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Abstract. We study a toric modification of Fujiki-Oka type for cyclic quotient sin-
gularities. Especially the behavior of rational Chow rings, orbifold signatures and so on
are explicitly calculated. As a result, we extend Zagier’s reciprocity for higher-dimensional
Dedekind sums. Namely, we define Dedekind sums with weight by using Atiyah-Singer’s
equivariant signature with non-isolated fixed point locus, and then prove our reciprocity among
them.

Introduction. This paper concerns with singularity theory and number theory via the
methods of toric geometry. By extending the notion of Hilbert modular cusps, Tsuchihashi
[Tsu] defined higher-dimensional cusp singularities via toric geometry. Ogata [Og1] [Og2]
studied zeta functions, eta functions and signature defects for these cusp singularities. Ishida
[I2] also studied the special value of the zeta functions of these singularities. Our studies are
on the same line as the above works in the spirit, but our objects are not cusp singularities but
cyclic quotient singularities. We start to explain it from the viewpoint of singularity.

0.1. Let X be an n-dimensional analytic space which has as isolated cyclic quotient
singularity at the origin o ∈ X. If n = 2, the resolution process of the singularity (X, o) is
classically well-known via Hirzebruch-Jung method. If n ≥ 3, Fujiki [Fuj] first constructed a
certain resolution process for (X, o), and other types of processes are known in these days.

Oka [Ok] constructed a certain resolution process for toric singularities. Note that cyclic
quotient singularities belong to a class of toric singularities which come from semi-unimodular
cones (§1.2). If one applies Oka’s subdivision lemma ([Ok, p. 410]) to a semi-umimodular
cone, then the resulting toric modification μ : Y → X is nothing but the birational holomor-
phic map which is used by Fujiki as the key lemma [Fuj, Lemma 3] of his construction. We
call μ Fujiki-Oka modification.

The aim of this paper is to study geometric and number-theoretic properties of Fujiki-
Oka modifications. We show the following:

(i) We previously define a natural multi-dimensional Euclidian algorithm (Definition
1.1.1). Then the space Y has cyclic quotient singularities whose types essentially
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match with this algorithm (Lemma 1.2.5). The singularities of Y are no more iso-
lated in general.

(ii) The morphism μ has a relative projective orbifold compactification μ : Y → X

(Proposition 1.3.1), and the relative Chow ring for μ is described (Remark 3.2.2).
Now we assume that n is even, and study the behavior via μ of invariants related to

signatures. For even dimensional complex orbifold M in general, two types of signatures are
defined. The one is the (usual) signature SignM as a rationally homology manifold, and the
other is the orbifold signature SignorbM which is defined by the integral of orbifold L-class.
The difference SdefM := SignM − SignorbM is called S-defect1, which is essentially de-
scribed by Lefschetz fixed point formula for the signature operator ([AS], [Ka]). We calculate
the relative contributions of μ to these three invariants.

(iii) The difference of signatures SignY −SignX is calculated by using Leung-Reiner’s
theorem [LR] (Corollary 2.1.2).

(iv) The difference of orbifold signatures Sign Y
orb − Signorb X is calculated by using

the method of Pommersheim [P] (Proposition 3.2.1).
(v) The difference of S-defects Sdef Y − Sdef X is calculated according to Kawasaki’s

formula [Ka] (Proposition 5.1.2).
By substituting the results of (iii)–(v) to the equality

(1) (Sign Y − Sign X) − (Signorb Y − Signorb X) = Sdef Y − Sdef X ,

we have our reciprocity formula for generalized Dedekind sums (Theorem 4.2.2). We explain
a number-theoretic meaning of it in the next subsection.

0.2. Historically, in order to express the explicit SL2(Z) actions to his eta function,
Dedekind introduced the notion of Dedekind sums

s(a; d) =
d−1∑

k=1

((
k

d

))((
ka

d

))

where d, a are mutually prime natural numbers and ((x)) = x −[x]− 1/2 (x �∈ Z), ((x)) = 0
(x ∈ Z). He also proved the 2-dimensional inhomogeneous reciprocity

(2) s(a; d) + s(d; a) = −1

4
+ 1

12

(
a

d
+ a

d
+ 1

da

)
.

Rademacher extended (2) to the 2-dimensional homogeneous reciprocity for the homoge-
neous Dedekind sum s(a1, a2; d) = ∑d−1

k=1 ((ka1/d)) ((ka2/d)) . He expressed it as

(3) s(a1, a2; d) = 1

4d

d−1∑

k=1

cot
πa1k

d
cot

πa2k

d

1We may call it signature defect. Although this word is sometimes used in more delicate sense assuming a
framing of the tangent bundle, we avoid it here.



TORIC MODIFICATIONS OF CYCLIC ORBIFOLDS 325

by using Fourier expansion (cf. [RG]). As an extended form of (3), Hirzebruch-Zagier [HZ]
and Zagier [Z] introduced the notion of higher-dimensional Dedekind sums

(4) s(a1, . . . , an; d) = (−1)n/2

d

d−1∑

k=1

n∏

i=1

cot

(
πkai

d

)

for an even natural number n. Zagier [Z] also proved the n-dimensional homogeneous reci-
procity

(5)
n∑

i=0

s(a0, . . . , ai−1, ai+1, . . . , an; ai) = 1 − Ln(a0, . . . , an)∏n
i=0 ai

,

where a0, a1, . . . , an are pairwise prime natural numbers and Ln is Hirzebruch’s L-polynomial
of degree n.

Beck [B] extended the notion of Dedekind sums which relates to higher derivatives of the
cotangent function, and the reciprocity was studied by [B] and [BR]. See for instance [GS],
[BH1], [BH2] for other number theoretic related topics.

From the topological viewpoint, the invariant (4) is directly related to the G-signature
theorem with an isolated fixed point, i.e., the Lefschetz fixed point formula ([AB, p. 473]) for
the signature operator. For the reciprocity related to the Lefschetz fixed point formula of other
Dirac operators, see [FFU], [Fuk] etc.

From the algebro-geometric viewpoint, Pommersheim [P] gave an interesting proof for
the 2-dimesional homogenenous reciprocity by using toric geometry. Reid [R] defined another
type of higher-dimensional Dedekind sum which relates to orbifold Riemann-Roch problem,
and this direction was developed by [BRZ]. See for instance [U], [A1] for other related topics.

Now our reciprocity is as follows. We drop the symmetry condition in (5) to the effect
that a0, a1, . . . , an are pairwise prime, and prove a reciprocity similar to (5). Geometrically,
this situation naturally leads us to using the G-signature theorem (cf. [AS], [HZ]) for non-
isolated fixed point locus. Our formulation is the following.

We first define the notion of Dedekind sums with weight as follows. By substituting the
variables for the data of the normal bundle of the fixed point locus of equivariant L-class,
we first define the Atiyah-Singer cotangent function. This is a meromorphic function whose
constant term coincides with the usual cotangent product and whose other coefficients are
written in terms of higher derivatives of usual cotangent functions and the Bernoulli numbers
as in (35). Then the Dedekind sum with weight is defined by substituting the Atiyah-Singer
cotangent function for the cotangent function in (4).

We define the notion of n-dimensional proper fraction a/d = (a1, . . . , an)/d (0 ≤ ai ≤
d − 1) and higher-dimensional analogs of the classical Euclidean algorithm in the set of these
proper fractions, as mentioned in §0.1. We call them i-th remainder maps and i-th round down
maps for 1 ≤ i ≤ n.

Then our reciprocity (37) is stated as a relation among the remainder maps of the proper
fraction a/d with respect to the Dedekind sums with weight under the assumption that
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gcd(d, ai) = 1 (1 ≤ i ≤ n − 1) and an = 1. If we further assume that a1, . . . , an−1 are pair-
wise prime, then our reciprocity coincides with inhomogeneous Zagier reciprocity (Corollary
4.2.3). In this sense, our reciprocity is a generalization of Zagier reciprocity.

Lastly we note that our trials are on the first stage and many related problems are open,
and some of them are commented in Remark 5.5.1.

1. Fujiki-Oka modification. We express a cyclic orbipoint (a cyclic quotient singu-
larity) as the toric variety corresponding to a semi-unimodular simplicial cone, and define
a toric modification via Oka’s subdivision of this cone. The algorithm for this subdivision
essentially coincides with the Euclidean algorithm for a higher-dimensional proper fraction
defined in §1.1.

1.1. Let N and Z be the set of natural numbers and integers, respectively. We call

(6)
a
d

= (a1, . . . , an)

d

an n-dimensional proper fraction (n ≥ 1) if d ∈ N and a = (a1, . . . , an) ∈ Zn satisfy
0 ≤ ai ≤ d − 1 for 1 ≤ i ≤ n. Here we call a and d the numerator and the denominator
of a/d , respectively, and call ai the i-th component of the numerator. The prototype of this
notion comes from Reid [R].

Let Qprop
n be the set of n-dimensional proper fractions, and let Q

prop
n be the set of union

of Qprop
n and the symbol ∞. Similarly, we set Z

n = Zn ∪ {∞}. If the n-th component of the
numerator satisfies an = 1, then a/d is said to be inhomogeneous. If a/d ∈ Qprop

n satisfies

gcd(d, ai) = 1 (1 ≤ i ≤ n) ,

then it is said to be irreducible. Moreover an irreducible proper fraction a/d satisfying

gcd(ai, aj ) = 1 (1 ≤ i < j ≤ n)

is said to be absolutely irreducible. The multiple of a/d by k ∈ Z is defined by

k · a
d

= (ka1, . . . , kan)

d
∈ Qprop

n

where kai ≡ kai (mod d) with 0 ≤ kai ≤ d − 1 (cf. [R, p. 372]). We sometimes write the
numerator of a/d by a = Num(a/d). On the other hand, the i-th shifted numerator of a/d is
defined by

(7) Ni

( a
d

)
= (a1, . . . , ai−1,−d, ai+1, . . . , an) ∈ Zn .

Now we define an analog for Qprop
n of the classical Euclidean algorithm as follows:

DEFINITION 1.1.1. (i) For 1 ≤ i ≤ n, the i-th round down map Zi : Q
prop
n → Z

n
is

defined by

Zi

(
(a1, . . . , an)

d

)
=

⎧
⎪⎨

⎪⎩

(⌊
a1

ai

⌋
, . . . ,

⌊
ai−1

ai

⌋
,

⌊−d

ai

⌋
,

⌊
ai+1

ai

⌋
, . . . ,

⌊
an

ai

⌋)
if ai �= 0

∞ if ai = 0
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and Zi(∞) = ∞. Here 
x� is the greatest integer not exceeding x.

(ii) The i-th remainder map Ri : Q
prop
n → Q

prop
n is defined by

Ri

(
(a1, . . . , an)

d

)
=

⎧
⎪⎪⎨

⎪⎪⎩

(
a1, . . . , ai−1, (−d), ai+1, . . . , an

)

ai

if ai �= 0

∞ if ai = 0

and Ri(∞) = ∞.

For instance, if α = (2, 6, 3, 1)/7, then Z3 (α) = (0, 2,−3, 0) and R3 (α) = (2, 0, 2, 1)/

3.
In the usual addition on Zn, we have

(8) Num(Ri(a/d)) + aiZi(a/d) = Ni(a/d) , if ai �= 0 .

Applications of the iteration of this algorithm are discussed in [A2].
1.2. We fix an inhomogeneous proper fraction a/d = (a1, . . . , an−1, 1)/d ∈ Qprop

n

and a primitive d-th root of unity ξ . Let (z1, . . . , zn) be a complex coordinate of Cn and let
ϕa/d : Cn → Cn be the holomorphic automorphism defined by

(9) ϕa/d : (z1, . . . , zn−1, zn) �−→ (ξa1z1, . . . , ξ
an−1zn−1, ξzn) .

The germ at the origin of the quotient space Cn/〈φa/d〉 with respect to the cyclic group 〈φa/d〉
generated by φa/d is called a cyclic orbipoint of type a/d . If a/d is an irreducible fraction,
then this singularity is isolated. In general, it need not be isolated.

Now we interpret this quotient space in terms of toric geometry. We follow Oda [Od] for
the basic terminology of toric geometry. We fix a free abelian group N � Zn of rank n. We
put M = HomZ(N, Z) and denote by

〈 〉 : M × N −→ Z

the canonical pairing. We put NR = N ⊗Z R, MR = M ⊗Z R, and also denote by 〈 〉 :
MR × NR → R the natural pairing. Let Pi = t (Pi1, . . . , Pin) ∈ N be primitive elements for
1 ≤ i ≤ n, and let

(10) σ = R≥0P1 + · · · + R≥0Pn

be the n-dimensional simplicial cone generated by P1, . . . , Pn. Let �σ be the fan consisting
of all the faces of σ , and let Uσ be the affine toric variety corresponding to �σ . Namely Uσ

is defined to be the space of semi-group homomorphisms Homsemigr
(
C[σ̌ ∩ M], C

)
sending

0 to 0, where σ̌ = {x ∈ MR; 〈x, y〉 ≥ 0, y ∈ σ } is the dual cone of σ .
For an m-dimensional face τ = R≥0Pi1 + · · · + R≥0Pim of σ (for m ≤ n), the greatest

common divisor of the absolute values of the m × m minors of the matrix {pikj }1≤k≤m,1≤j≤n

is called the multiplicity of τ , and is denoted by mult τ . Note that mult τ = 1 if and only if
Pi1 , . . . , Pim forms a part of a Z-basis of N . If mult σ = 1, then σ is said to be nonsingular
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(or unimodular). In this case, the variety Uσ is non-singular. As the simplest simplicial cone
but singular, we define the following:

DEFINITION 1.2.1. A simplicial cone σ as in (10) is said to be semi-unimodular over
Pn if the multiplicity of the face R≥0P1+· · ·+R≥0Pn−1 is one, i.e., the set of primitive vectors
{P1, . . . , Pn−1} is a part of Z-basis of N . In this case, Pn is called the exceptional element.

The above notion intrinsically appear in Oka [Ok], where an inductive method for a
general toric resolution was studied. The following proposition is due to Oka.

POPOSITION 1.2.2 ([Ok, p. 410]). Suppose σ = R≥0P1 +· · ·+R≥0Pn is semi-unimo-
dular over Pn with mult σ = d > 1. Let Q ∈ N be a primitive element such that

(a) The ray R≥0Q is contained in σ , i.e., Q is written as
∑n

i=1 riPi for ri ∈ R≥0.
(b) The cone R≥0P1 + · · · + R≥0Pn−1 + R≥0Q is non-singular.
Then the following (i) and (ii) hold:
(i) There exist non-negative integers a1, . . . , an−1 such that Q is written as

(11) Q =
∑n−1

i=1 aiPi + Pn

d
.

(ii) The integers a1, . . . , an−1 in (11) are unique modulo d . Especially there exists a
unique element Q ∈ N which satisfies (11) under the assumption 0 ≤ ai ≤ d − 1.

By Proposition 1.2.2, (ii), the inhomogeneous proper fraction a/d = (a1, . . . , an−1, 1)/d

is uniquely determined for a given semi-unimodular cone σ over Pn, which we call the proper
fraction of σ . The primitive element Q ∈ N in (11) determined by the proper fraction of σ is
called Oka center of σ .

PROPOSITION 1.2.3. Let σ = R≥0P1 +· · ·+R≥0Pn be semi-unimodular over Pn with
the proper fraction a/d . Then the germ at the origin of the toric variety Uσ coincides with the
cyclic orbipoint of type a/d .

PROOF. Let Q be Oka center of σ . Since the simplex R≥0P1 +· · ·+R≥0Pn−1 +R≥0Q

is non-singular, {P1, . . . , Pn−1,Q} forms a Z-basis of N . We put Pn = ∑n−1
i=1 xiPi + x ′Q for

xi, x
′ ∈ Z. Then

d = |det

(
P1, . . . , Pn−1,

n−1∑

i=1

xiPi + x ′Q
)

| = x ′|det(P1, . . . , Pn−1,Q)| = x ′ .

Therefore the expression Q = (−∑n−1
i=1 xiPi + Pn)/d implies that xi = −ai . Then we have

(12) Pn = −
n−1∑

i=1

aiPi + dQ .

Let N ′ be the Z-submodule of N of index d generated by P1, . . . , Pn−1, Pn. Let {m1, . . . ,mn}
be the dual Z-basis of M with respect to {P1, . . . , Pn−1,Q}, and let {m′

1, . . . ,m
′
n} be the dual

Z-basis of M ′ = HomZ(N ′, Z) with respect to {P1, . . . , Pn−1, Pn}. By easy calculation using
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(12), we have

(13) mi = m′
i − aim

′
n (1 ≤ i ≤ n − 1) , mn = dm′

n .

We identify N ′
R = N ′ ⊗Z R with NR, and let (N ′,Δσ ) → (N,Δσ ) be the map of fans of the

identical Δσ with respect to the mutually dinstinct lattices N ′ and N . Let

(14) U ′
σ = TN′emb (Δσ ) −→ Uσ = TNemb (Δσ )

be the natural equivariant morphism. Then U ′
σ � Cn and (14) is the quotient map by the

kernel of the map TN ′ → TN , which is the cyclic group of order d . By the same argument as
in the proof of [Od, Prop.1.24], it follows from (13) that (14) is nothing but the quotient map
by the action (9). �

REMARK 1.2.4. The notions of the proper fraction and Oka center for a semi-unimo-
dular cone depend on the exceptional element. Namely the cone σ as above may possibly be
semi-unimodular over another Pk for k �= n. Then it may have another proper fraction and
another Oka center if one changes the exceptional element. In the viewpoint of Proposition
1.2.3, the choice of the exceptional element of a fixed semi-unimodular cone relates to the
change of the primitive d-th root of unity of the action (9). In fact, if ξak in (9) is another
primitive d-th root of unity for some k, then σ is also semi-unimodular over Pk .

LEMMA 1.2.5. Let σ = R≥0P1 + · · · + R≥0Pn be semi-unimodular over Pn whose
proper fraction is a/d = (a1, . . . , an−1, 1)/d with Oka center Q. If ai �= 0, then the simplicial
cone

σi = R≥0P1 + · · · + R≥0Pi−1 + R≥0Q + R≥0Pi+1 + · · · + R≥0Pn

is semi-unimodular over Pn with multiplicity ai . Oka center Qi of σi coincides with

Qi =
∑i−1

j=1 ajPj + (−d)Q + ∑n−1
j=i+1 ajPj + Pn

ai

,

where aj ≡ aj (mod aj ) and 0 ≤ aj ≤ ai − 1 etc. In other words, the proper fraction of σi

coincides with the image Ri(a/d) of the i-th remainder map.

PROOF. The multiplicity of σi coincides with
∣∣∣∣det

(
P1, . . . , Pi−1,

∑n−1
i=1 aiPi + Pn

d
, Pi+1, . . . , Pn

)∣∣∣∣ = ai

d
|det(Pi, . . . , Pn)| = ai .

Since Qi is Oka center , there exist xj (j �= i) and x ′ with 0 ≤ xj ≤ ai − 1, 0 ≤ x ′ ≤
ai − 1 such that

(15) aiQi =
∑

j �=i,n

xjPj + x ′Q + Pn .

It follows from (12) and (15) that

aiQi =
∑

j �=i,n

(xj − aj )Pj − aiPi + (x ′ + d)Q .
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Since Qi is contained in the lattice ZP1 + · · · + ZPn−1 + ZQ, we have

xj ≡ aj , x ′ ≡ −d (mod ai) .

Therefore the assertion follows. �

1.3. From now on, we assume that the proper fraction a/d of this semi-unimodular
cone σ is irreducible. We put X := Uσ = TNemb (Δσ ). Then X has an isolated orbipoint
of type a/d at the origin. Moreover Oka center Q of σ is in the interior supp(σ )(0) of σ , i.e.,
R≥0Q is not contained in any proper face of σ .

Now let σ̃ be the subdivision of σ at the center Q. Then σ̃ consists of n simplicial
cones. Let Δσ̃ be the fan consisting of all the faces of σ̃ . We consider the natural birational
equivariant morphism

μ : Y = TNemb (Δσ̃ ) −→ X .

We call μ Fujiki-Oka modification of X. Note that this modification essentially appears in
Fujiki [Fuj, Lemma 3] without using the terminology of toric geometry. Then μ has the
following good compactification μ : Y → X, the existence of whose proof is postponed to
§3.3

PROPOSITION 1.3.1. Let Δσ be a simplicial completion of Δσ , and let Δσ̃ be the
simplical completion of Δσ̃ which is obtained by the subdivision of σ to σ̃ in Δσ .

We can choose such a pair Δσ , Δσ̃ so that Δσ and Δσ̃ are both projective. Namely
Y = TNemb (Δσ̃ ) and X = TNemb (Δσ ) are both projective.

2. Signature as rational homology manifold. For the compactified Fujiki-Oka μ :
Y → X as in §1.3, we describe the difference of the signatures Sign Y − Sign X.

2.1. From now on to the last section (§§2–5), the natural number n is assumed to be
even otherwise stated.

Let Δ be an n-dimensional projective simplicial fan, and put W = TNemb (Δ). Since
W is simplicial, W is automatically a complex orbifold. Especially W is a rational homology
manifold (cf. [St, p. 527]). Let SignW be the signature of the intersection form on Hn(W, Q)

as a rational homology manifold.
For 0 ≤ j ≤ n, let Δ(j) be the set of j -dimensional cones of Δ and put |Δ(j)| the

cardinarity of Δ(j).
The following theorem is proved by Leung-Reiner [LR, Theorem 1.1] by using the result

of McMullen [Mc, Theorem 8.6]. (See also [MS, §3] for its generalization.) Here we give
another proof, whose method is analogous to [Od, §3.3].

THEOREM 2.1.1. ([LR], [Mc]). For a simplicial projective toric variety W =
TNemb (Δ), we have

Sign W =
n∑

j=0

(−2)j |Δ(n − j)| .
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PROOF. Let Sing(W) be the singular locus of W as an analytic space, and let i : W −
Sing(W) ↪→ W be the inclusion map. Let Ω•

W−Sing(W) be the de Rham complex on W −
Sing(W), and put Ω̃•

W = i∗Ω•
W−Sing(W)

. By Danilov [D, Thm.12.5], the spectral sequence

E
p,q

1 = Hq(W, Ω̃
p
W ) �⇒ Hp+q(W, C)

degenerates at E1-term. Especially, by putting

hp,q(W) = dim Hq(W, Ω̃
p

W ) ,

the k-th Betti number is written as bk(W) = ∑
p+q=k hp,q(W).

By the projectivity of W , there exists an ample line bundle on W , and we denote by
L ∈ H 2(W, C) its cohomology class. By Beilinson-Bernstein-Deligne [BBD] and Goresky-
MacPherson [GM] the hard Lefschetz theorem holds for W , i.e., the map ω �→ Lq ∧ω induces
an isomorphism from Hn−q(W, C) to Hn+q(W, C) for any q ∈ N (see also [CLS, p. 620 and
the comment in p. 794]). We denote the k-th primitive cohomology by

Pk(W, C) = Ker
(
Ln−k+1 : Hk(W, C) → H 2n−k+1(W, C)

)
.

Then we have the Lefschetz decomposition

Hq(W, C) = ⊕r≥0L
rPq−2r (W, C)

for q ≥ 0. By Steenbrink [St, p. 531], the Hermitian inner product on Hn−q(W, C) defined
by

Q(x, y) = (−1)(n−q)(n−q−1)/2Cx ∧ Lqȳ [W ]
is positive definite, where C is the Weil operator and ȳ is the complex conjugation of y with
respect to Hn−q(W, R). Therefore by the same argument as in [GH, pp. 125–126], we have
the “Hirzebruch-type” formula

(16) Sign W =
∑

p+q≡0 mod 2

(−1)qhp,q (W) .

On the other hand, we define the Poincaré series of W as

P(t) =
n∑

p=0

hp,p(W) tp ∈ Z[t] .

By using the Ishida complex [I1] for a simplicial toric variety, Oda [Od, Thm.3.11,(2)] shows
that

(17) P(t) =
n∑

j=0

|Δ(j)|(t − 1)n−j .

Since hp,q(W) = 0 for p �= q (cf. [D, Cor.12.7], [Od, Thm.3.11, (1)]), it follows from (16)
that Sign W coincides with P(−1). Therefore the assersion follows from (17) by putting
t = −1. �
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COROLLARY 2.1.2. The compactified Fujiki-Oka modification μ : Y −→ X satisfies

Sign Y − Sign X = −1 .

PROOF. Since X and Y have the same fans outsides σ and the subdivision σ̃ of σ is
barycentric, it follows from Theorem 2.1.1 that

Sign Y − Sign X =
n−1∑

j=0

(−2)j (|Δσ̃ (n − j)| − |Δσ(n − j)|)

=
n−1∑

j=0

(−2)j nCj+1 = −(1 − 2)n − 1

2
= −1 .

�

3. Orbifold signature. In this section, we describe the difference of the orbifold sig-
natures Signorb Y − Signorb X for the modification μ : Y → X. For this purpose, we calculate
the difference between rational Chow rings A∗(Y )Q and A∗(X)Q. By using this, we also
prove the claim of the projectivity in Proposition 1.3.1.

3.1. For an n-dimensional simplicial toric variety W = TNemb (Δ), let A∗(W)Q be
the rational Chow ring of W . For each ρ ∈ Δ, let V (ρ) be the TN -invariant subvariety corre-
sponding to ρ, i.e., V (ρ) is the closure orb(ρ) of the TN -orbit corresponding to ρ. By essen-
tially Jurkewicz and Danilov [D, p.131], A∗(W)Q is generated by the TN -invariant divisors
{V (ρ) ; ρ ∈ Δ(1)} with the following relations:

(i) For any m ∈ W , we have

(18)
∑

ρ∈Δ(1)

〈m,ρ〉V (ρ) = 0 .

(ii) If ρ1, . . . , ρk ∈ Δ(1) are mutually distinct, then

(19)

V (ρ1) · V (ρ2) · · ·V (ρk)

=

⎧
⎪⎨

⎪⎩

1

mult(ρ1 + · · · + ρk)
V (ρ1 + · · · + ρk) if ρ1 + · · · + ρk ∈ Δ

0 otherwise,

where ρ1 + · · · + ρk is the face of Δ generated by ρ1, . . . , ρk .
The rational total Chern class of W is given by

cQ(W) =
∏

ρ∈Δ(1)

(1 + V (ρ)) ∈ A∗(W)Q =
∑

ρ∈Δ

1

mult(ρ)
V (ρ) ,

and the orbifold signature of W is the rational number defined by

(20) Signorb(W) = κn

( ∏

ρ∈Δ(1)

V (ρ)t · coth(V (ρ)t)

)
∈ An(W)Q � Q .
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As will be discussed in §5.1, the definition (20) coincides with the V-signature of Satake [Sa].

3.2. We go back to the compactified Fujiki-Oka modification μ : Y −→ X. The
following argument is analogous to that of Pommersheim [P, §3].

PROPOSITION 3.2.1.

Signorb(Y ) − Signorb(X) = −Ln(d, a1, . . . , an−1, 1)

d
∏n−1

i=1 ai

.

PROOF. As in the proof of Proposition 1.2.3, let {m1, . . . ,mn} be the Z-basis dual to
the Z-basis {P1, . . . , Pn−1,Q} of the lattice N in this order. Let {P1, . . . , Pn, Pn+1, . . . , Ps}
be the primitive elements of the rays of Δσ so that {Pn+1, . . . , Ps} are lying on Rn \ supp (σ ).
Then {Q,P1, . . . , Pn, Pn+1, . . . , Ps} are the primitive elements of rays of Δσ̃ , and the rational
total Chern classes are

(21) cQ(X) =
s∏

i=1

(1 + V (Pi)X) , cQ(Y ) = (1 + V (Q))

s∏

i=1

(1 + V (Pi)Y ) ,

where V (Pi)X (resp. V (Pi)Y ) are the rational equivalence class of V (R≥0Pi) in A∗(X)Q

(resp. A∗(Y )Q), etc. Now it follows from (12) and (18) that

0 = 〈mn,Q〉V (Q) +
s∑

i=1

〈mn,Pi〉V (Pi)Y = V (Q) + d V (Pn)Y + εn ,

0 = 〈mj,Q〉V (Q) +
s∑

i=1

〈mj, Pi〉V (Pi)Y = V (Pj ) − ai V (Pi)Y + εj (1 ≤ j ≤ n − 1) ,

where εj = ∑s
i=n+1〈mj , Pi〉V (Pi)Y for 1 ≤ j ≤ n. Therefore on A∗(Y )Q, we have

(22) V (Pn)Y = − 1

d
·V (Q)− εn

d
, V (Pj )Y = −aj

d
·V (Q)− ajεn

d
+εj (1 ≤ j ≤ n−1) .

On A∗(X)Q, we similarly have

(23) V (Pn)X = −εn

d
, V (Pj )Y = −ajεn

d
+ εj (1 ≤ j ≤ n − 1) .

Here εj = ∑s
i=n+1〈mj , Pi〉V (Pi)X in (23) more precisely, although we use the same symbol

εj as in (22) by identifying them through the isomorphism Y \ supp (̃σ ) −→ X \ supp (σ ).
For n + 1 ≤ i ≤ s, since Pi and Q are not in a same simplicial cone in Δσ̃ , we have

V (Q)V (Pi) = 0. Especially

(24) V (Q) · εj = 0 (1 ≤ j ≤ n) .
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By an easy calculation using (21)–(24), we have

(25)

Signorb(Y ) − Signorb(X)

= κn

{
V (Q)t · coth(V (Q)t) ·

n−1∏

j=1

((
− aj

d
V (Q)t

)
coth

(
− aj

d
V (Q)t

))

×
(

− 1

d
V (Q)t

)
coth

(
− 1

d
V (Q)t

)}

= V (Q)n · Ln

(
1,−a1

d
, . . . ,−an−1

d
,− 1

d

)

= V (Q)n

dn
· Ln(d, a1, . . . , an−1, 1) .

Since the simplicial cone R≥0P1 + · · · + R≥0Pn−1 + R≥0Q is nonsingular, it follows from
(19), (22), (24) that

1 = V (Q) V (P1) · · · V (Pn−1) = V (Q)n · (−1)n−1 a1 · · · an−1

dn−1
.

Namely

(26) V (Q)n = − dn−1

a1 · · · an−1
.

From (25), (26), the assertion follows.

REMARK 3.2.2. From the argument in the proof of Proposition 3.2.1, we have the
following: Let Q[q, p1, . . . , pn] be the polynomial ring in n+ 1 variables q, p1, . . . , pn with
rational coefficients, and let f (q, p1, . . . , pn) ∈ Q[q, p1, . . . , pn] be the homogeneous term
of degree n of the power series of the function q coth q · (∏n

i=1 pi coth pi ). Then the invariant
Signorb(Y ) − Signorb(X) is nothing but the rational number obtained from
f (q, p1, . . . , pn−1, pn) by substituting the relation

(27) pi = −ai

d
q (1 ≤ i ≤ n − 1) , pn = − 1

d
q , qn = − dn−1

a1 · · · an−1
.

3.3. We prove Proposition 1.3.1. The existence of simplicial completions of X, Y is
obvious. Since the discussion in §3.2 is independent of the projectivity of X, Y , we can use
the results in §3.2.

Let �σ be a |σ |-linear support function of σ , and let [�σ ] be the element of the dual
lattice M which corresponds to �σ . Let P be an integral polytope containing [�σ ] as one of
the vertices. By the Galois correspondence [Od, §2.4], there exists a projective fan Δσ which
corresponds to P , i.e., X = TNemb(Δσ ) is projective.

Now let Δσ̃ be the fan which is obtained from the Oka subdivision of the simplicial cone
σ in Δσ . It suffices to prove that Δσ̃ is also a projective fan.

For a Q-ample divisor D1 and an effective divisor D2 on a complex orbifold in general,
the divisor r1D1 + r2D2 (r1, r2 ∈ Q≥0) is also Q-ample. Therefore there exists a set of
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positive rational numbers {αi}1≤i≤s such that for any set of rational numbers {xi}1≤i≤s which
satisfy

(28) xi ≥ αi (1 ≤ i ≤ s) ,

the divisor
∑s

i=1 xiV (Pi)X is Q-ample on X.
Next we deal with Y . We set P0 = Q and V (Pi) = V (Pi)Y for simplicity. We claim

that, if we choose some rational numbers {xi}1≤i≤s which satisfiy (28), then there exists a
rational number x0 ∈ Q≥0 such that the divisor

(29) D =
s∑

i=0

xiV (Pi)

is Q-ample on Y .
Let C be any TN-invariant curve on Y . In order to prove the ampleness of D, it suf-

fices to prove DC > 0 by the toric Nakai criterion [Od, p. 95]. The curve C is written as
V (Pj1) · · ·V (Pjn−1) for some 0 ≤ j1 < · · · < jn−1 ≤ s. Our discussion is divided into the
following cases.

(i) Assume jn−1 ≥ n+1. Then C is contained in the closure of Y \supp σ̃ , and therefore
C → μ(C) is an isomorphism. Since we may assume that μ∗(D) = ∑s

i=1 xiV (Pi)X is ample
on X by (28), we have DC = μ∗(D)μ∗(C) > 0.

(ii) Assume jn−1 ≤ n. Our discussion is divided into the following sub-cases.
(ii-a) Suppose j1 = 0. Then C is written as V (P0) · · · V (Pi−1)V (Pi+1) · · · V (Pj−1)

V (Pj+1) · · ·V (Pn) for some 1 ≤ i < j ≤ n. Since V (P0)V (Pk) = 0 in A∗(Y )Q for
k ≥ n + 1, we have DC = ∑n

k=0 V (Pk) C. Moreover in this case, the equations (22), (24),
(26) say that we may numerically assume

(30) V (Pk) ≡ −ak

d
· V (P0) (1 ≤ k ≤ n) , V (P0)

n ≡ − dn−1

a1 · · · an

.

By an easy calculation using (30), we have

DC = 1

aiaj

( n∑

k=1

akxk − dx0

)
.

Hence the condition DC > 0 is equivalent to

(31)
n∑

k=1

akxk − dx0 > 0 .

(ii-b) Suppose j1 ≥ 1. Then C is written as V (P1) · · · V (Pi−1)V (Pi+1) · · ·V (Pn) for
some 1 ≤ i ≤ n. By an easy calculation using (22), (24), (26), we have

DC = 1

aid

(
−

n∑

k=1

akxk + dx0

)
+

n∑

k=1

xkD1 · · ·Dn

+
s∑

k=n+1

xkV (Pk)V (P1) · · ·V (Pi−1)V (Pi+1) · · ·V (Pn) ,
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where D1, . . . ,Dn are some Q-divisors whose supports are contained in the support of∑s
k=n+1 V (Pk). Therefore the condition DC > 0 is equivalent to

(32)

s∑

k=n+1

xkV (Pk)V (P1) · · · V (Pi−1)V (Pi+1) · · ·V (Pn)

>
1

aid

( n∑

k=1

akxk − dx0

)
−

n∑

k=1

xkD1 · · ·Dn .

The linear inequalties (28), (31), (32) with respect to x0, x1, . . . , xs have simultaneous
rational solutions. Indeed, as the first step, we choose x0, x1, . . . , xn so that (28) (31) are
satisfied. For any i (1 ≤ i ≤ n), there exists some k (n + 1 ≤ k ≤ s) such that R≥0Pk +
R≥0P1 + · · · + R≥0Pi−1 + R≥0Pi+1 + · · · + R≥0Pn is a simplicial cone in Δσ̃ . Therefore, as
the second step, we can choose xn+1, . . . , xs sufficiently large so that (32) is also satisfied. �

4. Reciprocity of Dedekind sums with weight. By using Atiyah-Singer cotangent
function, we define the notion of Dedekin sums with weight and state our reciprocity.

4.1. We set I = {1, 2, . . . , n}. For a/d ∈ Qprop
n as in (6), we denote by I the disjoint

union I0(a/d)
∐

Iref(a/d)
∐

I∗(a/d), where

(33)
I0(a/d) = {i ∈ I ; ai = 0} , Iref(a/d) =

{
i ∈ I ; ai

d
= 1

2

}
,

I∗(a/d) = I\
(

I0(a/d)
∐

Iref(a/d)
)

.

For a fixed a/d , we sometimes simply write I0 = I0(a/d) and so on if there is no confu-
sion. We denote by |I0| the cardinality of I0 and so on.

For a Laurent series f (x1, . . . , xn) = ∑
−∞<i1,...,in<∞ ai1···inx

i1
1 · · · xin

n in the variables
x1, . . . , xn with rational coefficients, we denote by

(34) κm (f (x1, . . . , xn)) =
∑

i1+···+in=m

ai1···inx
i1
1 · · · xin

n (m ∈ Z)

its homogeneous part of degree m. For simplicity, we write x = (x1, . . . , xn).

DEFINITION 4.1.1. For a/d ∈ Qprop
n , Atiyah-Singer cotangent function cot(a/d)(x) is

the meromorphic function defined by

(−1)n · 2|I0|−|Iref|

d(|I0| + 1)
(∏

k∈I0
xk

) · κ|I0|
{ ∏

k∈I∗
coth

(
xk

2
+

√−1πak

d

) ∏

k∈I0

xk

2
coth

xk

2

∏

k∈Iref

2 tanh
xk

2

}
.

This function appears as an interpretation in our situation of Atiyah-Singer’s equivariant
L-class [AS, p. 582]. Taylor expansion says

(−1)n2|Iref|−|I0|d(|I0| + 1)

( ∏

k∈I0

xk

)
cot(a/d)(x)
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is its homogeneous part of degree |I0| of

(35)

∏

k∈I∗

∞∑

j=0

(−√−1)j+1

j ! 2j
cot(j)

(
πak

d

)
x

j
k

·
∏

k∈I0

∞∑

j=0

B2j

(2j)!x
2j
k ·

∏

k∈Iref

∞∑

j=1

4(22j − 1)B2j

(2j)! x
2j−1
k ,

where B2j is 2j-th Bernoulli number so that B0 = 1, B2 = 1/6, B4 = −1/30, . . . , and
cot(j) x = (dj /dxj )(cot x) (see e.g. [B] for the notation). Therefore Atiyah-Singer cotangent
function is essentially written in terms of the derivatives of the usual cotangent function and
Bernoulli numbers.

EXAMPLE 4.1.2. If I0(a/d) = ∅, then cot(a/d)(x) is the constant function

cot

(
a
d

)
(x) = (−1)n/2

d

n∏

k=1

cot

(
πak

d

)
.

EXAMPLE 4.1.3. If a/d = (a1, a2, 0, 0)/d ∈ Qprop
4 with d ≥ 3, gcd(d, a1) =

gcd(d, a2) = 1, then

cot

(
a
d

)
(x) = 1

18dx3x4

(
3x2

1 cot(2) πa1

d
cot

πa2

d
+ 6x1x2 cot(1) πa1

d
cot(1) πa2

d

+ 3x2
2 cot

πa1

d
cot(2) πa2

d
− 2(x2

3 + x2
4 ) cot

πa1

d
cot

πa2

d

)
.

4.2. We define the following.

DEFINITION 4.2.1. For a/d ∈ Qprop
n and an element w = (w1, . . . , wn) ∈ Zn, we

define the Dedekind sum of a/d with weight w by

s
(

a
d

, w
)

=
d−1∑

k=1

cot

(
k · a

d

)
(w).

If a/d is irreducible, then k · a/d is also irreducible for 1 ≤ k ≤ d − 1. In this case,
Example 4.1.2 says that

(36) s
(

a
d

, w
)

= (−1)n/2

d
·
d−1∑

k=1

n∏

i=1

cot
πaik

d

independently of the weight w, and we simply write it as s(a/d). The definition (36) for an
irreducible fraction a/d is essentially nothing but the Dedekind sum defined by Hirzebruch-
Zagier [HZ]. In this sense, the notion of Dedekind sums with weight is a generalization of the
one in [HZ]. Now let

Ln(x1, . . . , xr) = κn

( r∏

i=1

xi coth xi

)
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be the Hirzebruch L-polynomial in the variables x1, . . . , xr . The following theorem is our
main result, whose proof will be accomplished in §5.

THEOREM 4.2.2 (Reciprocity law). Let a/d = (a1, . . . , an−1, 1)/d ∈ Qprop
n 　 be an

irreducible inhomogeneous element. Then we have

(37) s
(

a
d

)
−

n−1∑

i=1

s
(

Ri

(
a
d

)
, Ni

(
a
d

))
= 1 − Ln(d, a1, . . . , an−1, 1)

d
∏n−1

i=1 ai

.

If a/d is absolutely irreducible, then Ri(a/d) is also (absolutely) irreducible for any i.
Therefore Theorem 4.2.2 implies the following:

COROLLARY 4.2.3. If a/d = (a1, . . . , an−1, 1)/d ∈ Qprop
n 　 is an absolutely irre-

ducible inhomogeneous element, then

(38) s
(

a
d

)
−

n−1∑

i=1

s
(

Ri

(
a
d

))
= 1 − Ln(d, a1, . . . , an−1, 1)

d
∏n−1

i=1 ai

.

We easily check that Corollary 4.2.3 coincides with the inhomogeneous Zagier reci-
procity. Namely if we put an = 1 in the formula (47) in [Z, p. 158], then it coincides with
(38). In this sense, the formula (37) is a generalization of the inhomogeneous Zagier reci-
procity.

EXAMPLE 4.2.4. If a/d = (a1, a2, a3, a4)/d ∈ Qprop
4 , where a4 = 1, gcd(d, ai) = 1

(1 ≤ i ≤ 3) and d ≥ 3 is odd, then

s
(

a
d

)
−

3∑

i=1

s
(

Ri

(
a
d

)
, Ni

(
a
d

))
= 1 − 1

45d
∏4

i=1 ai

( ∑

1≤i<j≤4

15a2
i a

2
j −

4∑

i=1

a4
i

)
.

Here by putting c1i = gcd(a1, ai) (i = 2, 3), c123 = gcd(a1, a2, a3) and d ′ = −d , we have

s
(
R1

( a
d

)
, N1

( a
d

))
= 1

a1

′∑

1≤k≤a1−1

cot
πd ′k
a1

cot
πa2k

a1
cot

πa3k

a1
cot

πk

a1

+
3∑

i=2

1

2a1ai

′∑

1≤k≤c1i−1

(
d ′ cot(1) πd ′k

c1i

cot
πai∗k

c1i

cot
πk

c1i

+ ai∗ cot
πd ′k
c1i

cot(1) πai∗k

c1i

cot
πk

c1i

+ cot
πd ′k
c1i

cot
πai∗k

c1i

cot(1) πk

c1i

)
+ 1

18a1a2a3

c123−1∑

k=1

{
3d ′2 cot(2) πd ′k

c123
cot

πk

c123

+ 6d ′ cot(1) πd ′k
c123

cot(1) πk

c123
+3 cot

πd ′k
c123

cot(2) πk

c123
−2(a2

2 + a2
3) cot

πd ′k
c123

cot
πk

c123

}
.
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In the first (dashed) summation
∑′, k moves from 1 to a1 − 1 such that (αk)/a1 �∈ Z for

α = a2, a3. In the second (dashed) summation
∑′, the suffix i∗ is determined by 2∗ = 3 and

3∗ = 2, and k moves from 1 to c1i − 1 such that (ai∗k)/c1i �∈ Z.
The terms s(Ri(a/d),Ni(a/d)) for i = 2, 3 are similar.

5. S-defect. In this section, we calculate the difference Sdef(Y ) − Sdef(X) of the
singature defects for the modification μ : Y → X, and prove Theorem 4.2.2.

5.1. Let Z be an n-dimensional complex abelian orbifold. Namely there exists an orb-
ifold chart

(39) Z =
⋃

Ui , {Ũi
πi−→ Ui, Gi = Gal(Ũσi /Ui)}

so that any Gi is an abelian group. First, we briefly recall the V-signature theorem of Kawasaki
[Ka] restricted to Z for later use.

Let L(Ũi) be the Hirzebruch L-form on Ũi . Let {ρ̃i , ρi} be the partition of unity sub-
ordinate to the chart (39). Namely, ρ̃i is a C∞ function whose support is contained in Ũi so
that the system of function ρi on Ui with π∗

i ρi = ρ̃i satisfies
∑

ρi = 1. Satake’s V-signature
([Sa], [Ka]) of Z is defiend by

(40) SignV (Z) =
∑ 1

|Gi |
∫

Ũi

ρ̃iL(Ũi) .

The right-hand side of (40) is sometimes written as
∫ orb
Z L(Z).

On the other hand, for any g ∈ Gi , let L(g, Ũi ) be the equivariant L-form on Ũi with
respect to g (cf. [AS]). The S-defect of Z is defined by

(41) Sdef(Z) =
∑

i

1

|Gi |
∑

g∈Gi, g �=id

∫

Ũi

ρ̃iL(g, Ũi ) .

Then the V-signature theorem says that

(42) Sign(Z) − SignV (Z) = Sdef(Z) .

Kawasaki [Ka, §1] describes Sdef(Z) in the following global formulation. Here we also
use the terminology of Chen-Ruan [CR, §3] at the same time.

Let ΣZ be the singular locus of the orbifold Z, i.e., ΣZ consists of the points x ∈ Z

whose isotropy groups Gx are non-trivial. Since Gx is abelian, the centralizer of each element
of Gx and the conjugacy class of Gx are both isomorphic to Gx .

Let Σ̃Z be the twisted sector of Z [CR, p. 7]. Namely, Σ̃Z consists of the pairs
{(x, g) ; x ∈ ΣZ, g ∈ Gx, g �= id} which has the orbifold structure as follows: Let {Ũx →
Ux, Gx = Gal(Ũx/Ux)} be a local uniformazing system of Z containing x, and let Ũx

g
be

the fixed point locus of g on Ũx . Since Gx coincides with the centralizer of g in Gx , Gx itself
acts on Ũx

g
possibly non-effectively in general. Then the systems {Ũx

g → Ũx
g
/Gx} are

patched globally and defines the orbifold chart on Σ̃Z. Note that this orbifold structure need
not be reduced.
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Let Σ̃Zk (k = 1, . . . , α) be the connected components of Σ̃Z. For (x, g) ∈ Σ̃Zk ,
let Kx be the kernel of the natural homomorphism from Gx to the diffeomorphism group
Diffeo(Ũx

g
) of Ũx

g
. Then the cardinality |Kx | is independent of the choice of (x, g). We

set mk = |Kx | and call it the multiplicity of the connected component Zk [Ka, p. 77]. If
we change each local group from Gx to Gx/Kx , then the system {Ũx

g → Ũx
g
/(Gx/Kx)}

defines a reduced orbifold structure on Zk, which is written as Zred
k .

Through the immersion Σ̃Zred
k −→ Z defined by (x, g) �→ x, the orbifold normal

bundle on Σ̃Zred
k is well-defined. Then by patching the natural local equivariant L-forms, we

can define the orbifold characteristic LΣ on Σ̃Zred
k . We set

〈LΣ, Σ̃Zk〉 = 1

mk

∫ orb

Σ̃Zred
k

LΣ .

By [Ka, p. 78], we have

(43) Sdef(Z) =
α∑

k=1

〈LΣ, Σ̃Zk〉 .

Next let W be a simplicial toric variety. Then W automatically has the structure of a
complex orbifold. The following lemma seems to be well-known:

LEMMA 5.1.1. The V -signature SignV (W) coincides with the orbifold signature
Signorb(W) defined in §3.1.

PROOF. In Satake’s sense, since the total V-Chern form of W is generated by the first
Chern form of V-line bundles of the torus invariant divisors, the V-signature is defined as the
orbifold integral of the (Hirzebruch’s L type) wedge product of these forms.

On the other hand, the Chow ring A∗(W) is also generated by the torus invariant divi-
sors and the intersection product of these divisors essentially comes from the homological
intersection in the local uniformization systems.

In the local uniformization systems, since torus invariant divisors cross transversally with
each other, the wedge product of the Chern forms and the intersection products of these di-
visors have the classical direct correspondence with natural compatibility (cf. [GH, Chap.0]).
Therefore the assertion easily follows. We omit the details.

We go back to the situation in §1.3.

PROPOSITION 5.1.2. For the compactified Fujiki-Oka modification μ : Y → X, we
have

Sdef(X) − Sdef(Y ) = s
(

a
d

)
−

n−1∑

i=1

s
(

Ri

(
a
d

)
, Ni

(
a
d

))
.

5.2. As a preparation for the proof of Proposition 5.1.2, we describe a connected com-
ponent of the twisted sector of Y , and also give an explicit description of the characteristic LΣ

on it.
The fan σ̃ in §1.3 consists of the union of the faces of a nonsingular simplex σn =

R≥0P1 + · · · + R≥0Pn−1 + R≥0Q and semi-unimodular simplexes σi = R≥0P1 + · · · +
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R≥0Pi−1 + R≥0Q+ R≥0Pi+1 + · · ·+ R≥0Pn over Pn (1 ≤ i ≤ n− 1). The minimal orbifold
chart of Y = TNemb (Δσ̃ ) is given by

(44) Y =
⋃

1≤i≤n

Uσi , {Ũσi

πi−→ Uσi , Gi = Gal(Ũσi /Uσi )} .

Here πn is the identity map of Ũσn = Uσn and the local uniformization map πi (1 ≤ i ≤ n−1)
is the cyclic covering of order ai = mult(σi) described as follows. Let Ni be the sub-lattice
of the original lattice N generated by the primitive vectors P1, . . . , Pi−1,Q,Pi+1, . . . , Pn.
Then the natural equivariant morphism arising from (Ni,Δσ ) → (N,Δσ )

Ũσi = TNi emb (Δσ ) � Cn −→ Uσi = TNemb (Δσ )

is nothing but the map πi . The local Galois group Gi is isomorphic to N/Ni , which is the
cyclic group of order ai .

We denote the torus invariant divisors on Ũσi by

D1,i = V (P1)|Ũσi
, . . . ,Di,i = V (Q)|Ũσi

, . . . ,Dn,i = V (Pn)|Ũσi
.

Let (z1, . . . , zn) be the coordinate of Ũσi � Cn so that Dk,i is defined by zk = 0 (1 ≤ k ≤ n).
We fix the generator gi of Gi � Z/aiZ. By Lemma 1.2.5, the proper fraction of σi coincides
with

Ri(a/d) = (a1, . . . , ai−1, (−d), ai+1, . . . , an−1, 1)

ai

.

We set

(45) ai,i = −d , an,i = 1 , ak,i = ak (1 ≤ k ≤ n − 1, k �= i) .

By the same argument as in the proof of Proposition 1.2.3, the element gj
i ∈ Gi (0 ≤ j ≤

ai − 1) acts on Ũσi as

(z1, . . . , zn) �−→
(

e
(

ja1,i

ai

)
z1, . . . , e

(
jan,i

ai

)
zn

)

where e(x) = exp(2π
√−1 x). In the notation of (33), we define the subsets of I by

I0
j,i = I0 (jRi(a/d)) , Iref

j,i = Iref (jRi(a/d)) , I∗j,i = I∗ (jRi(a/d)) .

Then the fixed point locus V (j, i) = (Ũσi )
g

j
i of the action g

j

i on Ũσi coincides with the
|Ij,i |-dimensional torus invariant nonsingular subvariety

(46) V (j, i) =
⋂

k∈I\I0
j,i

Dk,i .

The tangent bundle and the normal bundle in Ũσi of V (j, i), respectively, have the natural
direct sum decompositions

(47) TV (j,i) �
⊕

k∈I0
j,i

[Dk,i] , NV (j,i)/Ũσi
�

⊕

k∈I\I0
j,i

[Dk,i]



342 T. ASHIKAGA

where [Dk,i] is the line bundle which corresponds to the divisor Dk,i . The element gj

i acts
on the direct factor [Dk,i] (k ∈ I\I0

j,i) of the normal bundle with the eigenvalue e
(
jak,i/ai

)
.

More precisely, if k ∈ I∗j,i , then g
j

i acts [Dk,i] as the rotation of angle 2πjak,i/ai . If k ∈ Iref
j,i ,

then g
j
i acts on [Dk,i] as the reflection.

By [AS, pp. 581–582], the equivariant L-form L(g
j
i , Ũσi ) is the differential form on

V (j, i) given by

(48)

L(g
j

i , Ũσi )=
∏

k∈I∗j,i

coth

(
c1([Dk,i]|V (j,i))

2
+

√−1πjak,i

ai

)

×
∏

k∈I0
j,i

c1([Dk,i]|V (j,i)) coth
c1([Dk,i ]|V (j,i))

2

×
∏

k∈Iref
j,i

tanh
c1([Dk,i]|V (j,i))

2
,

where c1([Dk,i]|V (j,i)) is the first Chern form of the restricted line bundle [Dk,i]|V (j,i) and
the product is the wedge product of the Chern forms.

As a preparation for the global formulation, we rewrite (48) in the following way. Since
gcd(d, ai) = 1 and an.i = 1, the suffices i and n are not contained in I0

j,i . We put r = |I0
j,i |,

and set

I0
j,i = {i1, . . . , ir } ⊂ I\{i, n} , I\I0

j,i = {ir+1, . . . , in−r−2} ∪ {i, n} .

Then jaik ≡ 0 (mod ai) for 1 ≤ k ≤ r , and jak �≡ 0 (mod ai) for k ∈ I\I0
j,i . Moreover we

have

(49) c := gcd(ai, ai1 , . . . , air ) > 1 .

We put a′
i = ai/c. There exists j ′ (1 ≤ j ′ ≤ c − 1) such that j = a′

ij
′. Then (48) is rewritten

as

(50)

L(g
j
i , Ũσi ) =

∏

k∈I∗j,i

coth

(
c1([Dk,i]|V (j,i))

2
+

√−1πj ′ak,i

c

)

×
∏

k∈I0
j,i

c1([Dk,i]|V (j,i)) coth
c1([Dk,i]|V (j,i))

2

×
∏

k∈Iref
j,i

tanh
c1([Dk,i]|V (j,i))

2
.

Note that (50) is symmetric with respect to the r + 1 suffices i, i1, . . . , ir .
Now the group Gi acts on V (j, i) possibly non-effectively. The kernel Kj,i of the natural

homomorphism Gi → Diffeo(V (j, i)) coincides with the subgroup 〈gj
i 〉 of Gi generated by
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g
j

i . Therefore the chart

(51)
{
V (j, i) −→ πi(V (j, i)), Gal(V (j, i)/πi(V (j, i)) � Gi/Kj,i

}

induces on πi(V (j, i)) a reduced orbifold structure (cf. [CR, p. 3]) with |Gi/Kj,i | = ai/c.
By definition, the multiplicity mj,i of V (j, i) coincides with

(52) mj,i = |Kj,i | = c ,

which is also symmetric with respect to the suffices i, i1, . . . , ir by (49).

5.3. We globalize the observation in §5.2. We denote by V (j, i) the closure of πi(Vj,i )

in Y , which coincides with the TN -invariant subvariety

(53) V (j, i) = V

( n−r−2∑

�=r+1

R≥0Pi� + R≥0Q + R≥0Pn

)
.

As the restriction of r +1 local uniformazing systems of (44), we have the covering V (j, i) =∑r
�=0

(
Ui� ∩ V (j, i)

)
where we put Ui0 = Ui and Ui� = Uσi�

. This also induces the orbifold

chart on V (j, i). More precisely, the system on Ui0 ∩ V (j, i) = V (j, i) is given by (51) and
the other systems Ui� ∩ V (j, i) are essentially of the same type as this.

Then V (j, i) is one of the connected components of the twisted sector of Y . The multi-
plicity mj,i of V (j, i) is already given by (52). The equivariant L-form on Ũi� (1 ≤ � ≤ r)
which is patched together with (48) into the global form on V (j, i) is essentially of the same
type as (48). The well-definedness of this globalization is clear from the symmetry property

of (50) with respect to the r + 1 suffices. We denote by LΣ(g
j

i ) this orbifold differential form
on V (j, i). This is nothing but the restriction of LΣ to the component V (j, i).

LEMMA 5.3.1. We have an equality

〈LΣ(g
j

i ), V (j, i)〉

= 1

ai

· κn

{ ∏

k∈I∗j,i\{i}
coth

( [V (Pk)]
2

+
√−1πjak

ai

)
coth

( [V (Q)]
2

−
√−1πjd

ai

)

×
∏

k∈I0
j,i

(
[V (Pk)] · coth

[V (Pk)]
2

) ∏

k∈Iref
j,i

tanh
[V (Pk)]

2

×
( ∏

k∈I∗j,i\{i}
[V (Pk)]

)
[V (Q)]

}
[Y ]

where the product is the intersection product in the Chow ring A∗
Q(Y ) and κn is the degree n

part in the Taylor expansion evaluated at the fundamental class of Y , which is the element in
Hn(Y , Q) � Q.

PROOF. We denote by (TV (j,i))Q, (NV (j,i)/Y )Q the orbifold tangent bundle and the
orbifold normal bundle in Y , respectively. The local decomposition (47) induces the global
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decomposition

(54) (TV (j,i))Q �
⊕

k∈I0
j,i

[V (Pk)], (NV (j,i)/Y )Q �
( ⊕

k∈(I\I0
j,i )\{i}

[V (Pk)]
)⊕

[V (Q)] ,

where [V (Pk)] is the Q-line bundle (orbifold line bundle) associated to the Q-divisor V (Pk),
etc. For each local system of V (j, i), say V (j, i) = V (j, i) ∩ Ui , we claim that

(55)
1

mj.i

∫

V (j,i)

LΣ(g
j
i )|V (j,i) = 1

ai

∫

V (j,i)

L(g
j
i , Ũi) .

Indeed, the integral
∫
V (j,i)

L(g
j
i , Ũi ) is calculated on the non-reduced orbifold structure with

the restriction to Vj,i of the Galois group Gi = Gal(Ũi/Ui), it is ai/c times the reduced

integral which is nothing but
∫
V (j,i) LΣ(g

j
i )|V (j,i) (cf. [CR, p. 5]). Since we have mj.i = c

by (52), we have the claim (55).
By the same argument as in Lemma 5.1.1, the integral of the orbifold characteristic class

is interpreted to be that on the rational Chow ring. Therefore the assertion follows from (45),
(46), (50), (54) and (55).

Now we write down the explicit value 〈LΣ(g
j
i ), V (j, i)〉 by using the terminology de-

fined in §1.

LEMMA 5.3.2. We have an equality

〈LΣ(g
j

i ), V (j, i)〉 = (|I0
j,i | + 1) cot

(
j · Ri

(
a
d

))(
Ni

(
a
d

))
.

PROOF. Since [V (Q)] is contained in the product of the right-hand term of Lemma
5.3.1, by the same reason as in the proof of Proposition 3.2.1 and Remark 3.2.2, we may
numerically assume that

(56)

[V (Pi)] ≡ −ai

d
[V (Q)] (1 ≤ i ≤ n − 1) ,

[V (Pn)] ≡ − 1

d
[V (Q)] , [V (Q)]n = − dn−1

a1 · · · an−1
.

Therefore, it follows from Lemma 5.3.1 and (56) that

(57)

〈LΣ(g
j
i ), V (j, i)〉

= 1

ai

(∏
k∈I0

ji
ak

) · κ|I0
j,i |

{ ∏

k∈I∗j,i\{i}
coth

(
akx

2
+

√−1πjak

ai

)

× coth

(−dx

2
−

√−1πjd

ai

) ∏

k∈I0
j,i

(
akx · coth

akx

2

) ∏

k∈Iref
j,i

tanh
akx

2

}
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where κ|I0
j,i | is the coefficient of the degree |I0

j,i | term of Tayler expansion with respect to the

variable x. The right-hand side of (57) coincides with

(|I0
j,i | + 1) cot

(
j · Ri

(
a
d

))(
Ni

(
a
d

))

by an easy calculation.

5.4 We prove Proposition 5.1.2. Since the restriction Y\Y −→ X\X of μ is an iso-
morphism, the contribution to the S-defects of both loci are cancelled. Since X has an isolated
cyclic orbipoint of type a/d such that the action (9) is small (i.e., any power of the map (9) is
reflection free), we have

(58) Sdef(X) = s
(

a
d

)
.

Now the set of the connected components of the twisted sector on Y is written as

(59) {V (j1, i1), . . . , V (jα, iα)}
for some 1 ≤ ik ≤ n−1 and some 1 ≤ j ≤ aik (1 ≤ k ≤ α−1). Since LΣ = ⊕α

k=1 LΣ(g
jk

ik
),

it follows from (43), (58) that

Sdef(X) − Sdef(Y ) = s
(

a
d

)
−

α∑

k=1

〈LΣ(g
jk

ik
), V (jk, ik)〉 .

Hence by Lemma 5.3.2, it suffices to prove

(60)
α∑

k=1

(|I0
jk,ik

| + 1) cot

(
jk · Rik

(
a
d

))(
Nik

(
a
d

))
=

n−1∑

i=1

s
(

Ri

(
a
d

)
, Ni

(
a
d

))
.

For any (j, i) with 1 ≤ i ≤ n − 1, 1 ≤ j ≤ ai − 1, the variety V (j, i) is one of the elements
in the set (59). On the other hand, any element V (jk, ik) in the set (59) is counted (|I0

jk,ik
|+1)

times if (j, i) runs through all the pairs with 1 ≤ i ≤ n − 1, 1 ≤ j ≤ ai − 1. From this,
the assertion (60) follows by an easy calculation. Thus we complete the proof of Proposition
5.1.2.

5.5 The proof of Theorem 4.2.2. is straightforward from Corollary 2.1.2, Proposition
3.2.1, Lemma 5.1.1, Proposition 5.1.2, the formulas (42) and (1). �

REMARK 5.5.1. With respect to related open questions, one may ask the following:
(1) What is the homogeneous version of (37) ? Namely can one drop the assumption

that the last component of the numerator is 1 ?
(2) What is the reciprocity without the assumption of irreducibility of a/d ? This

question is related to the computation problem of Hirzebruch-Zagier’s Dedekind
sum by iterated applications of reciprocities.

(3) Does the formula (37) relate to Beck reciprocity [B] ?
(4) What is the analogy for (37) of the relation between Dedekind sum and Dedekind

eta function ?
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(5) Can one apply the method of Fujiki-Oka modification to detect other types of reci-
procity for Fourier-Dedekind sums (cf. [BR]) ?

(6) Do other types of quotient singularities or toric singularities have their “own re-
ciprocities” ?
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