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Abstract. In this paper we study set-valued stochastic differential equations in M-type

2 Banach spaces. Their drift terms and diffusion terms are assumed to be set-valued and single-

valued respectively. These coefficients are considered to be random which makes the equations

to be truely nonautonomous. Firstly we define set-valued stochastic Lebesgue integral in a

Banach space. This integral is a set-valued random variable. We state its properties such

as additivity with respect to the interval of integration, continuity as a function of the upper

limit of integration, integrable boundedness. The existence and uniqueness of solution to set-

valued differential equations in M-type 2 Banach space is obtained by a method of successive

approximations. We show that the approximations are uniformly bounded and converge to

the unique solution. A distance between nth approximation and exact solution is estimated

and a continuous dependence of solution with respect to the data of the equation is proved.

Finally, we construct a fuzzy stochastic Lebesgue integral in a Banach space and examine

fuzzy stochastic differential equations in M-type 2 Banach spaces. We investigate properties

like those in set-valued cases. All the results are achieved without assumption on separability

of underlying sigma-algebra.

1. Introduction. To model evolutionary behavior of dynamical systems governed by

random forces stochastic differential equations are used [18, 24, 46, 51]. Their infinite dimen-

sional extension is widely treated in [14], where a comprehensive theory of abstract stochastic

differential equations in Hilbert spaces is presented. In [8] stochastic integration in M-type 2

Banach spaces has been introduced. The extensive studies on stochastic integration and sto-

chastic differential equations in Banach spaces can be found e.g. in [8, 9, 10, 52]. Applications

of stochastic differential equations range over financial and insurance mathematics, biology,

physics, engineering, control theory. However in many situations, owing to vague informa-

tions on considered system, states of the system cannot be described by single, precise values.

Instead of this, some sets of possible values are available or linguistic variables are used to
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describe a set of values. Such uncertainty is known as contingent uncertainty driven by set-

valued mappings, other names are vagueness, imprecision, fuzziness. This is a second source

of uncertainty (besides stochastic uncertainty) which is encountered in studies of dynamical

systems. Two sources of uncertainty were studied in the subjects of set-valued Markov pro-

cesses [19, 20], convergence of set-valued random variables [21, 29, 33, 47], definition and

properties of fuzzy random variables [26, 45, 48, 49]. The stochastic and contingent uncer-

tainties have also been combined in considerations of stochastic differential inclusions (see

[1, 2, 3, 4, 6, 12, 25, 27, 31, 55]).

In this paper we study somewhat different new tools which can be applied in handling

dynamical systems subjected to stochastic and contingent uncertainties. Namely, we are in-

terested in set-valued stochastic differential equations considered in the framework of the

martingale type 2 Banach spaces X (M-type 2 Banach spaces). As distinct from stochastic

differential inclusions where solutions are single-valued stochastic processes, solutions to set-

valued stochastic differential equations are considered to be set-valued stochastic processes

satisfying some measurability conditions and their sample paths are continuous with respect

to the Hausdorff metric in the set of nonemtpy closed bounded and convex subsets of the un-

derlying Banach space. Some studies in this direction were proposed in [32] in the setting of

the space Rd and in [41, 54] in the setting of an M-type 2 Banach space. In these papers some

theorems on existence and uniqueness of solution were proven. They were established under

assumptions that Lipschitz and linear growth conditions are satisfied by drift and diffusion co-

efficients of the equation. It was also justified that diffusion coefficient should be single-valued

rather than set-valued to consider well possed set-valued stochastic differential equations with

solutions being the set-valued stochastic processes. In [41, 54] the Banach space-valued sto-

chastic Itô integral has been used, where the integrand is an operator-valued stochastic process

and the integrator is an X -valued Wiener process. In this paper, as in [41, 54], we study such

equations with set-valued drift and single-valued diffusion. However we allow the coefficients

to be random, which makes our equations to be truely nonautonomous. Instead of initial value

in the form of set-valued random variable X0, we consider an initial set-valued stochastic pro-

cess �. All our results are achieved without assumption on the separability of underlying

sigma-algebra A with respect to the probability measure P , whereas such a condition is very

important in [41, 54]. The set-valued stochastic Lebesgue integral used here is defined in a dif-

ferent way from that proposed in [41, 54]. The presented properties of this integral are useful

in proving the results concerning set-valued stochastic differential equations, i.e., existence

and uniqueness of solution and continuous dependence of solution on data of the equation.
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Instead of linear growth condition we impose a weaker condition of a boundedness type. We

further study fuzzy stochastic differential equations in M-type 2 Banach spaces. An initial

research in this subject is contained in [34, 35, 36, 37, 38, 39, 40]. In this paper in a Banach

space setting, we introduce a notion of fuzzy stochastic integral with respect to the Lebesgue

measure. It is needed to formulate and study, for the first time, the fuzzy stochastic differential

equations in M-type 2 Banach spaces.

The paper is organized as follows: In Section 2 we collect some background material

to make the paper self-contained. We recall the definitions and some known properties con-

cerning measurable multifunctions, set-valued stochastic processes, fuzzy sets, measurablity

of fuzzy mappings, fuzzy stochastic processes and stochastic integration in M-type 2 Ba-

nach spaces with respect to Banach space-valued Wiener process. In Section 3 we define

a set-valued stochastic Lebesgue integral in a Banach space and give some of its properties

which are used for considering the set-valued stochastic differential equations. We prove,

in Section 4, existence and uniqueness of solution to such the equations by a usage of the

Picard-type approximations sequence. We estimate the distance between nth approximation

and exact solution. Also we show that the solution depends continuously on the equation’s

data. In Section 5 we construct a fuzzy stochastic Lebesgue integral in a Banach space. Then

we state some properties of this integral. Finally, in Section 6, we study the fuzzy stochastic

differential equations in M-type 2 Banach spaces. The results concerning solutions to such

the equations, which are parallel to those of Section 4, are presented.

2. Preliminaries. Let (X , ‖ · ‖X ) denote a separable Banach space (in the paper by

X we will also denote M-type 2 Banach space or separable M-type 2 Banach space thus the

meaning of X will change from time to time, but each time we will state clearly what is meant

by X ). By Kb
c (X ) we mean the family of all nonempty, closed, bounded and convex subsets

of X . The set Kb
c (X ) endowed with the Hausdorff metric HX becomes a complete metric

space (cf. [5, 11, 23]). Let us recall that

HX (A,B) := max

{
sup
a∈A

distX (a, B), sup
b∈B

distX (b,A)

}
,

where distX (a, B) := inf
b∈B

‖a − b‖X . In the set Kb
c (X ) one can define addition and scalar

multiplication:

A + B := {a + b : a ∈ A, b ∈ B}, r · A := {ra : a ∈ A}, A,B ∈ Kb
c (X ), r ∈ R .
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Then
(Kb

c (X ),+, ·) has a semilinear structure. The following property will be used fre-

quently. For nonempty subsets A1, A2, B1, B2 of X it holds

HX (A1 + A2, B1 + B2) � HX (A1, B1) + HX (A2, B2) .

Denote I := [0, T ], where 0 < T < ∞. Let (�,A, {At }t∈I , P ) be a complete fil-

tered probability space satisfying the usual hypotheses, i.e. {At }t∈I is an increasing and right

continuous family of sub-σ -algebras of A and A0 contains all P -null sets.

Let M be a set of A-measurable mappings f : � → X . The set M is called decompos-

able if for every f1, f2 ∈ M and every A ∈ A it holds f11A + f21�\A ∈ M.

A set-valued mapping (multifunction) F : � → Kb
c (X ) is said to be A-measurable (or

measurable, for short, or set-valued random variable) if it satisfies:

{ω ∈ � : F(ω) ∩ O �= ∅} ∈ A for every open set O ⊂ X .

Define ZO := {A being nonempty closed subset of X : A ∩ O �= ∅} for every open subset

O of X . Let C := {ZO : O is open subset of X }. It is known (see [54]) that multifunc-

tion F : (�,A) → (Kb
c (X ), σ (C)) is measurable if, and only if, it is A|σ(C)-measurable,

where σ(C) is the σ -algebra generated by C. A measurable multifunction F : � → Kb
c (X )

is said to be Lp-integrally bounded (p ≥ 1), if there exists h ∈ Lp(�,A, P ;R) such that

‖a‖X � h(ω) for any a and ω with a ∈ F(ω). It is known (see [22]) that F is Lp-integrally

bounded if, and only if, ω �→ |F(ω)|X is in Lp(�,A, P ;R). Two measurable and Lp-

integrally bounded multifunctions F1, F2 are considered to be identical if P -a.e. it holds

F1(ω) = F2(ω). The set of measurable and Lp-integrally bounded multifunctions endowed

with the metric Δp(F1, F2) := E
(
H

p

X (F1, F2)
)1/p

is a complete metric space. For some

comprehensive expositions in this subject we refer the reader to [11, 23, 42].

A mapping F : I ×� → Kb
c (X ) is said to be a set-valued stochastic process if F(t, ·) : �

→ Kb
c (X ) is a measurable multifunction for every t ∈ I . If F(t, ·) is At -measurable mul-

tifunction (for each t ∈ I ) then F is called {At }-adapted. A set-valued stochastic process F

is said to be measurable if F(·, ·) : I × � → Kb
c (X ) is β(I) ⊗ A-measurable multifunction,

where β(I) denotes the Borel σ -algebra of subsets of I . If set-valued stochastic process F is

measurable and {At }-adapted then it is called nonanticipating. It is known that F is nonantic-

ipating if, and only if, F(·, ·) is measurable with respect to the following σ -algebra N

N := {A ∈ β(I) ⊗ A : At ∈ At for every t ∈ I } ,

where At := {ω ∈ � : (t, ω) ∈ A}. A set-valued stochastic process F : I × � → Kb
c (X ) is

said to be HX -continuous if P -a.a. its sample paths, i.e. the mappings F(·, ω) : I → Kb
c (X ),
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are continuous with respect to the metric HX . A measurable set-valued stochastic process

F : I × � → Kb
c (X ) is called Lp-integrally bounded, p ≥ 1, if the mapping (t, ω) �→

|F(t, ω)|X belongs to Lp(I ×�,β(I)⊗A, λ×P ;R), where λ denotes the Lebesgue measure

on (I, β(I)). Two measurable and Lp-integrally bounded processes F1, F2 : I ×� → Kb
c (X )

are considered to be identical if (λ × P)-a.e. it holds F1(t, ω) = F2(t, ω).

A generalization of the notion of set is the notion of fuzzy set [53]. The latter gained

popularity and applicability in systems analysis in industrial mathematics [16, 30, 44, 56]. A

fuzzy set u of the space X is understood as a mapping u : X → [0, 1]. In this way, by means

of characteristic function, every ordinary subset of X is a fuzzy set. Let F(X ) denote the set

of all the fuzzy sets of the space X .

For α ∈ (0, 1] the set [u]α := {x ∈ X : u(x) ≥ α} is called α-level of u, and the set

[u]0 := clX {x ∈ X : u(x) > 0} is called the support of u. Here clX stands for the closure in

(X , ‖ · ‖X ).

By Fb
c (X ) we mean the set of fuzzy sets u for which it holds [u]α ∈ Kb

c (X ) for every

α ∈ [0, 1]. One of the metrics used in Fb
c (X ) is the uniform Hausdorff metric DX defined as

DX (u, v) := sup
α∈[0,1]

HX ([u]α, [v]α) for u, v ∈ Fb
c (X ) .

The following Skorohod metric DS
X is also useful

DS
X (u, v) := inf

λ∈Λ
max

{
sup

t∈[0,1]
|λ(t) − t|, sup

t∈[0,1]
HX

(
xu(t), xv(λ(t))

)}
,

where Λ is the set of strictly increasing continuous functions λ : [0, 1] → [0, 1] with λ(0) =
0, λ(1) = 1, and xu, xv : [0, 1] → Kb

c (X ) are the càdlàg representations for fuzzy sets u, v ∈
Fb

c (X ) (see [13] for details). The metric space
(Fb

c (X ),DX
)

is complete and non-separable

and the space (Fb
c (X ),DS

X ) is a Polish metric space.

The addition ⊕ and scalar multiplication � in Fb
c (X) are defined levelwise, i.e.

[u ⊕ v]α = [u]α + [v]α, [λ � u]α = λ · [u]α for u, v ∈ Fb
c (X ) .

The triple
(Fb

c (X ),⊕,�)
has semilinear structure and

DX (u1 ⊕ v1, u2 ⊕ v2) � DX (u1, u2) + DX (v1, v2) for u1, u2, v1, v2 ∈ Fb
c (X ) .

A fuzzy mapping u : � → Fb
c (X ) is said to be measurable (or the fuzzy random vari-

able) if [u]α : � → Kb
c (X ) is a measurable multifunction for α ∈ [0, 1], where [u]α(ω) =

[u(ω)]α. It is known (see [13]) that u : � → Fb
c (X ) is measurable if, and only if, u : (�,A)

→ (Fb
c (X ), βDS

X
) is A|βDS

X
-measurable, where βDS

X
is the σ -algebra generated by the
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topology induced by DS
X . A measurable mapping u : � → Fb

c (X ) is said to be Lp-integrally

bounded (p ≥ 1) if ω �→ ∣∣[u(ω)]0
∣∣X is in Lp(�,A, P ;R).

Similarly to the set-valued case, f : I × � → Fb
c (X ) is called a fuzzy stochastic pro-

cess if [f ]α : I × � → Kb
c (X ) is a set-valued stochastic process for α ∈ [0, 1], where

[f ]α(t, ω) = [f (t, ω)]α . Also, a fuzzy stochastic process f : I × � → Fb
c (X ) is {At }-

adapted (measurable, nonanticipating, respectively) if [f ]α : I ×� → Kb
c (X ) is {At }-adapted

(measurable, nonanticipating) for α ∈ [0, 1]. A fuzzy stochastic process f : I ×� → Fb
c (X )

is called DX -continuous if its sample paths are continuous with respect to the metric DX .

A fuzzy stochastic process f : I × � → Fb
c (X ) is called Lp-integrally bounded, p ≥ 1,

if (t, ω) �→ ∣∣[f (t, ω)]0
∣∣X is in Lp(I × �,β(I) ⊗ A, λ × P ;R). Two measurable and

Lp-integrally bounded fuzzy stochastic processes f1, f2 are considered to be indentical if

(λ × P)-a.e. it holds f1(t, ω) = f2(t, ω).

In the sequel we recall some foundations of the stochastic integration in Banach spaces

[8, 9, 14, 41, 52] applied in the single-valued and set-valued stochastic differential equations.

Let X denote a separable Banach space, H a separable Hilbert space which is continu-

ously and densely embedded into X , and μ denote a Gaussian measure on Borel σ -algebra

β(X ) of subsets of X such that

∫
X

exp
{√−1〈x, x∗〉

}
μ(dx) = exp

{
−1

2
‖x∗‖2

H
}

, x∗ ∈ X ∗ ⊂ H .

The Hilbert space H is called the reproducing kernel Hilbert space of (X , μ), and the triple

(X ,H, μ) is called the abstract Wiener space (cf. [9, 41]).

Let B(X ;X ) denote the set of all bounded linear operators from X to X , and let

L2(X ;X ) := L2(X , β(X ), μ;X ) be the set of all Borel measurable mappings f : (X , β(X ))

→ (X , β(X )) such that the norm

‖f ‖L2(X ;X ) :=
(∫

X
‖f (x)‖2

X μ(dx)

)1/2

< ∞ .

It is known (see [41]) that B(X ;X ) is a subspace of L2(X ;X ).

Similarly as before, let (�,A, P ) be a complete probability space and let (X ,H, μ) be

an abstract Wiener space. A continuous stochastic process W : I × � → X is called the

X -valued Wiener process if

(i) W(0) = 0 a.s. ,

(ii) the law of random variable t−1/2W(t) equals μ for every t ∈ (0, T ] ,

(iii) the random variable W(t) − W(s) is independent of σ {W(u) : u ∈ [0, s]} .



SET-VALUED AND FUZZY STOCHASTIC DIFFERENTIAL EQUATIONS 355

A Banach space (X , ‖ · ‖X ) is called M-type 2 (cf. [9]) if there exists a constant CX > 0

such that for every X -valued martingale {Mk} it holds

sup
k

E‖Mk‖2
X � CX

∑
k

E‖Mk − Mk−1‖2
X .

It is known that every Hilbert space is an M-type 2 Banach space, and the Lebesgue function

spaces Lp, p > 2, are M-type 2 Banach spaces which are not Hilbert spaces.

Let X be a separable M-type 2 Banach space and (X ,H, μ) an abstract Wiener space.

By L2(I × �,N , λ × P ; B(X ;X )) we denote the set of all nonanticipating operator-valued

stochastic processes f : I × � → B(X ;X ) such that E
∫
I
‖f ‖2

L2(X ;X )
dt < ∞. Then for

f ∈ L2(I × �,N , λ × P ; B(X ;X )) and t ∈ T one defines (cf. [10, 41]) the stochastic

Itô integral of f with respect to X -valued Wiener process denoting this integral as usual, i.e.∫ t

0 f (s)dW(s). It has been proved that

(P1)
∫ t

0 f (s)dW(s) is a random variable belonging to L2(�,At , P ;X ) and such that

E

∫ t

0
f (s)dW(s) = θX ,

(P2) the stochastic process J : I × � → X defined by

J (t, ω) :=
(∫ t

0
f (s)dW(s)

)
(ω)

is continuous and nonanticipating, also J is a martingale,

(P3) for every t ∈ I it holds

(2.1) E

∥∥∥
∫ t

0
f (s)dW(s)

∥∥∥2

X � CXE

∫ t

0
‖f (s)‖2

L2(X ;X )
ds ,

(P4) for every t ∈ I it holds

(2.2) E sup
u∈[0,t ]

∥∥∥
∫ u

0
f (s)dW(s)

∥∥∥2

X � CXE

∫ t

0
‖f (s)‖2

L2(X ;X )
ds .

3. Set-valued stochastic integral with respect to the Lebesgue measure. Let X
be a separable, reflexive Banach space. Consider a measurable and L1-integrally bounded

set-valued stochastic process X : I × � → Kb
c (X ). Then

|X(t, ω)|X � m(t, ω) for a.a. (t, ω) ∈ I × � ,

where m : I × � → R+ is a measurable stochastic process with property E
∫
I
m(s)ds < ∞.

By Fubini Theorem there exists a P -null set NX such that for ω ∈ � \ NX the mapping

X(·, ω) : I → Kb
c (X ) is β(I)-measurable and L1-integrally bounded. Hence for ω ∈ � \ NX
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we can define the Aumann integral with respect to the Lebesgue measure (see e.g. [7, 22]) as∫
I

X(s, ω)ds :=
{∫

I

x(s)ds : x ∈ S(X(·, ω))

}

where S(X(·, ω)) is the set of all mappings x : I → X which are measurable and Bochner

integrable selections of X(·, ω). It is known (see [22]) that S(X(·, ω)) is nonempty, bounded,

convex, weakly compact and decomposable subset of L1(I, β(I), λ;X ).

Since X(·, ω) is Kb
c (X )-valued and L1-integrally bounded, we obtain (see [22]) that∫

I X(s, ω)ds ∈ Kb
c (X ). If we additionally define

∫
I X(s, ω)ds := {θX } for ω ∈ NX then we

get a definition of
∫
I
X(s, ω)ds for every ω ∈ �. In the sequel we shall show that

� � ω �→
∫

I

X(s, ω)ds ∈ Kb
c (X )

is a measurable multifunction. Indeed, denoting by s the support function for X(t, ω) (see

e.g. [23]) and applying Proposition 2.2.39 in [23] we obtain that for every x∗ ∈ X ∗

I × � � (t, ω) �→ s(x∗,X(t, ω)) ∈ R

is a measurable stochastic process. Moreover, it is L1-integrally bounded because for every

x∗ ∈ X ∗ and every (t, ω) ∈ I × �

s(x∗,X(t, ω)) � sup{‖x∗‖X ∗ · ‖x‖X : x ∈ X(t, ω)} � ‖x∗‖X ∗ · m(t, ω) .

Hence � � ω �→ ∫
I s(x∗,X(s, ω))ds ∈ R is A-measurable. Applying Proposition 2.5.2

in [23] we get
∫
I
s(x∗,X(s, ·))ds = s

(
x∗,

∫
I
X(s, ·)ds

)
. Hence we obtain the

A-measurability of s
(
x∗,

∫
I X(s, ·)ds

)
. Now, due to Proposition 2.2.39 in [23] we conclude

that ω �→ ∫
I
X(s, ω)ds is a measurable multifunction.

DEFINITION 3.1. The set-valued stochastic integral over interval [τ, t] ⊂ I with re-

spect to Lebesgue measure for measurable and L1-integrally bounded set-valued stochastic

process X : I × � → Kb
c (X ) is a measurable multifunction denoted by

∫ t

τ
X(s, ·)ds and

defined as follows∫ t

τ

X(s, ω)ds :=
∫

I

1[τ,t ](s)X(s, ω)ds if ω ∈ � \ NX

and ∫ t

τ

X(s, ω)ds := {θX } if ω ∈ NX .

In a similar way we can define this integral over intervals [τ, t), (τ, t], (τ, t). However,

since λ is non-atomic, they are all equal to
∫ t

τ X(s, ·)ds.

REMARK 3.2. If Y : I × � → Kc(X ) is a measurable and L1-integrally bounded set-

valued stochastic process, where Kc(X ) denotes the collection of all nonempty closed and
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convex subsets of X , then we get Y (t, ω) ∈ Kb
c (X ) for a.a. (t, ω) ∈ I × �. Therefore for

a Kc(X )-valued Y , without any difficulty, proceeding as above we can define the set-valued

stochastic integral with respect to the Lebesgue measure.

Obviously, set-valued stochastic integral with respect to the Lebesgue measure, which

is a measurable multifunction, can be well defined for all processes X : I × � → Kb
c (X )

which are measurable and Lp-integrally bounded, p ≥ 1. Moreover, we have the following

property.

REMARK 3.3. For a measurable and Lp-integrally bounded process X : I × � →
Kb

c (X ), similarly to the derivations of measurability of ω �→ ∫
I
X(s, ω)ds we can prove that

the set-valued stochastic process (t, ω) �→ J (t, ω) is measurable (i.e. β(I) ⊗A-measurable),

where J : I × � → Kb
c (X ) is defined as J (t, ω) := ∫ t

0 X(s, ω)ds.

The definition of set-valued stochastic integral with respect to the Lebesgue measure is

different from that one in [41, 54]. It is similar to the definition used in [32]. This allows us

to achieve some desired properties of this integral without assumption that the σ -algebra A is

separable with respect to the probability measure P . Such condition is crucial in [41, 54].

Now we present some useful properties of the set-valued stochastic integral with respect

to the Lebesgue measure.

PROPOSITION 3.4. Assume that X : I × � → Kb
c (X ) is a measurable and

L1-integrally bounded set-valued stochastic process. Then for every ω ∈ � and every τ, t, η ∈
I , τ < t < η, it holds

∫ t

τ

X(s, ω)ds +
∫ η

t

X(s, ω)ds =
∫ η

τ

X(s, ω)ds .

PROOF. The assertion is obvious for ω ∈ NX. Consider ω ∈ � \ NX. Then for a ∈∫ t

τ X(s, ω)ds + ∫ η

t X(s, ω)ds we obtain that there exist x1, x2 ∈ S(X(·, ω)) such that a =∫ t

τ
x1(s)ds + ∫ η

t
x2(s)ds. Since S(X(·, ω)) is decomposable, we get x ∈ S(X(·, ω)), where

x(s) := x1(s)1[0,t ](s) + x2(s)1(t,T ](s), s ∈ I .

Observe that
∫ η

τ
x(s)ds = a. On the other hand

∫ η

τ
x(s)ds ∈ ∫ η

τ
X(s, ω)ds. Hence the

inclusion
∫ t

τ X(s, ω)ds + ∫ η

t X(s, ω)ds ⊂ ∫ η

τ X(s, ω)ds follows.

Now, let us take a ∈ ∫ η

τ
X(s, ω)ds. Then there exists a selection y ∈ S(X(·, ω)) such

that a = ∫ η

τ y(s)ds. It is easy to see that a = ∫ t

τ y(s)ds + ∫ η

t y(s)ds. Since
∫ t

τ y(s)ds ∈∫ t

τ
X(s, ω)ds and

∫ η

t
y(s)ds ∈ ∫ η

t
X(s, ω)ds, we get a ∈ ∫ t

τ
X(s, ω)ds + ∫ η

t
X(s, ω)ds. �
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PROPOSITION 3.5. Assume that X : I × � → Kb
c (X ) is a measurable and

L1-integrally bounded set-valued stochastic process. Then for every ω ∈ � the mapping

I � t �→ J (t, ω) ∈ Kb
c (X ) is HX -continuous.

PROOF. For ω ∈ NX the continuity of J (·, ω) is obvious because we have J (·, ω) ≡
{θX }. For ω ∈ � \ NX and τ < t we can write, using Proposition 3.4,

HX (J (τ, ω), J (t, ω)) = HX
(∫ τ

0
X(s, ω)ds,

∫ τ

0
X(s, ω)ds +

∫ t

τ

X(s, ω)ds

)

�
∣∣∣∣
∫ t

τ

X(s, ω)ds

∣∣∣∣X .

Due to Theorem 4.1 in [22] we get

HX (J (τ, ω), J (t, ω))�
∫ t

τ

|X(s, ω)|X ds .

The last expression converges to zero when |t − τ | → 0, because X(·, ω) is L1-integrally

bounded. Hence the assertion follows. �

PROPOSITION 3.6. Assume that X,Y : I × � → Kb
c (X ) are measurable and Lp-

integrally bounded, p ≥ 1. Then P -a.e. it holds: for every τ < t

sup
u∈[τ,t ]

H
p

X
(∫ u

τ

X(s, ω)ds,

∫ u

τ

Y (s, ω)ds
)
� (t − τ )p−1

∫ t

τ

H
p

X
(
X(s, ω), Y (s, ω)

)
ds

and

H
p

X

(∫ t

τ

X(s, ω)ds,

∫ t

τ

Y (s, ω)ds

)
� (t − τ )p−1

∫ t

τ

H
p

X
(
X(s, ω), Y (s, ω)

)
ds .

PROOF. Consider ω ∈ (� \ NX) ∩ (� \ NY ). Then the multifunctions X(·, ω), Y (·, ω)

are β(I)-measurable and L1
β(I )(λ)-integrally bounded. For τ < t , by Theorem 4.1 in [22] and

Jensen’s inequality, we have

sup
u∈[τ,t ]

H
p

X

(∫ u

τ

X(s, ω)ds,

∫ u

τ

Y (s, ω)ds

)
� sup

u∈[τ,t ]

(∫ u

τ

HX (X(s, ω), Y (s, ω))ds

)p

� sup
u∈[τ,t ]

(u − τ )p−1
∫ u

τ

H
p

X (X(s, ω), Y (s, ω))ds

� (t − τ )p−1
∫ t

τ

H
p

X (X(s, ω), Y (s, ω))ds .

Hence, also the second inequality follows. �

COROLLARY 3.7. Under assumptions of Proposition 3.6, for every τ <t it holds

E sup
u∈[τ,t ]

H
p

X

(∫ u

τ

X(s)ds,

∫ u

τ

Y (s)ds

)
� (t − τ )p−1

E

∫ t

τ

H
p

X
(
X(s), Y (s)

)
ds
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and

EH
p

X

(∫ t

τ

X(s)ds,

∫ t

τ

Y (s)ds

)
� (t − τ )p−1

E

∫ t

τ

H
p

X
(
X(s), Y (s)

)
ds .

PROPOSITION 3.8. Assume that X : I ×� → Kb
c (X ) is measurable and Lp-integrally

bounded, p ≥ 1. Then the set-valued stochastic process J : I ×� → Kb
c (X ) is Lp-integrally

bounded.

PROOF. By Remark 3.3, the set-valued stochastic process J : I × � → Kb
c (X ) is mea-

surable. Note that∫
I×�

|J (t, ω)|pX dt P (dω) =
∫

I

∫
�

∣∣∣∣
∫ t

0
X(s, ω)ds

∣∣∣∣
p

X
P(dω)dt

�
∫

I

∫
�

tp−1
∫ t

0
|X(s, ω)|pX ds P (dω)dt

� T p

∫
�

∫
I

|X(s, ω)|pX ds P (dω) .

By the assumptions, the last expression is finite. �

REMARK 3.9. If a set-valued stochastic process X : I × � → Kb
c (X ) is nonantici-

pating and Lp-integrally bounded (p ≥ 1), then J : I × � → Kb
c (X ) is nonanticipating and

Lp-integrally bounded.

4. Set-valued stochastic differential equations in M-type 2 Banach spaces. Let X
be a separable, reflexive, M-type 2 Banach space, (X ,H, μ) an abstract Wiener space, W : I×
� → X an X -valued Wiener process defined on a complete probability space (�,A, P ) with

filtration {At } satisfying usual conditions, the law of random variable t−1/2W(t) is equal to

μ for t ∈ (0, T ].
In this section we shall consider the set-valued stochastic differential equations, i.e. the

relations of the integral form

(4.1) X(t) = �(t) +
∫ t

0
F(s,X(s))ds +

{∫ t

0
G(s,X(s))dW(s)

}
, t ∈ I ,

which shall hold P -a.e. and where � : I × � → Kb
c (X ), F : I × � × Kb

c (X ) → Kb
c (X ),

G : I × � × Kb
c (X ) → B(X ;X ). The first integral is set-valued stochastic integral with

respect to the Lebesgue measure (which is different than that used in [41, 54]) and the second

integral is single-valued stochastic Itô integral in Banach space X . Note that we consider

random coefficients F,G. In [32, 41, 54] they are not random. The initial data include also a

set-valued stochastic process � instead of a measurable multifunction.



360 M. MALINOWSKI

DEFINITION 4.1. By a solution to (4.1) we mean a set-valued stochastic process X : I

×� → Kb
c (X ) which is {At }-adapted, HX -continuous and satisfies (4.1). A solution X : I ×

� → Kb
c (X ) is unique if P -a.e. it holds: HX (X(t), Y (t)) = 0 for every t ∈ I , where

Y : I × � → Kb
c (X ) is any solution to (4.1).

In the investigations of the equation (4.1) we assume that the following conditions are

satisfied.

(A1) � : I × � → Kb
c (X ) is a nonanticipating, HX -continuous set-valued stochastic

process such that E supt∈I |�(t)|2X < ∞,

(A2) F : I × � × Kb
c (X ) → Kb

c (X ) is N ⊗ σ(C)|σ(C)-measurable, G : I × � ×
Kb

c (X ) → B(X ;X ) is N ⊗ σ(C)|σ(B(X ;X ))-measurable,

(A3) there exists a constant K > 0 such that P -a.e. it holds

∀ t ∈ I ∀ A,B ∈ Kb
c (X ) H 2

X
(
F(t, ω,A), F (t, ω,B)

)
� KH 2

X (A,B) ,

∀ t ∈ I ∀ A,B ∈ Kb
c (X )

∥∥G(t, ω,A) − G(t, ω,B)
∥∥2

L2(X ;X )
� KH 2

X (A,B) ,

(A4) there exists a constant M > 0 such that P -a.e. it holds

∀ t ∈ I max
{∣∣F(t, ω, {θX })∣∣2

X ,
∥∥G(t, ω, {θX })∥∥2

L2(X ;X )

}
� M .

Instead of the linear growth condition, which was assumed in [32, 41, 54], we impose the

boundedness condition (A4).

In the derivations of existence of solution to (4.1) we shall use the method of successive

approximations. Therefore we define the sequence {Xn}∞n=0 of set-valued stochastic processes

as follows

(4.2) X0(t) = �(t) , t ∈ I ,

and for n = 1, 2, . . .

(4.3) Xn(t) = �(t) +
∫ t

0
F(s,Xn−1(s))ds +

{∫ t

0
G(s,Xn−1(s))dW(s)

}
, t ∈ I .

LEMMA 4.2. Assume that �, F , G satisfy conditions (A1)–(A4). Then every approxi-

mation Xn is a nonanticipating, L2-integrally bounded, HX -continuous set-valued stochastic

process.

PROOF. Note that X0 : I × � → Kb
c (X ), which is defined as X0(t) = �(t) for t ∈ I ,

possesses properties described in thesis of the assertion. It is immediate. Assume that Xn−1 is

nonanticipating, L2-integrally bounded and HX -continuous. We shall show that Xn has these

properties, too.
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Due to (A2) the mappings F(·, ·,Xn−1(·, ·)) : I ×� → Kb
c (X ) and G(·, ·,Xn−1(·, ·)) : I

× � → B(X ;X ) are the stochastic processes which are N |σ(C)-measurable and

N |β(B(X ;X ))-measurable, respectively. Further observe that, by (A3) and (A4), we get

E

∫
I

|F(t,Xn−1(t))|2X dt � 2E
∫

I

H 2
X (F (t,Xn−1(t)), F (t, {θX }))dt + 2E

∫
I

|F(t, {θX })|2X dt

� 2KE

∫
I

|Xn−1(t)|2X dt + 2MT < ∞ .

Similarly we have

E

∫
I

‖G(t,Xn−1(t))‖2
L2(X ;X )

dt � 2E
∫

I

‖G(t,Xn−1(t)) − G(t, {θX })‖2
L2(X ;X )

dt

+ 2E
∫

I

‖G(t, {θX })‖2
L2(X ;X )

dt

� 2KE

∫
I

|Xn−1(t)|2X dt + 2MT < ∞ .

Hence the integrals in (4.3) are well defined and form some nonanticipating and L2-integrally

bounded set-valued and B(X ;X )-valued stochastic processes, respectively. Thus Xn is

nonanticipating and L2-integrally bounded. By Proposition 3.5 and property (P2) of stochas-

tic Itô integral in Banach spaces, we infer that Xn is HX -continuous. �

LEMMA 4.3. Under assumptions of Lemma 4.2, for every n ∈ N it holds

E sup
t∈I

|Xn(t)|2X � (M1 + M2TE sup
t∈I

|�(t)|2X ) exp{M2T } ,

where M1 = 3E supt∈I |�(t)|2X + 6T M(T + CX ), M2 = 6K(T + CX ) .

PROOF. For t ∈ I we have

E sup
s∈[0,t ]

|Xn(s)|2X � 3E sup
s∈I

|�(s)|2X + 3E sup
s∈[0,t ]

∣∣∣∣
∫ s

0
F(r,Xn−1(r))dr

∣∣∣∣
2

X

+ 3E sup
s∈[0,t ]

∥∥∥∥
∫ s

0
G(r,Xn−1(r))dW(r)

∥∥∥∥
2

X
.

Applying Corollary 3.7, (2.2), (A3) and (A4) we have

E sup
s∈[0,t ]

|Xn(s)|2X � 3E sup
s∈I

|�(s)|2X + 3tE

∫ t

0
|F(r,Xn−1(r))|2X dr

+ 3CXE

∫ t

0
‖G(r,Xn−1(r))‖2

L2(X ;X )

� 3E sup
s∈I

|�(s)|2X + 6tM(t + CX )

+ 6K(t + CX )E

∫ t

0
|Xn−1(r)|2X dr
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� 3E sup
s∈I

|�(s)|2X + 6T M(T + CX )

+ 6K(T + CX )

∫ t

0
E sup

s∈[0,r]
|Xn−1(s)|2X dr .

Hence, for every k ∈ N and every t ∈ I

max
1�n�k

E sup
s∈[0,t ]

|Xn(s)|2X � M1 + M2

∫ t

0
max

1�n�k
E sup

s∈[0,r]
|Xn−1(s)|2X dr .

Applying the inequality

max
1�n�k

E sup
s∈[0,t ]

|Xn−1(s)|2X � E sup
s∈I

|�(s)|2X + max
1�n�k

E sup
s∈[0,t ]

|Xn(s)|2X
we arrive at

max
1�n�k

E sup
s∈[0,t ]

|Xn(s)|2X � M1 + M2TE sup
s∈I

|�(s)|2X + M2

∫ t

0
max

1�n�k
E sup

s∈[0,r]
|Xn(s)|2X dr .

By Gronwall’s inequality we get

max
1�n�k

E sup
s∈[0,t ]

|Xn(s)|2X �
(

M1 + M2TE sup
s∈I

|�(s)|2X
)

eM2t for t ∈ I .

Now the assertion follows easily. �
We are in a position to formulate the main result of this section.

THEOREM 4.4. Assume that �,F,G satisfy (A1)–(A4). Then the set-valued stochastic

differential equation (4.1) possesses a unique solution.

PROOF. We will exploite the sequence defined in (4.2) and (4.3). For t ∈ I we have

E sup
s∈[0,t ]

H 2
X (X1(s),X0(s))

�E sup
s∈[0,t ]

∣∣∣∣
∫ s

0
F(r,�(r))dr +

{∫ s

0
G(r,�(r))dW(r)

}∣∣∣∣
2

X

� 2E sup
s∈[0,t ]

∣∣∣∣
∫ s

0
F(r,�(r))dr

∣∣∣∣
2

X
+ 2E sup

s∈[0,t ]

∥∥∥∥
∫ s

0
G(r,�(r))dW(r)

∥∥∥∥
2

X

� 4E sup
s∈[0,t ]

H 2
X

(∫ s

0
F(r,�(r))dr,

∫ s

0
F(r, {θX })dr

)

+ 4E sup
s∈[0,t ]

∣∣∣∣
∫ s

0
F(r, {θX })dr

∣∣∣∣
2

X

+ 4E sup
s∈[0,t ]

∥∥∥∥
∫ s

0
G(r,�(r))dW(r) −

∫ s

0
G(r, {θX })dW(r)

∥∥∥∥
2

X

+ 4E sup
s∈[0,t ]

∥∥∥∥
∫ s

0
G(r, {θX })dW(r)

∥∥∥∥
2

X
.
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By Corollary 3.7, (2.2), (A3) and (A4) we get

E sup
s∈[0,t ]

H 2
X (X1(s),X0(s))

� 4tE

∫ t

0
H 2
X (F (r,�(r)), F (r, {θX }))dr + 4tE

∫ t

0
|F(r, {θX })|2X dr

+ 4CXE

∫ t

0
‖G(r,�(r)) − G(r, {θX })‖2

L2(X ;X )
dr

+ 4CXE

∫ t

0
‖G(r, {θX })‖2

L2(X ;X )
dr

� Lt ,

where L = 4(T + CX )(M + KE supt∈I |�(t)|2X ).

Note that for n ∈ N and t ∈ I we obtain

E sup
s∈[0,t ]

H 2
X (Xn+1(s),Xn(s)) � 2K(T + CX )

∫ t

0
E sup

s∈[0,r]
H 2
X (Xn(s),Xn−1(s))dr .

Thus

(4.4) E sup
t∈I

H 2
X (Xn(t),Xn−1(t)) � L[2K(T + CX )]n−1 T n

n! .

By Chebyshev inequality we have

P

(
sup
t∈I

H 2
X (Xn(t),Xn−1(t)) > 4−n

)
� L[2K(T + CX )]n−1 (4T )n

n! .

Now by Borel–Cantelli lemma

P

(
sup
t∈I

HX (Xn(t),Xn−1(t)) > 2−n infinitely often

)
= 0 .

Hence there exists �c ∈ A such that P(�c) = 1 and for every ω ∈ �c there exists n0 = n0(ω)

such that

sup
t∈I

HX (Xn(t, ω),Xn−1(t, ω)) � 2−n for n ≥ n0 .

This implies that for every ω ∈ �c the sequence {Xn(·, ω)} is uniformly convergent to an

HX -continuous multifunction X(·, ω) : I → Kb
c (X ). To complete the definition of X to

entire �, for ω ∈ � \ �c we can set X(·, ω) as a freely chosen multifunction from I to

Kb
c (X ). By estimations and convergences proven above we obtain that X(t, ·) : � → Kb

c (X )

is At -measurable and L2-integrally bounded multifunction. Hence X(·, ·) is nonanticipating,

L2-integrally bounded and HX -continuous set-valued stochastic process.

In the sequel we show that X is a solution to (4.1). Note that for every t ∈ I we have

EH 2
X

(
X(t),�(t) +

∫ t

0
F(s,X(s))ds +

{∫ t

0
G(s,X(s))dW(s)

})
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� 2EH 2
X (X(t),Xn(t))

+ 4EH 2
X

(∫ t

0
F(s,Xn−1(s))ds,

∫ t

0
F(s,X(s))ds

)

+ 4E

∥∥∥∥
∫ t

0
G(s,Xn−1(s))dW(s) −

∫ t

0
G(s,X(s))dW(s)

∥∥∥∥
2

X
.

By Corollary 3.7, (2.1) and (A3) we obtain

EH 2
X

(
X(t),�(t) +

∫ t

0
F(s,X(s))ds +

{∫ t

0
G(s,X(s))dW(s)

})

� 2EH 2
X (X(t),Xn(t)) + 4TE

∫
I

H 2
X (F (s,Xn−1(s)), F (s,X(s))) ds

+ 4CXE

∫
I

‖G(s,Xn−1(s)) − G(s,X(s))‖2
L2(X ;X )

ds

� 2EH 2
X (X(t),Xn(t)) + 4(T + CX )K

∫
I

EH 2
X (Xn−1(s),X(s)) ds .

Since EH 2
X (Xn(t),X(t))

n→∞−→ 0 and supn E supt∈I |Xn(t)|2X < const (due to Lemma 4.3),

we infer, by the Lebesgue dominated convergence theorem, that∫
I

EH 2
X (Xn−1(s),X(s)) ds

n→∞−→ 0 .

Hence EH 2
X

(
X(t),�(t) + ∫ t

0 F(s,X(s))ds +
{∫ t

0 G(s,X(s))dW(s)
})

= 0 for every t ∈
I . This implies that for every fixed t ∈ I it holds

HX
(

X(t),�(t) +
∫ t

0
F(s,X(s))ds +

{∫ t

0
G(s,X(s))dW(s)

})
= 0 P -a.e.

By HX -continuity of the involved processes we get that P -a.e. for every t ∈ I it holds

HX
(

X(t),�(t) +
∫ t

0
F(s,X(s))ds +

{∫ t

0
G(s,X(s))dW(s)

})
= 0 .

Finally we prove uniqueness of the solution X. Suppose that Y : I ×� → Kb
c (X ) is also

a solution to (4.1). Then for every t ∈ I

E sup
s∈[0,t ]

H 2
X (X(s), Y (s))

� 2E sup
s∈[0,t ]

H 2
X

(∫ s

0
F(r,X(r))dr,

∫ s

0
F(r, Y (r))dr

)

+ 2E sup
s∈[0,t ]

∥∥∥∥
∫ s

0
G(r,X(r))dW(r) −

∫ s

0
G(r, Y (r))dW(r)

∥∥∥∥
2

X

� 2K(T + CX )

∫ t

0
E sup

s∈[0,r]
H 2
X (X(s), Y (s))dr .
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Due to Gronwall’s inequality we infer that E sups∈[0,t ] H 2
X (X(s), Y (s)) = 0 for every t ∈ I .

This leads us to the conclusion that P -a.e. it holds

sup
s∈I

HX (X(s), Y (s)) = 0

which ends the proof . �

PROPOSITION 4.5. Under assumptions of Theorem 4.4 for the solution X to (4.1) and

the nth approximation Xn it holds

E sup
t∈I

H 2
X (Xn(t),X(t)) � 2LT exp{4KT (T + CX )} [2KT (T + CX )]n

n! ,

where L = 4(T + CX )(M + KE supt∈I |�(t)|2X ). In particular,

E sup
t∈I

H 2
X (Xn(t),X(t)) → 0 as n → ∞ .

PROOF. Note that for every t ∈ I

E sup
s∈[0,t ]

H 2
X (Xn(s),X(s))� 2K(T + CX )E

∫ t

0
H 2
X (Xn−1(r),X(r))dr

� 4K(T + CX )

∫ t

0

[
E sup

s∈[0,r]
H 2
X (Xn−1(s),Xn(s))

+ E sup
s∈[0,r]

H 2
X (Xn(s),X(s))

]
dr .

Therefore, by (4.4),

E sup
s∈[0,t ]

H 2
X (Xn(s),X(s))� 2LT

[2KT (T + CX )]n
n!

+ 4K(T + CX )

∫ t

0
E sup

s∈[0,r]
H 2
X (Xn(s),X(s))dr .

Hence we arrive at the inequality

E sup
s∈[0,t ]

H 2
X (Xn(s),X(s)) � 2LT

[2KT (T + CX )]n
n! e4K(T+CX )t

for every t ∈ I , from which the assertion follows. �
In the sequel we show that the solution to (4.1) depends continuously on the data of the

equation. Consider the equation (4.1) and the equation

(4.5) X̃(t) = �̃(t) +
∫ t

0
F̃ (s, X̃(s))ds +

{∫ t

0
G̃(s, X̃(s))dW(s)

}
, t ∈ I .
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PROPOSITION 4.6. Assume that �, �̃, F, F̃ ,G, G̃ satisfy (A1)–(A4). Then for the so-

lution X to (4.1) and the solution X̃ to (4.5) it holds

E sup
t∈I

H 2
X (X̃(t),X(t))

�
[

3E sup
t∈I

H 2
X (�̃(t),�(t)) + 6TE

∫
I

H 2
X (F̃ (s,X(s)), F (s,X(s)))ds

+ 6CXE

∫
I

∥∥G̃(s,X(s)) − G(s,X(s))
∥∥2

L2(X ;X )
ds

]
exp{6KT (T + CX )} .

PROOF. For t ∈ I we have

E sup
s∈[0,t ]

H 2
X (X̃(s),X(s))

� 3E sup
s∈I

H 2
X (�̃(s),�(s))

+ 3E sup
s∈[0,t ]

H 2
X

(∫ s

0
F̃ (r, X̃(r))dr,

∫ s

0
F(r,X(r))dr

)

+ 3E sup
s∈[0,t ]

∥∥∥∥
∫ s

0
G̃(r, X̃(r))dW(r) −

∫ s

0
G(r,X(r))dW(r)

∥∥∥∥
2

X

� 3E sup
s∈I

H 2
X (�̃(s),�(s)) + 6TE

∫
I

H 2
X (F̃ (r,X(r)), F (r,X(r)))dr

+ 6CXE

∫
I

‖G̃(r,X(r)) − G(r,X(r))‖2
L2(X ;X )

dr

+ 6K(T + CX )

∫ t

0
E sup

s∈[0,r]
H 2
X (X̃(s),X(s))dr .

Using Gronwall’s inequality we are led to the end of the proof. �
Consider the equation (4.1) and the equations

(4.6) Yn(t) = �n(t) +
∫ t

0
Fn(s, Yn(s))ds +

{∫ t

0
Gn(s, Yn(s))dW(s)

}
, t ∈ I ,

n ∈ N.

COROLLARY 4.7. Assume that �,�n, F, Fn,G,Gn satisfy (A1)–(A4). Suppose that

E sup
t∈I

H 2
X (�n(t),�(t)) → 0 as n → ∞ ,

and for every A ∈ Kb
c (X )

E

∫
I

H 2
X (Fn(s,A), F (s,A)) → 0 as n → ∞ ,

E

∫
I

‖Gn(s,A) − G(s,A)‖2
L2(X ;X )

→ 0 as n → ∞ .
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Then for the solution X to (4.1) and the solutions Yn to (4.6) it holds

E sup
t∈I

H 2
X (Yn(t),X(t)) → 0 as n → ∞ .

5. Fuzzy stochastic Lebesgue integral in Banach spaces. In this section we define

a notion of a fuzzy stochastic Lebesgue integral and investigate some its properties.

Let X be a separable, reflexive Banach space. In what follows we shall construct fuzzy

stochastic Lebesgue integral. The following known lemmata (see [43]) will be useful.

LEMMA 5.1. Let u ∈ F(X ). Then

(i) [u]α1 ⊃ [u]α2 for 0 � α1 � α2 � 1,

(ii) [u]α = ⋂∞
n=1[u]αn , where {αn} ⊂ [0, 1] and αn ↗ α.

The converse of this lemma also holds.

LEMMA 5.2. Let M ⊂ X be a set and let {Cα : α ∈ [0, 1]} be a family of subsets of

M such that

(i) C0 = M ,

(ii) Cα1 ⊃ Cα2 for 0 � α1 � α2 ,

(iii) Cα = ⋂∞
n=1 Cαn , where αn ↗ α. Then there exists a unique u ∈ F(X ) such that

[u]α = Cα for every α ∈ [0, 1]. Moreover

u(x) =
{

sup{α : x ∈ Cα} , if x ∈ M ,

0 , if x �∈ M .

A first aim of this section is to define a fuzzy stochastic Lebesgue integral for fuzzy

stochastic processes x : I × � → Fb
c (X ).

THEOREM 5.3. Let x : I × � → Fb
c (X ) be a measurable and L1-integrally bounded

fuzzy stochastic process. Then there exists a unique (up to equality P -a.e.) fuzzy random

variable U : � → Fb
c (X ) such that for every α ∈ [0, 1]

[U(ω)]α =
∫

I

[x(s, ω)]αds, ω ∈ � ,

where the right-hand side is the set-valued stochastic integral with respect to the Lebesgue

measure.

PROOF. By Fubini’s theorem there exists Nx ∈ A with P(Nx) = 0 such that for ω ∈
� \ Nx the mapping x(·, ω) : I → Fb

c (X ) is β(I)-measurable and L1-integrally bounded.

Hence for every α ∈ [0, 1] the mapping [x(·, ω)]α : I → Kb
c (X ) is β(I)-measurable and

L1
β(I )(λ)-integrally bounded. Thus for fixed ω, similarly as in Section 3, we can define the



368 M. MALINOWSKI

set-valued Lebesgue–Aumann integral of [x(·, ω)]α over I , i.e.∫
I

[x(s, ω)]αds :=
{∫

I

j (s)ds : j ∈ S([x(·, ω)]α)

}

and
∫
I [x(s, ω)]αds ∈ Kb

c (X ).

Let 0 � α1 � α2 � 1. Then, by Lemma 5.1, [x(s, ω)]α2 ⊂ [x(s, ω)]α1 for every s ∈ I .

Hence S([x(·, ω)]α2) ⊂ S([x(·, ω)]α1) which implies that∫
I

[x(s, ω)]α2ds ⊂
∫

I

[x(s, ω)]α1ds .

Let {αn} ⊂ [0, 1] and αn ↗ α. Then S([x(·, ω)]α1) ⊃ S([x(·, ω)]α2) ⊃ · · · ⊃ S([x(·, ω)]α).

Hence S([x(·, ω)]α) ⊂ ⋂∞
n=1 S([x(·, ω)]αn).

Let j (·) ∈ ⋂∞
n=1 S([x(·, ω)]αn). It means that for every n ∈ N it holds j (s) ∈ [x(s, ω)]αn

λ-a.e. Hence j (s) ∈ ⋂∞
n=1[x(s, ω)]αn λ-a.e. Since j is integrable and λ-a.e. it holds j (s) ∈

[x(s, ω)]α , we get j (·) ∈ S([x(·, ω)]α). Therefore we obtain

(5.1) S([x(·, ω)]α) =
∞⋂

n=1

S([x(·, ω)]αn) .

In the sequel we shall show that
∫

I

[x(s, ω)]αds =
∞⋂

n=1

∫
I

[x(s, ω)]αnds .

Let a ∈ ∫
I
[x(s, ω)]αds. Then there exists j (·) ∈ S([x(·, ω)]α) such that a = ∫

I
j (s)ds. On

the other hand, by (5.1), for every n ∈ N we have j (·) ∈ S([x(·, ω)]αn). Hence

a ∈
∞⋂

n=1

{∫
I

i(s)ds : i(·) ∈ S([x(·, ω)]αn)

}
,

which means that
∫
I
[x(s, ω)]αds ⊂ ⋂∞

n=1

∫
I
[x(s, ω)]αnds.

Let b ∈ ⋂∞
n=1

∫
I [x(s, ω)]αnds. Then for every n ∈ N there exists jn(·) ∈ S([x(·, ω)]αn)

such that b = ∫
I
jn(s)ds. Obviously, {jn(·)}∞n=1 ⊂ S([x(·, ω)]α1). Since S([x(·, ω)]α1)

is a weakly compact subset of L1(I, β(I), λ;X ) then there exist {jnk (·)}∞k=1 and j (·) ∈
S([x(·, ω)]α1) such that

jnk (·) k→∞−→ j (·) in the weak topology of L1(I, β(I), λ;X ) .

Since the linear operator V : L1(I, β(I), λ;X ) → X , defined as V (f (·)) := ∫
I f (s)ds, is

norm-to-norm continuous, by Theorem 5.3.15 in [17] we obtain

V (jnk (·)) k→∞−→ V (j (·)) in the weak topology of X .
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We have V (jnk (·)) = b for every k ∈ N. Hence
∫
I
j (s)ds = b. It remains to show that j (·) ∈

S([x(·, ω)]α). Let � ∈ N. Note that {jnk (·), k ≥ �} ⊂ S([x(·, ω)]αn�
) and S([x(·, ω)]αn�

)

is weakly closed. Hence j (·) ∈ S([x(·, ω)]αn�
) for every � ∈ N. Due to (5.1) we obtain

j (·) ∈ S([x(·, ω)]α).

Now, applying Lemma 5.2 we can state that for every ω ∈ � \ Nx there exists a unique

fuzzy set U(ω) in Fb
c (X ) such that

[U(ω)]α =
∫

I

[x(s, ω)]αds .

For ω ∈ Nx let us set U(ω) = 〈〈θX 〉〉, where 〈〈a〉〉 is the characteristic function of singleton

{a} ⊂ X . In this way we defined mapping U : � → Fb
c (X ).

Remembering that x : I × � → Fb
c (X ) is a measurable and L1-integrally bounded

fuzzy stochastic process, we obtain that for every α ∈ [0, 1] the set-valued stochastic process

[x]α : I×� → Kb
c (X ) is measurable and L1-integrally bounded. Hence ω �→ ∫

I [x(s, ω)]αds

∈ Kb
c (X ) is a measurable multifunction for every α ∈ [0, 1]. This means that

� � ω �→ U(ω) ∈ Fb
c (X )

is a measurable fuzzy mapping. �

DEFINITION 5.4. The measurable fuzzy mapping U : � → Fb
c (X ) described in The-

orem 5.3 is called the fuzzy stochastic Lebesgue integral (over interval I ) of the measurable

and L1-integrally bounded fuzzy stochastic process x : I × � → Fb
c (X ). This integral will

be denoted by
∫
I x(s, ·)ds or just by the symbol

∫
I x(s)ds.

Of course we can consider the integrals of the form
∫

G

x(s, ·)ds :=
∫

I

1G(s)x(s, ·)ds ,

where G is a measurable subset of I . In particular, for τ, t ∈ I , τ < t , we have
∫ t

τ x(s, ·)ds :=∫
I

1[τ,t ](s)x(s, ·)ds. Obviously, the fuzzy stochastic Lebesgue integrals
∫
I

1(τ,t ](s)x(s, ·)ds,∫
I 1[τ,t)(s)x(s, ·)ds,

∫
I 1(τ,t)(s)x(s, ·)ds they are all equal to

∫ t

τ x(s, ·)ds.

REMARK 5.5. Let y : I × � → Fc(X ) be a measurable and L1-integrally bounded

fuzzy stochastic process, where Fc(X ) denotes the collection of all fuzzy sets u ∈ F(X )

such that [u]α ∈ Kc(X ) for every α ∈ [0, 1]. Then we obtain y(t, ω) ∈ Fb
c (X ) for a.a.

(t, ω) ∈ I × � and similarly as above we can define the fuzzy stochastic Lebesgue integral

of the Fc(X )-valued y.
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REMARK 5.6. Let x : I × � → Fb
c (X ) be measurable and Lp-integrally bounded,

p ≥ 1. Then the fuzzy stochastic process

I × � � (t, ω) �→
∫ t

0
x(s, ω)ds ∈ Fb

c (X )

is measurable.

REMARK 5.7. If x : I × � → Fb
c (X ) is nonanticipating and Lp-integrally bounded

(p ≥ 1), then I × � � (t, ω) �→ ∫ t

0 x(s, ω)ds ∈ Fb
c (X ) is nonanticipating and Lp-integrally

bounded.

Some properties of the fuzzy stochastic Lebesgue integral will be stated below. We omit

their proofs, because they are modifications of the derivations presented in Section 3 for set-

valued cases.

PROPOSITION 5.8. Assume that x : I×�→Fb
c (X ) is a measurable and L1-integrally

bounded fuzzy stochastic process. Then it holds∫ t

τ

x(s, ω)ds ⊕
∫ η

t

x(s, ω)ds =
∫ η

τ

x(s, ω)ds

for every ω ∈ � and every τ, t, η ∈ I , τ < t < η.

PROPOSITION 5.9. Assume that x : I×�→Fb
c (X ) is a measurable and L1-integrally

bounded fuzzy stochastic process. Then for every ω ∈ � the mapping I � t �→ ∫ t

0 x(s, ω)ds ∈
Fb

c (X ) is DX -continuous.

PROPOSITION 5.10. Assume that x : I×�→Fb
c (X ) is measurable and Lp-integrally

bounded, p ≥ 1. Then the fuzzy stochastic process I × � � (t, ω) �→ ∫ t

0 x(s, ω)ds ∈ Fb
c (X )

is Lp-integrally bounded.

In the next properties concerning the fuzzy stochastic Lebesgue integral and the examina-

tions of fuzzy stochastic differential equations, it is important to guarantee that the mapping

� � ω �→ DX (u(ω), v(ω)) ∈ R is a random variable, where u, v are the fuzzy random

variables. We observe that for the measurability of the mapping ω �→ DX (u(ω), v(ω)), the

stochastic process [0, 1]×� � (α, ω) �→ HX ([u(ω)]α, [v(ω)]α) should be separable. In such

a case the mapping ω �→ supα∈[0,1] HX ([u(ω)]α, [v(ω)]α) will be a random variable. This

property is not obvious for the fuzzy random variables u, v taking on values from Fb
c (X ).

Therefore we must consider the following class of fuzzy sets

FLb
c(X ) := {

u ∈ Fb
c (X ) : α �→ [u]α is left continuous with respect

to the Hausdorff metric HX
}
.
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Notice that the set FLb
c(X ) is nonempty. The class Kb

c (X ) can be embedded into FLb
c(X ).

Also the class of fuzzy sets which have nonempty, compact and convex α-cuts form a subset

of FLb
c(X ). This is indicated below. Denote

FC(X ) := {
u ∈ Fb

c (X ) : [u]α are nonempty, compact

and convex subsets of X , α ∈ [0, 1]} .

LEMMA 5.11. It holds

FC(X ) ⊂ FLb
c(X ) .

PROOF. It is enough to show that for u ∈ FC(X ) the mapping α �→ [u]α is left contin-

uous with respect to the Hausdorff metric HX . Let α ∈ (0, 1] and {αk} ⊂ [0, 1] be such that

αk ↗ α. By Lemma 5.1 for u ∈ FC(X )

[u]α1 ⊃ [u]α2 ⊃ [u]α3 ⊃ · · · .

Therefore there exists the Kuratowski limit Limk→∞[u]αk and Limk→∞[u]αk = ⋂∞
k=1[u]αk

(see [28], page 339). On the other hand, by Lemma 5.1,
⋂∞

k=1[u]αk = [u]α. Hence

Limk→∞[u]αk = [u]α .

Now, by Proposition 1.19 in Chap. 7 of [23], we infer that

HX ([u]αk , [u]α) −→ 0 as αk ↗ α ,

which means that α �→ [u]α is left continuous. �

Notice that for u, v ∈ FLb
c(X ) and {αk} ⊂ [0, 1], α ∈ (0, 1] being such that αk ↗ α we

have

HX ([u ⊕ v]αk , [u ⊕ v]α) � HX ([u]αk , [u]α) + HX ([v]αk , [v]α) −→ 0 as k → ∞ .

Hence we obtain the following property.

REMARK 5.12. The set FLb
c(X ) is closed under operation ⊕.

LEMMA 5.13. The metric space (FLb
c(X ),DX ) is a complete metric space.

PROOF. As we mentioned in Preliminaries, (Fb
c (X ),DX ) is a complete metric space.

We will show that FLb
c(X ) is a closed subset in (Fb

c (X ),DX ). Let {un}∞n=1 ⊂ FLb
c(X ) be the

sequence that converges to u ∈ Fb
c (X ) in the metric DX . Let {αk}∞k=1 ⊂ [0, 1], α ∈ (0, 1] be

such that αk ↗ α. Since

HX ([u]αk , [u]α) � HX ([u]αk , [un]αk ) + HX ([un]αk , [un]α) + HX ([un]α, [u]α) ,
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we obtain HX ([u]αk , [u]α) → 0 as k → ∞. Therefore u ∈ FLb
c(X ). Hence closedness of

FLb
c implies completness of the metric space (FLb

c(X ),DX ). �

For the fuzzy random variables u, v : � → FLb
c(X ) it is possible to obtain that ω �→

DX (u(ω), v(ω)) is a random variable. We show this in a collection of lemmata below.

LEMMA 5.14. Let u, v ∈ FLb
c(X ). Then the mapping α �→ HX ([u]α, [v]α) is left

continuous.

PROOF. Due to the Rådström theorem [50] the family of nonempty, closed, bounded

and convex subsets of X can be embedded isometrically by an embedding j into a corre-

sponding real normed linear space E. We have

‖j ([u]αk )−j ([u]α)−(j ([v]αk )−j ([v]α))‖E�‖j ([u]αk )−j ([u]α)‖E+‖j ([v]αk )−j ([v]α)‖E .

Since the right-hand side of the inequality above equals HX ([u]αk , [u]α) + HX ([v]αk , [v]α)

and u, v ∈ FLb
c(X ), we get

j ([u]αk ) − j ([v]αk ) −→ j ([u]α) − j ([v]α) strongly in E, as αk ↗ α .

This implies that ‖j ([u]αk )−j ([v]αk )‖E −→ ‖j ([u]α)−j ([v]α)‖E as αk ↗ α. Consequently

HX ([u]αk , [v]αk ) −→ HX ([u]α, [v]α) as αk ↗ α ,

which ends the proof. �

LEMMA 5.15. Let u, v : � → FLb
c(X ) be the fuzzy random variables. Then for every

α ∈ [0, 1] the mapping ω �→ HX ([u(ω)]α, [v(ω)]α) is a random variable.

PROOF. By definition of the fuzzy random variable, for fixed α ∈ [0, 1] the mappings

ω �→ [u(ω)]α and ω �→ [v(ω)]α are the set-valued random variables. Hence each one of these

set-valued random variables has the Castaing representation, i.e. for every ω ∈ �

[u(ω)]α = clX {fn,α(ω) : n ∈ N}, [v(ω)]α = clX {gn,α(ω) : n ∈ N} ,

where fn,α, gn,α for n ∈ N are some random variables and selections of [u]α and [v]α, re-

spectively. Hence for every ω ∈ �

HX ([u(ω)]α, [v(ω)]α)

= max{sup
k∈N

inf
�∈N ‖fk,α(ω) − g�,α(ω)‖X , sup

�∈N
inf
k∈N ‖fk,α(ω) − g�,α(ω)‖X} .

Notice that the right-hand side above represents a random variable, so is the mapping ω �→
HX ([u(ω)]α, [v(ω)]α). �
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LEMMA 5.16. Let u, v : � → FLb
c(X ) be the fuzzy random variables. Then the map-

ping ω �→ DX (u(ω), v(ω)) is a random variable.

PROOF. By Lemmata 5.14 and 5.15 the mapping (α, ω) �→ HX ([u(ω)]α, [v(ω)]α)

is a stochastic process with left continuous sample paths. Therefore it is a separable sto-

chastic process (see [15]). Let S denote a separant (a countable set) for this process. Then

supα∈[0,1] HX ([u(ω)]α, [v(ω)]α) = supα∈S HX ([u(ω)]α, [v(ω)]α). By Lemma 5.15 the right-

hand side represents a random variable, so is ω �→ supα∈[0,1] HX ([u(ω)]α, [v(ω)]α). Since

supα∈[0,1] HX ([u(ω)]α, [v(ω)]α) = DX (u(ω), v(ω)), the proof is completed. �

COROLLARY 5.17. For the fuzzy random variables u, v : � → FC(X ), the mapping

ω �→ DX (u(ω), v(ω)) is a random variable.

Now we proceed with some properties of the fuzzy stochastic Lebesgue integral which

are useful in the investigations of fuzzy stochastic differential equations in M-type 2 Ba-

nach spaces. From now on we consider the fuzzy stochastic processes taking on values

from FLb
c(X ), since for any fuzzy stochastic processes x, y the measurability of the map-

ping ω �→ DX (x(t, ω), y(t, ω)), t ∈ I , will be needed.

PROPOSITION 5.18. Let x : I × � → FLb
c(X ) be a measurable and Lp-integrally

bounded, p ≥ 1. Then the fuzzy stochastic process (t, ω) �→ ∫ t

0 x(s, ω)ds is measurable and

takes on values from FLb
c(X ).

PROOF. By Remark 5.6 we get the measurability of (t, ω) �→ ∫ t

0 x(s, ω)ds. Also we

have
∫ t

0 x(s, ω)ds ∈ Fb
c (X ). Let {αk} ⊂ [0, 1], α ∈ (0, 1] be such that αk ↗ α. Now for

fixed (t, ω) ∈ I × � we get

HX

([∫ t

0
x(s, ω)ds

]
αk

,

[∫ t

0
x(s, ω)ds

]
α

)
= HX

(∫ t

0
[x(s, ω)]αkds,

∫ t

0
[x(s, ω)]αds

)

�
∫ t

0
HX ([x(s, ω)]αk , [x(s, ω)]α)ds

�
∫ T

0
HX ([x(s, ω)]αk , [x(s, ω)]α)ds,

and by the Lebesgue dominated convergence theorem
∫ T

0 HX ([x(s, ω)]αk , [x(s, ω)]α)ds → 0

as k → ∞. This implies that
∫ t

0 x(s, ω)ds ∈ FLb
c(X ). �

REMARK 5.19. Let x : I × � → FLb
c(X ) be a nonanticipating and Lp-integrally

bounded, p ≥ 1. Then the fuzzy stochastic process (t, ω) �→ ∫ t

0 x(s, ω)ds is nonanticipating

and takes on values from FLb
c(X ).
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Due to Remark 5.12 we can rewrite Proposition 5.8 with FLb
c(X ) instead ofFb

c (X ). Also

the Propositions 5.9 and 5.10 are true if we replace Fb
c (X ) with FLb

c(X ). Such properties

will be needed in the context of fuzzy stochastic differential equations considered in the next

section.

PROPOSITION 5.20. Assume that x, y : I × � → FLb
c(X ) are measurable and Lp-

integrally bounded, p ≥ 1. Then P -a.e. it holds: for every τ < t

sup
u∈[τ,t ]

D
p

X

(∫ u

τ

x(s, ω)ds,

∫ u

τ

y(s, ω)ds

)
� (t − τ )p−1

∫ t

τ

D
p

X
(
x(s, ω), y(s, ω)

)
ds

and

D
p

X

(∫ t

τ

x(s, ω)ds,

∫ t

τ

y(s, ω)ds

)
� (t − τ )p−1

∫ t

τ

D
p

X
(
x(s, ω), y(s, ω)

)
ds .

COROLLARY 5.21. Under assumptions of Proposition 5.20, for every τ < t it holds

E sup
u∈[τ,t ]

D
p

X

(∫ u

τ

x(s)ds,

∫ u

τ

y(s)ds

)
� (t − τ )p−1

E

∫ t

τ

D
p

X
(
x(s), y(s)

)
ds

and

ED
p

X

(∫ t

τ

x(s)ds,

∫ t

τ

y(s)ds

)
� (t − τ )p−1

E

∫ t

τ

D
p

X
(
x(s), y(s)

)
ds .

6. Fuzzy stochastic differential equations in M-type 2 Banach spaces. Let X be

a separable reflexive M-type 2 Banach space. We will consider fuzzy stochastic differential

equations which are understood as the following integral equations

(6.1) x(t) = φ(t) ⊕
∫ t

0
f (s, x(s))ds ⊕

〈〈∫ t

0
g(s, x(s))dW(s)

〉〉
, t ∈ I,

which hold P -a.e. and where φ : I × � → FLb
c(X ), f : I × � × FLb

c(X ) → FLb
c(X ),

g : I × � ×FLb
c(X ) → B(X ;X ). The first integral is the fuzzy stochastic Lebesgue integral

and the second integral is the single-valued stochastic Itô integral in Banach space X .

Such equations are some generalizations of the set-valued stochastic equations consid-

ered in Section 4. Here, we present the studies (parallel to those included in Section 4) on the

equation (6.1). The derivations are very similar to those presented for the set-valed stochastic

equation (4.1). For a clarity we include some sketches of the first proofs only.

DEFINITION 6.1. A fuzzy stochastic process x : I × � → FLb
c(X ) is called the so-

lution to (6.1) if it is {At }-adapted, DX -continuous and satisfies (6.1). A solution x : I ×
� → FLb

c(X ) is unique if P -a.e. it holds: DX (x(t), y(t)) = 0 for every t ∈ I , where

y : I × � → FLb
c(X ) is any solution to (6.1).
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To obtain the existence and uniqueness theorem for solutions to (6.1) we will impose the

following conditions:

(a1) φ : I × � → FLb
c(X ) is a nonanticipating, DX -continuous fuzzy stochastic pro-

cess such that E supt∈I |[φ(t)]0|2X < ∞,

(a2) f : I × � × FLb
c(X ) → FLb

c(X ) is N ⊗ βDS
X

|βDS
X

-measurable, g : I × � ×
FLb

c(X ) → B(X ;X ) is N ⊗ βDS
X

|σ(B(X ;X ))-measurable,

(a3) there exists a constant K > 0 such that P -a.e. it holds

∀ t ∈ I ∀ u, v ∈ FLb
c(X ) D2

X
(
f (t, ω, u), f (t, ω, v)

)
� KD2

X (u, v) ,

∀ t ∈ I ∀ u, v ∈ FLb
c(X )

∥∥g(t, ω, u) − g(t, ω, v)
∥∥2

L2(X ;X )
� KD2

X (u, v) ,

(a4) there exists a constant M > 0 such that P -a.e. it holds

∀ t ∈ I max
{∣∣[f (t, ω, 〈〈θX 〉〉)]0

∣∣2
X ,

∥∥g(t, ω, 〈〈θX 〉〉)∥∥2
L2(X ;X )

}
� M .

To use the method of the successive approximations we define the sequence {xn}∞n=0 of

the fuzzy stochastic processes

(6.2) x0(t) = φ(t), t ∈ I ,

and for n = 1, 2, . . .

(6.3) xn(t) = φ(t) ⊕
∫ t

0
f (s, xn−1(s))ds ⊕

〈〈∫ t

0
g(s, xn−1(s))dW(s)

〉〉
, t ∈ I .

LEMMA 6.2. Assume that φ, f, g satisfy conditions (a1)–(a4). Then every approxi-

mation xn : I × � → FLb
c(X ) is a nonanticipating, L2-integrally bounded, DX -continuous

fuzzy stochastic process.

PROOF. By the assumptions on φ, the initial approximation x0 : I × � → FLb
c(X ) is

such as it is stated in this lemma. Assume that xn−1 is nonanticipating, L2-integrally bounded

and DX -continuous.

The compositions f (·, ·, xn−1(·, ·)) : I × � → FLb
c(X ), g(·, ·, xn−1(·, ·)) : I × � →

B(X ;X ) are N |βDS
X

-measurable and N |β(B(X ;X ))-measurable, respectively. Next by (a3)

and (a4) we obtain

E

∫
I

|[f (t, xn−1(t))]0|2X dt = E

∫
I

D2
X (f (t, xn−1(t)), 〈〈θX 〉〉)dt

� 2KE

∫
I

|[xn−1(t)]0|2X dt + 2MT < ∞ .

Also

E

∫
I

‖g(t, xn−1(t))‖2
L2(X ;X )

dt � 2KE

∫
I

|[xn−1(t)]0|2X dt + 2MT < ∞ .
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Therefore the first integral which appears in (6.3) is a nonanticipating and L2-integrally

bounded fuzzy stochastic process and the second integral is a well-defined X -valued Itô sto-

chastic integral. Hence xn is nonanticipating and L2-integrally bounded. Since the integrals

are continuous we conclude that every xn is DX -continuous. �

LEMMA 6.3. Under assumptions of Lemma 6.2, for every n ∈ N it holds

E sup
t∈I

D2
X (xn(t), 〈〈θX 〉〉) � (M1 + M2TE sup

t∈I

|[φ(t)]0|2X ) exp{M2T } ,

where M1 = 3E supt∈I |[φ(t)]0|2X + 6T M(T + CX ), M2 = 6K(T + CX ).

PROOF. Due to Corollary 5.21, (2.2), (a3) and (a4) we have for t ∈ I

E sup
s∈[0,t ]

D2
X (xn(s), 〈〈θX 〉〉) � M1 + M2

∫ t

0
E sup

s∈[0,r]
D2
X (xn−1(s), 〈〈θX 〉〉)dr .

Hence, for every k ∈ N and every t ∈ I we can infer that

max
1�n�k

E sup
s∈[0,t ]

D2
X (xn(s), 〈〈θX 〉〉) �M1 + M2TE sup

s∈I

|[φ(s)]0|2X

+ M2

∫ t

0
max

1�n�k
E sup

s∈[0,r]
D2
X (xn(s), 〈〈θX 〉〉)dr .

Using Gronwall’s inequality we obtain

max
1�n�k

E sup
s∈[0,t ]

D2
X (xn(s), 〈〈θX 〉〉) �

(
M1 + M2TE sup

s∈I

|[φ(s)]0|2X
)

eM2t

for t ∈ I , which leads us to the end of the proof. �

THEOREM 6.4. Assume that φ, f, g satisfy (a1)–(a4). Then the fuzzy stochastic differ-

ential equation (6.1) has a unique solution.

PROOF. By Corollary 5.21, (2.2), (a3) and (a4) we have (for t ∈ I )

E sup
s∈[0,t ]

D2
X (x1(s), x0(s))� Lt ,

where L = 4(T + CX )(M + KE supt∈I |[φ(t)]0|2X ). Further, for n ∈ N and t ∈ I we obtain

E sup
s∈[0,t ]

D2
X (xn+1(s), xn(s)) � 2K(T + CX )

∫ t

0
E sup

s∈[0,r]
D2
X (xn(s), xn−1(s))dr .

Therefore

(6.4) E sup
t∈I

D2
X (xn(t), xn−1(t)) � L[2K(T + CX )]n−1 T n

n! .
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Hence we can infer about the existence of a fuzzy stochastic process x : I × � → FLb
c(X )

which is nonanticipating, L2
N (λ×P)-integrally bounded, DX -continuous and P -a.e. it holds

sup
t∈I

DX (xn(t, ω), x(t, ω)) → 0 as n → ∞ .

By Corollary 5.21, (2.1) and (a3) we have for every t ∈ I

ED2
X

(
x(t), φ(t) ⊕

∫ t

0
f (s, x(s))ds ⊕

〈〈∫ t

0
g(s, x(s))dW(s)

〉〉)

� 2ED2
X (x(t), xn(t)) + 4(T + CX )K

∫
I

ED2
X (xn−1(s), x(s)) ds,

and since the right-hand side of this inequality converges to zero as n → ∞, we obtain for

every fixed t ∈ I

DX
(

x(t), φ(t) ⊕
∫ t

0
f (s, x(s))ds ⊕

〈〈∫ t

0
g(s, x(s))dW(s)

〉〉)
= 0 P -a.e.

Since the processes appearing above are DX -continuous, we get that P -a.e. it holds

x(t) = φ(t) ⊕
∫ t

0
f (s, x(s))ds ⊕

〈〈∫ t

0
g(s, x(s))dW(s)

〉〉
for t ∈ I .

Hence x is a solution to (6.1). Suppose that y : I × � → FLb
c(X ) is also a solution to (6.1).

Then for every t ∈ I

E sup
s∈[0,t ]

D2
X (x(s), y(s))� 2K(T + CX )

∫ t

0
E sup

s∈[0,r]
D2
X (x(s), y(s))dr .

This allows us to infer that P -a.e. it holds sups∈I DX (x(s), y(s)) = 0 which means that x is

the unique solution to (6.1). �

PROPOSITION 6.5. Under assumptions of Theorem 6.4 for the solution x to (6.1) and

the nth approximation xn it holds

E sup
t∈I

D2
X (xn(t), x(t)) � 2LT exp{4KT (T + CX )} [2KT (T + CX )]n

n! ,

where L = 4(T + CX )(M + KE supt∈I |[φ(t)]0|2X ). In particular,

E sup
t∈I

D2
X (xn(t), x(t)) → 0 as n → ∞ .

Let us consider the equation (6.1) and the equation

(6.5) x̃(t) = φ̃(t) ⊕
∫ t

0
f̃ (s, x̃(s))ds ⊕

〈〈∫ t

0
g̃(s, x̃(s))dW(s)

〉〉
, t ∈ I .
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PROPOSITION 6.6. Assume that φ, φ̃, f, f̃ , g, g̃ satisfy (a1)–(a4). Then for the solu-

tion x to (6.1) and the solution x̃ to (6.5) it holds

E sup
t∈I

D2
X (x̃(t), x(t))

�
[

3E sup
t∈I

D2
X (φ̃(t), φ(t)) + 6TE

∫
I

D2
X (f̃ (s, x(s)), f (s, x(s)))ds

+ 6CXE

∫
I

∥∥g̃(s, x(s)) − g(s, x(s))
∥∥2

L2(X ;X )
ds

]
exp{6KT (T + CX )} .

Now let us consider the equation (6.1) and the equations

(6.6) yn(t) = φn(t) ⊕
∫ t

0
fn(s, yn(s))ds ⊕

〈〈∫ t

0
gn(s, yn(s))dW(s)

〉〉
, t ∈ I ,

n ∈ N.

COROLLARY 6.7. Assume that φ, φn, f, fn, g, gn satisfy (a1)–(a4). Suppose that

E sup
t∈I

D2
X (φn(t), φ(t)) → 0 as n → ∞ ,

and for every u ∈ FLb
c(X )

E

∫
I

D2
X (fn(s, u), f (s, u)) → 0 as n → ∞ ,

E

∫
I

‖gn(s, u) − g(s, u)‖2
L2(X ;X )

→ 0 as n → ∞ .

Then for the solution x to (6.1) and the solutions yn to (6.6) it holds

E sup
t∈I

D2
X (yn(t), x(t)) → 0 as n → ∞ .
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