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Abstract. We apply results of Harada, Holm and Henriques to prove that the Atiyah-
Segal equivariant complex K-theory ring of a divisive weighted projective space (which is
singular for non-trivial weights) is isomorphic to the ring of integral piecewise Laurent poly-
nomials on the associated fan. Analogues of this description hold for other complex-oriented
equivariant cohomology theories, as we confirm in the case of homotopical complex cobor-
dism, which is the universal example. We also prove that the Borel versions of the equivariant
K-theory and complex cobordism rings of more general singular toric varieties, namely those
whose integral cohomology is concentrated in even dimensions, are isomorphic to rings of ap-
propriate piecewise formal power series. Finally, we confirm the corresponding descriptions
for any smooth, compact, projective toric variety, and rewrite them in a face ring context. In
many cases our results agree with those of Vezzosi and Vistoli for algebraic K-theory, An-
derson and Payne for operational K-theory, Krishna and Uma for algebraic cobordism, and
Gonzalez and Karu for operational cobordism; as we proceed, we summarize the details of
these coincidences.

1. Introduction. Throughout this work G is a compact Lie group, and G � Y a G-
space; when G is understood, we rewrite the latter as Y . Our aim is to investigate the G-
equivariant complex K-theory and complex cobordism rings of certain special families of Y ,
for which G is a torus T n. Given the recent proliferation of K-theory and cobordism functors
[AnPa], [C], [GoKa], [KU], it is important to specify precisely which we use, and to comment
on their relationship with other versions as we proceed. Our underlying philosophy is closest
to algebraic topology and homotopy theory.

So far as K-theory is concerned, we focus mainly on the unreduced Atiyah-Segal G-
equivariant ring K∗G(Y ) [Se], graded over the integers for later convenience. If Y is compact,
then K0

G(Y ) is constructed from equivalence classes of G-equivariant complex vector bundles;
otherwise, it is given by equivariant homotopy classes [Y, Fred(HG)]G, where HG is a Hilbert
space containing infinitely many copies of each irreducible representation of G [AS2]. For
the 1-point space ∗ with trivial G-action, we write the coefficient ring K∗G(∗) as K∗G. It is
isomorphic to R(G)[z, z−1], where R(G) denotes the complex representation ring of G, and
realises K0

G; the Bott periodicity element z has cohomological dimension−2. The equivariant
projection Y → ∗ induces the structure of a graded K∗G-algebra on K∗G(Y ), for any G � Y .

2010 Mathematics Subject Classification. Primary 55N91; Secondary 14M25, 57R18.
Key words and phrases. Divisive weight vector, Equivariant K-theory, fan, piecewise Laurent polynomial,

weighted projective space.



488 M. HARADA, T. HOLM, N. RAY AND G. WILLIAMS

For complex cobordism, our primary interest is tom Dieck’s G-equivariant ring MU∗G(Y )

[tD], defined by equivariant stable homotopy classes [Y,MUG]G of maps into the Thom spec-
trum MUG. Although the coefficient ring MU∗G remains undetermined, considerable infor-
mation is available when G = T n; Sinha [Si], for example, has made extensive calculations,
and solved the case n = 1. The equivariant projection Y → ∗ induces the structure of a graded
MU∗G-algebra on MU∗G(Y ), for any G � Y . In fact MU∗G(−) is universal amongst unreduced
complex-oriented G-equivariant cohomology theories, at least for abelian G [CGK]. The most
natural link between cobordism and K-theory arises within this framework, and is provided
by the equivariant Todd genus td : MU∗G(Y )→ K∗G(Y ) [Ok].

Given the universality of MU∗G(−), we may follow the lead of [HaHeHo] and con-
sider arbitrary complex-oriented cohomology theories E∗G(−), although we restrict attention
to cases for which G is a compact torus. We view the complex orientation as a choice of
equivariant Thom class without further comment. In these situations, readers will lose little
by interpreting E as whichever of complex K-theory, complex cobordism, or integral coho-
mology takes their fancy. When more detail is required, we shall treat K-theory first and
cobordism second; both depend on the more familiar case H ∗G(−) of integral cohomology,
which we recall as necessary.

If Y is an n-dimensional toric variety [Fu], it is automatically endowed with an action of
T n. The problem of describing the ring K∗T n(Y ) has already been addressed, albeit indirectly,
in the symplectic context [HaL]. From the algebraic viewpoint, however, it is more natural to
study algebraic vector bundles over Y , and to compute the corresponding algebraic K-theory.
Influential contributions along these lines include Brion [B], Dupont [Du], Kaneyama [Kan],
Klyachko [Kl], Liu and Yao [LY], Morelli [Mor], and Payne [P], although the work of Vezzosi
and Vistoli [VV] is closest to ours in spirit, and leads to answers that are isomorphic to K∗T n(Y )

for all smooth Y . The results of [VV] are also cited in the appendix to [RKR], with appeal
to arguments of Franz. The same arguments are likely to provide an alternative approach to
our own results, but have yet to be fully documented. We emphasise our insistence on integer
coefficients, bearing in mind that several of the above authors tensor their K-groups with Q

or C throughout.
The techniques used by symplectic geometers apply to a wider class of T n-spaces, and

are based on symplectic reduction, Morse theory [HoM], and GKM graphs [GKM]. Alge-
braic geometers, on the other hand, tend to restrict attention (at least over Z) to smooth toric
varieties Y , possibly non-compact, and express their invariants in terms of the underlying fan
ΣY .

Our aim is to combine features of each viewpoint, and describe K∗T n(Y ) in terms of ΣY

for a certain family of singular toric varieties. Following [BFR2], we refer to these as divisive
weighted projective spaces, and denote them by P(χ). Recent work [BFNR, Theorem 1.2]
shows that any weighted projective space is homotopy equivalent to one which is divisive, but
such equivalences need not be equivariant, by the concluding remarks of [BFR1, Section 5].
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We are motivated by related calculations of the Borel equivariant cohomology of more
general singular examples, in which H ∗T n(Y ) is identified with the graded ring of piecewise
polynomials on ΣY [BFR1]. In its simplest form, our main result states the following.

THEOREM 1.1. For any divisive weighted projective space, K0
T n(P(χ)) is isomor-

phic as a K0
T n -algebra to the ring of piecewise Laurent polynomials on ΣY ; furthermore,

K1
T n(P(χ)) is zero.

A precise statement is proven as Theorem 5.5.1 in Section 5.
More recently, Anderson and Payne [AnPa] have introduced equivariant operational al-

gebraic K-theory, and identified the rings opK◦T n(Y ) with piecewise Laurent polynomials on
ΣY . Their calculations are valid for all toric varieties, and therefore agree with ours on divi-
sive weighted projective spaces.

Turning to MU∗T n(P(χ)), we note first that algebraic geometers have developed a suc-
cessful theory of algebraic cobordism during the last 15 years, by working over the Lazard
ring L∗. They have also introduced equivariant versions that are related to MU∗T n(−). As de-
scribed by Krishna and Uma [KU], for example, these theories are complete; so their coeffi-
cient rings cannot be isomorphic to MU∗T n . Nevertheless, the equivariant algebraic cobordism
ring of many toric varieties Y may be expressed in terms of piecewise formal power series on
ΣY [KU]. As we explain below, this is isomorphic to the Borel equivariant cobordism ring
MU∗(ET n ×T n Y ) in cases such as smooth Y , or products of weighted projective spaces.

Our conclusions for complex cobordism are based on the fact that MU∗T n is an algebra
over the Lazard ring L∗, graded cohomologically. So we refer to MU∗T n as the ring of T n-
cobordism forms, and express our second result accordingly.

THEOREM 1.2. For any divisive weighted projective space, MU∗T n(P(χ)) is isomor-
phic as an MU∗T n -algebra to the ring of piecewise cobordism forms on ΣY ; in particular,
MU∗T n(P(χ)) is zero in odd dimensions.

A precise statement is proven as Theorem 5.5.2 in Section 5.
Most recently, inspired by [AnPa], Gonzalez and Karu [GoKa] have defined equivariant

operational algebraic cobordism. For any quasiprojective toric variety Y , they identify their
operational ring with the ring of piecewise formal power series on ΣY , and therefore with
MU∗(ET n ×T n Y ) for smooth Y , or products of weighted projective spaces.

We introduce weighted projective spaces as singular toric varieties in Section 2, focusing
on divisive examples P(χ) and their invariant CW-structures. In Section 3 we recall the gen-
eralised GKM-theory that allows us to compute K∗T n(Y ) and MU∗T n(Y ) for certain stratified
T n-spaces Y , and confirm that the theory applies to P(χ). In order to rewrite the outcome in
the language of Theorems 1.1 and 1.2, we devote Section 4 to describing diagrams of alge-
bras, and piecewise structures on arbitrary fans. We combine the two viewpoints in Section 5,
and deduce a version of Theorems 1.1 and 1.2 that holds for a wider class of equivariant coho-
mology theories. In Section 6 we relate K∗T n(P(χ)) and MU∗T n(P(χ)) to the Borel equivariant
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K-theory and cobordism of P(χ), in terms of piecewise formal power series, the Chern char-
acter, and the Boardman homomorphism. Finally, in Section 7, we extend our conclusions
to smooth toric varieties, and rewrite the resulting piecewise algebras in the context of face
rings.

Before we begin, it is convenient to introduce notation and conventions that we shall use
without further comment.

We write S1 for the circle as a topological space, and T < C× for its realisation as the
group of unimodular complex numbers under multiplication. The (n + 1)-dimensional com-
pact torus T n+1 is a subgroup of the algebraic torus (C×)n+1, and acts on Cn+1 by coordinate-
wise multiplication. This is the standard action; it preserves the unit sphere S2n+1 ⊂ Cn+1,
and the corresponding orbit space may be identified with the standard n-simplex Δn ⊂ Rn+1

�
in the positive orthant.

Readers who require background information and further references on equivariant topol-
ogy may consult [AlPu], and the survey articles in [Ma]. For fans, toric varieties, and their
topological aspects, we suggest [Fr], [Fu] and [Od].

Acknowledgments. We are especially grateful to Dave Anderson and Sam Payne for their advice
and encouragement on matters of algebraic geometry, to Tony Bahri and Matthias Franz for many hours
of discussion on the topology of weighted projective spaces, and to the Hausdorff Institute in Bonn for
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an Early Researcher Award from the Ministry of Research and Innovation of Ontario, and a Discovery
Grant from the NSERC of Canada; Tara Holm was partially supported by a PCCW Affinito-Stewart
Grant, Grant 208975 from the Simons Foundation, and NSF Grant DMS–1206466.

2. Weighted projective space. Weighted projective spaces are amongst the simplest
and most elegant examples of toric orbifolds [Fu], and we devote this section to summarising
their definition and basic properties.

A weight vector χ is a sequence (χ0, . . . , χn) of n+ 1 positive integers; χ determines a
subcircle T (χ) < T n+1 by

T (χ) = {(tχ0, . . . , tχn ) : |t| = 1} ,

which acts on S2n+1 with finite stabilizers. Then the weighted projective space P(χ) is defined
to be the orbit space S2n+1/T (χ). Each point of P(χ) may be written as an equivalence class
[z] = [z0, . . . , zn], where the zj are known as homogenous coordinates. Permutations of the
zj induce self-homeomorphisms of P(χ), so we may reorder the weights as required; it is
often convenient to assume that they are non-decreasing. Of course P(χ) may equally well be
exhibited as the orbit space (Cn+1 \{0})/C×(χ), and therefore as a complex algebraic variety.

The finite stabilisers ensure that P(χ) is an orbifold, which is singular for n > 1 unless
χ = (d, . . . , d) for some positive integer d . The residual action of the torus T n ∼= T n+1/T (χ)

turns P(χ) into a toric orbifold, with quotient polytope an n-simplex. If χ = (1, . . . , 1), then
T (χ) is the diagonal circle Tδ < T n+1, and P(χ) reduces to the standard projective space
CPn. In this case, K∗T n(CPn) is computed in [GW, §4.1].
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Orbifolds may be studied from a number of different perspectives, and recent articles
have focused on their interpretation as groupoids [Moe] and as stacks [L]. Several invariants
of these richer structures have been defined, such as the orbifold fundamental group [ALR].
Nevertheless, in this work we remain firmly in the topological world, and study the underlying
topological space P(χ); in other contexts, it is known as the coarse moduli space of the stack.
There has been a recent surge of interest [BFR1], [BFNR] in its T n-equivariant topological
invariants.

By construction, P(dχ) is equivariantly homeomorphic to P(χ) for any positive integer
d , although they differ as orbifolds. For our purposes, it therefore suffices to assume that the
greatest common divisor gcd(χ) is 1; in orbifold terminology, this is tantamount to restricting
attention to effective cases. If gcd(χ) = 1, then [Do] provides an equivariant homeomorphism

P(dχ0, . . . , dχj−1, χj , dχj+1, . . . , dχn) ∼= P(χ)

for any 0 ≤ j ≤ n, and any positive integer d such that gcd(d, χj ) = 1. Further simplification
is therefore possible by insisting that χ be normalised, in the sense that

(2.1) gcd(χ0, . . . , χ̂j , . . . , χn) = 1

for every 0 ≤ j ≤ n.
We may impose additional restrictions on the weights, with important topological con-

sequences.

DEFINITIONS 2.2. The weight vector χ and the weighted projective space P(χ) are

1. weakly divisive if χj divides χn for every 0 ≤ j < n,
2. divisive if χj−1 divides χj for every 1 ≤ j ≤ n.

A divisive χ is automatically weakly divisive, and is necessarily non-decreasing. More-
over, χ is divisive precisely when the reverse sequence χn, . . . , χ0 is well ordered, in the sense
of Nishimura and Yosimura [NY].

REMARK 2.3 ([BFR2, Theorem 3.7, Corollary 3.8]). If P(χ) is weakly divisive, then
it is homeomorphic to the Thom space of a complex line bundle over P(χ ′), where χ ′ =
(χ0, . . . , χn−1); if it is divisive, then it is homeomorphic to an n-fold iterated Thom space of
complex line bundles over the one-point space ∗.

In case χ0 = 1, there exists a canonical isomorphism j : T n → T n+1/T (χ), defined by
setting j (u1, . . . , un) = [1, u1, . . . , un]; the resulting action of T n on P(χ) satisfies

(2.4) (u1, . . . , un) · [z0, z1, . . . , zn] = [z0, u1z1, . . . , unzn] .
From this point onwards, we therefore make the following assumptions.

ASSUMPTIONS 2.5.

1. The weight vector χ is both normalised and divisive, so χ0 = χ1 = 1 .
2. The residual action T n � P(χ) is given by the isomorphism j and (2.4) .
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For any weighted projective space, Kawasaki’s calculations [Kaw] imply the existence
of a homotopy equivalent CW-complex with a single cell in every even dimension. This has
been realized in [BFNR], but current evidence suggests that an explicit cellular decomposition
for the general case is unpleasantly complicated [ON]. Nevertheless, Remark 2.3 provides an
easy solution for divisive χ . Given any 1 ≤ i ≤ n, it is convenient to write D2i for the closed
unit disc

{w : |wn−i+1|2 + · · · + |wn|2 ≤ 1} ⊂ Ci ,

and gi : D2i → P(χ) for the map given by

(2.6) gi (w) = [
0, . . . , 0, (1− |wn−i+1|2 − · · · − |wn|2)1/2, wn−i+1, . . . , wn

]
.

For i = 0, let D0 = {0} and g0(0) = [0, . . . , 0, 1].
PROPOSITION 2.7. For every divisive P(χ), the gi are characteristic maps for a CW-

structure that contains exactly n+ 1 cells.

PROOF. For 1 ≤ i ≤ n, the restriction of gi to the interior of D2i is a homeomorphism
onto

(2.8) {[z] : z0 = · · · = zn−i−1 = 0, zn−i 	= 0} ⊂ P(χ) ,

which is therefore an open 2i-cell. Furthermore, gi maps the boundary of D2i onto the sub-
space {[z] : z0 = · · · = zn−i = 0}, which is the union of all lower dimensional cells. The
zero cell is {[0, . . . , 0, 1]}. �

COROLLARY 2.9. The CW-structure is invariant under the residual action of T n.

PROOF. The action (2.4) automatically preserves the conditions of (2.8). �

Combining (2.4) and (2.6) shows that the characteristic map gi induces the action

(2.10)
(u1, . . . , un) · (wn−i+1, . . . , wn)

= (un−i+1u
−χn−i+1/χn−i

n−i wn−i+1, . . . , unu
−χn/χn−i

n−i wn)

of T n on D2i , for each 1 ≤ i ≤ n (taking u0 = 1 in case i = n). This is the unit disc D(ρi)

of an i-dimensional unitary representation ρi of T n.
We denote the CW-structure of Proposition 2.7 by P(χ) = e0 ∪ e2 ∪ · · · ∪ e2n, where e2i

is the closure of (2.8) in P(χ); the centers [0, . . . , 0, 1, 0, . . . , 0] of the cells are precisely the
fixed points of the residual action.

3. Generalized GKM-theory. In this section we recall the generalized GKM-theory
of [HaHeHo], and explain its application to Corollary 2.9. This leads to a description of
E∗T n(P(χ)) for divisive χ and several examples of ET n , including equivariant complex K-
theory and cobordism.

Following [HaHeHo, §3], we require the space G � Y to be equipped with a G-invariant
stratification Y = ⋃

i∈I Yi , and write Y<i for the subspace
⋃

j<i Yj ⊂ Yi for every i ∈ I .
We insist that each Yi contains a subspace Fi , whose neighbourhood is homeomorphic to the
total space Vi of a G-equivariant EG-oriented vector bundle ρi := (Vi, πi, Fi ). As usual, the
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equivariant Euler class eG(ρi) is defined in E
dim Vi

G (Fi) by restricting the chosen equivariant
Thom class of ρi to the zero section, for every i ∈ I .

We recall the following four assumptions of [HaHeHo], which insure that E∗G(Y ) may
be computed by their methods. As we shall see, they are satisfied by every divisive P(χ).

ASSUMPTIONS 3.1.

1. Each subquotient Yi/Y<i is homeomorphic to the Thom space Th(ρi), with attaching
maps ϕi : S(ρi)→ Y<i .

2. Every ρi admits a G-equivariant direct sum decomposition
⊕

j<i ρi,j into EG-orient-
ed subbundles ρi,j = (Vi,j , πi,j , Fi).

3. There exist G-equivariant maps fi,j : Fi→Fj such that the restrictionsfi,j ◦πi,j |S(ρi,j )

and ϕi |S(ρi,j ) agree for every j < i.
4. The Euler classes eG(ρi,j ) are not divisors of zero in E∗G(Fi) for any j < i, and are

pairwise relatively prime.

Note that the ρi,j may have dimension 0. Assumption 3.1.4 means that eG(ρi,j ) divides
y for each j if and only if eG(ρi) divides y, for any y ∈ E∗G(Fi).

Now let ι∗ : E∗G(Y ) → ∏
i E∗G(Fi) be the homomorphism induced by the inclusion∐

i Fi ⊂ Y .

THEOREM 3.2 ([HaHeHo, Theorem 3.1]). Let Y be a G-space satisfying the four As-
sumptions 3.1; then ι∗ is monic, and has image

ΓY :=
{
y = (yi) : eG(ρi,j ) divides yi − f ∗i,j (yj ) for all j < i

}
≤

∏
i

E∗G(Fi) .

As in several of the examples in [HaHeHo], our application to Corollary 2.9 involves
a T n-invariant skeletal filtration. Specifically, Yi = ⋃

j≤i e2j is the 2i-skeleton of P(χ) for

0 ≤ i ≤ n, and the Fi ⊂ Yi contain only the centers of the cells e2i . These are the fixed points
of the T n-action, and the T n-equivariant bundles ρi reduce to i-dimensional complex rep-
resentations, which are canonically ET n -oriented. Assumption 3.1.1 is then satisfied, where
the rôles of the ϕi are played by the restrictions of the gi of Proposition 2.7 to S2i−1. The
equivariant Euler classes eT n(ρi) lie in the coefficient ring E∗T n .

In order to check Assumption 3.1.2, we refer back to (2.10). Each ρi decomposes as a
sum

⊕
j<i ρi,j of 1-dimensionals, where ρi,j is defined by

(3.3) (u1, . . . , un) ·wn−j = un−j u
−χn−j /χn−i

n−i wn−j

for 0 ≤ j < i ≤ n. These decompositions respect the canonical ET n -orientations, by defini-
tion.

For Assumption 3.1.3, the maps fi,j are necessarily constant and equivariant, so the
restrictions to S(ρi,j ) of fi,j ◦ πi,j and gi agree, for every j < i.

Before confirming Assumption 3.1.4, recall [Hu] that the complex representation ring of
T n is isomorphic to the Laurent polynomial algebra

(3.4) R(T n) ∼= S±
Z

(α) := Z[α1, . . . , αn](α1···αn)
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on generators αj , which represent the 1-dimensional irreducibles defined by projection onto
the j th coordinate circle. In particular, (3.3) states that

(3.5) ρi,j
∼= αn−j α

−χn−j /χn−i

n−i

(taking α0 = 1 in case i = n). Since equivariant Euler classes behave exponentially, eT n

is determined on any representation by its value on the monomials αJ := α
j1
1 · · ·αjn

n , which
form an additive basis for R(T n) as J ranges over Zn.

In the case of K-theory, the coefficient ring K∗T n is isomorphic to R(T n) in even dimen-
sions, and is zero in odd [Se]. Periodicity may be made explicit by incorporating the Bott
element z into (3.4) and writing

(3.6) K∗T n
∼= S±K∗(α) ∼= R(T n)

[
z, z−1] ,

where αJ (for any J ) and z have cohomological dimensions 0 and−2 respectively. The nota-
tion reflects the fact that the coefficient ring K∗ is isomorphic to Z[z, z−1]. Then eT n(αJ ) =
1 − α±J , where both choices of sign occur in the literature. Some authors even prefer
z−1(1 − α±J ), to achieve greater consistency with cobordism and cohomology by realizing
the Euler class in cohomological dimension 2; here, for notational convenience, we employ
1− αJ . The kernel of the augmentation K∗T n → K∗ is the ideal (1− α1, . . . , 1− αn).

In the case of complex cobordism, the coefficient ring MU∗T n is an algebra over L∗, and
is freely generated as an L∗-module by even-dimensional elements [C]. The Euler classes
eT n(αJ ) are non-zero elements of MU2

T n , and are denoted by e(αJ ) in the calculations of
[Si] and elsewhere; they generate the positive-dimensional subring MU>0

T n . The kernel of the
augmentation MU∗T n → L∗ is the ideal (e(α1), . . . , e(αn)) [CM].

In the case of Borel equivariant integral cohomology, the coefficient ring H ∗T n is isomor-
phic to the polynomial algebra

(3.7) H ∗(BT n;Z) ∼= SZ(x) := Z[x1, . . . , xn]
on 2-dimensional generators xj . Then eT n(αJ ) = ∑

J jkxk for any J ; in particular, the
equation eT n(αi) = xi may be taken to define xi for every 1 ≤ i ≤ n. The kernel of the
augmentation H ∗T n → H ∗ is the ideal (x1, . . . , xn).

So from (3.5), we deduce that

(3.8) eT n(ρi,j ) =

⎧⎪⎪⎨
⎪⎪⎩

1− αn−j α
−χn−j /χn−i

n−i in K0
T n

e(αn−j α
−χn−j /χn−i

n−i ) in MU2
T n

xn−j − (χn−j /χn−i )xn−i in H 2
T n

for 0 ≤ j < i ≤ n.
In each of these three cases, the ambient ring is an integral domain; for MU∗T n , this is

proven in [Si, Corollary 5.3]. So none of the Euler classes of (3.8) are divisors of zero. The
following criteria address the remaining parts of Assumption 3.1.4.

CRITERIA 3.9 ([HaHeHo, Lemma 5.2]). Given any finite set of non-zero αJ , their
equivariant Euler classes are pairwise relatively prime in K∗T n or MU∗T n whenever no two
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J are linearly dependent in Zn; the additional condition that no prime p divides any two J is
required in H ∗T n .

For ρi,j with i < n, (3.5) shows that J has only two non-zero entries, namely 1 in
position n − j and −χn−j /χn−i in position n − i; for ρn,j , there is a single 1 in position
n− j . So Criteria 3.9 confirm that the Euler classes eT n(ρi,j ) are pairwise relatively prime in
all three cases, and therefore that Assumption 3.1.4 also holds.

We may now conclude our first description of E∗T n(P(χ)).

PROPOSITION 3.10. For any divisive weighted projective space, E∗T n(P(χ)) is iso-
morphic as an E∗T n-algebra to the subring

ΓP(χ) =
{
y : eT n(ρi,j ) divides yi − yj for all j < i

} ≤ ∏
i

E∗T n ,

in each of the cases E = K , MU , H .

PROOF. Our preceding analysis shows that Theorem 3.2 applies directly to the skeletal
filtration. Compatibility with the E∗T n -algebra structure follows immediately. �

Proposition 3.10 shows that E∗T n(P(χ)) is zero in odd dimensions.
The idea behind Theorem 5.5 is to convert Proposition 3.10 into a form more directly

related to the properties of the fan Σχ :=ΣP(χ).

4. Piecewise algebra. Before stating Theorem 5.5, we introduce certain algebraic
and geometric constructions that are associated to fans by the theory of diagrams. They are
motivated by modern approaches to homotopy theory, and provide a common language in
which to address the cases under discussion.

A rational fan Σ in Rn determines a small category CAT(Σ), whose objects are the cones
σ and morphisms their inclusions iσ,τ : σ ⊆ τ . The zero cone {0} is initial, and the maxi-
mal cones admit only identity morphisms. The opposite category CATop(Σ) has morphisms
pτ,σ : τ ⊇ σ , and {0} is final.

For 0 ≤ d ≤ n, the set of d-dimensional cones is denoted by Σ(d) ⊆ Σ . The elements
of Σ(1) are known as rays, and are represented by primitive vectors v1, . . . , vm, where m

denotes the cardinality of Σ(1) henceforth. Each cone may be identified by its generating
rays vj1 , . . . , vjk , and interpreted as a subset σ ⊆ Σ(1). The cardinality k = |σ | coincides
with the dimension d = dim(σ ) if and only if the cone σ is simplicial.

Every d-dimensional σ gives rise to an (n − d)-dimensional subspace Rσ⊥ ⊆ Rn, by
forming the orthogonal complement of its linear hull Rσ . The rationality of σ implies that
Rσ⊥ ∩ Zn has rank (n− d), and admits a basis w1, . . . , wn−d of integral vectors; it is unique
up to the action of GL(n− d,Z), and determines the linear forms

(4.1) wtr
c x = wc,1x1 + · · · + wc,nxn for 1 ≤ c ≤ n− d .

The intersection of their kernels is Rσ , and there exists a splitting Rn ∼= Rσ⊥ × Rσ . It is
convenient to interpret Rn as the Lie algebra of T n and write the associated splitting as

(4.2) T n ∼= Tσ⊥ × Tσ ,
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where the Lie algebra of Tσ⊥ is spanned by the wc, for any cone σ . Thus Tσ⊥ = {1} for
top-dimensional cones, and T{0}⊥ = T n.

DEFINITIONS 4.3. A Σ-diagram in an arbitrary category C is a covariant functor
F : CAT(Σ) → C; similarly, a Σop-diagram (or contravariant Σ-diagram) is a covariant
functor F:CATop(Σ)→ C.

We are interested in diagrams for which one or both of lim F and colim F exist in C.
Definitions 4.3 are motivated by a familiar diagram in TOP, which underlies the construc-

tion of the toric variety XΣ as a topological T n-space. It is denoted by U : CAT(Σ) → T n-
TOP, and uses the dual cones σ∨ in the lattice M := (Zn)∨; it is given by

(4.4) U(σ) = Uσ := Hom(σ∨∩M, C×∪ {0}) and U(iσ,τ ) = jσ,τ ,

where Hom(−) denotes the affine variety of semigroup homomorphisms, and jσ,τ : Uσ → Uτ

is induced by i∨σ,τ : τ∨ → σ∨. The standard description of XΣ , as given by [Fu, §1.4], for
example, may then be expressed as the colimit colim U in T n-TOP.

In fact T n � Uσ is T n-equivariantly homotopy equivalent to T n � T n/Tσ for every cone
σ [CLS, Proposition 12.1.9, Lemma 3.2.5]. So U is objectwise equivariantly equivalent to the
diagram V : CAT(Σ)→ T n-TOP, given by

(4.5) V (σ) = T n/Tσ and V (iσ,τ ) = rσ,τ ,

where rσ,τ is the projection induced by the inclusion Tσ ≤ Tτ . Since U is cofibrant, it follows
that hocolim V is equivariantly homotopy equivalent to colim U = XΣ . Diagram (4.5) first
appeared in [WZZ], and more recently in [Fr].

We may now describe our basic examples of Σop-diagrams in the category GCALGE of
graded commutative E∗T n-algebras.

DEFINITION 4.6. For any complex-oriented equivariant cohomology theory E∗T n(−),
the diagram EV : CATop(Σ)→ GCALGE has

(4.7) EV (σ) = E∗T n(T
n/Tσ ) and EV (pτ,σ ) = r∗σ,τ .

The limit PE(Σ) of EV is the E∗T n-algebra of piecewise coefficients on Σ .

REMARKS 4.8. By definition, PE(Σ) is an E∗T n-subalgebra of
∏

σ EV (σ), so every
piecewise coefficient f has one component f σ for each cone σ of Σ . If σ is top dimensional,
then Tσ = T n and f σ is a genuine element of E∗T n ; on the other hand, T{0} = {1} and f {0}
lies in E∗. The components of f are compatible under the homomorphisms j∗τ,σ , and are
congruent modulo the augmentation ideal. Sums and products of piecewise coefficients are
taken conewise, and E∗T n ≤ PE(Σ) occurs as the subalgebra of global coefficients, whose
components agree on every cone. In particular, it contains the global constants 0 and 1, which
act as zero and unit respectively.

In many cases, EV and PE may be described more explicitly, as follows.
Suppose that ρ has codimension 1, and that w1 is a primitive vector generating Rρ⊥ .

The splitting (4.2) ensures that the natural action of T n on T n/Tρ may then be identified with
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the unit circle S(η) of the irreducible representation η := αw1 , on which the circle Tρ⊥ acts
freely and the (n − 1)-torus Tρ acts trivially. The inclusion of S(η) into the unit disc D(η)

determines the equivariant cofiber sequence

S(η) −→ D(η) −→ Sη ,

where Sη denotes the one-point compactification T n � D(η)/S(η). Applying E∗T n(−) yields
the long exact sequence

(4.9) · · · −→ E∗T n(S
η)

·e−→ E∗T n(D(η)) −→ E∗T n(S(η)) −→ · · · .

Since D(η) is equivariantly contractible and the Thom isomorphism applies to the Thom space
Sη, the homomorphism ·e may be interpreted as multiplication by the Euler class eT n(η). So ·e
is monic for each of E = K , MU , H ; thus (4.9) becomes short exact, yielding isomorphisms

E∗T n/(eT n(η)) ∼= E∗T n(S(η)) ∼= E∗T n(T
n/Tρ) = EV (ρ)

of E∗T n -algebras.
This calculation extends to lower dimensional cones τ by iteration. If τ has dimension

k, then the natural action of T n on T n/Tτ may be identified with the product S(η1) × · · · ×
S(ηn−k), where ηc denotes the irreducible αwc for 1 ≤ c ≤ n− k. The (n− k)-torus Tτ⊥ acts
freely, and the k-torus Tτ acts trivially, yielding isomorphisms

E∗T n/(eT n(η1), . . . , eT n(ηn−k)) ∼= E∗T n(S(η1)× · · · × S(ηn−k))(4.10)
∼= E∗T n(T

n/Tτ ) = EV (τ) .

If σ ⊂ τ has dimension d < k, then Rσ⊥ arises from Rτ⊥ by adjoining additional basis
vectors wn−k+1, . . . , wn−d , and the projection

qτ,σ : E∗T n/(eT n(η1), . . . , eT n(ηn−k)) −→ E∗T n/(eT n(η1), . . . , eT n(ηn−d ))

corresponds to r∗τ,σ : E∗T n(T
n/Tτ )→ E∗T n(T

n/Tσ ) under (4.10).
We conclude that (4.7) may be rewritten as

(4.11) EV (σ) = E∗T n/(eT n(η1), . . . , eT n(ηn−d )) and EV (pτ,σ ) = qτ,σ ,

and proceed to describing the examples E = K , MU , H in these terms.
For E = K , we work with graded commutative algebras over the Laurent polynomial

ring S±K∗(α) of (3.6).

EXAMPLE 4.12. The Laurent polynomial diagram KV : CATop(Σ)→ GCALGK has

(4.13) KV (σ) = S±K∗(α)/Jσ and KV (pτ,σ ) = qτ,σ ,

where Jσ denotes the ideal generated by the Euler classes 1 − αwc arising from the wc of
(4.1) for 1 ≤ c ≤ n − d . In this case, PK(α;Σ) is the S±K∗(α)-algebra of piecewise Laurent
polynomials on Σ .

For E = MU , we work with graded commutative algebras over MU ∗T n , whose structure
is unknown. We therefore rely on the fact that every element of MU ∗T n is an even-dimensional
linear combination of generators over L∗, and refer to MU ∗T n as the ring of T n-cobordism
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forms. Such forms may not be representable by genuine T n-manifolds, as exemplified by the
Euler class e(αJ ), whose homological dimension is −2. This phenomenon arises from the
lack of equivariant transversality, and the consequent failure of the Pontryagin-Thom con-
struction to be epimorphic.

EXAMPLE 4.14. The cobordism form diagram MUV : CATop(Σ)→ GCALGMU has

(4.15) MUV (σ) = MU ∗T n/Jσ and MUV (pτ,σ ) = qτ,σ ,

where Jσ denotes the ideal generated by the Euler classes e(αwc ) for 1 ≤ c ≤ n − d . In this
case, PMU(Σ) is the MU ∗T n -algebra of piecewise cobordism forms on Σ .

For E = H , we work with graded commutative algebras over the polynomial algebra
SZ(x) of (3.7).

EXAMPLE 4.16. The polynomial diagram HV : CATop(Σ)→ GCALGH has

HV (σ) = SZ(x)/Jσ and HV (pτ,σ ) = qτ,σ ,

where Jσ denotes the ideal generated by the Euler classes wtr
c x of (4.1) for 1 ≤ c ≤ n − d .

In this case, PH (x;Σ) is the SZ(x)-algebra of piecewise polynomials on Σ .

In [BFR1], PH(x;Σ) is referred to as PP Z(x;Σ).
In Section 6 we invest H ∗T n(−) with various commutative integer-graded rings of co-

efficients R, which are zero in odd dimensions. The standard example Z is concentrated in
dimension 0, but we also consider KQ∗ :=Q[z, z−1], where z has cohomological dimension
−2, and

H ∧MU∗ = H ∧MU−∗ := H∗(MU) ∼= SZ(bj : j ≥ 1) ,

where bj has cohomological dimension −2j for every j . The corresponding spectrum is
denoted by E = HR, and the analogue of diagram (4.13) by HRV ; we continue to abbreviate
HZ to H in the standard example.

The equivariant coefficient ring HR∗T n = H ∗(BT n;R) must be identified with the com-
pleted tensor product H ∗(BT n) ⊗̂ R. When R = Z, the outcome is H ∗(BT n); but for KQ∗
or H ∧MU∗, the ring

(4.17) H ∗(BT n) ⊗̂ R ∼= R[[x]]
is an algebra of formal power series. It follows that HRV (σ)∼=R[[x]]/Jσ , and that PHR(x;Σ)

is the R[[x]]-algebra of piecewise formal power series on Σ .
We require two further Σop-diagrams, obtained by applying Definition (4.6) to the Borel

equivariant cohomology theories E∗(ET n ×T n −). In these cases the coefficients E∗(BT n)

are also rings of formal power series.
The first such example identifies K∗(BT n) with K∗[[γ ]], on 0-dimensional indetermi-

nates γj for 1 ≤ j ≤ n.

EXAMPLE 4.18. The Borel K-theory diagram KBV : CATop(Σ)→ GCALGKB has

(4.19) KBV (σ) = K∗[[γ ]]/Jσ ,
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where Jσ denotes the ideal generated by the Euler classes (1+γ )wc−1 for 1 ≤ c ≤ n−d and
KBV (pτ,σ ) is the natural projection. The limit PKB (γ ;Σ) is the K∗[[γ ]]-algebra of piecewise
formal power series on Σ .

The second example identifies MU ∗(BT n) with L∗[[u]], on indeterminates uj of coho-
mological dimension 2 for 1 ≤ j ≤ n.

EXAMPLE 4.20. The Borel cobordism diagram MUBV : CATop(Σ) → GCALGMUB

has

(4.21) MUBV (σ) = L∗[[u]]/Jσ ,

where Jσ denotes the ideal generated by the Euler classes [wc,1](u1) +U · · · +U [wc,n](un)

(expressed in terms of the universal formal group law U [Haz] over L∗), and MUBV (pτ,σ )

is the natural projection. The limit PMUB (u;Σ) is the L∗[[u]]-algebra of piecewise formal
power series on Σ .

In fact PMU(Σ) and PMUB (u;Σ) are the universal piecewise coefficient and piece-
wise formal power series algebras on Σ respectively, for complex-oriented E∗T n(−) and
E∗(ET n ×T n −). The cases PK(α;Σ) and PKB (γ ;Σ) correspond to the multiplicative for-
mal group law, classified by the equivariant Todd genus. Similarly, PHR(x;Σ) corresponds
to the additive formal group law, classified by the Thom genus.

REMARK 4.22. A map of fans ξ : Σ ′ → Σ may be interpreted as an n × n′ integer
matrix ξ , for which the image ξ(σ ′) of any cone σ ′ is contained in some cone σ . Let ξ†(σ ′)
be the minimal such σ . In each of the above cases, ξ induces a natural transformation (ξ†, ξ∗)
of diagrams, and therefore a homomorphism ξ∗ of limits.

For example, in the case of HV , the homomorphism ξ∗ : HV (σ) → HV (σ ′) is given
in terms of the coordinate functions x and x ′ by the matrix ξ tr ; it is well-defined because w ∈
ξ†(σ ′)⊥ implies that ξ trw ∈ (σ ′)⊥. In the case of KV , the homomorphism ξ∗ : KV (σ) →
KV (σ ′) is induced by ξ∗(αJ ) = (α′)ξ tr J , and is well-defined for similar reasons.

The construction of each piecewise algebra is therefore functorial (although care is re-
quired to check that † preserves composition). In particular, isomorphic fans yield isomorphic
algebras.

Piecewise algebraic structures are natural generalizations of their global counterparts,
and provide simple qualitative descriptions of algebras that may well be difficult to express
in quantitative terms. For example, see [BFR1, Section 4], where PH (x;Σ(1,2,3,4)) is com-
puted in terms of generators and relations. The simplest non-trivial divisive example is the
following.

EXAMPLE 4.23. The fan Σ(1,1,2) in R2 has seven cones: {0}; the three rays through
r0 = (−1,−2), r1 = (1, 0), and r2 = (0, 1); and three 2-dimensional cones generated by all
pairs of rays.

So PH (x) is an SZ(x)-algebra, where x = (x1, x2). Calculations confirm that PH (x) is
generated as a ring by four piecewise polynomials, namely the global linear functions x1 and
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x2, together with

p = �
�

�
�� r0

�
r1

�
r2

0

2x1

x2

and q = �
�

�
�� r0

�
r1

�
r2

0

x1(2x1 − x2)

0

of degree 2 and 4 respectively. In fact PH (x) is isomorphic to Z[x1, x2, p, q]/I1, where I1 is
the ideal (

p(p − x2)− 2q, q(p − 2x1), q(q − x1(2x1 − x2))
)
.

As an SZ(x)-module, PH (x) has basis {1, p, q}.
Similarly, PK(α) is an S±

Z
(α)-algebra, where α = (α1, α2). Calculations confirm that

PK(α) is generated as a ring by six piecewise Laurent polynomials, namely the global ele-
ments α±1 and α±2 , together with

ε = �
�
�

�� r0

�
r1

�
r2

0
1− α2

1

1− α2

and ζ = �
�
�

�� r0

�
r1

�
r2

0
(1− α1)(α2 − α2

1)

0

of grading (and virtual dimension) 0. In fact PK(α) is isomorphic to S±
Z

(α1, α2)[ε, ζ ]/I2,
where I2 is the ideal

(
ε(ε + α2 − 1)− (1+ α1)ζ, ζ(ε + α2

1 − 1), ζ(ζ − (1− α1)(α2 − α2
1))

)
.

As an S±
Z

(α)-module, PK(α) has basis {1, ε, ζ }. An equivalent calculation of Anderson and
Payne [AnPa, Example 1.6] interprets the latter in terms of an R(T 2)-module basis for the
algebra of piecewise exponential functions on Σ(1,1,2).

5. Cohomological applications. In this section we prove Theorem 5.5 by translat-
ing the GKM-theoretic content of Proposition 3.10 into the piecewise algebraic language of
Section 4.

Our motivation lies in the results of [BFR1], which state that the Borel equivariant
cohomology ring H ∗T n(XΣ ;R) is isomorphic to PHR(x;Σ) for any projective toric vari-
ety (smooth or singular) whose integral cohomology is concentrated in even dimensions.
This may be thought of as a statement of compatibility with limits, in the sense that equi-
variant cohomology maps the homotopy colimit hocolim V � XΣ to the algebraic limit
lim HRV = PHR(x;Σ). It follows from [BFR1] that the sequence

(5.1) 0 −→ (SR(x)) −→ PHR(x;Σ) −→ H ∗(XΣ ;R) −→ 0

is short exact for any such variety. Furthermore, PHR(x;Σ) is isomorphic to the face ring (or
Stanley-Reisner algebra) R[x;Σ] for any smooth fan.
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Working over a field immediately simplifies the situation; for example,

(5.2) H ∗T n(XΣ ;Q) ∼= PHQ(x;Σ) ∼= Q[x;Σ]
holds for any fan Σ .

Kawasaki’s calculations [Kaw] confirm that (5.1) is short exact for every weighted pro-
jective space. In other words, PHR(x;Σχ) reduces to the face ring whenever χj = 1 for every
0 ≤ j ≤ n.

We now explain how to interpret the GKM description of Proposition 3.10 as the limit
of an appropriate contravariant Σχ diagram. To proceed, we must therefore identify Σχ more
explicitly. For general weights χ , this may be difficult; in the divisive case, however, it is easy
to specify the rays r0, . . . , rn precisely. Bearing in mind that χ is normalised (2.1), we set

(5.3)
(
r0 . . . rn

) =

⎛
⎜⎜⎜⎝

−1 1 0 . . . 0
−χ2 0 1 . . . 0

...
...

...
. . .

...

−χn 0 0 . . . 1

⎞
⎟⎟⎟⎠

as an n× (n+ 1) matrix. The cones σA of Σχ are generated by rays {ri : i /∈ A}, as A ranges
over all non-empty strictly increasing subsequences a1, . . . , ad of 0, . . . , n. In particular, the
n-dimensional cones are σ0, . . . , σn, and σA ∩ σA′ = σA·A′ holds for any A and A′, where
A ·A′ is given by juxtaposition and reordering.

In order to study the diagrams KV , MUV and HV of Section 4, we must first identify
the linear forms of (4.1) for Σχ .

For every 0 ≤ k < l ≤ n, the (n− 1)-dimensional cone σk,l is generated by the columns
of the n × (n − 1)-matrix obtained from (5.3) by deleting columns k and l. So a basis for
Rσ⊥k,l

consists of a single primitive integral vector w, orthogonal to all remaining columns. If

1 ≤ k, then

w = (0, . . . , 0,−χl/χk, 0, . . . , 0, 1, 0, . . . , 0)

(non-zero in positions k and l) satisfies the conditions; if k=0, then w = (0, . . . , 0, 1, 0 . . . , 0)

suffices.
With reference to Examples 4.12, 4.14, and 4.16, we may now deduce the following.

LEMMA 5.4. For any cone σk,l and any 0 ≤ k < l ≤ n in Σχ , the principal ideals

Jk,l := Jσk,l in S±
Z

(α), MU ∗T n , and SZ(x) are generated by 1− αlα
−χl/χk

k , e
(
αlα
−χl/χk

k

)
, and

xl − (χl/χk)xk respectively, where x0 = 0 and α0 = 1. �
Lemma 5.4 summarizes the input required to prove Theorem 5.5.

THEOREM 5.5. For any divisive weighted projective space P(χ):

1. K∗T n(P(χ)) is isomorphic as an S±K∗(α)-algebra to PK(α;Σχ);
2. MU ∗T n(P(χ)) is isomorphic as an MU∗T n -algebra to PMU(Σχ);
3. H ∗T n(P(χ);R) is isomorphic as an SR(x)-algebra to PHR(x;Σχ) .

PROOF. We give the details for 1.
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Invoking (3.8) and Proposition 3.10, we must identify the algebra ΓP(χ) with the algebra
limGCALG KV . The former is given by
{
g = g(α) : 1− αn−j α

−χn−j /χn−i

n−i divides gi − gj for all 0 ≤ j < i ≤ n
}
≤

∏
i

S±K∗(α) ,

and the universal properties of the latter suggest that we proceed by finding compatible homo-
morphisms ha0,...,ad : ΓP(χ) → KV (σa0,...,ad ) for every cone σa0,...,ad in Σχ . It follows from
Example 4.12 and Lemma 5.4 that

KV (σa0,...,ad ) = S±K∗(α)/Ja0,...,ad ,

where Ja0,...,ad denotes the ideal generated by the Laurent polynomials 1 − αlα
−χl/χk

k as k, l

ranges over the length 2 subsequences of 0 ≤ a0, . . . , an ≤ n.
Given any g in ΓP(χ), we first consider cones of dimension n, and define hk(g) := gn−k

in S±K∗(α) for every 0 ≤ k ≤ n. On cones of dimension n− 1, we let

hk,l(g) := gn−k ≡ gn−l mod 1− αlα
−χl/χk

k

in KV (σk,l) = S±K∗(α)/(1 − αlα
−χl/χk

k ), for every 0 ≤ k < l ≤ n. This is well-defined,

because 1− αlα
−χl/χk

k divides gn−k − gn−l in S±K∗(α). The definition extends to

ha0,...,ad (gi ) := gn−a0 ≡ · · · ≡ gn−ad mod Ja0,...,ad

for any 2 ≤ d ≤ n, because the gn−a0 , . . . , gn−ad satisfy precisely the required pairwise
divisibility conditions in S±K∗(α). Moreover, ha0,...,ad is a homomorphism of S±K∗(α)-algebras,
by definition.

In order to confirm the compatibility of the hA over CATop(Σχ), we note that every
morphism takes the form σA ⊇ σA·A′ . The corresponding projection qσA,σA·A′ : KV (σA) →
KV (σA·A′) is induced by the inclusion JA ≤ JA·A′ , which adjoins the expressions 1 −
αlαk
−χl/χk as k, l ranges over the length 2 subsequences of A′: so compatibility is assured. We

have therefore constructed a homomorphism h : ΓP(χ)→ limGCALG KV of S±K∗(α)-algebras.
We conclude by showing that h is automatically an isomorphism. Given distinct ele-

ments g and g ′ of ΓP(χ), there must exist at least one k such that gk 	= g ′k as elements
of S±K∗(α); hence hk(g) 	= hk(g

′) in KV (σk), and h is monic. Similarly, any element
(gA) of limGCALG KV determines (ga) in ΓP(χ), by restricting to n-dimensional cones; thus
h(ga) = (gA), and h is epic.

The entire argument applies to 2 and 3, with minor modifications. For H ∗T n(P(χ);R),
the statement is also a special case of [BFR1, Proposition 2.2]. �

Informally, the connection between T n-equivariant bundles over XΣ and piecewise Lau-
rent polynomials on Σ is easy to make. Every such bundle determines a representation of T n

on the fibre at each fixed point, and therefore on each maximal cone. These representations
must be compatible over any T n−1-invariant S2 containing two fixed points, and therefore on
cones of codimension 1.
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The close relationship between GKM theory and piecewise algebra has long been known
over fields of characteristic zero, and Theorem 5.5 is an instance of its extension to integral
situations.

6. Completion and Borel cohomology. In this section we introduce the completions
of K∗T n(P(χ)) and MU∗T n(P(χ)) at their augmentation ideals, and discuss their relationships
with the Borel equivariant cohomology ring of P(χ) under the Chern character and the Board-
man homomorphism respectively. We express our results in terms of certain natural transfor-
mations between diagrams of Section 4.

DEFINITIONS 6.1. The K-theory completion transformation ∧ :=∧K : KV → KBV

is defined on objects by the ring homomorphisms

S±K∗(α)/Jσ −→ K∗[[γ ]]/Jσ ,

where ∧(αj ) = 1 − γj and ∧(α−1
j ) = 1 +∑

i≥1 γ i
j for 1 ≤ j ≤ n; on morphisms, ∧ maps

the first natural projection to the second.
The cobordism completion transformation ∧ := ∧MU : MUV → MUBV is defined on

objects by the ring homomorphisms

MU∗T n/Jσ −→ L∗[[u]]/Jσ ,

where ∧(eT n(αj )) = uj and ∧(eT n(α−1
j )) = [−1](uj) for 1 ≤ j ≤ n; on morphisms, ∧

maps the first natural projection to the second.

So ∧K is induced by the homomorphism

(6.2) S±K∗(α) −→ K∗[[γ ]]
representing completion at the augmentation ideal I [AM, Chapter 10]. It is well-defined
because ∧(α−1

j ) = (∧(αj ))
−1 for 1 ≤ j ≤ n and ∧(αwc ) = (1− γ )wc for 1 ≤ c ≤ n− d , so

that ∧maps Jσ to Jσ . The augmentation S±K∗(α)→ K∗ assigns to each virtual representation
its dimension.

Similarly, ∧MU is induced by the homomorphism

(6.3) MU∗T n −→ L∗[[u]]
representing completion at the augmentation ideal I . It is well-defined because ∧(αwc ) =
[wc,1](u1)+U · · ·+U [wc,n](un) for 1 ≤ c ≤ n−d , so that∧maps Jσ to Jσ . The augmentation
MU∗T n → L∗ forgets the T n-action on each equivariant cobordism class.

DEFINITIONS 6.4. The Chern transformation ct : KBV → H(KQ∗)V is given on
objects by the homomorphisms

K∗[[γ ]]/Jσ −→ SKQ∗(x)/Jσ ,

where ct (γj ) = 1 − ezxj for 1 ≤ j ≤ n, and ct embeds the scalars K∗ as K∗ ⊗ 1 in
KQ∗ :=K∗ ⊗Q; on morphisms, ct maps the first natural projection to the second.
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The Boardman transformation bt : MUBV → H(H ∧MU∗)V is given on objects by
the homomorphisms

L∗[[u]]/Jσ −→ SH∧MU∗(x)/Jσ ,

where bt (uj ) = ∑
i≥0 bix

i+1
j for 1 ≤ j ≤ n, and bt embeds the scalars L∗ in H ∧MU∗

via the Hurewicz homomorphism; on morphisms, bt maps the first natural projection to the
second.

So ct and bt are induced by the respective homomorphisms

(6.5) K∗[[γ ]] −→ SKQ∗(x) and L∗[[u]] −→ SH∧MU∗(x) ,

and are well-defined because Jσ maps to Jσ in each instance.
The commutativity of the diagrams required for the naturality of ∧, ct , and bt follow

directly from the definitions. They therefore induce morphisms of limits, and so define homo-
morphisms

(6.6) ∧K : PK(α;Σ)−→ PKB (γ ;Σ) and ct : PKB (γ ;Σ)−→ PH(KQ∗)(x;Σ)

and

(6.7) ∧MU : PMU(Σ)−→ PMUB (u;Σ) and bt : PMUB (u;Σ)−→ PH(H∧MU∗)(x;Σ)

of piecewise structures. In particular, ∧K and ∧MU may be viewed as conewise completions;
but completion commutes with limits, so they coincide with the respective completions of
PK(α;Σ) and PMU(Σ) at their augmentation ideals I . Similarly, ct and bt are the conewise
Chern and conewise Boardman homomorphism respectively.

Note that ∧K and ∧MU are morphisms of algebras over the respective completion ho-
momorphisms (6.2) and (6.3) of scalars. Furthermore, ct and bt arise from conewise rational
isomorphisms, and are therefore rational isomorphisms themselves; they are also morphisms
of algebras over the homomorphisms (6.5). In other words, (6.6) and (6.7) describe the exten-
sions of (6.2), (6.3), and (6.5) to the piecewise setting.

REMARKS 6.8. The composition ct ◦ ∧K is a natural transformation cc : KV →
H(KQ∗)V . It is induced by the homomorphism

(6.9) cc : S±K∗(α) −→ SKQ∗(x) ,

which satisfies cc(αj ) = ezxj for all 1 ≤ j ≤ n. On limits,

cc : PK(α;Σ) −→ PH(KQ∗)(x;Σ)

identifies PK(α;Σ) with a subring of piecewise formal exponential functions (the viewpoint
adopted by [AnPa], and anticipated in Example 4.23). It is a morphism of algebras over the
homomorphism (6.9) of scalars.

Similarly, bt ◦ ∧MU is a natural transformation bc : MUV → H(H ∧MU∗)V . It is
induced by the homomorphism

(6.10) bc : MU∗T n −→ SH∧MU∗(x) ,
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which satisfies bc(e(αj )) =∑
i≥0 bix

i+1
j for all 1 ≤ j ≤ n. On limits,

bc : PMU(Σ) −→ PH(H∧MU∗)(x;Σ)

identifies PMU(Σ) with a subring of piecewise formal power series; it is a morphism of
algebras over the homomorphism (6.10) of scalars.

Using the isomorphism of Theorem 5.5.2, we may now interpret the homomorphisms
(6.6) and (6.7) topologically. We deal first with K-theory.

For any T n � Y , the Borel equivariant K-theory K∗(ET n ×T n Y ) is an algebra over the
coefficient ring K∗(BT n), which acts via the projection map π of the T n-bundle

(6.11) Y −→ ET n ×T n Y
π−→ BT n .

Atiyah and Segal define a homomorphism λ : K∗T n(Y )→ K∗(ET n ×T n Y ) by assigning the
vector bundle (ET n × θ)/T n to each T n-equivariant vector bundle θ over Y . For compact
spaces such as XΣ , they prove [AS1, Theorem 2.1] that λ is completion at the augmentation
ideal I . If, for example, Y is the 1-point T n-space ∗, then λ : K∗T n → K∗(BT n) corresponds
to the completion map (6.2), and identifies the coefficients K∗(BT n) with K∗[[γ ]], as in
Example 4.18. Furthermore, γj is the K-theoretic Euler class of the j th canonical line bundle
over BT n, for 1 ≤ j ≤ n. In general, λ may be interpreted as converting the S±K∗(α)-algebra
structure of K∗T n(Y ) to the K∗[[γ ]]-algebra structure of K∗(ET n ×T n Y ).

The Chern character ch : K∗(ET n×T n Y )→ H ∗(ET n×T n Y ;KQ∗)= :H ∗T n(Y ;KQ∗)
is the natural transformation of cohomology theories induced by the Hurewicz morphism

(6.12) K � S0∧K
i∧1−−−→ H ∧K

of complex-oriented ring spectra, where i denotes the unit of the integral Eilenberg-Mac Lane
spectrum H . On coefficient rings, it embeds K∗ ∼= Z[z, z−1] in H ∧K∗ ∼= Q[z, z−1] = KQ∗
by Z < Q, and on CP∞ it embeds K∗(CP∞) ∼= K∗[[γ1]] in H ∗(CP∞;KQ∗) ∼= SKQ∗(x1)

by ch(γ1) = 1− ezx1 . Further properties of ch may be found in [Hi, Chapter 5], for example;
in particular, it is always a rational isomorphism.

THEOREM 6.13. For any divisive weighted projective space, K∗(ET n ×T n P(χ)) is
isomorphic as a K∗[[γ ]]-algebra to PKB (γ ;Σχ); with respect to this identification, the
Atiyah-Segal completion map λ : K∗T n(P(χ)) → K∗(ET n ×T n P(χ)) corresponds to the
conewise completion homomorphism∧K , and the Chern character ch : K∗(ET n×T nP(χ))→
H ∗T n(P(χ);KQ∗) corresponds to the conewise Chern transformation ct .

PROOF. Theorem 5.5.1 shows that λ corresponds to ∧, and has target PKB (γ ;Σχ); so
the latter is necessarily isomorphic to K∗(ET n ×T n P(χ)) as a K∗[[γ ]]-algebra.

Moreover, ch : K∗(BT n)→ H ∗(BT n;KQ∗) maps γj to 1− ezxj for every 1 ≤ j ≤ n,
which agrees precisely with ct as specified in (6.5). Since ch is natural with respect to the
inclusion

∐
BT n ⊂ ET n ×T n P(χ) induced by the fixed point set, the result follows. �

We may extend the isomorphism of Theorem 6.13 to any projective toric variety XΣ for
which H ∗(XΣ) is torsion free and concentrated in even dimensions. We interpret PKB (γ ;Σ)
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as a K∗[[γ ]]-subalgebra of
∏

K∗[[γ ]], where the latter contains one factor for each maximal
cone of Σ , and hence for each T n-fixed point.

THEOREM 6.14. The Borel equivariant K-theory of any such XΣ is isomorphic as a
K∗[[γ ]]-algebra to PKB (γ ;Σ).

PROOF. By [BFR1, Proposition 2.2], H ∗T n(XΣ) is also torsion free and even dimen-
sional, and isomorphic to PH (x;Σ). So the Chern character map ch :K∗(ET n×T n XΣ)→
H ∗T n(XΣ ;KQ∗) is monic, and identifies K∗(ET n×T n XΣ) with a subring of PH(KQ∗)(x;Σ).
By the naturality of ch, the inclusion of the fixed point set and the projection of (6.11) induce
a commutative diagram

(6.15)

∏
K∗[[γ ]] K∗(ι)←−−−− K∗(ET n ×T n XΣ)

K∗(π)←−−−− K∗[[γ ]]
ch

⏐⏐� ch

⏐⏐�
⏐⏐�ch

∏
SKQ∗(x) ←−−−−

H ∗(ι)
PH(KQ∗)(x;Σ) ←−−−−

H ∗(π)
SKQ∗(x)

,

in which H ∗(ι), H ∗(π), K∗(π), and all maps ch, are monic. It follows that K∗(ι) is also
monic, and that we may identify the elements γj in K∗(ET n ×T n XΣ), for 1 ≤ j ≤ n.
The image of K∗(ι) automatically lies in the subalgebra PKB (γ ;Σ) <

∏
K∗[[γ ]], because ι

factors through the equivariant 1-skeleton of XΣ ; so it remains to show that the image is the
entire subalgebra.

Note that the augmentation ideal I of K∗[[γ ]] is generated by the γj , and its image
ch(I) = (x) is generated by the xj . Furthermore, the filtration by powers of I coincides with
the skeletal filtration for K∗(BT n).

Choose f := f (γ ) in PKB (γ ;Σ), and assume that its augmentation is zero without loss
of generality. So ch(f ) = f (1 − ezx) is a piecewise formal power series in

∏
SKQ∗(x), and

may be rewritten as a piecewise polynomial in the variables x over KQ∗. As such, it takes
the form H ∗(ι)(f ′) for some element f ′ = f ′(x) in PH(KQ∗)(x;Σ). Since f ′(0) = 0, it has
filtration q1 ≥ 1 with respect to (x); so the integrality properties of ch ensure the existence
of an element f1 = f1(x) in K∗(ET n ×T n XΣ), such that ch(f1) ≡ f ′ mod Iq1+1. Hence
K∗(ι)(f1) ≡ f mod Iq1+1 in PKB (γ ;Σ).

Now iterate this procedure on f − K∗(ι)(f1), to obtain a sequence of elements (fn =
fn(x)) in K∗(ET n ×T n XΣ) for which

K∗(ι)(fn) ≡ f −K∗(ι)(f1 + · · · + fn−1) mod Iqn+1 ,

with q1 < · · · < qn. Since K∗(ET n ×T n XΣ) and PKB (γ ;Σ) are I -adically complete, it
follows that f1+· · ·+fn+· · · converges to an element f ◦ in the former, and that K∗(ι)(f ◦) =
f in the latter. So K∗(ι) is epic, as required. �

We now turn to the cobordism versions of our previous two results.
Tom Dieck introduces the bundling transformation α : MU∗T n(Y )→MU∗(ET n × T nY )

in [tD], which is proven in [CM] to be completion at the augmentation ideal. If Y = ∗,
then α reduces to the homomorphism (6.3), and identifies MU∗(BT n) with MU∗[[u]], as in
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Example 4.20. Each uj is the cobordism Euler class of the j th canonical line bundle over
BT n, for 1 ≤ j ≤ n.

The Boardman homomorphism bh : MU∗(ET n ×T n Y ) → H ∗T n(Y ;H ∧MU∗) is in-
duced by the Hurewicz morphism

MU � S0∧MU
i∧1−−→ H ∧MU ,

by analogy with (6.12). On coefficient rings it embeds L∗ in H ∧MU∗ by the Hurewicz
homomorphism, and on CP∞ it embeds MU∗(CP∞) ∼= L∗[[u1]] in H ∧MU∗(CP∞) ∼=
H∗(MU)[[x1]] by bh(u1) =∑

i≥0 bix
i+1
1 . Further properties of bh may be found in [A], for

example.
We are now in a position to state the cobordism versions of Theorems 6.13 and 6.14;

they are verified by substituting bh for ch in each of the proofs.

THEOREM 6.16. For any divisive weighted projective space, MU ∗(ET n ×T n P(χ))

is isomorphic as an L∗[[u]]-algebra to PMUB (u;Σ); with respect to this identification, the
bundling transformation α : MU ∗T n(P(χ)) → MU ∗(ET n ×T n P(χ)) corresponds to the
conewise completion homomorphism ∧MU , and the Boardman homomorphism bh : MU ∗
(ET n ×T n P(χ)) → H ∗T n(P(χ);H ∧MU∗) corresponds to the conewise Boardman trans-
formation bt .

Theorem 6.17 applies to projective toric varieties XΣ whose integral cohomology is free
and even.

THEOREM 6.17. The Borel equivariant MU -theory of any such XΣ is isomorphic as
an L∗[[u]]-algebra to PMUB (u;Σ).

For the proof, we interpret PMUB (u;Σ) as an L∗[[u]]-subalgebra of
∏

L∗[[u]].
Note that Theorems 6.14 and 6.17 apply to all smooth toric varieties, and to a wider

class of singular examples than Theorem 5.5; in particular, they hold for iterated products of
arbitrary weighted projective spaces. They therefore provide evidence for the conjecture that
K∗T n(XΣ) and MU∗T n(XΣ) are isomorphic to PK(α;Σ) and PMU(Σ) respectively, for any
projective toric variety whose integral cohomology is free and even. Without further proof,
however, the most we can claim is that each pair of algebras share the same completion.

Combining Theorem 6.17 with [KU, Theorem 6.4] confirms that the equivariant alge-
braic cobordism ring of a smooth projective toric variety Y is in fact isomorphic to
MU∗(ET n ×T n Y ). This fact also follows from [KK, Theorem 3.7]. Most recently, Gonza-
lez and Karu have defined operational equivariant algebraic cobordism, and [GoKa, Theorem
7.2] proves that their ring is isomorphic to MU∗(ET n ×T n Y ) for any quasiprojective toric
variety Y to which Theorem 6.17 applies, singular or otherwise. No analogous coincidences
arise in Sections 5 or 7, because the coefficient rings L∗[[u]] of the algebraic theories are
complete.

7. The smooth case. A version of Theorem 5.5 for smooth fans may well be known
to experts, but statements are difficult to find in the literature. There are, however, explicit
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references such as [VV] and [AnPa] to analogous results in equivariant algebraic and op-
erational K-theory respectively. The goal of this section is to outline a proof (and certain
consequences) of Theorem 5.5 for smooth polytopal fans Σ , thereby confirming that all three
forms of K-theory agree on the corresponding XΣ . In this context, polytopal indicates that
Σ is the normal fan of a compact simple polytope PΣ , and therefore is complete. We expect
that our results may be extended to more general fans by applying the methods of [Fr].

Our proof relies on the work of Harada and Landweber [HaL], which deals with sym-
plectic manifolds (M,ω) equipped with a Hamiltonian action of T n. In [HaL, Definition 4.1],
such an action is defined to be GKM whenever the fixed point set is finite and the isotropy
weights at each fixed point p are pairwise linearly independent. The latter requirement may be
restated in the notation of Section 3 by decomposing the n-dimensional representation ρp of
T n on Tp(M) as a sum

⊕n
j=1 αJp,j of 1-dimensionals, and insisting that the Jp,j are pairwise

linearly independent in Zn for each fixed point p.
Let Σ be smooth and polytopal, so that XΣ is smooth, compact and projective. In fact,

XΣ is also a symplectic toric manifold in the sense of [CdS, Part XI], with respect to the
induced symplectic structure arising from its projective embedding. The associated moment
map Φ can be identified with the orbit map XΣ → XΣ/T n ∼= PΣ ; moreover, PΣ is a
Delzant polytope [De, CdS]. The fixed points of the action are precisely the inverse images
of the vertices of PΣ ; in particular, the set of fixed points is finite. Furthermore, since PΣ

is Delzant, the edges incident on any vertex t of PΣ are specified by n primitive integral
vectors Jt,s1, . . . , Jt,sn , which form a basis for the standard lattice Zn in the ambient Rn.

Then T n � XΣ is given in a neighborhood of t by the representation αt :=⊕n
j=1 α

Jt,sj , and
the action is GKM.

We may now apply [HaL, Theorem 4.4] to T n � XΣ , by noting that Φ has compact
domain, so every component is proper and bounded below.

THEOREM 7.1. For any smooth polytopal fan Σ , the inclusion of the fixed point set
induces an isomorphism of K∗T n(XΣ) with

ΓΣ =
{
y : 1− αJt,s divides ys − yt for all s ≺ t

} ≤ ∏
t

K∗T n ,

where t ranges over the vertices of PΣ .

Theorem 7.1 also holds for MU∗T n(XΣ), following our observations on MUT n -Euler
classes in Section 3.

COROLLARY 7.2. For any smooth polytopal fan Σ:

1. K∗T n(XΣ) is isomorphic as an S±K∗(α)-algebra to PK(α;Σ);
2. MU ∗T n(XΣ) is isomorphic as an MU∗T n-algebra to PMU(Σ);
3. H ∗T n(XΣ ;R) is isomorphic as an SR(x)-algebra to PHR(x;Σ) .

Corollary 7.2 follows from Theorem 7.1 by adapting the proof of Theorem 5.5.
Since Σ is smooth, each algebra of Corollary 7.2 admits an alternative description in

terms of the face ring R[Σ], inspired by the isomorphism H ∗T n(XΣ ;R) ∼= R[Σ] mentioned
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in Section 5. The face ring associates 2-dimensional indeterminates yj to the rays vj of Σ for
1 ≤ j ≤ m, and may first have been described as a limit in [PRV].

Given any set ω of rays, it is convenient to denote the set of variables {yj : vj ∈ ω} by
y(ω), and to abbreviate the monomial

∏
y(ω) yj to yω.

DEFINITION 7.3. The face diagram SR : CATop(Σ)→ GCALG has

(7.4) SR(σ) = SR(y(σ )) and SR(pτ,σ ) = fτ,σ ,

where fτ,σ : SR(τ)→ SR(σ) is induced by annihilating those yi for which vi ∈ τ \ σ .

The face ring R[Σ] = R[y;Σ] is the limit of SR , and is additively generated by those
monomials yJ := y

j1
1 · · · yjm

m whose support
∏

jk 	=0 yk is yσ for some cone σ , where J =
(j1, . . . , jm) lies in Zm≥. There is therefore a canonical isomorphism

SR(y)/(yω : ω /∈ Σ)
∼=−→ R[y;Σ]

of graded SR(y)-algebras.
The version required for K∗T n(XΣ) involves 0-dimensional indeterminates βj , for 1 ≤

j ≤ m.

DEFINITION 7.5. The Laurent face diagram S±K∗ : CATop(Σ)→ GCALG has

(7.6) S±K∗(σ ) = S±K∗(β(σ )) and S±K∗(pτ,σ ) = fτ,σ ,

where fτ,σ : S±K∗(τ )→ S±K∗(σ ) is induced by mapping those βj to 1 for which vj ∈ τ \ σ .

In this case the Laurent face algebra FK [Σ] = FK [β;Σ] is the limit of S±K∗ , and is
additively generated by those monomials (1−β)J := (1−β1)

j1 · · · (1−βm)jm whose support∏
jk 	=0(1 − βk) is (1 − β)σ for some cone σ , where J = (j1, . . . , jm) lies in Zm. There is

therefore a canonical isomorphism

S±K∗(β)/((1− β)ω : ω /∈ Σ)
∼=−→ FK [β;Σ]

of graded S±K∗(β)-algebras.
A similar construction is possible for the MUT n -analogue FMU [Σ], and for the versions

involving formal power series used below. In the case of cohomology, FHR[Σ] coincides with
the standard face ring R[Σ], so we retain the latter notation.

We show that PK(α;Σ) is isomorphic to FK [β;Σ] by appealing to the defining dia-
grams; in the context of algebraic K-theory, a proof has long been available [VV].

By analogy with (5.3), we consider the n×m matrix

(7.7) ξ = ξΣ := (
v1 · · · vm

)
.

This notation is consistent with Remark 4.22, for we may view ξ as a map Σ ′ → Σ of
fans; the rays of Σ ′ are the standard basis vectors in Rm, and its cones σ ′ := {ei1, . . . , eik }
correspond bijectively to the cones σ := {vi1 , . . . , vik } of Σ . For any n-dimensional σ we
write ξσ for the n × n submatrix of ξ whose columns generate σ . The smoothness of Σ

guarantees that every ξσ is invertible over Z. So ξ defines an epimorphism Zm → Zn, and ξ tr
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induces monomorphisms SR(x) → SR(y) and S±K∗(α) → S±K∗(β) of graded rings; the latter

maps αJ to βξtrJ for any J ∈ Zn.

PROPOSITION 7.8. For any smooth polytopal fan Σ , the matrix ξ induces a natural
isomorphism

ξ∗ : PK(α;Σ) −→ FK [β;Σ]

of algebras over ξ tr : S±K∗(α)→ S±K∗(β).

PROOF. The epimorphism ξ : Zm → Zn maps the generator ej to the ray vj , for all
1 ≤ j ≤ m. It therefore induces an isomorphism ξ∗(σ ) : KV (σ)→ S±K∗(σ ) of algebras over

ξ tr , defined by ξ∗(σ )(αJ ) = βξ(σ)trJ for any J ∈ Zn. Moreover, fτ,σ · ξ∗(τ ) = ξ∗(σ ) · qτ,σ

for every morphism τ ⊇ σ in CAT(Σ), because ξτ ⊇ ξσ as submatrices of ξ .
So ξ∗ is a natural isomorphism of diagrams, and induces the required isomorphism of

limits. �

COROLLARY 7.9. For any smooth polytopal fan Σ , there is an isomorphism K∗T n(XΣ)

→ FK [β;Σ] of algebras over ξ tr .

PROOF. Combine Corollary 7.2 with Proposition 7.8. �

EXAMPLE 7.10. If ξ is the n× (n+ 1) matrix (−1 In), then XΣ is CPn and there is
an isomorphism

K∗T n(CPn) −−→ S±K∗(β0, . . . , βn)
/( n∏

j=0

(1− βj )

)

of algebras over ξ tr . An equivalent formula appears, for example, in [GW].

Finally, for any smooth polytopal fan Σ , we describe the Borel equivariant K-theory of
XΣ in terms of the face ring FK [[δ;Σ]], whose indeterminates are 0-dimensional. This is an
algebra over K∗[[δ]], and is the limit of the Σop-diagram that assigns K∗[[δ1, . . . , δm]]/(δω :
ω /∈ σ) to each cone σ ∈ Σ . It is also the completion of FK [β;Σ] at the augmentation ideal
(1− β1, . . . , 1 − βm), where δj = 1− βj for all 1 ≤ j ≤ m.

We retain the notation of (7.7), observing that ξ tr of Proposition 7.8 extends to a homo-
morphism ξ tr : K∗[[γ ]] → K∗[[δ]].

PROPOSITION 7.11. For any smooth polytopal fan Σ , there are isomorphisms

K∗(ET n ×T n XΣ) −→ PKB (γ ;Σ)
ξ∗−→ FK [[δ;Σ]]

of algebras over K∗[[γ ]] and ξ tr respectively.

PROOF. The first isomorphism is the completion of Corollary 7.2.2, and the second is
the completion of Proposition 7.8. �
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