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Abstract. We give a new method to construct isolated left orderings of groups whose
positive cones are finitely generated. Our construction uses an amalgamated free product of
two groups having an isolated ordering. We construct a lot of new examples of isolated order-
ings, and give an example of isolated left orderings with various properties which previously
known isolated orderings do not have.

1. Introduction. A total ordering <G on a group G is a left ordering if g <G g ′
implies hg <G hg ′ for all g, g ′, h ∈ G. The positive cone of a left ordering <G is a sub-
semigroup P(<G) of G consisting of <G-positive elements.

The set of all left orderings of G is denoted by LO(G). For g ∈ G, let Ug be a subset of
LO(G) defined by

Ug = {<G ∈ LO(G) | 1 <G g} .

The set LO(G) can be equipped with a topology so that {Ug }g∈G is an open sub-basis of
the topology. This topology is understood as follows. For a left ordering <G of G, G is
decomposed as a disjoint union G = P(<G) � {1} � P(<G)−1. Conversely, a sub-semigroup
P of G having this property is a positive cone of a left ordering of G: An ordering <P defined
by g <P g ′ if g−1g ′ ∈ P is a left-ordering whose positive cone is P . Thus LO(G) is identified
with a subset of the powerset 2G−{1}. The topology of LO(G) defined as above coincides with
the relative topology as the subspace of 2G−{1}, equipped with the topology as the product of
copies of the discrete space 2 = {+,−}.

In this paper, we always consider countable groups, so we simply refer a countable group
as a group unless otherwise specified. Then LO(G) is a compact, metrizable, and totally
disconnected [12]. Moreover, LO(G) is either uncountable or finite [7]. Thus as a topological
space, LO(G) is rather similar to the Cantor set. The main difference is that the space LO(G)

might be non-perfect, that is, LO(G) might have isolated points. Indeed, if LO(G) has no
isolated points and is not a finite set, then LO(G) is homeomorphic to the Cantor set. We call
a left ordering which is an isolated point of LO(G) an isolated ordering.

It is known that a left ordering <G whose positive cone is a finitely generated semigroup
is isolated. In this paper we will concentrate our attention to study such an isolated ordering.
We say a finite set of non-trivial elements of G, G = {g1, . . . , gr } defines an isolated left
ordering <G of G if the positive cone of <G is generated by G as a semigroup. For an
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isolated left ordering <G of a group G, the rank of <G is the minimal number of generators
of the positive cone and denoted by r(<G). (If P(<G) is not finitely generated semigroup we
define r(<G) = ∞).

We say an isolated ordering <G of G is genuine if LO(G) is not a finite set. Then
LO(G) contains (uncountably many) non-isolated points [7]. The classification of groups
having non-genuine isolated orderings, namely, the classification of groups having finitely
many left-orderings is given by Tararin (see [6]).

On the other hand, it is difficult to construct genuine isolated left orderings, and few
examples are known. At this moment to the best of the author’s knowledge, there are only
two families of genuine isolated left orderings. (After the first version of this paper appeared
in a preprint form in July 2011, Dehornoy gave other construction of isolated orderings by
using word-reversing method [1]. It is an interesting problem to understand the relationship
between our construction and Dehornoy’s one.)

(A) Dubrovina-Dubrovin ordering [2], [3].

Let σ1, . . . , σn−1 be the standard generator of the n-strand braid group Bn. The
Dubrovina-Dubrovin ordering <DD is an isolated left ordering of Bn whose positive
cone is generated by {a1, . . . , an−1}, where ai is given by

ai = (σn−iσn−i+1 · · · σn−1)
(−1)i .

The rank of the Dubrovina-Dubrovin ordering <DD is n − 1. See [2], [3] for details.

(B) Isolated orderings of Z ∗Z Z [5], [10].

Let G = Z ∗Z Z be the group obtained as an amalgamated free product of two
infinite cyclic groups over Z. Thus, G is presented as

G = 〈x, y | xm = yn〉
by using some positive integers m and n. Then the generating set {xy1−n, y} defines
an isolated left ordering <A of G, which is genuine if (m, n) 	= (2, 2). The rank
of <A is 2. This example was found by Navas [10] for the case m = 2, and by the
author [5] for general cases. We remark here that if (m, n) = (2, 3) then Gm,n is
the 3-braid group B3, and the isolated ordering <A is the same as the Dubrovina-
Dubrovin ordering <DD .

Thus, it is desirable to find more examples or general constructions of isolated left or-
derings. In particular, Dubrobvina-Dubrobin orderings is unique known example of genuine
isolated ordering of rank greater than 2.

In author’s previous paper [5], we gave one general method to construct isolated or-
derings by using rather combinatorial approach. Following [10], we introduced the notion
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of Dehornoy-like ordering. This is a left-ordering whose positive cone consists of certain
kind of words over a special generating set S of G, which we called σ(S)-positive words. A
Dehornoy-like ordering is a generalization of the Dehornoy ordering of the braid groups, one
of the most interesting left orderings: The Dehornoy ordering has various stimulating features
and a lot of interesting interpretations that relate many aspects of braid groups and orderings.
See [2] for the theory of the Dehornoy ordering. One fascinating property of the Dehornoy
ordering is that one get the Dubrovina-Dubrovin ordering by modifying the Dehornoy order-
ing.

We showed that, under some condition which we called the Property F , Dehornoy-like
orderings and the Dehornoy ordering share various properties. In particular, we have shown
that a Dehornoy-like ordering produces an isolated ordering and vice versa. Indeed, it is
shown that the above two families of known isolated orderings are derived from Dehornoy-
like orderings.

However it seems to be more difficult to find an example of a Dehornoy-like ordering
than to find an example of an isolated ordering directly, since the definition of Dehornoy-like
orderings includes complicated combinatorics.

The aim of this paper is to give a new construction of isolated left orderings by means
of the partially central cyclic amalgamation. From two groups having (not necessarily gen-
uine) isolated orderings, we construct a new group having an isolated left ordering by using
amalgamated free product over Z.

In almost all cases, the obtained isolated orderings are genuine. Our construction can
be seen as an extension of (B) of known examples, but it is completely different from the
Dehornoy-like orderings construction. In fact, we will see that some the orderings constructed
in this paper cannot be obtained from Dehornoy-like orderings.

The following is a summary of the main results of this paper. Recall that for g ∈ G

and a left ordering <G of G, <G is called a g-right invariant ordering if the ordering <G is
preserved by the right multiplication by g , that is, a <G b implies ag <G bg for all a, b ∈ G.

THEOREM 1.1 (Construction of isolated left ordering via partially central cyclic amal-
gamation). Let G and H be finitely generated groups. Let zG be a non-trivial central element
of G, and zH be a non-trivial element of H .

Let G = {g1, . . . , gm} be a finite generating set of G which defines an isolated left order-
ing <G of G. We take a numbering of elements of G so that 1 <G g1 <G · · · <G gm holds.
Similarly, let H = {h1, . . . , hn} be a finite generating set of H which defines an isolated left
ordering <H of H such that the inequalities 1 <H h1 <H · · · <H hn hold.

We assume the cofinality assumptions [CF(G)], [CF(H)], and the invariance assumption
[INV(H)].

[CF(G)] gi <G zG holds for all i .

[CF(H)] hi <H zH holds for all i .

[INV(H)] <H is a zH -right invariant ordering .
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Let X = G ∗Z H = G ∗〈zG=zH 〉 H be an amalgamated free product of G and H over Z.
For i = 1, . . . ,m, let xi = gi z

−1
H h1. Then we have the following results:

(i) The generating set {x1, . . . , xm, h1, . . . , hn} of X defines an isolated left ordering <X

of X.
(ii) The isolated ordering <X does not depend on the choice of the generating sets G

and H. Thus, <X only depends on the isolated orderings <G,<H and the elements
zG, zH .

(iii) The natural inclusions ιG : G → X and ιH : H → X are order-preserving homo-
morphisms.

(iv) 1 <X x1 <X · · · <X xm <X h1 <X · · · <X hn <X zH = zG. Moreover,
z = zG = zH is <X-positive cofinal and the isolated ordering <X is a z-right
invariant ordering.

(v) r(<X) ≤ r(<G) + r(<H ).
(vi) Let Y be a non-trivial proper subgroup of X. If Y is <X-convex, then Y = 〈x1〉, the

infinite cyclic group generated by x1.

We call the construction of isolated ordering described in Theorem 1.1 the partially cen-
tral cyclic amalgamation construction.

As we will see in Lemma 2.3 in Section 2.1, the cofinality assumption [CF(G)] (resp.
[CF(H)]) is understood as an assumption on zG and <G (resp. zH and <H ). Thus Theorem
1.1 (ii) shows that the choice of the generating sets G and H is not important though it is
useful to describe and understand the isolated ordering <X. The generating sets G and H are
not essential and play rather auxiliary roles as for the partially central cyclic amalgamation
construction. This makes a sharp contrast with the construction using Dehornoy-like order-
ings, since in the Dehornoy-like ordering construction we need to use a special generating set
derived from Dehornoy-like ordering having the nice property which we called the Property
F.

On the other hand, it should be emphasized that the proof of Theorem 1.1 (i) is con-
structive, and will actually provide an algorithm to determine the isolated ordering <X. In
particular, the isolated ordering <X can be determined algorithmically if we have algorithms
to compute the isolated orderings <G and <H , as we will see in Section 2.7. This is why
we added auxiliary information of generators of P(<G) and P(<H ) – They provide a use-
ful, explicit, and more combinatorial description of the resulting isolated ordering <X. By
utilizing a combinatorial expression of certain isolated orderings from Theorem 1.1, in [4]
we construct chain domains with exceptional prime ideal. This is highly non-trivial object in
a theory of non-commutative valuation rings, and illustrates a usefulness of partially central
cyclic amalgamation construction.

Theorem 1.1 (iii) shows that the partially central cyclic amalgamation construction can
be seen as a mixing of two isolated orderings <G and <H . We remark that Theorem 1.1
(iv) ensures that we can iterate the partially central cyclic amalgamation construction: The
resulting group X, its isolated ordering <X and z can always be used in the role of H , <H
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and zH in Theorem 1.1. Thus, we can actually produce many isolated orderings by using
the partially central cyclic amalgamation constructions from known (not necessarily genuine)
isolated orderings, like the standard ordering of Z.

It is interesting to compare our amalgamation with other natural operations on groups.
Unlike the partial central cyclic amalgamation (the amalgamated free product over Z, used
in Theorem 1.1), the usual free product does not preserve the property that the group has
an isolated left ordering. Here is the simplest counter-example: the free group of rank two
F2 = Z ∗ Z has no isolated orderings [9], whereas the infinite cyclic group Z has (non-
genuine) isolated orderings, since it admits only two left orderings. Indeed, recently Rivas
[11] proved that free products of groups do not have any isolated left orderings. Similarly, the
direct products of groups also do not preserve the property that the group has an isolated left
ordering: the free abelian group of rank two Z × Z has no isolated orderings [12].

The plan of this paper is as follows: In Section 2 we prove Theorem 1.1. The main
technical tool of the proof is a reduced standard factorization, which serves as some kind
of normal form of elements in X, adapted to the generating set {x1, . . . , xm, h1, . . . , hn}. In
Section 3 we give some examples of isolated orderings obtained by applying Theorem 1.1.
We observe that our examples have various interesting properties, which do not occur in the
previously known examples.

2. Construction of isolated left orderings. Let S = {s1, . . . , sn} be a finite generat-
ing set of G and let S−1 = {s−1

1 , . . . , s−1
n }. We denote by S∗ the free semigroup generated by

S. That is, S∗ is the set of non-empty words over S. We say an element of S∗ (resp. (S−1)∗)
is an S-positive word (resp. an S-negative word). We will often use a symbol P(S) (resp.
N(S)) to represent some S-positive (resp. S-negative) words, whose actual form may depend
on the context.

2.1. Cofinality and Invariance assumptions. First of all we review the assumptions
in the statement of Theorem 1.1 again, and deduce their direct consequences. This clarifies
the role of each hypothesis in Theorem 1.1.

Let G and H be finitely generated groups having an isolated left ordering <G and <H

respectively. Let zG ∈ G be a non-trivial central element of G, and let zH be a non-trivial ele-
ment of H , which might be noncentral. We consider the group X obtained as an amalgamated
free product over Z,

X = G ∗Z H = G ∗〈zG=zH 〉 H .

Let G = {g1, . . . , gm} be a generating set of G which defines an isolated left ordering <G

of G. We take a numbering of elements of G so that 1 <G g1 <G · · · <G gm holds. Similarly,
let H = {h1, . . . , hn} be a generating set of H which defines an isolated left ordering <H of
H , and we assume that the inequalities 1 <H h1 <H · · · <H hn hold.

Recall that an element g ∈ G is called the <G-minimal positive element if g is the <G-
minimal element in the positive cone P(<G). In other words, the inequality 1 <G g ′ ≤G g

implies g = g ′. A left ordering <G is called discrete if <G has a <G-minimal positive
element. Otherwise, <G is called dense.
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As the next lemma shows, the choice of the numbering of G (resp. H) implies that g1

(resp. h1) is the <G-minimal (resp. <H -minimal) positive element. In particular, g1 (resp.
h1) is independent of the choice of the generating set G (resp. H).

LEMMA 2.1. Let G = {g1, . . . , gm} be a generating set of a group G which defines
an isolated left ordering <G of G. Assume that g1 is the <G-minimal element in the set G.
Then g1 is the <G-minimal positive element. In particular, <G is discrete. Moreover, <G is
a g1-right invariant ordering.

PROOF. Assume g ∈ G satisfies the inequalities 1 <G g ≤G g1.
1 <G g means that g is written as a G-positive word g = gi1 · · · gil . Then

g−1
1 g = (g−1

1 gi1)gi2 · · · gil ≤G 1 .

This inequality holds only if i1 = 1 and l = 1, that is, g = g1.
The g1-right invariance of the ordering <G now follows from the fact that g1 is the <G-

minimal positive element: If a <G b, then 1 <G a−1b <G a−1bg1. Thus, g1 <G a−1bg1 so
ag1 <G bg1. �

To obtain an isolated ordering of X from <G and <H , we impose the following assump-
tions, which we call the cofinality assumption for G and H , and the invariance assumption.

[CF(G)] gi <G zG holds for all i .

[CF(H)] hi <H zH holds for all i .

[INV(H)] <H is a zH -right invariant ordering .

Here we remark that the invariance assumption for <G is automatically satisfied: that is,
<G is a zG-right invariant ordering since we have chosen zG so that it is a central element.

First we observe the following simple lemma.

LEMMA 2.2. Let <H be a discrete left ordering of a group H , and let h1 be the <H -
minimal positive element. If <H is an h-right invariant ordering for h ∈ H , then h commutes
with h1.

PROOF. <H is an h-right invariant ordering, so hh1h
−1 >H 1 and h−1h1h >H 1. h1

is the <H -minimal positive element, so hh1h
−1 ≥H h1 and h−1h1h ≥H h1. Thus, we get

hh1 ≥H h1h and h1h ≥H hh1, hence hh1 = h1h. �

By Lemma 2.1 and Lemma 2.2, the invariance assumption [INV(H)] implies that zH

commutes with h1.
For a left-ordering <G of G, an element g ∈ G is called <G-cofinal if for all g ′ ∈ G,

there exist integers m and M such that gm <G g ′ <G gM holds. Although the cofinality
assumptions [CF(G)] and [CF(G)] involve the generating sets G and H, if we assume the
invariance assumption [INV(H)] then these assumptions should be regarded as assumptions
on zG, zH and the isolated orderings <G, <H as the next lemma shows.
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LEMMA 2.3. Assume the invariance assumption [INV(H)] is satisfied. A generating
set H satisfying the cofinality assumption [CF(H)] exists if and only if zH is <H -positive
cofinal and H 	= 〈zH 〉. Here 〈zH 〉 represents the subgroup of H generated by zH . Moreover,
in such case we may choose a generating set H so that the cardinal of H is equal to the rank
of the isolated ordering <H .

PROOF. In the following, we assume the invariance assumption [INV(H)].
Assume that a generating set H satisfies the cofinality assumption [CF(H)]. Then by the

invariance assumption [INV(H)], zH is <H -positive cofinal and H 	= 〈zH 〉.
We show the converse: if zH is <H -positive cofinal and H 	= 〈zH 〉, then we can choose

a generating set H = {h1, . . . , hk} so that H defines the isolated ordering <H , and that H
satisfies [CF(H)]. Moreover, we will show that we can choose k, the cardinal of H, so that k

is equal to r(<H ).
Let us take a generating set H′ = {h′

1, . . . , h
′
k} of H which defines the isolated ordering

<H . By definition of rank, we may choose H′ so that k = r(<H ) holds. With no loss of
generality, we may assume that

h′
1 <H · · · <H h′

s ≤H zH <H h′
s+1 <H · · · <H h′

k .

Since zH is <H -cofinal, for each i there is a non-negative integer Ni such that 1 <H z
−Ni

H h′
i ≤

zH . Let us put hi = z
−Ni

H h′
i . By assumption, h′

i = hi if i ≤ s.
By the hypothesis H 	= 〈zH 〉, we have a strict inequality zH >H h′

1 = h1. Thus if
necessary, by replacing hi with h−1

1 hi , we may assume that hi 	= zH for all i.
We show that zH is written as an {h′

1, . . . , h
′
s}-positive word. Assume that zH = V h′

iW ,
where i > s and V,W are H′-positive or non-empty words. Then zH W−1 = V h′

i >H V zH ,
hence we get 1 ≥H W−1 >H z−1

H V zH . However, <H is a zH -right invariant ordering, hence
z−1
H V zH ≥H 1. This is a contradiction.

Therefore, the generating set H = {h1, . . . , hk} also defines the isolated ordering <H .
By construction, H is a generating set which satisfies the cofinality assumption [CF(H)] with
cardinal k = r(<G). �

Thus, under the invariance assumption [INV(H)], we can always find a generating set H
which defines <H and satisfies the cofinality assumption [CF(H)], if the conditions on <H

and zH in Lemma 2.3 are satisfied. Moreover, if necessary we may choose H so that the
cardinal of H is equal to the rank of <H .

Since for zG and <G, the invariance assumption is automatically satisfied, we can always
find a generating set G which defines <G and satisfies the cofinality assumption [CF(G)] if
zG is <G-positive cofinal and G 	= 〈zG〉.

Now we put ΔH = zHh−1
1 . Since zH and h1 do not depend on the choice of the generat-

ing set H, the same holds for ΔH . As an element of H , ΔH is characterized by the following
property.

LEMMA 2.4. ΔH is the <H -maximal element which is strictly smaller than zH .
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PROOF. Assume that zH h−1
1 = ΔH ≤H h <H zH holds for some h ∈ H . Then

h−1
1 ≤H z−1

H h <H 1. By Lemma 2.1, h−1
1 is the <H -maximal element which is strictly

smaller than 1, so z−1
H h = h−1

1 . Hence h = zH h−1
1 . �

Finally, we put xi = giΔ
−1
H = giz

−1
H h1 and let X = {x1, . . . , xm}. Then {X ,H} gener-

ates the group X. The following lemma is rather obvious, but plays an important role in the
proof of Theorem 1.1.

LEMMA 2.5. zH = zG commutes with all xi .

PROOF. By Lemma 2.2, zH commutes with ΔH = zHh−1
1 . Since zH = zG commutes

with all gi , we conclude that zH commutes with all xi = giΔ
−1
H . �

2.2. Property A and Property C criteria. To prove that {X ,H} defines an isolated
left ordering <X of X, we use the following criterion which was used in the theory of the
Dehornoy ordering of the braid groups [2] and Dehornoy-like orderings [5, 10]. Here we give
the most general form of this kind of arguments.

DEFINITION 2.6. Let S = {s1, . . . , sm} be a generating set of a group G and let W be
a sub-semigroup of (S ∪ S−1)∗.

(1) We say W has the Property A (Acyclic Property) if no word in W represents the trivial
element of G.

(2) We say W has the Property C (Comparison Property) if for each non-trivial element
g ∈ G, either g or g−1 is represented by a word w ∈ W .

PROPOSITION 2.7. Let W be a sub-semigroup of (S ∪ S−1)∗. Let P = π(W), where
π : (S ∪ S−1)∗ → G is the natural projection. Then P is equal to a positive cone of a left
ordering of G if and only if W has Properties A and C.

PROOF. If W is a positive cone of a left ordering, then it is obvious that W has Properties
A and C. We show the converse. Since W is a sub-semigroup, P is a sub-semigroup of G. By
Property C, G = P ∪ {1} ∪ P−1. Property A implies that 1 	∈ P , hence G is decomposed as a
disjoint union G = P � {1} � P−1. This shows that P is a positive cone of a left ordering. �

DEFINITION 2.8. The set of words W in Proposition 2.7 is called the language defin-
ing the corresponding left-ordering.

It is an interesting problem to ask if one can choose a language defining an arbitrary
left-ordering <G so that it is a regular language over a finite alphabet: This is related to order-
decision problems which we will consider in Section 2.7, but in this paper we will not treat
this problem.

As a special case, we get a criterion for a finite generating set to define an isolated
ordering, which will be used to show {X ,H} indeed defines an isolated ordering.
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COROLLARY 2.9. A finite generating set G = {g1, . . . , gm} of a group G defines an
isolated ordering of G if and only if the following conditions [Property A] and [Property C]
hold:

Property A: If g ∈ G is represented by a G-positive word, then g 	= 1.
Property C: If g 	= 1, then g is represented by either a G-positive or a G-negative word.

2.3. Reduced standard factorization. Now we start to show that {X ,H} indeed de-
fines an isolated left ordering of X. From now on, we take G,H,X,<G,<H ,G,H,X as
in assumptions in Theorem 1.1, and we always assume the cofinality assumptions [CF(G)],
[CF(H)], and the invariance assumption [INV(H)].

As the first step of the proof, we introduce a notion of reduced standard factorization,
which serves as a certain kind of normal form of X adapted to the generating set {X ,H}.

Let PX be the sub-semigroup of X generated by X = {x1, . . . , xm}. A standard factor-
ization of x ∈ X is a factorization of x ∈ X of the form

F(x) = rp1q1 · · · plql

where r, q1, . . . , ql ∈ H , p1, . . . , pl ∈ PX satisfy the conditions

(1) qi >H 1 (i 	= l), and ql ≥H 1, and
(2) qi 	= zN

H for all N > 0.

It is not hard to see that every x admits a standard factorization. Actually, we will show
that every x admits a standard factorization which is the simplest in certain sense.

The complexity of a standard factorization F(x) = rp1q1 · · · plql is defined to be l, and
denoted by c(F).

A distinguished subfactorization of a standard factorization F(x) is, roughly saying, a
part of the standard factorization F(x) which can be regarded as a G-positive word, defined
as follows.

We say a subfactorization

(2.1) w = (qipi+1qi+1 · · ·pi+r qi+r )

in a standard factorization F(x) is a distinguished subfactorization if it satisfies the following
two conditions:

(1) qj = ΔH for all j = i, i + 1, . . . , i + r .
(2) pj ∈ X for all j = i + 1, . . . , i + r .

That is, a distinguished subfactorization is a part of standard factorization which is written as

(2.2) w = ΔHxji+1ΔHxji+2 · · · xji+r ΔH .

We will express the distinguished subfactorization w (2.2) by using a G-positive word
gw as follows: Let us take xa ∈ X so that p′

i = pix
−1
a ∈ PX ∪{1} (such a choice of xa might

be not unique), and write a standard factorization F(x) as

F(x) = rp1q1 · · · plql

= rp1q1 · · · pi−1qi−1(pix
−1
a )(xaqi · · ·pi+r qi+r )pi+r+1qi+r+1 · · · plql
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= rp1q1 · · · pi−1qi−1p
′
i (xaΔHxji+1ΔHxji+2 · · · xji+r ΔH )pi+r+1qi+r+1 · · ·plql.

Let us put

gw = gji+1 · · · gj+i+r .

We call gw the corresponding G-positive word (element) of the distinguished subfactorization
w. Since gi = xiΔH ,

xaΔHxji+1ΔH xji+2 · · · xji+r ΔH = gagji+1 · · · gji+r = gagw.

Thus, if w is a distinguished subfactorization in F(x), by choosing xa we may express x as

x = rp1q1 · · · pi−1qi−1p
′
i [gagw]pi+r+1qi+r+1 · · · plql

by using the corresponding G-positive word gw.
Next we introduce a notion of reducible distinguished subfactorization. Let w be a dis-

tinguished subfactorization of F(x) as taken in (2.1). Let us take xu ∈ X so that p′
i+r+1 =

x−1
u pi+r+1 ∈ PX ∪ {1}. As for the choice of xa above, such xu may not unique. If such xu

does not exist, that is, pi+r+1 = 1, we take xu = 1. We say a distinguished subfactorization
w is reducible if for any choice of such xa and xu, we have the inequality gagwgu ≥G zG.
Otherwise, that is, if one can choose xa and xu so that gagwgu <G zG holds, then we say w is
irreducible.

Now we define the notion of a reduced standard factorization, which plays an important
role in the proof of both Property A and Property C.

DEFINITION 2.10 (Reduced standard factorization). Let F(x) = rp1q1 · · · plql be a
standard factorization. We say F is reduced if qi <H zH for all i and F contains no reducible
distinguished subfactorization.

We say a distinguished subfactorization w of a standard factorization F is maximal if
there is no other distinguished subfactorization w′ of F whose correspondingG-positive word
gw′ contains gw as its subword. For any <G-positive elements g, g ′, g ′′, since zG is central, if
g ≥G zG then g ′gg ′′ ≥G zG. Thus, to see whether a standard factorization is reducible or not,
it is sufficient to check that all maximal distinguished subfactorization are irreducible.

EXAMPLE 2.11. A distinguished subfactorization and related notions are slightly
complex, so here we give an example. Let us consider the case X = {x1, x2} and take a
standard factorization of the form

(2.3) F(x) = (x1x2)ΔHx1ΔHx2ΔH(x3
1x2)h1 ,

for example.
In the standard factorization (2.3) w = ΔHx1ΔH is a distinguished subfactorization.

The corresponding G-positive word is gw = g1. In this case, we may choose xa = x2 since
(x1x2)x

−1
2 = x1 ∈ PX . So we are able to write x as

x = x1[g2g1]x2ΔH (x3
1x2)h1 .
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The distinguished sub-factorization w is not maximal: it is included in another distin-
guished subfactorization w′ = ΔHx1ΔHx2ΔH , and we may write

x = x1[g2(g1g2)](x3
1x2)h1 .

The distinguished subfactorization w′ is maximal.
Is w′ reducible ? To see this, first we need to determine all possibilities of xa and xu in the

definition of reducible distinguished subfactorization. Assume that (x1x2)x
−1
1 ∈ PX ∪ {1},

but x−1
2 (x3

1x2) 	∈ PX ∪ {1}. Then we may choose xa = x1 or x2, and xu = x1. Hence our
definition says, w′ is reducible if and only if

g1(g1g2)g1 ≥G zG, and g2(g1g2)g1 ≥G zG

hold.

First we show the existence of the reduced standard subfactorization. The proof of the
next lemma utilizes the standard form of amalgamated free products, and mainly works in
the generating set {G,H}. This explains how the notion of reduced standard factorization
appears—a reduced standard factorization corresponds to a standard form in amalgamated
free products, taken so that each G-factor g satisfy 1 <G g <G zG.

LEMMA 2.12. Every element x ∈ X admits a reduced standard subfactorization.

PROOF. Since X is an amalgamated free product of G and H , every x ∈ X is written as

x = q0f1q1f2q2 · · · flql

where qi ∈ H , fi ∈ G, and qi 	= zN
H and fi 	= zN

G for any N ∈ Z and i > 0.
Since zG is <G-cofinal, for each i > 0 there exists Ni ∈ Z which satisfies

z
Ni

G <G fi <G z
Ni+1
G .

We put f ∗
i = z

−Ni

G fi . Then f ∗
i satisfies the inequality

1 <G f ∗
i <G zG .

Similarly, since zH is <H -cofinal, for each i > 0 there exists Mi which satisfies the inequality

z
Mi

H ≤H ΔHqi <H z
Mi+1
H .

Let Li = ∑
j>i(Nj + Mj), and put q∗

i = z
−Li

H (z
−Mi

H ΔHqi)z
Li

H . Since <H is a zH -right

invariant ordering, 1 ≤H q∗
i <H zH holds. We have assumed that qi 	= zN

H , so we have
q∗
i 	= ΔH . Thus, 1 ≤H q∗

i <H ΔH .
Then we get a reduced standard factorization of x as follows. First we modify the first

expression of x as

x = q0f1q1 · · · flql

= q0(z
N1
G f ∗

1 )q1(z
N2
G f ∗

2 ) · · · (zNl−1
G f ∗

l−1)ql−1(z
Nl

G f ∗
l )ql

= (q0z
N1
H )f ∗

1 (q1z
N2
H ) · · ·f ∗

l−1(ql−1z
Nl

H )f ∗
l ql

= (q0z
N1
H )f ∗

1 (q1z
N2
H ) · · ·f ∗

l−1(ql−1z
Nl

H )f ∗
l Δ−1

H z
Ml

H (z
−Ml

H ΔHql)
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= (q0z
N1
H )f ∗

1 (q1z
N2
H ) · · ·f ∗

l−1(ql−1z
Nl

H z
Ml

H )(f ∗
l Δ−1

H )q∗
l

= (q0z
N1
H )f ∗

1 (q1z
N2
H ) · · ·f ∗

l−1Δ
−1
H z

Nl+Ml

H (z
−Nl−Ml

H ΔHql−1z
Nl+Ml

H )(f ∗
l Δ−1

H )q∗
l

= (q0z
N1
H )f ∗

1 (q1z
N2
H ) · · · zNl+Ml

H (f ∗
l−1Δ

−1
H )q∗

l−1(f
∗
l Δ−1

H )q∗
l

= · · ·
= (q0z

L0
H )(f ∗

1 Δ−1
H )q∗

1 · · · (f ∗
l−1Δ

−1
H )q∗

l−1(f
∗
l Δ−1

H )q∗
l .

Now let us write f ∗
i = Pi(G)gki , where Pi(G) is a G-positive or an empty word. Since

gi = xiΔH , we may express Pi(G) as an {X ,H}-positive (or empty) word. Hence by rewrit-
ing each Pi(G) as an {X ,H}-positive (or empty) word, we get a standard factorization

(2.4) F(x) = (q0z
L0
H )[P1(G)]xk1q

∗
1 · · · [Pl−1(G)]xkl−1q

∗
l−1[Pl(G)]xkl q

∗
l .

Since q∗
i 	= ΔH for all i, every distinguished subfactorization of (2.4) comes from

[Pi(G)]. (For example, if P1(G) = g1g2g3 = x1ΔHx2ΔHx3ΔH , then it yields a (maximal)
distinguished subfactorization ΔH x2ΔHx3ΔHxk1 ). Therefore for a maximal distinguished
subfactorization w in F(x), we may choose ga and gu so that gagwgu = Pi(G)gki holds for
some i. Since Pi(G)gki = f ∗

i <G zG, this implies that all distinguished sub-factorizations are
irreducible. Hence F(x) is a reduced standard factorization. �

2.4. Reducing operation and the proof of Property A. In the proof of Lemma 2.12
given in previous section, we mainly used the generating set {G,H}. In this section we give
an alternative way to get a reduced standard factorization, which gives a proof of Property A.
This method has an advantage since we work on words over {X ,H}.

We say a standard factorizationF(x) = rp1q1 · · ·plql is pre-reduced if 1 <H qi <H zH

holds for all i. It is rather easy to see pre-reduced standard factorization exists.

LEMMA 2.13 (Existence of pre-reduced standard factorization). Every element x ∈ X

admits a pre-reduced standard factorization.

PROOF. Let F(x) = rp1q1 · · ·plql be a standard factorization. For each i, take
Mi ≥ 0 so that z

Mi

H <H qi <H z
Mi+1
H . Let Li = ∑

j≥i Mi and q∗
i = z

−Li

H qiz
Li+1
H =

z
−Li+1
H (z

−Mi

H qi)z
Li+1
H . Since <H is zH -right invariant, 1 <H q∗

i <H zH . Therefore, we get a
pre-reduced standard factorization

x = rp1q1 · · · plql

= rp1q1 · · · pl−1ql−1pl(z
Ml

H q∗
l )

= rp1q1 · · · pl−1(ql−1z
Ml

H )plq
∗
l

= rp1q1 · · · pl−1z
−Ml−Ml−1
H (z

−Ml−Ml−1
H ql−1z

Ml

H )plq
∗
l

= rp1q1 · · · pl−1z
−Ll−1
H q∗

l−1plq
∗
l

= · · ·
= (rz

−L0
H )p1q

∗
1 · · · plq

∗
l .

�
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To show we are actually able to get reduced standard factorization, we observe that we
are able to eliminate all reducible distinguished subfactorizations. Let d(F) be the number
of maximal reducible distinguished subfactorizations. The next lemma gives alternative proof
that a reduced standard factorization exists. It says that by induction on (d(F), c(F)) for
pre-reduced factorization F , we are able to get reduced standard factorization.

LEMMA 2.14 (Reducing operation). Let F(x) = rp1q1 · · · plql be a pre-reduced
standard factorization of x ∈ X. If F(x) contains a reducible distinguished subfactoriza-
tion, then we can find another pre-reduced standard factorization F ′(x) = r ′p′

1q
′
1 · · · which

satisfies d(F ′) < d(F) or, d(F ′) = d(F) and c(F ′) < c(F). Moreover, if r >H 1 then
r ′ >H 1.

PROOF. Let w = qipi+1 · · · ps−1qs−1 be a reducible maximal distinguished subfactor-
ization in F(x). Thus, we may assume that the pre-reduced standard factorization F(x) is
written as

F(x) = rp1q1 · · · pi−1qi−1p
′
i[gagw]xup

′
sqs · · · plql

where

(1) p′
i = pix

−1
a and p′

s = x−1
u ps ,

(2) p′
i , p

′
s ∈ PX ∪ {1} ,

(3) gagwgu ≥G zG .

Now take N > 0 so that zN
G <G gagwgu ≤G zN+1

G , and for j < i let q∗
j = z−N

H qjz
N
H .

Then we may write x as

x = rp1q1 · · · pi−1qi−1p
′
i[gagw]xup

′
sqs · · · plql

= rp1q1 · · · pi−1qi−1p
′
iz

N
G(z−N

G gagwgu)Δ
−1
H p′

sqs · · ·plql

= (rzN
H )p1q

∗
1 · · · pi−1q

∗
i−1p

′
i (z

−N
G gagwgu)Δ

−1
H p′

sqs · · · plql .

First assume that (z−N
G gagwgu) = zG = zH . Then we write x as

x = (rzN
H )p1q

∗
1 · · · pi−1q

∗
i−1p

′
i (zH Δ−1

H )p′
sqs · · · plql

= (rzN
H )p1q

∗
1 · · · pi−1q

∗
i−1p

′
ih1p

′
sqs · · ·plql .

If p′
i 	= 1 and p′

s 	= 1, then we get a pre-reduced standard factorization

(2.5) F ′(x) = (rzN
H )p1q

∗
1 · · · pi−1q

∗
i−1p

′
ih1p

′
sqs · · · plql .

In F ′(x), we removed the reducible distinguished subfactorization w and no distinguished
subfactorization is created, so d(F ′) < d(F).

If p′
i = 1 or p′

s = 1, then the standard factorization (2.5) might fail to be pre-reduced.
We construct a pre-reduced standard factorization F ′′ from the standard factorization (2.5)
by using the argument of proof of Lemma 2.13. In such case, we might produce one new
reducible maximal distinguished subfactorization, so in general d(F ′′) ≤ d(F) although we
have removed w from F(x). In this case we have c(F ′′) < c(F).

(Here is a simple example where d(F ′′) does not decrease: assume that p′
i = 1, p′

s ∈ X ,
and q∗

i−1h1 = ΔH , and that w = qs · · · is a distinguished subfactorization: then we get a new
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maximal distinguished subfactorization w = · · · (q∗
i−1h1)p

′
sqs · · · in F ′(x). This maximal

distinguished subfactorization might be reducible, so d(F ′′) = d(F) may occur.)
Next assume that (z−N

G gagwgu) 	= zG. Let us put g ′ = (z−N
G gagwgu)g

−1
1 and write x as

F(x) = (rzN
H )p1q

∗
1 · · ·pi−1q

∗
i−1p

′
i (z

−N
G gagwgu)Δ

−1
H p′

sqs · · · plql

= (rzN
H )p1q

∗
1 · · ·pi−1q

∗
i−1p

′
ig

′g1Δ
−1
H p′

sqs · · · plql

= (rzN
H )p1q

∗
1 · · ·pi−1q

∗
i−1p

′
ig

′(x1p
′
s)qs · · · plql .

If g ′ = 1, then we get a pre-reduced standard factorization

F ′(x) = (rzN
H )p1q

∗
1 · · · pi−1q

∗
i−1(p

′
ix1p

′
s )qs · · · plql

such that d(F ′) < d(F).
If g ′ >G 1, then let us write g ′ = ga′P(G) where P(G) is a G-positive, or empty word. By

rewriting P(G) as an {X ,H}-positive word, we get a new pre-reduced standard factorization

F ′(x) = (rzN
H )p1q

∗
1 · · · pi−1q

∗
i−1p

′
i[ga′P(G)](x1p

′
s )qs · · · plql.

Observe that P(G) gives rise to a maximal distinguished subfactorization w′ in F ′(x)

such that gw′ = P(G). By Lemma 2.1, <G is a g1-right invariant ordering, so 1 ≤G g ′ <G

zGg
−1
1 , so ga′gw′g1 <G zG. Hence the maximal distinguished subfactorization w′ in F ′(x)

is irreducible. By construction, all other maximal reducible distinguished subfactorizations
in F ′(x) are derived from the pre-reduced factorization F(x). Since we have removed the
maximal reducible distinguished subfactorization w in F(x), d(F ′) < d(F).

Moreover, by construction we have always r ≤H r ′. In particular, 1 <H r ′ if 1 <H r , �

Now we are ready to prove Property A.

PROPOSITION 2.15 (Property A). If x is expressed as an {X ,H}-positive word, then
x 	= 1.

PROOF. Assume that x is expressed by an {X ,H}-positive word. Such a word expres-
sion can be modified to a standard factorization which is also an {X ,H}-positive word: By the
proof of Lemma 2.13, we can modify such a standard factorization so that it is pre-reduced,
preserving the property that it is also an {X ,H}-positive word. By Lemma 2.14, we may mod-
ify the {X ,H}-positive pre-reduced standard expression F(x) so that it is an {X ,H}-positive
reduced standard factorization.

Now let us rewrite F(x) as a word over {G,H} as follows. Let w be a maximal distin-
guished subfactorization in F(x) so we may write F(x) as

F(x) = rp1q1 · · · pi−1qi−1p
′
i[gagw]psqs · · · plql .

Since w is irreducible, we may choose ga and xu ∈ X so that p′
s = x−1

u ps, p
′
i ∈ PX ∪ {1}

and that gagwgu <G zG. Then we write x as

F(x) = rp1q1 · · · pi−1qi−1p
′
i (gagwgu)Δ

−1
H p′

sqs · · · plql ,

and regard (gagwgu) as a G-positive word.
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Iterating this rewriting procedure for each maximal distinguished subword, and rewriting
the rest of xi in F(x) as a word over {G,H} by using the relation xi = giΔ

−1
H , we finally write

x as

(2.6) x = W0V1W1 · · ·VnWn

where Wi is a word over H±1 and Vi is a word over G±1. By construction, Vi ∈ G or
Vi = gagwgu where gw is a maximal distinguished subfactorization in F(x). Since we have
chosen gagwgu <G zG, this implies that, Vi 	∈ 〈zG〉 for all i. Similarly, the assumption that
F(x) is reduced implies that we may choose Wi 	∈ 〈zH 〉 for i > 0. This implies that the
expression (2.6) is a normal form of an amalgamated free product X = G ∗〈zG=zH 〉 H so
x 	= 1.

�

2.5. Proof of Property C. Next we give a proof of Property C. To begin with, we
observe a simple, but useful observation.

LEMMA 2.16.

h−1
j xi = N(X ,H)Δ−1

H

where N(X ,H) represents an {X ,H}-negative word.

PROOF. Since zH = zG and xi = giΔ
−1
H , we have

zH = gig
−1
i zGg

−1
1 g1 = xiΔH (g−1

i zGg
−1
1 )x1ΔH .

Therefore

h−1
j xi = (h−1

j zHΔ−1
H )x−1

1 (z−1
G g1gi )Δ

−1
H = (h−1

j h1)x
−1
1 (z−1

G g1gi )Δ
−1
H .

Since z−1
G gi <G 1 and g1 is the <G-minimal positive element, z−1

G gi ≤G g−1
1 . Hence

z−1
G g1gi ≤G 1. Thus, (h−1

j h1)x
−1
1 (z−1

G g1gi ) is written as an {X ,H}-negative word.
�

Now we are ready to prove Property C.

PROPOSITION 2.17 (Property C). Each non-trivial element x ∈ X is expressed by an
{X ,H}-positive word or an {X ,H}-negative word.

PROOF. Let x be a non-trivial element of X and take a reduced standard factorization
of x,

F(x) = rp1q1 · · · plql .

If r ≥H 1, r can be written as an H-positive or empty word, hence we may express x as an
{X ,H}-positive word.

By induction on l = c(F), we prove that x is expressed by an {X ,H}-negative word
under the assumption that r <H 1.

First assume that q1 	= ΔH . Since r <H 1, we can express r as r = N(H)h−1
1 , where

N(H) is an H-negative word or an empty word. Take an X -positive word expression of
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p1 = xi1xi2 · · · xip . Then by Lemma 2.16,

rp1p2q2 · · · = (N(H)h−1
1 )(xi1xi2 · · · xip )q1p2q2 · · ·

= N(H)(h−1
1 xi1)xi2 · · · xipq1p2q2 · · ·

= N(X ,H)Δ−1
H xi2 · · · xipq1p2q2 · · ·

= N(X ,H)(h−1
1 xi2) · · · xipq1p2q2 · · ·

= · · ·
= N(X ,H)Δ−1

H q1p2q2 · · · .

N(X ,H) represents an {X ,H}-negative word.
Since F(x) is a reduced standard factorization, q1 <H zH . By Lemma 2.4 ΔH is the

<H -maximal element of H which is strictly smaller than zH , so q1 ≤H ΔH . We have as-
sumed that q1 	= ΔH so (Δ−1

H q1) <H 1. Thus the subword (Δ−1
H q1)p2q2 · · · plql is a reduced

standard factorization with complexity (l − 1). By induction, (Δ−1
H q1)p2q2 · · · plql is written

as an {X ,H}-negative word, hence we conclude that x is written as an {X ,H}-negative word.
Next assume that q1 = ΔH . Let w = q1p2q2 · · · ps−1qs−1 be a maximal distinguished

subfactorization of F(x) which contains q1. Thus, the reduced standard factorization S is
written as

F(x) = rp′
1[gagw]xup

′
sqsps+1 · · · plql

where p′
1 = p1x

−1
a , p′

s = x−1
u ps ∈ PX ∪ {1}.

Then by Lemma 2.16,

x = rp′
1[gagw]xup

′
sqsps+1 · · · plql

= N(X ,H)h−1
1 [gagw]xuΔHΔ−1

H p′
sqs · · · plql

= N(X ,H)h−1
1 [gagwgu]Δ−1

H p′
sqs · · · plql

= N(X ,H)ΔH (z−1
G gagwgu)Δ

−1
H p′

sqs · · · plql .

The distinguished subfactorization w is irreducible so we may choose xu and xa so that
z−1
G gagwgu <G 1 holds. This implies that z−1

G gagwgu is written as a G-negative word. By
expressing a G-negative word expression of z−1

G gagwgu as an {X ,H}-negative word, we con-
clude that z−1

G gagwgu is written as a word of the form Δ−1
H N(X ,H). Hence

x = N(X ,H)ΔH Δ−1
H N(X ,H)(Δ−1

H p′
sqs · · · plql)

= N(X ,H)(Δ−1
H p′

sqs · · · plql) .

If p′
s 	= 1, then (Δ−1

H p′
sqs · · ·plql) is a reduced standard factorization having the com-

plexity less than l. Hence by induction, (Δ−1
H p′

sqs · · · plql) is expressed by an {X ,H}-
negative word.
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If p′
s = 1, then qs 	= ΔH since w was a maximal distinguished subfactorization. Hence

qs <H ΔH , and (Δ−1
H qs)ps+1 · · · plql is a reduced standard factorization with complexity

less than l. By induction, (Δ−1
H qs)ps+1 · · ·plql is expressed by an {X ,H}-negative word.

Thus in either case, we conclude x is expressed by an {X ,H}-negative word. �

2.6. Proof of Theorem 1.1. Now we are ready to prove our main theorem.

Proof of Theorem 1.1. (i): In Proposition 2.15 and Proposition 2.17, we have already
confirmed the Properties A and C for the generating set {X ,H}. By Corollary 2.9 the gener-
ating set {X ,H} indeed defines an isolated left ordering <X of X.

(ii): Let G′ = {g ′
1, . . . } and H′ = {h′

1, . . . } be other generating sets of G and H satis-
fying [CF(G)] and [CF(H)]. Recall that ΔH = zH h−1

1 does not depend on the choice of a
generating set H. Let xi = giΔ

−1
H , x ′

i = g ′
iΔ

−1
H , X = {x1, . . . , }, and X ′ = {x ′

1, . . . , }.
Since H and H′ are generators of the same semigroup, we may write hi as an H′-positive

word. Similarly, since G and G′ are generators of the same semigroup, we may write gi as a
G′-positive word gi = g ′

i1
g ′
i2

· · · g ′
il

. Thus,

xi = giΔ
−1
H = g ′

i1
g ′
i2

· · · g ′
il
Δ−1

H = x ′
i1
ΔHx ′

i2
ΔH · · · x ′

il−1
ΔHx ′

il

so xi is written as an {X ′,H′}-positive word. Thus, if x ∈ X is expressed by an {X ,H}-
positive word, then x is also represented by an {X ′,H′}-positive word. By interchanging the
roles of {G,H} and {G′,H′}, we conclude that {X ,H} and {X ′,H′} generate the same sub-
semigroup of X so they define the same isolated ordering of X.

(iii): This is obvious from the definition of <X.

(iv): The inequality h1 <X h2 <X · · · <X hn follows from the definition of <X. By
Lemma 2.16, xi <X h1 for all i. Now we show xi <X xj if i < j . Since gi <G gj if
i < j , g−1

i gj is written as a G-positive word. Now by definition gi = xiΔH , so we may
express a G-positive word expression of g−1

i gj as an {X ,H}-positive word expression of
the form Pi,j (X ,H)ΔH , where Pi,j (X ,H) represents an {X ,H}-positive word. Therefore
x−1
i xj = ΔH g−1

i gjΔ
−1
H = ΔH Pi,j (X ,H), so xi <X xj . The assertion that z = zG = zH

is <X-positive cofinal is obvious. To see that <X is a z-right invariant ordering, we observe
that z−1xiz = xi >X 1 and z−1hjz >X 1. Now for x, x ′ ∈ X, assume x <X x ′, so
x−1x ′ is written as {X ,H}-positive word w = s1 · · · sm, where si denotes xj or hj . Then
z−1(x−1x ′)z = (z−1s1z) · · · (z−1smz) >X 1, hence xz <X x ′z.

(v): Recall that by Lemma 2.3, we may choose the generating sets G and H so that the
cardinal of G, H are equal to r(<G), r(<H ) respectively. Thus, r(<X) ≤ r(<G) + r(<H ).
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(vi): We prove that 〈x1〉 is the unique <X-convex non-trivial proper subgroup of X.
Recall by (2), (4) and Lemma 2.1, x1 is the minimal <X-positive element of X, hence x1 does
not depend on a choice of G and H. In particular, 〈x1〉 is a non-trivial <X-convex subgroup.

Let C be a <X-convex subgroup of X. Assume that C ⊃ 〈x1〉. Let y ∈ C − 〈x1〉 be an
<X-positive element. Then y is written as y = xm

1 xjP (X ,H) or y = xm
1 hlP (X ,H) where

m ≥ 0, l > 0, j > 1 and P(X ,H) is an {X ,H}-positive word. Since x1 ∈ C, we may choose
y so that m = 0 by considering x−m

1 y instead.
First we consider the case X 	⊂ 〈x1〉. Then we may choose y so that 1 < x2 ≤X y holds,

so the convexity assumption implies x2 ∈ C. Now observe that x−1
1 x2 = ΔH g−1

1 g2Δ
−1
H =

ΔH P1,2(X ,H), hence

1 <X hp ≤ zHh−1
1 = ΔH <X ΔHP1,2(X ,H) = x−1

1 x2.

Since x−1
1 x2 ∈ C, this implies X ∪ H = {x1, . . . , xm, h1, . . . , hn} ⊂ C. Therefore we

conclude C = X.
Next we consider the case X ⊂ 〈x1〉. This happens only when G = Z = 〈g1〉 and

zG = gN
1 . Then we may choose y so that 1 < h1 ≤X y holds, so h1 ∈ C. Then x−1

1 h1 =
ΔH g−1

1 h1 = h−1
1 zGg

−1
1 h1 so zGg

−1
1 = gN−1

1 ∈ C. This implies zG = zH ∈ C, so C = X.
�

2.7. Computational issues. In this section we briefly mention the computational is-
sue concerning the isolated ordering <X. Let G = 〈S | R〉 be a group presentation and <G

be a left ordering of G. The order-decision problem for <G is the algorithmic problem of
deciding for an element g ∈ G given as a word over S ∪ S−1, whether 1 <G g holds or not.
Clearly, the order-decision problem is harder than the word problem, since 1 <G g implies
1 	= g . It is interesting to find an example of a left ordering <G of a group G, such that the
order-decision problem for <G is unsolvable but the word problem for G is solvable.

There is another algorithmic problem which is also related to the order-decision problem
of isolated orderings. We say a word overG∪G−1 is G-definite if w is G-positive or G-negative,
or empty. If G defines an isolated ordering of G, then every g ∈ G admits a G-definite word
expression. The G-definite search problem is a problem to find a G-definite word expression
of a given element of G.

THEOREM 2.18. Let us take G,H,X,<G,<H , zG, zH ,G,H,X as in Theorem 1.1.

(1) The order-decision problem for <X is solvable if and only if the order-decision prob-
lems for <G and <H are solvable.

(2) The {X ,H}-definite search problem is solvable if and only if the G-definite search
problem and the H-search problem are solvable.

PROOF. Since the restriction of <X to G and H yields the ordering <G and <H respec-
tively, if the order-decision problem for <X is solvable, then so is for <G and <H . Similarly,
if {X ,H}-definite search problem is solvable, then we are able to get G-positive (resp. H-
positive) word by transforming {X ,H}-positive word representing elements of G (resp. H )
by using gi = xiΔH so G-definite (H-definite) search problem is also solvable.



CONSTRUCTION OF ISOLATED LEFT ORDERINGS 67

The proof of converse is implicit in the proof of Theorem 1.1 (i). Recall that in the proof
of Property C (Proposition 2.17), we have shown that for a reduced standard factorization
F(x) = rp1q1 · · · plql , x >X 1 if r ≥H 1 and x <X 1 if rH < 1. Moreover, the proof
of Property C (Proposition 2.17) is constructive, hence we can algorithmically compute an
{X ,H}-negative word expression of x if r <H 1 if the G-definite search problem and the
H-search problem is solvable.

Thus, to solve the order-decision problem or the {X ,H}-definite search problem, it is
sufficient to compute a reduced standard factorization. We have established two different
methods to compute a reduced standard factorization, in the proof of Lemma 2.12 and Lemma
2.14. Both proofs are constructive, hence we can algorithmically compute a reduced standard
expression. �

It is not difficult to analyze the computational complexity of order-decision problem
or the {X ,H}-definite search problems based on the algorithm obtained from the proof of
Proposition 2.17, Lemma 2.12 and Lemma 2.14. In particular, we observe the following
results.

PROPOSITION 2.19. Let us take G,H,X,<G,<H , zG, zH ,G,H,X as in Theorem
1.1.

(1) If the order-decision problems for <G and <H are solvable in polynomial time with
respect to the length of the input of words, then the order-decision problem for <X is
also solvable in polynomial time.

(2) If the G-definite search problem and the H-definite search problem are solvable in
polynomial time, then the {X ,H}-definite search problem is also solvable in polyno-
mial time.

(3) Moreover, if one can always find a G-definite and an H-definite word expression
whose length are polynomial with respect to the length of the input word, then one
can always find an {X ,H}-definite word expression whose length is polynomial with
respect to the length of the input word.

3. Examples. In this section we give examples of isolated left orderings produced
by Theorem 1.1. All examples in this section are new, and have various properties which
previously known isolated orderings do not have. For the sake of simplicity, in the following
examples we only use the infinite cyclic group Z, the most fundamental example of group
having isolated orderings, as a basic building block.

Other groups with isolated orderings, such as groups having only finitely many left-
orderings, or the braid group Bn with the Dubrovina-Dubrovin ordering <DD , also can be
used to construct new examples of isolated orderings.

3.1. Group having many distinct isolated orderings. Let a1, . . . , am (m > 1) be
positive integers bigger than one and consider the group obtained as a central cyclic amalga-
mated free product of m infinite cyclic groups Z(i) = 〈xi〉.

G = Ga1,...,am = ∗ZZ(i)
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= 〈
x1, . . . , xm | x

a1
1 = x

a2
2 = · · · = xam

m

〉
.

Recall that an infinite cycle group Z have exactly two left orderings, the standard one
and its opposite. Using the standard left ordering for each factor Z(i), by Theorem 1.1 we are
able to construct an isolated left ordering <G so that the restriction of <G to the i-th factor
Z

(i) is the standard left ordering.
First we give a detailed exposition of <G for the case m = 2 and m = 3.

EXAMPLE 3.1.

(i) First we begin with the case m = 2, which was already considered in [5], [10]:

Ga1,a2 = Z
(1) ∗Z Z

(2) = 〈x1, x2 | x
a1
1 = x

a2
2 〉 .

By Theorem 1.1, we get an isolated ordering <G defined by the generating set
{x1x

1−a2
2 , x2}.

(ii) Next we consider the case m = 3. There are two different ways to express G as an
amalgamated free products of Z.
(a) First we regard Ga1,a2,a3 = Ga1,a2 ∗Z Z

(3) = (Z(1) ∗Z Z
(2)) ∗Z Z

(3).

By (1), Ga1,a2 have an isolated ordering defined by {x1x
1−a2
2 , x2}. By

applying Theorem 1.1 again, we get the isolated ordering <(••)• defined by

{x1x
1−a2
2 x

1−a3
3 , x2x

1−a3
3 , x3}.

(b) Next we regard Ga1,a2,a3 = Z
(1) ∗ Ga2,a3 = Z

(1) ∗ (Z(2) ∗Z Z
(3)). By applying

Theorem 1.1, we get the isolated ordering <•(••) defined by {x1x
−a3
3 x2x

1−a3
3 =

x1x
1−a2
2 x

1−a3
3 , x2x

1−a3
3 , x3}.

Thus two orderings <(••)• and <•(••) derived from different factorizations are the
same ordering.

As Example 3.1 (ii) suggests, the isolated orderings constructed from Theorem 1.1 are
independent of the way of factorization as amalgamated free products, that is, the way of
putting parenthesis in the expression Z

(1) ∗Z Z
(2) ∗Z · · · ∗Z Z(m). All factorizations give the

same isolated ordering <G defined by {s1, . . . , sm}, where si is given by

si = xix
1−ai+1
i+1 · · · x1−am

m .

This is checked by induction on m. Take a factorization of G as G = G1 ∗Z G2 =
Ga1,...,ak ∗Z Gak+1,...,am . By induction, the isolated ordering <1 of G1 is independent of a
choice of a factorization of G1, and is defined by

s′
i = xix

1−ai+1
i+1 · · · x1−ak

k (i = 1, . . . , k).

Similarly, the isolated ordering <2 of G2 is independent of a choice of a factorization of G2,
and is defined by

s′′
j = xjx

1−aj+1
j+1 · · · x1−am

m (j = k + 1, . . . ,m).
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Thus by Theorem 1.1, we get an isolated ordering <G of G defined by

si =
⎧
⎨

⎩
s′
ix

−ak+1
k+1 xk+1x

1−aj+2
k+2 · · · x1−am

m (i = 1, . . . , k),

xix
1−ai+1
i+1 · · · x1−am

m (i = k + 1, . . . ,m)

= xix
1−ai+1
i+1 · · · x1−am

m .

The group G is the simplest example of a group with isolated orderings constructed by
Theorem 1.1. Nevertheless the group G and its isolated ordering <G have various interesting
properties which have not appeared in the previous examples:

(1): The isolated ordering <G of G is not derived from Dehornoy-like orderings if G is
not generated by two elements.

As we mentioned earlier, the special kind of left-orderings called Dehornoy-like order-
ings produces isolated orderings, and all previously known examples of genuine isolated or-
derings are derived from Dehornoy-like orderings.

In [5] it is proved that an isolated ordering derived from Dehornoy-like orderings has
a lot of convex subgroups: if the isolated orderings <H of a group H is derived from the
Dehornoy-like orderings, then there are at least r(<H ) − 1 proper, <H -convex nontrivial
subgroups. On the other hand Theorem 1.1 (vi) shows the isolated orderings <G has only one
proper, <G-convex nontrivial subgroup.

If G is not generated by two elements, then r(<G) > 2. This implies that the isolated
ordering <G of G is not derived from a Dehornoy-like ordering. This provides a counter
example of somewhat optimistic conjecture: every genuine isolated ordering is derived from
Dehornoy-like ordering. (Recall that all previously known examples of genuine isolated or-
derings are constructed by Dehornoy-like orderings.)

We remark that it is known that the group G = Ga1,...,am is a two-generator group if and
only if ai and aj are not coprime for some i 	= j [8]. Therefore for example, the isolated
ordering of G2,3,4 in Example 3.1 (ii) is an isolated ordering which is not derived from a
Dehornoy-like ordering.

(2): The natural right G-action on LO(G) has at least 2(m − 1)! distinct orbits derived
from isolated orderings.

There is a natural, continuous right G-action on LO(G), defined as follows: For a left
ordering < of G and g ∈ G, we define the left ordering < ·g by h (< ·g) h′ if hg < h′g . This
action sends an isolated ordering to an isolated ordering. Although this action is natural and
important, little is known about the quotient LO(G)/G.

Recall that G is written as the amalgamated free products of m infinite cyclic groups
Z

(i). As we have seen, the way of decomposition of G (the way of putting parenthesis) does
not affect the obtained isolated ordering <G.
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On the other hand, for a permutation σ ∈ Sm, Ga1,...,am = Gaσ(1),...,aσ(m)
. By viewing

Ga1,...,am = Gaσ(1),...,aσ(m)
and applying the construction above, we get an isolated ordering

<σ whose minimal positive element is

xσ(1)x
1−aσ(2)

σ (2) · · · x1−aσ(m)

σ (m) = x
−(m−1)a1
1 xσ(1)xσ(2) · · · xσ(m).

Thus, for two permutations σ and τ , if xσ(1)xσ(2) · · · xσ(m) and xτ(1)xτ(2) · · · xτ(m) are not
conjugate, then two isolated orderings <σ and <τ belong to distinct G-orbits. Hence, we are
able to construct (m − 1)! distinct G-orbits of isolated orderings.

Recall that these orderings are constructed from the standard left orderings of Z(i). By
using the opposite of the standard left-ordering of Z instead, we get other (m − 1)! distinct
G-orbits of isolated orderings in a similar way. Thus we have at least 2(m − 1)! different
G-orbits derived from isolated orderings.

(3): The natural right Aut(G)-action on LO(G) has at least (m − 1)! distinct orbits
derived from isolated orderings if all a1, . . . , am are distinct.

As in the group G itself, there is a natural right Aut(G)-action on LO(G). For a left
ordering < of G and θ ∈ Aut(G), we define the left ordering < ·θ by h <·θ g if hθ < gθ .
The right G-action on LO(G) can be regarded as the restriction of the natural Aut(G)-action
to the subgroup Inn(G).

There is one symmetry which reduces the number of orbits: the involution defined by
xi �→ x−1

i (i = 1, . . . ,m). This amounts to taking the opposite ordering. If all a1, . . . , am are
distinct, φ(ai) 	= a±1

j for any φ ∈ Aut(G). Hence by a similar argument as (2), by looking at
the minimal positive elements, we show that there are (m − 1)! distinct Aut(G)-orbit derived
from isolated orderings.

Thus, the properties (2) and (3) show that the group G has quite a lot of essentially
different isolated orderings.

3.2. Centerless group with isolated ordering. Next we consider the construction of
the case zH is non-central. First of all, let Gm,n = 〈b, c | bm = cn〉. By Example 3.1 (i), Gm,n

has an isolated left ordering <m,n which is defined by {bc1−n, c}.
Let us consider a non-central element bc = bc1−n · bm. Then it satisfies the inequality

bm <m,n bc <m,n b2m. Since bm is <m,n-cofinal central element, this shows that bc is also
<m,n-positive cofinal.

<m,n is a (bc1−n)-right invariant ordering by Lemma 2.1, and <m,n is also a bm-right
invariant ordering since bm is central. Thus, <m,n is a (bc)-right invariant ordering.

Thus, we can take the non-central element bc as an element zH in Theorem 1.1 and we
are able to apply the partially central cyclic amalgamation construction. Now we consider the
group H = Hp,q,m,n = Z ∗Z Gm,n = Z ∗Z (Z ∗Z Z) defined by

〈a, b, c | bm = cn, ap = (bc)q〉.
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This group has an isolated left ordering <H , defined by {a(bc)1−q, bc1−n, c}. Let us put
x = a(bc)1−q , y = (bc)1−n, and z = c. Then the group Hp,q,m,n is presented as

Hp,q,m,n = 〈x, y, z | (yzn−1)m = zn, (x(yzn)q−1)p = (yzn)q〉
by using the generator {x, y, z}.

Clearly, H has trivial center. This gives a first example of centerless group having iso-
lated orderings. In fact, Theorem 1.1 will allow us to construct many examples of centerless
group having isolated orderings.
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