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Abstract. We determine the automorphism groups of unbounded homogeneous do-
mains with boundaries of light cone type. Furthermore we present a group-theoretic character-
ization of one of the domains. As a corollary we prove the non-existence of compact quotients
of the homogeneous domain. We also give a counterexample of the characterization.

Introduction. We study some unbounded homogeneous domains, mainly concerned
with a characterization of the domains by their automorphism groups. The group-theoretic
characterization problem of complex manifolds is studied widely in complex analysis. This
problem asks whether the automorphism group of a complex manifold determines only one
biholomorphic equivalence class of complex manifolds under some conditions. Since there
are many complex manifolds whose automorphism groups are trivial, this characterization
problem does not make sense for such manifolds. Hence let us restrict our attention only
to homogeneous complex manifolds, or in our case, homogeneous domains in the complex
euclidean spaces.

By H. Cartan, it was shown that the automorphim groups of bounded domains have
Lie group structures, and this result leads us to various studies of bounded homogeneous
domains, e.g. normal j-algebra of automorphim groups (see [6]). Normal j-algebras determine
bounded homogeneous domains with 1-1 correspondence, and therefore characterize bounded
homogeneous domains in this category. It was shown by Dotti-Miatello that any irreducible
homogeneous domain is determined by its automorphism group up to complex conjugates [3].

For unbounded homogeneous domains, in contrast to bounded domains, automorphim
groups are, in general, not Lie groups, and we do not have a general theory of automorphim
groups and the characterization theorem. Therefore any unbounded homogeneous domain is
of interest, and some important cases are studied by Shimizu and Kodama [4], [5], Byun,
Kodama and Shimizu [1], etc.

In this paper, we study other interesting unbounded homogeneous domains and give the
group-theoretic characterization for one of the domains. Also we give a counterexample of the
group-theoretic characterization for some domains. In order to describe our results, let us fix
notations here. If A1, . . . , Ak are square matrices, diag[A1, . . . , Ak] denotes the matrix with
A1, . . . , Ak in the diagonal blocks and 0 in all other blocks. Let� be a complex manifold. An
automorphism of � means a biholomorphic mapping of � onto itself. We denote by Aut(�)
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the group of all automorphisms of � equipped with the compact-open topology. � is called
homogeneous if Aut(�) acts transitively on �. The purpose of our paper is that we would
describe the automorphim group of the unbounded domain

Dn,1 = {
(z0, . . . , zn) ∈ Cn+1 : −|z0|2 + |z1|2 + · · · + |zn|2 > 0

}
,

and give the characterization theorem of Dn,1 by the automorphim group Aut(Dn,1). Dn,1 is
analogous to the de Sitter space{

(x1, . . . , xn) ∈ Rn : −x2
1 + x2

2 + · · · + x2
n = 1

}
.

The de Sitter space has a well-known property called the Calabi-Markus phenomenon, that is,
any isometry subgroup which acts properly discontinuously on the de Sitter space is finite [2].
This phenomenon implies that the de Sitter space has no compact quotient. It is interesting
whether similar results occur in other geometry. We will study subgroups of the automorphism
group Aut(Dn,1) which act properly discontinuously on Dn,1 and prove the non-existence
of compact quotients of Dn,1. It is not the precise Calabi-Markus phenomenon, but a rigid
phenomenon. For these purposes, we also need to consider the domain

Cn,1 = {
(z0, . . . , zn) ∈ Cn+1 : −|z0|2 + |z1|2 + · · · + |zn|2 < 0

}
,

the exterior ofDn,1 in Cn+1. To describe the automorphism groups Aut(Dn,1) and Aut(Cn,1),
put

GU(n, 1) = {A ∈ GL(n+ 1,C) : A∗JA = ν(A)J, for some ν(A) ∈ R>0} ,
where J = diag[−1, En]. Consider C∗ as a subgroup of GU(n, 1):

C∗ � {
diag[α, . . . , α] ∈ GL(n+ 1,C), α ∈ C∗} ⊂ GU(n, 1) .

Since U(n, 1) = {A ∈ GL(n + 1,C) : A∗JA = J } ⊂ GU(n, 1) acts transitively on each
level sets of −|z0|2 + |z1|2 + · · · + |zn|2( �= 0), and C∗ acts on Dn,1 and Cn,1, GU(n, 1) is a
subgroup of the automorphism groups of these two domains Dn,1 and Cn,1. It can be easily
seen that Cn,1 and Dn,1 are homogeneous. Now we state our main results.

THEOREM 3.1. Aut(Dn,1) = GU(n, 1) for n > 1.

We give the group-theoretic characterization theorem of Dn,1 in the class of complex
manifolds containing Stein manifolds.

THEOREM 5.1. Let M be a connected complex manifold of dimension n + 1 that
is holomorphically separable and admits a smooth envelope of holomorphy. Assume that
Aut(M) is isomorphic to Aut(Dn,1) as topological groups. Then M is biholomorphic toDn,1.

For the domain Cn,1, the characterization theorem was shown by Byun, Kodama and
Shimizu [4] (see also the remark before Theorem 2.2).

Our paper organizes as follows. In Section 1, we will recall the notion of Reinhardt
domains and Kodama-Shimizu’s generalized standardization theorem, which is the key lemma
for our theorem. Also we record some results, which will be used in the proof of Theorem 5.1
several times. To determine Aut(Dn,1) we need an explicit form of the automorphism group
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Aut(Cn,1). In Section 2 we determine Aut(Cn,1). We determine the automorphism groups of
Dn,1 in Section 3. We will show the non-existence of compact quotients ofDn,1 in Section 4,
using the Calabi-Markus phenomenon. In Section 5 we prove the characterization theorem of
Dn,1 by its automorphism group Aut(Dn,1). In Section 6, we construct a counterexample of
the group-theoretic characterization of unbounded homogeneous domains.

THEOREM 6.1. There exist unbounded homogeneous domains in Cn, n ≥ 5 which are
not biholomorphically equivalent, while its automorphism groups are isomorphic as topolog-
ical groups.

Acknowledgment. The authors would like to thank Professor Hideyuki Ishi and Professor Ryoichi
Kobayashi for several interesting discussions. The authors would also like to thank Professor Akio
Kodama for introducing his paper.

1. Preliminary. In order to establish terminology and notation, we recall some basic
facts about Reinhardt domains, following Kodama and Shimizu [4], [5] for convenience.

Let G be a Lie group and � a domain in Cn. Consider a continuous group homomor-
phism ρ : G −→ Aut(�). Then the mapping

G×� 	 (g, x) 
−→ (ρ(g))(x) ∈ �
is continuous, and in fact Cω. We say that G acts on � as a Lie transformation group through
ρ. Let T n = (U(1))n, the n-dimensional torus. T n acts as a holomorphic automorphism
group on Cn in the following standard manner:

T n × Cn 	 (α, z) 
−→ α · z := (α1z1, . . . , αnzn) ∈ Cn .

A Reinhardt domain � in Cn is, by definition, a domain which is stable under this standard
action of T n. Namely, there exists a continuous map T n ↪→ Aut(�). We denote the image of
T n of this inclusion map by T (�).

Let f be a holomorphic function on a Reinhardt domain �. Then f can be expanded
uniquely into a Laurent series

f (z) =
∑
ν∈Zn

aνz
ν ,

which converges absolutely and uniformly on any compact set in �. Here zν = z
ν1
1 · · · zνnn for

ν = (ν1, . . . , νn) ∈ Zn.
(C∗)n acts holomorphically on Cn as follows:

(C∗)n × Cn 	 ((α1, . . . , αn), (z1, . . . , zn)) 
−→ (α1z1, . . . , αnzn) ∈ Cn .

We denote by �(Cn) the group of all automorphisms of Cn of this form. For a Reinhardt
domain � in Cn, we denote by �(�) the subgroup of �(Cn) consisting of all elements of
�(Cn) leaving � invariant. We need the following two lemmas to prove the characterization
theorem.
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LEMMA 1.1 ([4]). Let � be a Reinhardt domain in Cn . Then �(�) is the centralizer
of T (�) in Aut(�).

LEMMA 1.2 (Generalized Standardization Theorem [5]). Let M be a connected com-
plex manifold of dimension n that is holomorphically separable and admits a smooth envelope
of holomorphy, and let K be a connected compact Lie group of rank n. Assume that an in-
jective continuous group homomorphism ρ of K into Aut(�) is given. Then there exists a
biholomorphic map F of M onto a Reinhardt domain� in Cn such that

Fρ(K)F−1 = U(n1)× · · · × U(ns) ⊂ Aut(�) ,

where
∑s
j=1 nj = n.

We record some results, which will be used in the proof of Theorem 5.1 several times.

LEMMA 1.3. Let D and D′ be domains in Cn. Then the automorphism groups of the
domains C ×D, C∗ ×D′ and (C ×D) ∪ (C∗ ×D′) are not Lie groups.

PROOF. For any nowhere vanishing holomorphic function u on Cn,

f (z) = (u(z1, . . . , zn)z0, z1, . . . , zn)

is an automorphism on each domain. Indeed, the inverse is given by

g(z) = (u(z1, . . . , zn)
−1z0, z1, . . . , zn) .

Thus the automorphism groups of these domains have no Lie group structures. �

LEMMA 1.4. Let p, q, k be non-negative integers and p+ q ≥ 2. For p+ q > k, any
Lie group homomorphism

ρ : SU(p, q) −→ GL(k,C)

is trivial.

PROOF. Put n = p + q . It is enough to show that the Lie algebra homomorphism

dρ : su(p, q) −→ gl(k,C)

is trivial. Consider its complex linear extension

dρC : su(p, q)⊗R C −→ gl(k,C) .

Since su(p, q) ⊗R C = sl(n,C) and sl(n,C) is a simple Lie algebra, dρC is injective or
trivial. On the other hand, dimC su(p, q) ⊗R C = n2 − 1 > k2 = dimC gl(k,C). Thus dρC
must be trivial, and so is dρ. �

2. The automorhpsim group of Cn,1. In this section, we consider the automorphism
group Aut(Cn,1) of

Cn,1 = {
(z0, . . . , zn) ∈ Cn+1 : −|z0|2 + |z1|2 + · · · + |zn|2 < 0

}
.



ON A CHARACTERIZATION OF UNBOUNDED HOMOGENEOUS DOMAINS 165

THEOREM 2.1. For f = (f0, f1, f2, . . . , fn) ∈ Aut(Cn,1),

f0(z0, z1, z2, . . . , zn) = c

(
z1

z0
,
z2

z0
, . . . ,

zn

z0

)
z0 or c

(
z1

z0
,
z2

z0
, . . . ,

zn

z0

)
z−1

0 ,

and

fi(z0, z1, z2, . . . , zn) = f0(z0, z1, z2, . . . , zn)

∑n
j=0 aij zj∑n
j=0 a0j zj

, for i = 1, . . . , n ,

where c is a nowhere vanishing holomorphic function on Bn, and the matrix (aij )0≤i,j≤n is
an element of PU(n, 1).

PROOF. First we remark that Cn,1 is biholomorphic to the product domain C∗ ×Bn. In
fact, a biholomorphic map is given by

	 : Cn,1 	 (z0, z1, z2, . . . , zn) 
→
(
z0,

z1

z0
, . . . ,

zn

z0

)
∈ C∗ × Bn .

Therefore, we consider the automorphism group of C∗ × Bn.
Let (w0, w1, . . . , wn) be a coordinate of C∗ × Bn, and

γ = (γ0, γ1, . . . , γn) ∈ Aut(C∗ × Bn) .

Fix (w1, . . . , wn) ∈ Bn. Then, by the definition, γi(·, w1, . . . , wn), for i = 1, . . . , n, are
bounded holomorphic functions on C∗. The Riemann removable singularities theorem implies
that γi(·, w1, . . . , wn) extends to an entire function. By the Liouville theorem, γi(·, w1, . . . ,

wn) for i = 1, . . . , n are constant functions. Hence γi , for i = 1, . . . , n, do not depend on
w0. In the same manner, we see that, for the inverse

τ = (τ0, τ1, . . . , τn) = γ−1 ∈ Aut(C∗ × Bn)

of γ , τi , for i = 1, . . . , n, are independent of w0. It follows that

γ := (γ1, γ2, . . . , γn) ∈ Aut(Bn) .

It is well-known (see [6]) that γ ∈ Aut(Bn) is a linear fractional transformation of the form

γi(w1, w2, . . . , wn) = ai0 + ∑n
j=1 aijwj

a00 + ∑n
j=1 a0jwj

, i = 1, 2, . . . , n ,

where the matrix (aij )0≤i,j≤n is an element of PU(n, 1).
Next we consider γ0 of γ and τ0 of τ . By regarding γ with the standard action of Aut(Bn)

on C∗ × Bn, we obtain a biholomorphic map

γ ◦ γ−1(w0, w1, w2, . . . , wn) = (γ0(w0, γ
−1(w1, w2, . . . , wn)),w1, w2, . . . , wn)

on C∗ × Bn. Thus for fixed (w1, w2, . . . , wn) ∈ Bn, γ0 is bijective on C∗ with respect to
w0, and τ0(w0, γ (w1, w2, . . . , wn)) is its inverse. Since Aut(C∗) = {cw±1 : c ∈ C∗}, we
have γ0 = c(w1, w2, . . . , wn)w0 or c(w1, w2, . . . , wn)w

−1
0 , where c(w1, w2, . . . , wn) is a

nowhere vanishing holomorphic function on Bn.
Since 	−1Aut(C∗ × Bn)	 = Aut(Cn,1), we have shown the theorem. �
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We remark that the group-theoretic characterization of the domain C∗ ×Bn is proved by
J. Byun, A. Kodama and S. Shimizu [1], and in their paper more general domains are treated.

THEOREM 2.2 ([1]). Let M be a connected complex manifold of dimension n+ 1 that
is holomorphically separable and admits a smooth envelope of holomorphy. Assume that
Aut(M) is isomorphic to Aut(Cn,1) as topological groups. Then M is biholomorphic to Cn,1.

3. The automorphism Group of Dn,1. In this section, we determine the automor-
phism group Aut(Dn,1) of

Dn,1 = {
(z0, . . . , zn) ∈ Cn+1 : −|z0|2 + |z1|2 + · · · + |zn|2 > 0

}
,

the exterior of Cn,1. We assume n > 1. We show the following theorem using Theorem 2.1
in the preceding section.

THEOREM 3.1. Aut(Dn,1) = GU(n, 1) for n > 1.

PROOF. Let f = (f0, f1, . . . , fn) ∈ Aut(Dn,1). If z′0 ∈ C is fixed, then each of the
holomorphic functions fi(z′0, z1, . . . , zn) for i = 0, . . . , n, on Dn,1 ∩ {z0 = z′0} extends to
a holomorphic function on Cn+1 ∩ {z0 = z′0} by Hartogs’ extension theorem. Hence, when
z0 varies, we obtain an extended holomorphic map f̃ : Cn+1 −→ Cn+1 i.e. f̃ |Dn,1 = f .
The same consideration for f−1 ∈ Aut(Dn,1) shows that there exists a holomorphic map
g : Cn+1 −→ Cn+1, such that g|Dn,1 = f−1. Since g ◦ f̃ = id and f̃ ◦ g = id on Dn,1, the
uniqueness of analytic continuation shows that g ◦ f̃ = id and f̃ ◦ g = id on Cn+1. Hence
we have f̃ ∈ Aut(Cn+1), or Aut(Dn,1) ⊂ Aut(Cn+1).

From now on, we write f for f̃ . Now we know that f |Cn,1 ∈ Aut(Cn,1). By Theorem 2.1
of the preceding section,

f0(z0, z1, z2, . . . , zn) = c

(
z1

z0
,
z2

z0
, . . . ,

zn

z0

)
z±1

0 ,

and

fi(z0, z1, z2, . . . , zn) = f0(z0, z1, z2, . . . , zn)γi

(
z1

z0
,
z2

z0
, . . . ,

zn

z0

)
,

for i = 1, . . . , n, on Cn,1, where c is a nowhere vanishing holomorphic function on Bn and

γi(w1, . . . , wn) = ai0 + ∑n
j=1 aijwj

a00 + ∑n
j=1 a0jwj

.

If

f0(z0, z1, z2, . . . , zn) = c

(
z1

z0
,
z2

z0
, . . . ,

zn

z0

)
z−1

0 ,

considering the Taylor expansion of c at the origin in C, we see that f0 is not holomorphic at
z0 = 0, which contradicts to the fact that f0 is an entire holomorphic function. Thus

f0(z0, z1, z2, . . . , zn) = c

(
z1

z0
,
z2

z0
, . . . ,

zn

z0

)
z0 .
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Furthermore, by the Taylor expansion of c at the origin, we see that c is a polynomial function
of degree 1, since f0 has no singular point in Cn+1, and therefore, f0 is a linear function∑n
j=0 cj zj . Then the entire functions fi (i = 1, . . . , n) are

fi(z0, z1, z2, . . . , zn)= γi

(
z1

z0
,
z2

z0
, . . . ,

zn

z0

)
f0(z0, z1, z2, . . . , zn)

= ai0 + ∑n
j=1 aij

zj
z0

a00 + ∑n
j=1 a0j

zj
z0

( n∑
j=0

cj zj

)

=
(∑n

j=0 aij zj
)(∑n

j=0 cj zj
)∑n

j=0 a0j zj
.

Then
∑n
j=0 cj zj must be divided by

∑n
j=0 a0j zj since fi has no singular point in Cn+1. We

now write
n∑
j=0

cj zj = C

n∑
j=0

a0j zj ,

where C is a non-zero constant. Consequently,

f (z0, . . . , zn)=
(
C

n∑
j=0

a0j zj , C

n∑
j=0

a1j zj , . . . , C

n∑
j=0

anj zj

)
.

Thus we have shown the theorem. �

4. The non-existence of compact quotients of Dn,1. In this section, we prove the
following theorem:

THEOREM 4.1. Dn,1 has no compact quotients by a discrete subgroup of Aut(Dn,1)
acting properly discontinuously.

We remark that Cn,1 has compact quotients since Bn and C∗ have compact quotients.
Recall the following result called the Calabi–Markus phenomenon:

LEMMA 4.2 (Calabi–Markus [2], Wolf [7]). Let � be a subgroup ofO(q+ 1, p) act-
ing properly discontinuously on{
(x1, . . . , xp, xp+1, . . . , xp+q+1) ∈ Rp+q+1 : −x2

1 − · · · − x2
p + x2

p+1 + · · · + x2
p+q+1 = 1

}
,

where 1 < p ≤ q . Then � is finite.

PROOF. From Theorem 3.1, we know that Aut(Dn,1) = GU(n, 1) = R>0 × U(n, 1),
which acts on the complex euclidean space as linear transformations. We regardR>0×U(n, 1)
as a subgroup of R>0 ×O(2n, 2).

Suppose that there exists a discrete subgroup

� = {fm}∞m=1 ⊂ R>0 ×O(2n, 2)
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such that � acts properly discontinuously on Dn,1 and that the quotient Dn,1/� is compact.
By Selberg’s lemma, we may assume without loss of generality that � is torsion free. Set
fm = (rm, Tm), where rm ∈ R>0 and Tm ∈ O(2n, 2). It is clear that � is not included in
O(2n, 2) by Lemma 4.2. We consider two cases.

First we consider the case where there exists the minimum of the set {rm | 1 < rm}. We
denote the minimum by R:

R = min{rm | 1 < rm} .
Then we see that, for any rm, there exists an integer l such that rm = Rl . Therefore we can
write

� = {
fl,k = (Rl, Tl,k)

}
l∈Z,k∈N

by changing the indices. Put �0 = {f0,k}, a subgroup of O(2n, 2). By Lemma 4.2, it follows
that �0 is a finite group. Since �0 is torsion free, �0 = {id}. Therefore, � is the group
generated by the element (R, T ) ∈ �. Hence we see that Dn,1/� is not compact.

Next we consider the case where there does not exist the minimum of the set {rm | 1 <
rm}. Let R′ be the infimum of the set {rm | 1 < rm}:

R′ = inf{rm | 1 < rm} .
Then, for any ε > 0, by arranging the indices of the elements of �, we can take an infinite
distinct sequence

R′ + ε > r1 > r2 > r3 > · · · > rm > · · · > R′ .

Let

� = {z0 = 0} ⊂ Cn+1

and

K = {
z0 = 0, 1 ≤ |z1|2 + |z2|2 + · · · + |zn|2 ≤ (R′ + ε)2 + 1

} ⊂ Cn+1 .

It is clear that K is compact in Dn,1. Let γm = (rm, Tm). We can easily see that γm(�) ∩�
contains a nontrivial linear subspace by the dimension formula of linear map. Then there exist
vm ∈ γm(�)∩� andwm ∈ � such that vm = γm(wm) and that |wm| = 1. Note thatwm ∈ K .
We see that |vm| = rm|wm| = rm ≤ R′ + ε, since vm ∈ �, and thus vm ∈ K . We obtain that
γm(K)∩K �= ∅ for anym ≥ 1. However this is a contradiction since � acts onDn,1 properly
discontinuously. The proof is complete. �

5. The characterization of Dn,1 by its automorphism group. Now we prove the
following characterization theorem.

THEOREM 5.1. Let M be a connected complex manifold of dimension n + 1 that
is holomorphically separable and admits a smooth envelope of holomorphy. Assume that
Aut(M) is isomorphic to Aut(Dn,1) = GU(n, 1) as topological groups. Then M is biholo-
morphic to Dn,1.



ON A CHARACTERIZATION OF UNBOUNDED HOMOGENEOUS DOMAINS 169

PROOF. Denote by ρ0 : GU(n, 1) −→ Aut(M) a topological group isomorphism. Let
us consider U(1) × U(n) as a matrix subgroup of GU(n, 1) in the natural way, and identify
U(n) with {1} × U(n). Then, by Theorem 1.2, there is a biholomorphic map F fromM onto
a Reinhardt domain � in Cn+1 such that

Fρ0(U(1)× U(n))F−1 = U(n1)× · · · × U(ns) ⊂ Aut(�) ,

where
∑s
j=1 nj = n+1. Then, after a permutation of coordinates if we need, we may assume

Fρ0(U(1)× U(n))F−1 = U(1)× U(n). We define an isomorphism

ρ : GU(n, 1) −→ Aut(�)

by ρ(g) := F ◦ ρ0(g) ◦ F−1. We will prove that � is biholomorphic to Dn,1.
Put

T1,n = {diag[u1, u2En] ∈ GL(n+ 1,C) : u1, u2 ∈ U(1)} ⊂ GU(n, 1) .

Since T1,n is the center of the group U(1) × U(n), we have ρ(T1,n) = T1,n ⊂ Aut(�).
Consider C∗ as a subgroup ofGU(n, 1). So C∗ represents center ofGU(n, 1). Since ρ(C∗) is
commutative with T n+1, Lemma 1.1 tells us that ρ(C∗) ⊂ �(�), that is, ρ(C∗) is represented
by diagonal matrices. Furthermore, ρ(C∗) commutes with ρ(U(1)×U(n)) = U(1)×U(n),
so that we have

ρ
(
e2πi(s+it )) = diag

[
e2πi{a1s+(b1+ic1)t}, e2πi{a2s+(b2+ic2)t}En

] ∈ ρ(C∗) ,

where s, t ∈ R, a1, a2 ∈ Z, b1, b2, c1, c2 ∈ R. Since ρ is injective, a1, a2 are relatively prime
and (c1, c2) �= (0, 0). To consider the actions of ρ(C∗) and U(1)× U(n) on � together, we
put

G(U(1)× U(n)) = {
e−2πtdiag[u0, U ] ∈ GU(n, 1) : t ∈ R, u0 ∈ U(1), U ∈ U(n)} .

Then we have

G := ρ(G(U(1)× U(n)))

= {
diag[e−2πc1tu0, e

−2πc2tU ] ∈ GL(n+ 1,C) : t ∈ R, u0 ∈ U(1), U ∈ U(n)} .
Note that G is the centralizer of T1,n = ρ(T1,n) in Aut(�).

Let f = (f0, f1, . . . , fn) ∈ Aut(�) \G and consider Laurent expansions of its compo-
nents:

f0(z0, . . . , zn)=
∑

ν∈Zn+1

a(0)ν zν ,(1)

fi(z0, . . . , zn)=
∑

ν∈Zn+1

a(i)ν z
ν, 1 ≤ i ≤ n .(2)
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If f is a linear map of the form⎛⎜⎜⎜⎜⎝
a
(0)
(1,0,...,0) 0 · · · 0

0 a
(1)
(0,1,0,...,0) · · · a

(1)
(0,...,0,1)

...
...

. . .
...

0 a
(n)
(0,1,0,...,0) · · · a

(n)
(0,...,0,1)

⎞⎟⎟⎟⎟⎠ ∈ GL(n+ 1,C) ,

then f commutes with ρ(T1,n), which contradicts f /∈ G. Thus for any f ∈ Aut(�) \ G,
there exists ν ∈ Zn+1( �= (1, 0, . . . , 0)) such that a(0)ν �= 0 in (1), or there exists ν ∈ Zn+1( �=
(0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)) such that a(i)ν �= 0 in (2) for some 1 ≤ i ≤ n.

REMARK 5.2. We remark here that, in (1) and (2), there are no negative degree terms
of z1, . . . , zn, since � ∪ {zi = 0} �= ∅ for 1 ≤ i ≤ n by the U(n)-action on �, and since
the Laurent expansion of a holomorphic function on � are globally defined on �. Write
ν = (ν0, ν

′) = (ν0, ν1, . . . , νn) and |ν′| = ν1 + · · · + νn. Let us consider ν′ ∈ Zn≥0 and put∑
ν

′ =
∑

ν0∈Z,ν ′∈Zn≥0

from now on.

CLAIM 5.3. a1 = ±1, c1c2 �= 0, and λ := c2/c1 = a2/a1 ∈ Z \ {0}.
PROOF. To prove the claim, we divide three cases.

Case (i): c1c2 �= 0.
Since C∗ is the center of GU(n, 1), it follows that, for any f ∈ Aut(�) \G,

f ◦ ρ(e2πi(s+it )) = ρ(e2πi(s+it )) ◦ f .
By (1) and (2), this equation means

e2πi{a1s+(b1+ic1)t}∑
ν

′
a(0)ν zν =

∑
ν

′
a(0)ν (e2πi{a1s+(b1+ic1)t}z0)

ν
(0)
0 (e2πi{a2s+(b2+ic2)t}z′)ν ′

=
∑
ν

′
a(0)ν e2πi{a1s+(b1+ic1)t}ν(0)0 e2πi{a2s+(b2+ic2)t}|ν ′|zν

and

e2πi{a2s+(b2+ic2)t}∑
ν

′
a(i)ν z

ν =
∑
ν

′
a(i)ν (e

2πi{a1s+(b1+ic1)t}z0)
ν
(i)
0 (e2πi{a2s+(b2+ic2)t}z′)ν ′

=
∑
ν

′
a(i)ν e

2πi{a1s+(b1+ic1)t}ν(i)0 e2πi{a2s+(b2+ic2)t}|ν ′|zν ,

for 1 ≤ i ≤ n. Thus for each ν ∈ Zn+1, we have

e2πi{a1s+(b1+ic1)t}a(0)ν = e2πi{a1s+(b1+ic1)t}ν(0)0 e2πi{a2s+(b2+ic2)t}|ν ′|a(0)ν ,

and

e2πi{a2s+(b2+ic2)t}a(i)ν = e2πi{a1s+(b1+ic1)t}ν(i)0 e2πi{a2s+(b2+ic2)t}|ν ′|a(i)ν ,
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for 1 ≤ i ≤ n. Therefore, if a(0)ν �= 0 for ν = (
ν
(0)
0 , ν′) = (

ν
(0)
0 , ν

(0)
1 , . . . , ν

(0)
n

)
, we have{

a1
(
ν
(0)
0 − 1

) + a2
(
ν
(0)
1 + · · · + ν

(0)
n

) = 0 ,

c1
(
ν
(0)
0 − 1

) + c2
(
ν
(0)
1 + · · · + ν

(0)
n

) = 0 .
(3)

Similarly, if a(i)ν �= 0 for ν = (
ν
(i)
0 , ν′) = (

ν
(i)
0 , ν

(i)
1 , . . . , ν

(i)
n

)
, we have{

a1ν
(i)
0 + a2

(
ν
(i)
1 + · · · + ν

(i)
n − 1

) = 0 ,

c1ν
(i)
0 + c2

(
ν
(i)
1 + · · · + ν

(i)
n − 1

) = 0 ,
(4)

for 1 ≤ i ≤ n.
Suppose a(0)ν �= 0 for some ν = (

ν
(0)
0 , ν

(0)
1 , . . . , ν

(0)
n

) �= (1, 0, . . . , 0). Then, by (3) and

the assumption c1c2 �= 0, it follows that ν(0)0 −1 �= 0 and ν(0)1 +· · ·+ν(0)n �= 0. Hence c2/c1 ∈
Q by (3). On the other hand, if a(i)ν �= 0 for some 1 ≤ i ≤ n and ν = (

ν
(i)
0 , ν

(i)
1 , . . . , ν

(i)
n

) �=
(0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1), then ν(i)0 �= 0 and ν(i)1 + · · · + ν

(i)
n − 1 �= 0 by (4) and

the assumption c1c2 �= 0. In this case, we also obtain c2/c1 ∈ Q by (4). Note that a1, a2 are
relatively prime. Consequently, we have

λ := a2/a1 = c2/c1 ∈ Q

by (3) or (4).
We now prove that λ is an integer. For the purpose, we assume λ /∈ Z, that is, a1 �= ±1.

First we consider the case λ < 0. Since ν(i)1 + · · · + ν
(i)
n ≥ 0 for 0 ≤ i ≤ n, we have ν(0)0 ≥ 1

and ν(i)0 ≥ 0 by (3) and (4) . Furthermore, the Laurent expansions of the components of
f ∈ Aut(�) are

f0(z0, . . . , zn) =
∞∑
k=0

∑
|ν ′|=k|a1|

′
a
(0)
ν ′ z

1+k|a2|
0 (z′)ν ′

(5)

and

fi(z0, . . . , zn) =
∞∑
k=0

∑
|ν ′|=1+k|a1|

′
a
(i)

ν ′ z
k|a2|
0 (z′)ν ′

(6)

for 1 ≤ i ≤ n. Here we have written a(0)
ν ′ = a

(0)
(1+k|a2|,ν ′) and a(i)

ν ′ = a
(i)

(k|a2|,ν ′), and so as from
now on. We focus on the first degree terms of the Laurent expansions. It follows from (5) and
(6) that the first degree terms of the Laurent expansions of the components of the composite
f ◦ h are the composites of the first degree terms of Laurent expansions of the components of
f and h, where h ∈ Aut(�). We put

Pf (z) :=
(
a
(0)
(1,0,...,0)z0,

∑
|ν ′|=1

′
a
(1)
ν ′ (z′)ν

′
, . . . ,

∑
|ν ′|=1

′
a
(n)

ν ′ (z′)ν
′
)
.(7)
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Then as a matrix we can write

Pf =

⎛⎜⎜⎜⎜⎝
a
(0)
(1,0,...,0) 0 · · · 0

0 a
(1)
(0,1,0,...,0) · · · a

(1)
(0,...,0,1)

...
...

. . .
...

0 a
(n)
(0,1,0,...,0) · · · a

(n)
(0,...,0,1)

⎞⎟⎟⎟⎟⎠ ,

which belongs toGL(n+ 1,C) since f is an automorphism. Hence we have a representation
of GU(n, 1) given by

GU(n, 1) 	 g 
−→ Pf ∈ GL(n+ 1,C) ,

where f = ρ(g). The restriction of this representation to the simple Lie group SU(n, 1) is
nontrivial since ρ(U(1)×U(n)) = U(1)×U(n). However this contradicts Lemma 1.4. Thus
it does not occur that λ is a negative non-integer.

Next we consider the case λ > 0 and λ �∈ Z. Then ν(0)0 ≤ 1 and ν(i)0 ≤ 0 by (3) and (4)

since ν(i)1 +· · ·+ν(i)n ≥ 0 for 0 ≤ i ≤ n. Furthermore, the Laurent expansions of components
of f are

f0(z0, . . . , zn)=
∞∑
k=0

∑
|ν ′|=k|a1|

′
a
(0)
ν ′ z

1−k|a2|
0 (z′)ν ′

= a
(0)
(1,0,...,0)z0 +

∑
|ν ′|=|a1|

′
a
(0)
(1−|a2|,ν ′)z

1−|a2|
0 (z′)ν ′

+
∑

|ν ′|=2|a1|

′
a
(0)
(1−2|a2|,ν ′)z

1−2|a2|
0 (z′)ν ′ + · · · ,

and

fi(z0, . . . , zn)=
∞∑
k=0

∑
|ν ′|=1+k|a1|

′
a
(i)

ν ′ z
−k|a2|
0 (z′)ν ′

=
∑

|ν ′|=1

′
a
(i)

(0,ν ′)(z
′)ν ′ +

∑
|ν ′|=1+|a1|

′
a
(i)

(−|a2|,ν ′)z
−|a2|
0 (z′)ν ′

+
∑

|ν ′|=1+2|a1|

′
a
(0)
(−2|a2|,ν ′)z

−2|a2|
0 (z′)ν ′ + · · ·

for 1 ≤ i ≤ n. We claim that a(0)(1,0,...,0) �= 0. Indeed, if a(0)(1,0,...,0) = 0, then f (z0, 0, . . . , 0) =
(0, . . . , 0) ∈ Cn+1. This contradicts that f is an automorphism. Take another h ∈ Aut(�)\G
and put Laurent expansions of its components

h0(z0, . . . , zn)=
∞∑
k=0

∑
|ν ′|=k|a1|

′
b
(0)
ν ′ z

1−k|a2|
0 (z′)ν ′
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hi(z0, . . . , zn)=
∞∑
k=0

∑
|ν ′|=1+k|a1|

′
b
(i)

ν ′ z
−k|a2|
0 (z′)ν ′

for 1 ≤ i ≤ n. We have b(0)(1,0,...,0) �= 0 as above. We mention the first degree terms of the
Laurent expansions of the components of f ◦ h. For the first component,

f0(h0, . . . , hn)= a
(0)
(1,0,...,0)h0 +

∞∑
k=1

∑
|ν ′|=k|a1|

′
a
(0)
ν ′ h

1−k|a2|
0 (h′)ν ′

.

Then, for k > 0,

h0(z)
1−k|a2| =

( ∞∑
l=0

∑
|ν ′|=l|a1|

′
b
(0)
ν ′ z

1−l|a2|
0 (z′)ν ′

)1−k|a2|
= z

1−k|a2|
0

( ∞∑
l=0

∑
|ν ′|=l|a1|

′
b
(0)
ν ′ z

−l|a2|
0 (z′)ν ′

)1−k|a2|

= (b
(0)
0n
z0)

1−k|a2|
(

1 − 1 − k|a2|
b
(0)
0n

z
−|a2|
0

∑
|ν ′|=|a1|

′
b
(0)
ν ′ (z′)ν

′ + · · ·
)
.

Thus h0(z)
1−k|a2| has the maximum degree of z0 at most 1 − k|a2| < 1 and has the minimum

degree of z′ at least |a1| > 1 in its Laurent expansion. For |ν′| = k|a1| and k > 0, (h′)ν ′

has the maximum degree of z0 at most −|a2| < 0 and the first degree terms of z′ are with
coefficients of negative degree terms of z0 in its Laurent expansion. Hence the first degree
term of the Laurent expansion of f0(h0, . . . , hn) is a(0)(1,0,...,0)b

(0)
(1,0,...,0)z0.

Similarly, we consider

fi(h0, . . . , hn) =
∑

|ν ′|=1

′
a
(i)

ν ′ (h′)ν ′ +
∞∑
k=1

∑
|ν ′|=1+k|a1|

′
a
(i)

ν ′ h
−k|a2|
0 (h′)ν ′

for 1 ≤ i ≤ n. Then, for k > 0,

h
−k|a2|
0 = (b

(0)
0n
z0)

−k|a2|
(

1 − −k|a2|
b
(0)
0n

z
−|a2|
0

∑
|ν ′|=|a1|

′
b
(0)
ν ′ (z′)ν

′ + · · ·
)
.

Thus h−k|a2|
0 has the maximum degree of z0 at most −k|a2| < 0 and has the minimum degree

of z′ at least |a1| > 1 in its Laurent expansion. For |ν′| = 1 + k|a1| and k > 0, (h′)ν ′
has the

maximum degree of z0 at most −|a2| < 0 and the first degree terms of z′ are with coefficients
of negative degree terms of z0 in its Laurent expansion. Hence the first degree terms of the
Laurent expansion of fi(h0, . . . , hn) are

n∑
j=1

∑
|ν ′|=1

′
a(i)νj b

(j)

ν ′ (z′)ν
′
,

where νj = (0, . . . , 0, 1j , 0, . . . , 0), that is, the j -th component is 1 and the others are 0.
Consequently,P(f ◦h) = Pf ◦Ph, where Pf is defined as (7). Then the same argument

as that in the previous case (λ < 0) shows that this is a contradiction. Indeed, Pf ∈ GL(n+
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1,C) since f is an automorphism, so that we have a representation of GU(n, 1) by

GU(n, 1) 	 g 
−→ Pf ∈ GL(n+ 1,C) ,

where f = ρ(g). Therefore this contradicts Lemma 1.4, since this representation is nontrivial
on SU(n, 1) by ρ(U(1)× U(n)) = U(1)× U(n). Thus it does not occur that λ is a positive
non-integer.

Hence we have λ = c2/c1 = a2/a1 ∈ Z \ {0} and a1 = ±1.
Case (ii) : c1 �= 0, c2 = 0.

In this case, � ⊂ Cn+1 can be written of the form (C × D) ∪ (C∗ × D′), where D and D′
are open sets in Cn. Indeed, � = (� ∩ {z0 = 0}) ∪ (� ∩ {z0 �= 0}). Then {0} × D :=
�∩{z0 = 0} ⊂ � implies C×D ⊂ � by ρ(C∗)- and T n+1-actions on�. On the other hand,
� ∩ {z0 �= 0} = C∗ × D′ for some open set D′ ⊂ Cn by ρ(C∗)- and T n+1-actions. Thus
� = (C×D)∪ (C∗ ×D′). Then, by Lemma 1.3, Aut(�) has no Lie group structure, and this
contradicts the assumption Aut(�) = GU(n, 1).

Case (iii) : c1 = 0 and c2 �= 0.
As in the previous case,� ⊂ Cn+1 can be written of the form (D′′ ×Cn)∪ (D′′′ × (Cn \ {0}))
by ρ(C∗)- and T n+1-actions on �, where D′′ and D′′′ are open sets in C. Then, for a similar
reason as for the proof of Lemma 1.3, Aut(�) has no Lie group structure, and this contradicts
our assumption. �

REMARK 5.4. Since λ ∈ Z \ {0}, the Laurent expansions of its components of f ∈
Aut(�) are

f0(z0, . . . , zn) =
∞∑
k=0

∑
|ν ′|=k

′
a
(0)
ν ′ z

1−kλ
0 (z′)ν ′

,

and

fi(z0, . . . , zn) = a
(i)
(λ,0,...,0)z

λ
0 +

∞∑
k=0

∑
|ν ′|=1+k

′
a
(i)

ν ′ z
−kλ
0 (z′)ν ′

for 1 ≤ i ≤ n.

SinceG = ρ(G(U(1)×U(n))) acts as linear transformations on� ⊂ Cn+1, it preserves
the boundary ∂� of�. We now study the action of G on ∂�. The G-orbits of points in Cn+1

consist of four types as follows:
(i) If p = (p0, p1, . . . , pn) ∈ C∗ × (Cn \ {0}), then

(8) G · p = {
(z0, . . . , zn) ∈ Cn+1 \ {0} : −a|z0|2λ + |z1|2 + · · · + |zn|2 = 0

}
,

where a := (|p1|2 + · · · + |pn|2)/|p0|2λ > 0 and λ ∈ Z \ {0} by Claim 5.3.

(ii) If p′ = (0, p′
1, . . . , p

′
n) ∈ Cn+1 \ {0}, then

(9) G · p′ = {0} × (Cn \ {0}) .
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(iii) If p′′ = (p′′
0 , 0, . . . , 0) ∈ Cn+1 \ {0}, then

(10) G · p′′ = C∗ × {0} .

(iv) If p′′′ = (0, . . . , 0) ∈ Cn+1, then

(11) G · p′′′ = {0} ⊂ Cn+1 .

We show that ∂� ∩ (C∗ × (Cn \ {0})) �= ∅.

CLAIM 5.5. � ∩ (C∗ × (Cn \ {0})) is a proper subset of C∗ × (Cn \ {0}).
PROOF. If�∩ (C∗ × (Cn \ {0})) = C∗ × (Cn \ {0}), then� equals one of the following

domains by the G-actions of type (9) and (10) above:

Cn+1,Cn+1 \ {0},C∗ × (Cn \ {0}),C × (Cn \ {0}) or C∗ × Cn .

However these can not occur since all automorphism groups of these domains are not Lie
groups by Lemma 1.3. This contradicts that Aut(�) = GU(n, 1). �

By Claim 5.5, ∂� ∩ (C∗ × (Cn \ {0n})) �= ∅. Thus we can take a point

p = (p0, . . . , pn) ∈ ∂� ∩ (C∗ × (Cn \ {0n})) .
Let

a = (|p1|2 + · · · + |pn|2
)
/|p0|2λ > 0 ,

Aa,λ = {
(z0, . . . , zn) ∈ Cn+1 : −a|z0|2λ + |z1|2 + · · · + |zn|2 = 0

}
.

Note that

∂� ⊃ Aa,λ .

If λ > 0, then � is included in

D+
a,λ = {|z1|2 + · · · + |zn|2 > a|z0|2λ

}
or

C+
a,λ = {|z1|2 + · · · + |zn|2 < a|z0|2λ

}
.

If λ < 0, then � is included in

D−
a,λ = {

(|z1|2 + · · · + |zn|2)|z0|−2λ > a
}

or

C−
a,λ = {

(|z1|2 + · · · + |zn|2)|z0|−2λ < a
}
.

CLAIM 5.6. If � = D+
a,λ, then λ = 1 and � is biholomorphic to Dn,1.
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PROOF. If λ �= 1, then by Remark 5.4, for f ∈ Aut(�), the Laurent expansions of its
components are

f0(z0, . . . , zn) =
∞∑
k=0

∑
|ν ′|=k

′
a
(0)
ν ′ z

1−kλ
0 (z′)ν ′

,

and

fi(z0, . . . , zn) = a
(i)
(λ,0,...,0)z

λ
0 +

∞∑
k=0

∑
|ν ′|=1+k

′
a
(i)

ν ′ z
−kλ
0 (z′)ν ′

,

for 1 ≤ i ≤ n. Since D+
a,λ ∩ {z0 = 0} �= ∅, it follows that the negative degrees of z0 do not

arise in the Laurent expansions. Therefore

f0(z0, . . . , zn) = a
(0)
(1,0,...,0)z0 ,

and

fi(z0, . . . , zn) = a
(i)
(λ,0,...,0)z

λ
0 +

∑
|ν ′|=1

′
a
(i)

ν ′ (z′)ν
′
,

for 1 ≤ i ≤ n. Consider

Pf (z) = (a
(0)
(1,0,...,0)z0,

∑
|ν ′|=1

′
a
(1)
ν ′ (z′)ν

′
, . . . ,

∑
|ν ′|=1

′
a
(n)

ν ′ (z′)ν
′
) .

Then Pf gives a representation of GU(n, 1) by

Pρ : GU(n, 1) 	 g 
−→ P(ρ(g)) ∈ GL(n+ 1,C) ,

as in the proof of Claim 5.3, and we showed that this can not occur by Lemma 1.4. Thus
λ = 1 and � is biholomorphic to Dn,1. �

We will show that Claim 5.6 is the only case that a domain has the automorphism group
isomorphic to GU(n, 1).

Let us first consider the case ∂� = Aa,λ, and we derive contradictions if� = C+
a,λ,D

−
a,λ

or C−
a,λ.

CLAIM 5.7. Aut(C+
a,λ) and Aut(D−

a,λ) are not Lie groups, so � �= C+
a,λ,D

−
a,λ.

PROOF. Indeed, C+
a,λ is biholomorphic to C∗ ×Bn, andD−

a,λ is biholomorphic to C∗ ×
(Cn \Bn). The automorphism groups of these domains are not Lie groups by Lemma 1.3. �

CLAIM 5.8. � �= C−
a,λ.

PROOF. Suppose � = C−
a,λ. By remark 5.4, for f ∈ Aut(�), the Laurent expansions

of its components are

f0(z0, . . . , zn) =
∞∑
k=0

∑
|ν ′|=k

′
a
(0)
ν ′ z

1−kλ
0 (z′)ν ′

,
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and

fi(z0, . . . , zn) = a
(i)
(λ,0,...,0)z

λ
0 +

∞∑
k=0

∑
|ν ′|=1+k

′
a
(i)

ν ′ z
−kλ
0 (z′)ν ′

for 1 ≤ i ≤ n. Since C−
a,λ ∩ {z0 = 0} �= ∅, the negative degrees of z0 do not arise in the

Laurent expansions. Therefore

f0(z0, . . . , zn) =
∞∑
k=0

∑
|ν ′|=k

′
a
(0)
ν ′ z

1−kλ
0 (z′)ν ′

,

and

fi(z0, . . . , zn) =
∞∑
k=0

∑
|ν ′|=1+k

′
a
(i)

ν ′ z
−kλ
0 (z′)ν ′

for 1 ≤ i ≤ n. Consider

Pf (z) = (a
(0)
(1,0,...,0)z0,

∑
|ν ′|=1

′
a
(1)
ν ′ (z′)ν

′
, . . . ,

∑
|ν ′|=1

′
a
(n)

ν ′ (z′)ν
′
) .

Then Pf gives a representation of GU(n, 1) by

Pρ : GU(n, 1) 	 g 
−→ P(ρ(g)) ∈ GL(n+ 1,C) ,

as in the proof of Claim 5.3, and we showed that this can not occur by Lemma 1.4. Thus
� �= C−

a,λ. �

Let us consider the case ∂� �= Aa,λ.
Case (I) : (∂� \ Aa,λ) ∩ (C∗ × (Cn \ {0})) = ∅.

In this case, ∂� is the union of Aa,λ and some of the following sets

(12) {0} × (Cn \ {0}),C∗ × {0} or {0} ⊂ Cn+1 ,

by theG-actions on the boundary of type (9), (10) and (11). If� ⊂ D−
a,λ, then the sets of (12)

can not be included in the boundary of �. Thus we must consider only the cases � � D+
a,λ,

C+
a,λ or C−

a,λ.

Case (I-i) : � � D+
a,λ.

In this case, C∗ × {0} can not be a subset of the boundary of �, and {0} ∈ Aa,1. Thus

∂� = Aa,λ ∪ ({0} × Cn) ,

� = D+
a,λ \ ({0} × Cn) .

Then, � is biholomorphic to C∗ × (Cn \ Bn) and Aut(C∗ × (Cn \ Bn)) does not have a Lie
group structure. This contradicts the assumption that Aut(�) = GU(n, 1). Thus this case
does not occur.

Case (I-ii) : � � C+
a,λ.

In this case, {0} × (Cn \ {0}) can not be a subset of the boundary of �, and {0} ∈ Aa,1. Thus

∂� = Aa,λ ∪ (C × {0}) ,
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� = C+
a,λ \ (C × {0}) .

Then, � is biholomorphic to C∗ × (Bn \ {0}) and Aut(C∗ × (Bn \ {0})) does not have a Lie
group structure. This contradicts the assumption that Aut(�) = GU(n, 1), and this case does
not occur.

Case (I-iii) : � � C−
a,λ.

In this case, � coincides with one of the followings:

C1 = C−
a,λ \ ({0} × Cn) ∪ (C × {0}) ,

C2 = C−
a,λ \ ({0} × Cn) ,

C3 = C−
a,λ \ (C × {0}) ,

C4 = C−
a,λ \ {0} .

Then C1 is biholomorphic to C∗ × (Bn \ {0}), and C2 is biholomorphic to C∗ × Bn. The
automorphism groups of these domains are not Lie groups. This contradicts the assumption.
The proof of Claim 5.8 also leads that � �= C3, C4 since C3 ∩ {z0 = 0} �= ∅ and C4 ∩ {z0 =
0} �= ∅. Thus this case does not occur.

Case (II) : (∂� \ Aa,λ) ∩ (C∗ × (Cn \ {0n})) �= ∅.
In this case, we can take a point p′ = (p′

0, . . . , p
′
n) ∈ (∂� \ Aa,λ) ∩ (C∗ × (Cn \ {0n})). Put

b = (|p′
1|2 + · · · + |p′

n|2
)
/|p′

0|2λ > 0 ,

Bb,λ = {
(z0, . . . , zn) ∈ Cn+1 : −b|z0|2λ + |z1|2 + · · · + |zn|2 = 0

}
.

We may assume a > b without loss of generality.
Case (II-i) : ∂� = Aa,λ ∪ Bb,λ.

Since � is connected, it coincides with

C+
a,λ ∩D+

b,λ = {
b|z0|2λ < |z1|2 + · · · + |zn|2 < a|z0|2λ

}
,

if λ > 0, or

C−
a,λ ∩D−

b,λ = {
b < (|z1|2 + · · · + |zn|2)|z0|−2λ < a

}
,

if λ < 0. These domains are biholomorphic to C∗ × Bn(a, b), where

Bn(a, b) = {
(z1, . . . , zn) ∈ Cn : b < |z1|2 + · · · + |zn|2 < a

}
.

Then Aut(C∗ ×Bn(a, b)) does not have a Lie group structure by Lemma 1.3, and this contra-
dicts the assumption that Aut(�) = GU(n, 1). Thus this case does not occur.

Case (II-ii) : ∂� �= Aa,λ ∪ Bb,λ.
Suppose (∂� \ (Aa,λ ∪ Bb,λ)) ∩ (C∗ × Cn \ {0n}) �= ∅, then we can take

p′′ = (p′′
0 , . . . , p

′′
n) ∈ (∂� \ (Aa,λ ∪ Bb,λ)) ∩ (C∗ × (Cn \ {0n})) .

Then put

c = (|p′′
1 |2 + · · · + |p′′

n|2
)
/|p′′

0 |2λ ,
Cc,λ = {

(z0, . . . , zn) ∈ Cn+1 : −c|z0|2λ + |z1|2 + · · · + |zn|2 = 0
}
.
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We have Aa,λ ∪ Bb,λ ∪ Cc,λ ⊂ ∂�. However � is connected. Thus this is impossible, and
therefore this case does not occur. Let us consider the remaining case:

(∂� \ (Aa,λ ∪ Bb,λ)) ∩ (C∗ × (Cn \ {0n})) = ∅ .
However, C∗ × {0n}, {0} × (Cn \ {0n}) and {0} ∈ Cn+1 can not be subsets of the boundary of
� since � ⊂ C+

a,λ ∩D+
b,λ or � ⊂ C−

a,λ ∩D−
b,λ. Thus this case does not occur either.

We have shown that ∂� = Aa,1 and � = D+
a,1 which is biholomorphic to Dn,1. �

6. A counterexample of the group-theoretic characterization.

THEOREM 6.1. There exist unbounded homogeneous domains in Cn, n ≥ 5 which
are not biholomorphically equivalent, while their automorphism groups are isomorphic as
topological groups.

PROOF. Suppose p, q > 1 and p �= q . We put n = p + q . Let

Dp,q = {
(z1, . . . , zp,w1, . . . , wq) ∈ Cn : |z1|2 + · · · + |zp|2 − |w1|2 − · · · − |wq |2 > 0

}
,

Cp,q = {
(z1, . . . , zp,w1, . . . , wq) ∈ Cn : |z1|2 + · · · + |zp|2 − |w1|2 − · · · − |wq |2 < 0

}
.

It is easy to see that Dp,q and Cp,q are homogeneous since both Aut(Dp,q) and Aut(Cp,q)
contain a subgroupGU(p, q), where

GU(p, q) = {
A ∈ GL(n,C) : A∗Jp,qA = ν(A)Jp,q, for some ν(A) ∈ R>0

}
,

and Jp,q = diag[Ep,−Eq ]. Since p �= q , Dp,q and Cp,q are not biholomorphically equiv-
alent. Indeed, Dp,q is homeomorphic to the product manifold R2q+1 × S2p−1, but Cp,q is
homeomorphic to the product manifold R2p+1 × S2q−1.

We will show that Aut(Dp,q ) is isomorphic to Aut(Cp,q) as topological groups. As
the proof of Theorem 3.1, we take f = (f1, . . . , fn) ∈ Aut(Dp,q ). If (w′

1, . . . , w
′
q) ∈ Cq

is fixed, then the holomorphic functions fi(. . . , w′
1, . . . , w

′
q), for i = 1, . . . , n, on Dp,q ∩

{w1 = w′
1, . . . , wq = w′

q} extend continuously to the holomorphic functions on Cn ∩ {w1 =
w′

1, . . . , wq = w′
q} by Hartogs’ theorem, since p > 1. Hence, when w1, . . . , wq vary, we

obtain an extended holomorphic map f̃ : Cn −→ Cn such that f̃ |Dp,q = f ∈ Aut(Dp,q).
The same consideration for f−1 ∈ Aut(Dp,q) shows that there exists a holomorphic map
g : Cn+1 −→ Cn+1 such that g|Dp,q = f−1. Since g ◦ f̃ = id and f̃ ◦ g = id on Dp,q , the
uniqueness of analytic continuation shows that g ◦ f̃ = id and f̃ ◦ g = id on Cn. Hence f̃ ∈
Aut(Cn). Now we see that f̃ |Cp,q ∈ Aut(Cp,q) and therefore we have a group homomorphism

φ : Aut(Dp,q) −→ Aut(Cp,q), f 
−→ f̃ |Cp,q .
In the same manner, we have

ψ : Aut(Cp,q) −→ Aut(Dp,q), h 
−→ h̃|Cp,q ,
by Hartogs’ theorem since q > 1. It is clear that φ ◦ψ = id on Aut(Cp,q) and ψ ◦ φ = id on
Aut(Dp,q). Thus we obtain Aut(Dp,q ) � Aut(Cp,q) as groups.
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We will show that φ is continuous. Take a sequence {f (n)}∞n=1 ∈ Aut(Dp,q), which
converges to f ∈ Aut(Dp,q) uniformly on any compact subset in Dp,q . Then φ(f (n)) =
f̃ (n)|Cp,q and φ(f ) = f̃ |Cp,q as the above notation. Let K be any compact subset in Cp,q .
We can take p and q-dimensional balls �p ⊂ Cp and�q ⊂ Cq centered at the origins in Cp

and Cq , respectively, such that �p ×�q containsK and ∂�p × ∂�q is included in Dp,q . By
the maximal principle, we have

sup
K

|f̃ (n)i (z)− f̃i (z)| ≤ sup
∂�p×∂�q

|f̃ (n)i (z)− f̃i (z)|

= sup
∂�p×∂�q

|f (n)i (z)− fi(z)|

for i = 1, . . . , n. Since ∂�p × ∂�q is a compact subset in Dp,q , the right-hand side above
converges to 0, and f̃ (n) converges to f̃ on the compact set K . We have shown that φ(f (n))
converges to φ(f ) on any compact subset in Cp,q . In the same manner, we can prove that
ψ is continuos. Thus we obtain Aut(Dp,q ) � Aut(Cp,q) as topological groups. The proof is
complete. �

We remark on the automorphism groups of Dp,q and the characterization problem by
automorphism groups. We have not yet obtained an explicit description of the automorphism
groups Aut(Dp,q) for p, q > 1. We only expect that Aut(Dp,q ) = GU(p, q).

The difference between Dn,1 and Dp,q for p, q > 1 is that the exterior of Dn,1 is
holomorphically convex domain, but that of Dp,q is not. It is known that some holomor-
phically convex homogeneous Reinhardt domains are characterized by their automorphism
groups with some additional conditions (see [1] and [4]). We may study the group-theoretic
characterization problem for holomorphically convex homogeneous Reinhardt domains, or
for homogeneous Reinhardt domains with holomorphically convex exterior domains.
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