clear that we have τ ◦ j = idBK

. Regarding

BK as a subspace of �
2,Berk
K ⊗K K ′ via j , the map τ of the previous paragraph is a retraction.

The next step is to show that it is a deformation retraction.
We need to construct a homotopy from the identity map on �

2,Berk
K ⊗K K ′ to j ◦ τ .

This is done by first constructing a natural homotopy � : τ−1(�) × [0, 1] → τ−1(�) from
idτ−1(�) to j ◦ τ , where � is the chamber constructed above from {T0, T1, T2}. Then one

extends the homotopy to all of �
2,Berk
K ⊗K K ′ by demanding PGL3(K)-equivariance. The

subspace τ−1(�) ⊆ �
2,Berk
K ⊗K K ′ is an affinoid subdomain, of which the affinoid algebra
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is of the form AK ′ = A ⊗K K ′ with A a strictly K-affinoid algebra. The explicit description
of (a formal model of) A is given in [15, p. 234]; in our setting, the formula there should be
read with T0 = l2, T1 = l1, and T2 = l0. In particular, τ−1(�) is an affinoid subdomain of the
Berkovich spectrum Y = M(B) of B = K ′〈t1, t2

t1
, π

t2

〉
.

Now it turns out that our situation is exactly the one in [7, Lemma 5.6], where X =
M(K ′) (= point) and

S = {
(r0, r1, r2) ∈ [0, 1]3

∣∣ r0r1r2 = ‖π‖} .

We have a bijection �
∼→ S by x �→ (|t1(x)|, |t2(x)|

|t1(x)| ,
‖π‖

|t2(x)|
)
. Furthermore, under this identi-

fication, our map τ coincides with the map τ there, restricted to our τ−1(�). Also, our map
j coincides with Berkovich’s θ . Hence, to construct the homotopy �, we can apply the ar-
gument in Step 2 of the proof of [7, Lemma 5.6]. Let us briefly sketch the construction to
facilitate the reader’s own checking.

Consider the K ′-affinoid torus T = {
x ∈ A

1,Berk
K ′ | |u(x)| = 1

}
corresponding to the

affinoid algebra K ′〈u, u−1〉, and let G be the kernel of the multiplication map T3 → T.
The K ′-analytic group G acts on Y , and moreover on τ−1(�), diagonally with respect to the
coordinates t1,

t2
t1

, π
t2

of AK ′ . Notice that this action respects the fibers of τ : τ−1(�) → �.
For any 0 ≤ r ≤ 1, let Gr be the subgroup of G consisting of x with |(ui − 1)(x)| ≤ r for all
i = 1, 2, 3. Clearly, G0 is the unit group {1}, and so we set g0 = 1. If 0 < r < 1, then Gr is a
polydisc (of radius r), and hence it has the maximal point gr ; if r = 1, we have G1 = G, and
hence has the maximal point g1 (cf. [4, p. 101] for the notion of ‘maximal point’). The map
[0, 1] → G mapping r �→ gr is continuous, which then gives rise to the desired homotopy

� : τ−1(�) × [0, 1] → τ−1(�), (y, r) �→ yr := gr ∗ y ,

where gr ∗ y denotes the ‘∗-multiplication’ defined in [4, §5.2]. (See [4, 6.1.3] for an explicit
description of yr .)

2. Construction of the fake plane. We fix R = Z2 throughout the rest of the paper
and suppress the subscript K = Q2 from �2, �̂2 and B.

We recall the following construction from [1]. Let O be the ring of algebraic integers in
Q(

√−7), �L be the unitary group of the standard Hermitian lattice O
[ 1

2

]3, and P�L its quo-
tient by scalars. To get a lattice in PGL3(Q2) we fix an embedding O → Z2. This identifies
P�L with a lattice in PGL3(Q2), indeed one of the two densest-possible lattices.

(The two meanings of “lattice” are a common difficulty in this subject. We use “Her-
mitian lattice” for a free module equipped with a Hermitian form, and “lattice” for a finite-
covolume discrete subgroup. Also, in [1] we defined �L as the isometry group of L

[ 1
2

] :=
L ⊗O O

[ 1
2

]
for a more-complicated Hermitian O-lattice L. But L

[ 1
2

] = O
[ 1

2

]3. So the defi-
nitions are equivalent.)

We write λ, λ̄ for (−1 ± √−7)/2. These are the two primes lying over 2, and we choose
the notation so that λ is a uniformizer of Z2 and λ̄ is a unit. Defining θ as λ − λ̄ = √−7,
we obtain an induced inner product on O

[1
2

]3
/θO

[1
2

]3 ∼= F3
7. This pairing is symmetric and
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nondegenerate, yielding a natural map from �L to the 3-dimensional orthogonal group over
F7. This descends to a homomorphism P�L → PO3(7) ∼= PGL2(7). We write �L for the
kernel.

LEMMA 2.1. �L ⊆ PGL3(Q2) is torsion-free.

PROOF. We adapt Siegel’s proof [18, §39] that the kernel of GLn(Z) → GLn(Z/N) is
torsion-free for any N > 2. Suppose given some nontrivial y ∈ �L with finite order, which
we may suppose is a rational prime p. Choose some lift x ∈ �L of it, so xp is a scalar σ . By
y ∈ �L, the image of x in O3(7) is a scalar, which is to say that x ≡ ±I mod θ . We claim:
for any n ≥ 1, x is congruent mod θn to some scalar σn ∈ O[ 1

2 ]. It follows easily that x itself
is a scalar, contrary to the hypothesis y �= 1.

We prove the claim if p �= 7 and then show how to adapt the argument if p = 7. We
established the claim for n = 1 in the previous paragraph, with σ1 = ±1. For the inductive
step suppose n ≥ 1 and x ≡ σnI mod θn, so x = σnI + θnT for some endomorphism T of
O[ 1

2 ]3. We must show that T is congruent mod θ to some scalar. Reducing xp = σ modulo

θn and θn+1 shows that θn divides σ − σ
p
n and that σ

p
n I + pσ

p−1
n θnT ≡ σI mod θn+1.

Rearranging shows that pσ
p−1
n T is the scalar (σ − σ

p
n )/θn, modulo θ . Since σn and p �= 7

are invertible mod θ , this shows that T is also a scalar mod θ . So σ is a scalar mod θn+1,
finishing the induction.

If p = 7 = −θ2 then we write x = σnI + θnT as before, but reduce x7 = σ modulo
θn+2 and θn+3 rather than modulo θn and θn+1. This shows that θn+2 divides σ −σ 7

n and that
σ 7

n I + 7σ 6
n θnT ≡ σI mod θn+3. The rest of the argument is the same. �

LEMMA 2.2. P�L → PGL2(7) is surjective.

PROOF. We showed in [1, Thm. 3.2] that P�L has two orbits on vertices of B, with
stabilizers L3(2) := PSL3(F2) ∼= PSL2(F7) and the symmetric group S4. Fix a vertex v of
the first type. By Lemma 2.1, �L is torsion-free, so the map P�L → PGL2(7) is injective
on this L3(2). Its image must be the unique copy of this group in PGL2(7), namely PSL2(7).
Next, the fourteen subgroups S4 of L3(2) are the P�L-stabilizers of the neighbors of v. These
are all conjugate in P�L, but not in L3(2). Therefore the image of P�L in PGL2(7) must be
strictly larger than PSL2(7), hence equal to PGL2(7). �

Since �L is torsion-free, non-Archimedean uniformization yields a Z2-scheme X�L .
We will write WL for it and WL for its generic fiber. We fix a Sylow 2-subgroup of PGL2(7),
which is a dihedral group D16 of order 16, and write �L for its preimage in P�L. (� is meant
to suggest Sylow.) Because �L is normal in �L, the quotient group D16 acts on �̂2/�L,
hence on WL by the uniqueness of algebraization. (Indeed all of P�L/�L = PGL2(7) acts.)
Because WL is projective and flat over Z2, the quotient WL/D16 is also projective and flat
over Z2. We write XL for its generic fiber WL/D16. This is our fake projective plane, proven
to be such in Theorem 2.4 below.

The reader familiar with Mumford’s construction [15] will recognize that our construc-
tions parallel his. (XL and XM are even commensurable, by [1, Theorem 3.3].) Mumford
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considered the projective unitary group �M of M
[1

2

]
, where M is a different Hermitian O-

lattice. He found that its action on M
[1

2

]
/θM

[1
2

]
induces a surjection P�M → PSL2(7). The

subgroup �M of P�M corresponding to a Sylow 2-subgroup D8 ⊆ PSL2(7) uniformizes his
fake plane. His �M is torsion-free, while our �L contains finite subgroups D8. The following
lemma is the key that allows the construction of “our” fake plane to work despite this torsion.

LEMMA 2.3. D16 acts freely on the closed points of WL. In particular, WL → XL is
étale and XL is smooth.

We remark that D16 has horrible stabilizers in the central fiber of WL, such as compo-
nents with pointwise stabilizer (Z/2)2.

PROOF. Recall from Section 1 that the closed points of WL are in bijection with the
�L-orbits on the points of �2. The freeness of D16’s action on this set of orbits is equivalent
to the freeness of �L’s action on �2. Since �L is a torsion-free uniform lattice, it is normal
hyperbolic in the sense of [16, §1], so it acts freely on �2. An infinite-order element of �L

cannot have fixed points in �2, because some power of it is a nontrivial element of �L. So
only the torsion elements of �L could have fixed points.

Because �L is torsion-free, the map �L → �L/�L = D16 preserves the orders of
torsion elements. Therefore every torsion element of �L has 2-power order. To show that
none of them have fixed points in �2, it suffices to show that no involution in �L has a fixed
point.

In fact, no involution in PGL3(Q2) has a fixed point in �2. To see this, suppose g ∈
GL3(Q2) represents an involution of PGL3(Q2). Its square is a scalar, so its eigenvalues are
±α for some α ∈ Q2 with α2 ∈ Q2. Since det g = ±α3 also lies in Q2, we have α ∈ Q2. So
g’s eigenspaces are defined over Q2. Now, �2 was defined as the set of closed points of P2

Q2
,

minus those lying on lines defined over Q2. Since g’s eigenspaces are defined over Q2, g has
no fixed points in �2. �

THEOREM 2.4. XL is a fake projective plane.

PROOF. First we count sixteen �L-orbits on vertices of B: the P�L-orbit of vertices
with stabilizer L3(2) splits into [PGL2(7) : L3(2)] = 2 orbits under �L, and the P�L-orbit
of vertices with stabilizer S4 splits into [PGL2(7) : S4] = 14 orbits under �L.

So Proposition 1.1 shows that χ(WL) = 16, q(WL) = 0, c2
1(WL) = 3c2(WL) = 144,

and that WL has ample canonical class. We now use three times the fact that WL → XL is
étale. First, since the degree is 16, we have χ(XL) = 1 and c2

1(XL) = 3c2(XL) = 9. Second,
XL has the same Kodaira dimension as WL (e.g. [3, Chap. I, (7.4)]), hence has general type.
Third, since WL has irregularity 0, the following lemma shows that XL also has irregularity 0.
From the definition of χ it follows that Pg (XL) = 0, completing the proof. �

LEMMA 2.5. Let X and Y be algebraic varieties over a field K , and f : Y → X a
finite flat morphism of degree not divisible by the characteristic of K . Let q > 0 be a positive
integer. Then, if Hq(Y,OY ) = 0, we have Hq(X,OX) = 0.
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PROOF. By flatness, f∗OY is locally free on X. Then the trace map trY/X : f∗OY →
OX, divided by the degree of f , gives a splitting of the inclusion OX ↪→ f∗OY . Since OX is
a direct summand of f∗OY , the lemma follows immediately. �

3. Distinctness from other fake planes. Our final result is the following:

THEOREM 3.1. The fake plane XL is not isomorphic over Q2 to any fake plane uni-
formized by a torsion-free subgroup of PGL3(Q2).

PROOF. Suppose X is a fake projective plane uniformized by a torsion-free subgroup
P� of PGL3(Q2). Although we don’t need it, we remark that there are three possibilities:
Mumford’s example and two due to Ishida–Kato [13]. By Lemma 1.3, the Berkovich space
XBerk has the homotopy type of B/P�. Since B is contractible and � acts freely (by the
absence of torsion), the fundamental group of XBerk is isomorphic to P�. Furthermore,
Lemma 1.3 assures us that the base extension XBerk ⊗Q2 K ′ has the same homotopy type,
for any finite extension K ′ of Q2.

Repeating the argument shows that XBerk
L ⊗Q2 K ′ is homotopy equivalent to B/�L, for

any finite extension K ′ of Q2. And Lemma 3.4 below shows that B/�L has the homotopy
type of the standard presentation complex of Z/42. That is, a circle with a disk attached by
wrapping its boundary 42 times around the circle. It follows that XBerk

L ⊗Q2 K ′ has funda-
mental group Z/42.

If X and XL were isomorphic over Q2 then they would be isomorphic over some finite
extension K ′ of Q2. Then the isomorphism X ⊗Q2 K ′ ∼= XL ⊗Q2 K ′ would imply XBerk ⊗Q2

K ′ ∼= XBerk
L ⊗Q2 K ′. But this is impossible since the left side has infinite fundamental group

and the right side has fundamental group Z/42. �

It remains to state and prove Lemma 3.4, describing the homotopy type of B/�L. The
rest of this section is devoted to this. The key is to understand the central fiber of WL/D16,
which in turn requires understanding the central fiber of WL. Recall that the central fiber of
�̂2 is a normal crossing divisor with properties described in Section 1.

The central fiber of WL is normal crossing because it is the quotient of the central fiber
of �̂2 by the group �L acting freely. To describe it we need to enumerate its components,
double curves and triple points. Our description in the next lemma refers to the set E of
“elements of the finite projective geometry”, meaning the seven points and seven lines of
the projective plane over F2. We regard these as the vertices of a graph, with two elements
incident if one corresponds to a point and the other to a line containing it. The symbols
e, f will always refer to elements of E , and the symbols p,p′, p′′ (resp. l, l′, l′′) will always
refer to points (resp. lines) of this finite geometry. The automorphism group of the graph is
PGL2(7) ∼= PSL2(7) � (Z/2) ∼= GL3(2) � (Z/2). Classically, the elements of PGL2(7) not
in PSL2(7) are called “correlations”; they exchange points and lines.

LEMMA 3.2. WL,0 has 16 components, 112 double curves and 112 triple points. In
more detail,
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(i) We may label WL,0’s components �, �∗ and Ce with e ∈ E , such that PGL2(7)

permutes the Ce’s the same way it acts on E . Furthermore, correlations exchange �

and �∗.
(ii) � and �∗ are disjoint.

(iii) De := Ce ∩ � and D∗
e := Ce ∩ �∗ are irreducible curves.

(iv) If e, f ∈ E are incident then each of Pef := �∩Ce ∩Cf and P ∗
ef := �∗ ∩Ce ∩Cf

is a single point.
(v) If e and f are distinct non-incident elements of E , then Ce ∩ Cf = ∅.

(vi) If e, f ∈ E are incident then Ce ∩ Cf has two components. One, which we call
Def , has self-intersection −1 in Ce and −2 in Cf . The other, called Df e, has these
numbers reversed.

(vii) The singular locus of each Ce is a curve of three components. For each f ∈ E
incident to e, exactly one of these components meets Cf ; we call it Eef .

(viii) If e, f ∈ E are incident then Qef := Eef ∩ Cf is a single point.
(ix) Each Ce has two triple-self-intersection points. At such a triple point the incident

double curves are Eef1 , Eef2 and Eef3 where f1, f2, f3 are the elements of the geom-
etry incident to e. We may label these triple points Reo, where o is a cyclic ordering
on {f1, f2, f3}, such that PGL2(7) permutes them the same way it permutes the or-
dered pairs (e, o).

The components fall into two PGL2(7)-orbits:

(1) {�,�∗}
(2) the fourteen Ce’s.

The double curves fall into four PGL2(7)-orbits:

(3) the seven Dp’s and seven D∗
l ’s

(4) the seven Dl’s and seven D∗
p’s

(5) the forty-two Def ’s
(6) the forty-two Eef ’s.

The triple points fall into three PGL2(7)-orbits:

(7) the twenty-one Pef ’s and twenty-one P ∗
ef ’s

(8) the forty-two Qef ’s
(9) the twenty-eight Reo’s.

Note that Pef = Pfe and P ∗
ef = P ∗

f e, unlike all other cases involving double subscripts.

PROOF. We will pass between vertices of B and components of �̂2 without comment
whenever it is convenient. By [1, Thm. 3.2], P�L acts on the vertices of B with two orbits,
having stabilizers L3(2) and S4. Write �̃ for a component of �̂2 with stabilizer L3(2). Recall
that �L is the kernel of a surjection P�L → PGL2(7). Since �L is torsion-free, L3(2) must
inject into PGL2(7), so its P�L-orbit splits into two �L-orbits. We write � for the �L-orbit
containing �̃, and �∗ for the other �L-orbit. We use the same notation for the corresponding
components of WL,0. The same argument shows that the P�L-orbit with stabilizer S4 splits



232 D. ALLCOCK AND F. KATO

into [PGL2(7) : S4] = 14 orbits under �L. There is only one conjugacy class of S4’s in
PGL2(7), represented by the stabilizer of a point of E . Therefore PGL2(7)’s action on these
components of WL,0 must correspond to its action on E . We have proven (i). We will call the
components other than �,�∗ the side components; this reflects our mental image of WL,0:
� above, �∗ below, and the other components around the sides.

By the explicit description of P�L in the proof of [1, Thm. 3.2], each of �̃’s neighbors
in B has P�L-stabilizer S4, hence is inequivalent to �̃. Therefore the union of the P�L-
translates of �̃ is the disjoint union of its components. Since �L permutes these components
freely, it follows that � and �∗ are disjoint, proving (ii). It also follows that �̃ maps isomor-
phically to �.

Therefore � is a copy of P2
F2

blown up at its seven F2-points. The curves along which
it meets other components are the seven exceptional divisors and the strict transforms of the
seven F2-rational lines. Suppose e ∈ E corresponds to one of these curves. The L3(2)-
stabilizer of e preserves exactly one element of E , namely e itself. Therefore it preserves
exactly one side component, namely Ce. So Ce must be the side component that meets �

along the chosen curve. In this way the 14 side components account for all the double curves
lying in �, proving that each Ce ∩� is irreducible. By symmetry the same holds for Ce ∩�∗.
This proves (iii), and then (iv) is immediate.

A simple counting argument shows that WL,0 has 112 double curves and 112 triple
points. We have already named the 28 double curves (De and D∗

e ) that lie in � or �∗, leav-
ing 84. We observe that if two side components meet then their intersection consists of an even
number of components. This is because for any distinct e, f ∈ E , there is some g ∈ PGL2(7)

exchanging them. So if a component of Ce ∩ Cf has self-intersection −1 in Ce and −2 in
Cf , then its g-image has these self-intersection numbers reversed, and therefore cannot be the
same curve.

If e, f are incident then Ce∩Cf contains Pef and is therefore nonempty. By the previous
paragraph it has evenly many components. Because there are 21 unordered incident pairs e, f ,
this accounts for either 42 or 84 of the 84 remaining double curves, according to whether
Ce ∩ Cf has 2 or 4 components. We will see soon that they account for exactly 42 of them.
For now all we need is that they account for at least 42.

We claim next that if e and f are a point and a nonincident line, then Ce∩Cf = ∅. This is
because such pairs {e, f } form a PGL2(7)-orbit of size 28. If Ce ∩ Cf �= ∅ then the argument
from the previous paragraph shows that such intersections account for at least 56 double
curves, while at most 42 remain unaccounted for. The same argument shows Ce ∩ Cf = ∅ if
e, f are distinct lines or distinct points. This proves (v).

Consider one of the 112 − 42 = 70 triple points outside � ∪ �∗, and the three (local)
components of WL,0 there. Two of these have the same type (i.e., they both correspond to
points or both to lines). Since these components meet, the previous paragraph shows that they
must coincide. It follows that each side-component has at least one curve of self-intersection.
We saw above that if e, f are incident then Ce ∩Cf has either two or four components, and in
the latter case these intersections account for all double curves not in � ∪ �∗. Therefore this
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case is impossible, proving (vi). Now (ii)–(vi) show that every one of the 112 − 28 − 42 =
42 remaining double curves is a self-intersection curve of a side component. So each side
component contains 42/14 = 3 such curves, proving the first part of (vii).

Next we claim that there exist incident e, f such that there is a triple point where two of
the (local) components are Ce and the third is Cf . To see this choose any incident e, f and
recall from (iv) that Ce ∩ Cf = Def ∪ Df e meets � ∪ �∗ exactly twice. So it must contain
some other triple point. By our understanding of double curves the third component there
must be Ce or Cf . After exchanging the names e and f if necessary, this proves the claim.
It follows by PGL2(7) symmetry that for any ordered pair (e, f ) with e, f incident, there is
such a triple point. In fact there is exactly one such triple point, since there are 42 ordered
incident pairs e, f and only 70 triple points outside � ∪ �∗. It follows from this uniqueness
that exactly one of the three self-intersection curves of Ce meets Cf , and it does so at a single
point. This proves the second half of (vii) and all of (viii).

The remaining 112−42−42 = 28 triple points must all be triple-self-intersections of the
Ce’s, so each Ce contains two of them. Now fix e and write τ and τ ′ for these self-intersection
points. Obviously the only double-curves that can pass through τ or τ ′ are Eef1 , Eef2 and
Eef3 . The S4 ⊆ PGL2(7) fixing e contains an element of order 3 cyclically permuting f1, f2

and f3, and fixing each of τ, τ ′ (since its order is 3). It follows that each of τ, τ ′ lies in all three
of the Eefi . Recall from Section 1 that each triple point of �̂2

K determines a cyclic ordering on
the three components of �̂2

K that pass throuch it. Therefore each of τ , τ ′ determines a cyclic
ordering on {Eef1, Eef2, Eef3}, hence on {f1, f2, f3}. Since S4 acts on {f1, f2, f3} as S3, both
cyclic ordering occur, and it follows that τ, τ ′ induce the two possible cyclic orderings. This
proves (ix).

The orbits listed in (1)–(9) merely summarize some of the information given in (i)–
(ix). �

Translating the lemma into the dual-complex language gives a complete description of
the dual complex of WL,0:

(1) Its vertices are �, �∗ and the Ce with e ∈ E .
(2) For each p, there is an edge Dp from � to Cp and an edge D∗

p from Cp to �∗.
(3) For each l there is an edge D∗

l from �∗ to Cl and an edge Dl from Cl to �.
(4) For each ordered pair (e, f ) with e, f incident, there is an edge Def from Ce to Cf

and an edge Eef from Ce to itself.
(5) For each point p and line l that are incident, there is a 2-cell Ppl = Plp with its

boundary attached along the loop Dp.Dpl.Dl , and a 2-cell P ∗
pl = P ∗

lp with its boundary
attached along the loop D∗

l .Dlp.D∗
p.

(6) For each ordered pair (e, f ) with e, f incident, there is a 2-cell Qef with its boundary
attached along the loop Def .Df e.Eef .

(7) For each e, there are 2-cells Reo and Reo′ where o, o′ are the two cyclic orderings on
{f1, f2, f3}. Their boundaries are attached along the loops Eef1 .Eef2 .Eef3 and Eef3 .Eef2 .Eef1 .
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Really we are interested in the complex B/�L, which is the same as the quotient of the
complex just described by the dihedral group D16. It is easy to see that if an element of D16

fixes setwise one of the cells just listed, then it fixes it pointwise. Therefore B/�L is a CW
complex with one cell for each D16-orbit of cells of B/�L. To tabulate these orbits we note
that D16 contains correlations, so � and �∗ are equivalent, and every Cl is equivalent to some
Cp . Next, the subgroup D8 sending points to points, and lines to lines, is the flag stabilizer in
L3(2). So it acts on the points (resp. lines) with orbits of sizes 1, 2 and 4. We write p,p′, p′′
(resp. l, l′, l′′) for representatives of these orbits. Since D16 normalizes D8, the correlations
in it exchange the orbit of points of size 1, resp. 2, resp. 4 with the orbit of lines of the same
size. That is, p, resp. p′, resp. p′′ is D16-equivalent to l, resp. l′, resp. l′′.

LEMMA 3.3. B/�L is the CW complex with four vertices �, Cp, Cp′ and Cp′′ , and
higher-dimensional cells as follows. Its 18 edges are

Dp Dp′ Dp′′ Dpp Dpp′ Dp′p Dp′p′′ Dp′′p′ Dp′′p′′
from � � � Cp Cp Cp′ Cp′ Cp′′ Cp′′
to Cp Cp′ Cp′′ itself Cp′ Cp Cp′′ Cp′ itself

D
∗
p D

∗
p′ D

∗
p′′ Epp Epp′ Ep′p Ep′p′′ Ep′′p′ Ep′′p′′

from Cp Cp′ Cp′′ Cp Cp Cp′ Cp′ Cp′′ Cp′′
to � � � itself itself itself itself itself itself

Its 15 two-cells and their boundaries are

Ppp : Dp.Dpp.D
∗
p Ppp′ : Dp.Dpp′ .D

∗
p′

Pp′p : Dp′ .Dp′p.D
∗
p Pp′p′′ : Dp′ .Dp′p′′ .D

∗
p′′

Pp′′p′ : Dp′′ .Dp′′p′ .D
∗
p′ Pp′′p′′ : Dp′′ .Dp′′p′′ .D

∗
p′′

Qpp : Dpp.Dpp.Epp Qpp′ : Dpp′ .Dp′p.Epp′
Qp′p : Dp′p.Dpp′ .Ep′p Qp′p′′ : Dp′p′′ .Dp′′p′ .Ep′p′′
Qp′′p′ : Dp′′p′ .Dp′p′′ .Ep′′p′ Qp′′p′′ : Dp′′p′′ .Dp′′p′′ .Ep′′p′′

Rp : Epp.E
2
pp′ Rp′ : Ep′p.E

2
p′p′′

Rp′′ : Ep′′p′ .E
2
p′′p′′

PROOF. The remarks above show that the D16-orbits on vertices of B/�L have repre-
sentatives �, Cp, Cp′ , Cp′′ . We add a bar to indicate their images, the vertices of B/�L.

By the presence of correlations, the edges De and D∗
e with e a line are D16-equivalent

to edges D∗
f and Df with f a point. Therefore orbit representatives for the D16-action on the

28 edges listed under (2) and (3) are Dp, Dp′ , Dp′′ , D∗
p, D∗

p′ , D∗
p′′ . We add a bar to indicate

their images in B/�L.
Again using the presence of correlations, the D16-orbits of ordered pairs (e, f ) with e

and f incident are in bijection with the D8-orbits of such pairs in which e is a point. These
D8-orbits are represented by

(3.1) (p, l), (p, l′), (p′, l), (p′, l′′), (p′′, l′) and (p′′, l′′),
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which therefore index the six D16-orbits on the 42 edges Def (resp. Eef ). The edges Dpl ,
Dpl′ , Dp′l , Dp′l′′ , Dp′′l′ and Dp′′ l′′ go from Cp to Cl , Cp to Cl′ , Cp′ to Cl , etc. Therefore their
images go from Cp to itself, Cp to Cp′ , Cp′ to Cp, etc. We call the images Dpp, Dpp′ , Dp′p,
etc. The edges Epl , Epl′ , Ep′l , Ep′l′′ , Ep′′l′ and Ep′′l′′ are loops based at Cp, Cp, Cp′ , Cp′ ,
Cp′′ and Cp′′ . We call their images Epp, Epp′ , Ep′p, etc.

The two-cells Ppl meet � but not �∗, while the P ∗
pl meet �∗ but not �. Therefore the

D16-orbits on these cells are in bijection with the D8-orbits on the Ppl . As in the previous
paragraph, orbit representatives are Ppl , Ppl′ , Pp′l , Pp′l′′ , Pp′′l′ and Pp′′ l′′ . We call their images
Ppp , Ppp′ , etc., and their attaching maps are easy to work out. For example, the boundary of
Ppl′ is given above as Dp.Dpl.Dl . The images of the first two terms are Dp and Dpp, and Dl

is D16-equivalent to D∗
p, so the image of the third term is D

∗
p . Therefore the boundary of the

disk Ppl′ is attached along Dp.Dpp.D
∗
p .

In the same way, D16-orbit representatives on the 2-cells Qef are Qpl , Qpl′ , Qp′l , Qp′l′′ ,
Qp′′ l′ and Qp′′l′′ . We indicate their images in a similar way to the other images: we add a bar
and convert subscript l’s to p’s. As an example we work out the boundary of Qp′p′′ , using the
boundary of Qp′l′′ given above as Dp′l′′ .Dl′′p′ .Ep′l′′ . The images of the first and third terms
are Dp′p′′ and Ep′p′′ . For the image of the second term, we apply a correlation sending l′′ to
p′′. So the ordered pair (l′′, p′) is D16-equivalent to some ordered pair (p′′,m) where m is a
line incident to p′′ and D8-equivalent to l′. This is D8-equivalent to some pair from (3.1), and
(p′′, l′) is the only possibility. Therefore Dl′′p′ is D16-equivalent to Dp′′ l′ , so the boundary of
Qp′p′′ is Dp′p′′ .Dp′′p′ .Ep′p′′ . The other cases are essentially the same.

For the D16-orbits on the 2-cells Reo we note that each of p,p′, p′′ is fixed by an element
of D8 that exchanges two of the three lines incident to that point. It follows that the D16-orbit
representatives on these 2-cells are Rpo, Rp′o′ and Rp′′o′′ , where o (resp. o′, o′′) is a fixed
cyclic ordering on the three lines incident to p (resp. p′, p′′). We write Rp, Rp′ and Rp′′ for
their images. Their boundary maps can be worked out using the following. The three lines
through p are l, l′, and another line which is D8-equivalent to l′. The three pairs (p′,m), with
m a line through p′, are D8-equivalent to (p′, l), (p′, l′′) and (p′, l′′). The three pairs (p′′,m)

with m a line through p′′, are D8-equivalent to (p′′, l′), (p′′, l′′) and (p′′, l′′). It follows that
the boundaries of Rp, Rp′ and Rp′′ are attached along the stated loops. �

LEMMA 3.4. B/�L is homotopy-equivalent to the standard presentation complex of
Z/42. In particular, its fundamental group is Z/42.

PROOF. To simplify matters we build up the 2-complex in several stages, suppressing
the bars from the names of cells to lighten the notation. First we define K1 as the 1-complex
with the 4 vertices and the edges Dp,Dp′ ,Dp′′ ,D∗

p,D∗
p′ ,D∗

p′′ . We collapse the last three
edges to points, leaving a rose with three petals, which we will call K2. If the boundary of a
2-cell to be attached later involves one of the collapsed edges then we will also collapse that
portion of the 2-cell’s boundary.
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We define K3 by attaching to K2 the edges

(3.2) Dpp,Dpp′ ,Dp′p,Dp′p′′ ,Dp′′p′,Dp′′p′′

(which are loops in K2) and the 2-cells P∗∗ having the same subscripts. We may deformation-
retract K3 back to K2 because each of the newly-adjoined edges is involved in exactly one of
the 2-cells. In particular, the loops (3.2) are homotopic rel basepoint to the inverses of Dp,
Dp , Dp′ , Dp′ , Dp′′ and Dp′′ .

We define K4 by attaching to K2 the edges

(3.3) Epp,Epp′ , Ep′p,Ep′p′′ , Ep′′p′ , Ep′′p′′

and the 2-cells Q∗∗ having the same subscripts. Just as for K3, we may deformation-retract
K4 back to K2. The loops (3.3) are homotopic rel basepoint to D2

p, Dp′Dp, DpDp′ , Dp′′Dp′ ,

Dp′Dp′′ and D2
p′′ .

Finally we define K5 by attaching the cells Rp, Rp′ , Rp′′ to K2. B/�L is homotopy-
equivalent to this, hence to the rose with three petals Dp, Dp′ , Dp′′ with three disks attached,
along the curves D2

p

(
Dp′Dp

)
2, DpDp′

(
Dp′′Dp′

)
2 and Dp′Dp′′

(
Dp′′Dp′′

)
2. Regarding these

as relators defining π1(B/�L), the third one allows us to eliminate Dp′ and replace it by D−5
p′′ .

Then the second one allows us to eliminate Dp and replace it by D13
p′′ . The remaining relation

then reads D42
p′′ = 1. �
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