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Abstract. We construct a family of McKay quiver representations on the Danilov res-
olution of the 1

r (1, a, r − a) singularity. This allows us to show that the resolution is the
normalization of the coherent component of the fine moduli space of θ -stable McKay quiver
representations for a suitable stability condition θ. We describe explicitly the corresponding
union of chambers of stability conditions for any coprime numbers r, a.

1. Introduction. In [12] King introduced the notion of stability of a quiver repre-
sentation and via GIT constructed the fine moduli of stable representations. A well-known
example of King’s moduli is the G-Hilbert scheme for any finite group G ⊂ GL(n,C), i.e.,
the scheme parameterizing all G-invariant 0-dimensional subschemes of Cn of length equal to
the order of G. It is the moduli of representations of the McKay quiver, defined by the inclu-
sion of G in the general linear group and representation theory of G. The G-Hilbert scheme
was introduced by Ito and Nakamura in [9], where they proved that it is the minimal (crepant)
resolution of C2/G for a finite group G ⊂ SL(2,C), and the relation of the G-Hilbert scheme
with the moduli of representations of the McKay quiver was observed by Ito and Nakajima
in [8]. The result from [9] was extended by Bridgeland, King and Reid [1] by showing that
the G-Hilbert scheme is a crepant resolution of the singularity C3/G for any finite group
G ⊂ SL(3,C). In particular, the moduli is smooth and irreducible. Moreover, if G is abelian,
it turns out that by varying the stability parameter one can get all projective crepant resolu-
tions of C3/G (cf. [2]). The above results suggest that it may be possible to interpret some
other resolutions of quotient singularities as moduli of the McKay quiver representations.

In the following paper we accomplish this task for the Danilov resolution of 3-dimen-
sional cyclic terminal quotient singularities. The proof relies on Logvinenko’s classification
of all natural families (called gnat-families) of McKay quiver representations on some fixed
resolution Y of Cn/G for any finite abelian group G ⊂ GL(n,C) and his characterization
of such families as satisfying the reductor condition [13]. The most obvious candidate to
be isomorphic to the resolution is the coherent component defined by Craw, Maclagan and
Thomas as the irreducible component of stable moduli of the McKay quiver representations
containing points parameterizing free orbits. In [3], they prove that, for a finite abelian group
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G, it is a possibly non-normal toric variety which admits projective birational morphism to
Cn/G.

Let G = 〈diag(ε, εa, εr−a)〉 be a cyclic group of order r generated by a diagonal matrix,
where ε = e2πi/r for fixed coprime numbers a, r such with r > 1. The quotient singularity
X = C3/G is a 3-dimensional cyclic, terminal quotient singularity (cf. [14]). We call this
the singularity of type 1

r
(1, a, r − a). In his proof of the weak factorization theorem for toric

threefolds, Danilov [4] introduced a recursively defined resolution of the singularity of type
1
r
(1, a, r − a), which was subsequently named Economic resolution by Reid [15, p. 381].

For a = ±1, Kędzierski [11] proved that the Danilov resolution is isomorphic to the
component of the G-Hilbert scheme that contains the free G-orbits. This cannot hold for
a �= ±1 as the G-Hilbert scheme is singular. Our main result Theorem 8.2 establishes that, for
a �= ±1, the Danilov resolution is isomorphic to the normalization of the coherent component
of the moduli space of representations of the McKay quiver for a suitably chosen stability
parameter. In fact, we describe precisely the appropriate union of GIT chambers of stability
conditions. Finally, we conjecture that the coherent component for such stability conditions
is normal.

The main idea is to define a priori a family of McKay quiver representations on the
Danilov resolution and to use the universal property of the moduli space. To show that the
resulting map is injective, we prove that any two representations in the given family are non-
isomorphic. This is done by exploiting the recursive nature of the resolution. On the level of
representations, the recursive step can be seen by grouping the vertices of the McKay quiver
in so-called L-bricks and R-bricks. Those bricks can be seen as vertices of smaller McKay
quivers.

The paper is organized as follows. In Section 2, we recall the definition of the Danilov
resolution. In Section 3, we define effective divisors Xi, Yi, Zi and Q-divisors Ri which will
be used in constructing a family of McKay quiver representations on the Danilov resolution.
The McKay quiver is defined in Section 4. The family of quiver representations is constructed
in Section 5 and we check that any two representations in that family are non-isomorphic. In
Section 6, we recall elementary facts on stability of quiver representations. In Section 7, we
determine a cone of stability conditions for the constructed family. Finally, in Section 8 we
prove the main theorem, and compute explicitly the union of chambers of stability conditions
for 1

5 (1, 2, 3).
The author would like to thank Miles Reid for introducing him into this subject and to

thank anonymous referee for his/her careful reading of the paper and for a great deal of effort
put into its improvement. The author is grateful to Alastair Craw for helpful remarks and his
help in checking the English grammar.

2. Recursive definition of the Danilov resolution. We denote N0 = Ze1⊕Ze2⊕Ze3

the free Z-module with the basis {e1, e2, e3}, and M0 = HomZ(N0,Z) = Ze∗1 ⊕ Ze∗2 ⊕ Ze∗3
with the dual basis {e∗1, e∗2, e∗3}. The vector a1e1+ a2e2+ a3e3 is also denoted by (a1, a2, a3).
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For coprime integers 0 ≤ a < r , we denote by G(r, a) the finite cyclic subgroup of
GL(3,C) generated by the diagonal matrix diag(ε, εa, εr−a), where ε = e2πi/r .

We set

N(r, a) = N0 + Z
1

r
(e1 + ae2 + (r − a)e3) = N0 + Z(1/r, a/r, (r − a)/r)

and M(r, a) = HomZ(N(r, a),Z). The lattice M(r, a) is identified with the sublattice of M0

consisting of the exponents of G(r, a)-invariant Laurent monomials.
For any elements p1, . . . , pn in N(r, a), we denote by 〈p1, . . . , pn〉 the cone generated

by these points. For a rational polyhedral cone σ in N(r, a)⊗Z R, we denote by Uσ the toric
chart Spec(C[σ∨ ∩M(r, a)]).

For a positive integer t and an integer s, we denote by 〈s〉t the least non-negative integer
u such that t divides s − u. Sometimes, we write it simply 〈s〉 when t is obvious.

Let r and a be coprime integers with 0 ≤ a < r. We recall the definition of the Danilov
resolution of the singularity 1

r
(1, a, r − a) (cf. [15, p. 381]). Let Δ(r, a) = 〈e1, e2, e3〉 be the

positive octant in N(r, a) ⊗Z R. There exists a ring isomorphism of C[Δ(r, a)∨ ∩M(r, a)]
with the ring of G(r, a)-invariant regular functions on C3. Therefore the quotient X(r, a) =
C3/G(r, a) is the toric variety given by the cone Δ(r, a) in the real vector space with under-
lying lattice N(r, a). Note that X(1, 0) is a smooth variety and for r ≥ 2 the quotient X(r, a)

is singular.
Let b be the inverse of a modulo r. Set

pi = 1

r
(〈−ib〉r , r − i, i) ∈ N(r, a) for i = 0, . . . , r .

Note that pr−a = 1/r(1, a, r − a), which represents the type of the singularity and
p0 = e2, pr = e3. The following well-known lemma implies that the toric varieties associ-
ated to cones 〈e1, e2, pr−a〉, 〈e1, e3, pr−a〉 are isomorphic to the quotients of type 1/(r − a)

(1, 〈r〉r−a, 〈−r〉r−a) and 1/a(1, 〈−r〉a, 〈r〉a), respectively.

LEMMA 2.1. There exist Z-linear isomorphisms

L(r, a) : N(r − a, 〈r〉r−a)→ N(r, a) ,

R(r, a) : N(a, 〈−r〉a)→ N(r, a) ,

such that L(r, a)(Δ(r−a, 〈r〉r−a)) = 〈e1, e2, pr−a〉, R(r, a)(Δ(a, 〈−r〉a)) = 〈e1, e3, pr−a〉,
and L(r, a)(e1) = R(r, a)(e1) = e1, L(r, a)(e3) = R(r, a)(e2) = pr−a.

DEFINITION 2.2. By a weighted blow-up of the singularity of type 1
r
(1, a, r − a) at

the point pr−a = 1/r(1, a, r − a), we mean a toric variety X(r, a) obtained by the star
subdivision of the cone Δ(r, a) at the point 1/r(1, a, r − a).

The weighted blow-up induces a proper, birational morphism X(r, a) → X(r, a) with
exceptional divisor equal to the weighted projective space P (1, a, r − a).

DEFINITION 2.3. The Danilov resolution of the singularity of type 1
r
(1, a, r − a)

is a resolution obtained by the weighted blow-up of the singularity of type 1
r
(1, a, r − a) at
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FIGURE 1. The fan of Danilov resolution of 1
5 (1, 2, 3) cut

with hyperplane e∗2 + e∗3 = 1.

the point pr−a and, recursively, the Danilov resolutions of the singularities of type
1/(r − a)(1, 〈r〉r−a, 〈−r〉r−a) and 1/a(1, 〈−r〉a, 〈r〉a).

DEFINITION 2.4. For fixed r and a, we call the resolution of 1/(r − a)(1, 〈r〉r−a,

〈−r〉r−a) singularity an L-resolution and the resolution of 1/a(1, 〈−r〉a, 〈r〉a) an R-resolu-
tion. The 3-dimensional cones of the fan of the Danilov resolution will be called L-cones or
R-cones if they are subsets of the cones 〈e1, e2, pr−a〉 or 〈e1, e3, pr−a〉, respectively.

The fan of the Danilov resolution consists of 2r − 1 simplicial cones of dimension three.
Precisely r cones of dimension three contain e1. We denote them σ0, . . . , σr−1.

DEFINITION 2.5. Set

σi = 〈pi, pi+1, e1〉 for i = 0, . . . , r − 1 .

Note that the resolution can be constructed by r − 1 weighted blow-ups at the points
p1, . . . , pr−1 with a suitable order.

COROLLARY 2.6. The Danilov resolution of the singularity 1
r
(1, 1, r − 1) is obtained

by the consecutive blow-ups at the points pr−1, . . . , p1. In the case of 1
r
(1, r − 1, 1), the

blow-ups are done at the points p1, . . . , pr−1.

DEFINITION 2.7. For fixed r and a, let Di(r, a) denote the T -invariant toric divisor
associated to the ray generated by the lattice point pi for i = 0, . . . , r. Let Ej denote the
T -invariant toric divisor associated to the ray generated by ej for j = 1, 2, 3.

Note that D0(r, a) = E2 and Dr(r, a) = E3. To simplify notation, we write Di instead
of Di(r, a).
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3. Divisors Xi, Yi, Zi, Ri and their properties. In this section we start by defining
recursively a permutation τ (r, a) of {0, 1, . . . , r − 1}. It will be subsequently used in the
construction of divisors Xi, Yi, Zi on the Danilov resolution. These divisors will define the
structure of a gnat-family in the sense of Logvinenko [13] on the Danilov resolution.

DEFINITION 3.1. If a ∈ {1, r − 1} set τ (r, a)(i) = 〈ai − 1〉r for i = 0, . . . , r − 1,

and otherwise

τ (r, a)(i) =
{
τ (r − a, 〈r〉r−a)(〈i〉r−a) if i ≥ a ,

(r − a)+ τ (a, 〈−r〉a)(i) if i < a .

Observe that τ (r, a)(0) = r − 1. Note the recursive nature of the above definition. The
permutation τ will play a crucial role in determining the stability parameters connected with
the moduli structure on the Danilov resolution.

EXAMPLE 3.2. In order to compute τ (5, 2) we need to know τ (2, 1) = (0, 1) and
τ (3, 2) = (0, 2) (written as cyclic permutations in the standard notation). Then,

τ (5, 2)(i) = τ (3, 2)(〈i〉3) for i ≥ 2 ,

τ (5, 2)(i) = 3+ τ (2, 1)(i) for i < 2 ,

hence τ (5, 2) = (0, 4, 1, 3, 2) as a cyclic permutation. In an analogous way, we could
check that τ (7, 2) = (0, 6, 3, 2)(1, 5, 4) which in turn allows us to compute τ (12, 7) =
(0, 11, 3, 7)(1, 10, 4, 6, 8, 2, 5, 9).

DEFINITION 3.3. We call the sequence of numbers i, i + (r − a), . . . , i + s(r − a) an
L-brick if

i) i < r − a,

ii) i + (s + 1)(r − a) > r,

iii) every number in the sequence is strictly smaller than r.

The sequence of numbers i, i + a, . . . , i + sa is called an R-brick if
1) i < a,
2) i + (s + 1)a > r,

3) every number in the sequence is strictly smaller than r.

The L- and R-bricks connect the characters of a cyclic group of order r with the char-
acters of cyclic groups of order r − a and a, respectively. They can be identified with fibers
of the projections {0, . . . , r − 1} → Z/(r − a)Z and {0, . . . , r − 1} → Z/aZ, respectively,
which shows that there are r − a different L-bricks and a different R-bricks.

DEFINITION 3.4. For fixed r and a, let Y (r, a) denote the Danilov resolution of the
1
r
(1, a, r − a) singularity.

The rest of this section is devoted to finding effective toric divisors Xi(r, a), Yi(r, a),

Zi(r, a) on Y (r, a) for i = 0, . . . , r − 1. These divisors will yield Q-divisors Ri(r, a), used
in defining the structure of a moduli space on Y (r, a). Note that the addition in the indices of
Xi(r, a), Yi(r, a), Zi(r, a) is always meant modulo r.
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DEFINITION 3.5. For fixed r and a, let

Yi−a(r, a) =
τ (r,a)(i)∑

k=0

Dk(r, a) for i = 0, . . . , r − 1 ,

Zi(r, a) =
r∑

k=τ (r,a)(i)+1

Dk(r, a) for i = 0, . . . , r − 1 ,

and let Xi be the divisor defined by the equations X0 = E1 and

Xi(r, a)+ Zi+1(r, a) = Zi(r, a)+Xi−a(r, a) for i = 0, . . . , r − 1 .

These conditions ensure that the divisors Xi are uniquely determined. Note that by defi-
nition

Yi−a(r, a)+ Zi(r, a) =
r∑

i=0

Dk(r, a) ,

in particular Yi−a(r, a)+ Zi(r, a) does not depend on i. Moreover,

Xi(r, a)+ Yi+1(r, a) = Yi(r, a)+Xi+a(r, a) .

REMARK 3.6. To shorten notation, we write Xi, Yi, Zi instead of Xi(r, a), Yi(r, a),

Zi(r, a) when no confusion can arise.

The divisors Xi, Yi, Zi satisfy commutativity relations

(3.1) Xi + Yi+1 = Yi +Xi+a ,

(3.2) Xi + Zi+1 = Zi +Xi−a ,

(3.3) Yi + Zi+a = Zi + Yi−a .

LEMMA 3.7. For a = 1, we have Yi = D0 + · · · + Di for i = 0, . . . , r − 1 and
Z0 = Dr, Zi = Di + · · · + Dr for i = 1, . . . , r − 1. Moreover, Xi = Yi + E1 − D0 for
i = 0, . . . , r−1. For a = r−1, we have Y0 = D0, Yi = D0+· · ·+Dr−i for i = 1, . . . , r−1
and Zi = Dr−i + · · · +Dr, Xi = Zi + E1 −Dr for i = 0, . . . , r − 1.

PROOF. To see this, it is enough to combine Definitions 3.1 and 3.5. �

EXAMPLE 3.8. For r = 5 and a = 2, we have τ (5, 2) = (0, 4, 1, 3, 2) (cf. Exam-
ple 3.2), and hence

Y0 = D0 , Z0 = D5 ,

Y1 = D0 +D1 +D2 , Z1 = D4 +D5 ,

Y2 = D0 +D1 , Z2 = D1 +D2 +D3 +D4 +D5 ,

Y3 = D0 +D1 +D2 +D3 +D4 , Z3 = D3 +D4 +D5 ,

Y4 = D0 +D1 +D2 +D3 , Z4 = D2 +D3 +D4 +D5 .



DANILOV’S RESOLUTION AND REPRESENTATIONS OF THE MCKAY QUIVER 361

By solving the linear equations Xi + Zi+1 = Zi +Xi−2 in Xi ’s, we have

X0 = E1 ,

X1 = E1 +D2 +D4 ,

X2 = E1 +D1 +D2 ,

X3 = E1 +D4 ,

X4 = E1 +D1 + 2D2 +D2 +D3 +D4 .

DEFINITION 3.9. For fixed r, a, let rL = r − a and aL = 〈r〉r−a . By XL
i (r, a),

YL
i (r, a), ZL

i (r, a) we mean the pullbacks of the divisors Xi(rL, aL), Yi(rL, aL), Zi(rL, aL)

by the rational inverse of the inclusion Y (rL, aL) ↪→ Y (r, a), respectively. Similarly, let
rR = a and aR = 〈−r〉a. By XR

i (r, a), YR
i (r, a), ZR

i (r, a) we mean the pullbacks of the divi-
sors Xi(rR, aR), Yi(rR, aR), Zi(rR, aR) by the rational inverse of the inclusion Y (rR, aR) ↪→
Y (r, a), respectively. In particular,

ZL
i (r, a) =

rL∑
k=τ (rL,aL)(i)+1

Dk(r, a) for i = 0, . . . , rL − 1 ,

ZR
i (r, a) =

rR∑
k=τ (rR,aR)(i)+1

Dk+rL(r, a) for i = 0, . . . , rR − 1 .

When no confusion can arise, we write these divisors by XL
i , YL

i , ZL
i ,XR

i , YR
i , ZR

i for short.
We note that in the definition of ZR

i there is a shift by rL in the index of Di since the divisor
Di+rL(r, a) on the resolution Y (r, a) corresponds to the divisor Di(rR, aR) on the resolution
Y (rR, aR) for i = 0, . . . , rR − 1.

EXAMPLE 3.10. For r = 5 and a = 2, by Lemma 3.7, we have

ZL
0 = D3 , XL

0 = E1 ,

ZL
1 = D2 +D3 , XL

1 = E1 +D2 ,

ZL
2 = D1 +D2 +D3 , XL

2 = E1 +D1 +D2 ,

ZR
0 = D5 , XR

0 = E1 ,

ZR
1 = D4 +D5 , XR

1 = E1 +D4 .

Note the indices in the divisors Di’s on the R-resolution are shifted by rL = 3. Since the
L-resolution is a resolution of the 1

3 (1, 2, 1) singularity, we have by Lemma 3.7

YL
0 = D0 , YL

1 = D0 +D1 , YL
2 = D0 +D1 +D2 .

On the other hand, the R-resolution is a resolution of the 1
2 (1, 1, 1) singularity, hence

YR
0 = D3 , YR

1 = D3 +D4 .

Following lemmas are useful in later sections.
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LEMMA 3.11. Let i, . . . , i + s(r − a) be an L-brick. The restriction of the divisor
Zi+s(r−a)(r, a) to the L-resolution is equal to the divisor ZL

i (r, a). If i, . . . , i + sa is an R-
brick, then the restriction of the divisor Zi(r, a) to the R-resolution is equal to the divisor
ZR

i (r, a).

PROOF. Observe that if i, . . . , i + s(r − a) is an L-brick, then i + s(r − a) ≥ a and
〈i + s(r − a)〉r−a = i. Therefore τ (r, a)(i + s(r − a)) = τ (r − a, 〈r〉)(i). If i, . . . , i + sa is
an R-brick, then i < a and τ (r, a)(i) = (r − a)+ τ (a, 〈−r〉)(i). �

Similar facts hold for the restriction of the divisors Xi.

LEMMA 3.12. For any i ≤ r − 2, the divisor Xi(r, a) restricted to the L-resolution
is equal to the divisor XL

j (r, a) for j = 〈i〉r−a, and the divisor Xi(r, a) restricted to the

R-resolution is equal to the divisor XR
j (r, a) for j = 〈i〉a.

PROOF. We give the proof only in the case of the restriction to the R-resolution. First
we show that if i, . . . , i + sa is an R-brick such that i + sa �= r − 1, then the R-restrictions
of the divisors Xi, . . . , Xi+sa are equal to each other. To see this, observe that the restrictions
of the divisors Zj for j ≥ a to the R-resolution are equal to each other (cf. Definitions 3.1
and 3.5). This, combined with the commutativity relations (3.2),

Zj − Zj+1 = Xj − Xj−a

for j = i+a, i+2a, . . . , i+ sa, implies that the R-restrictions of the divisors Xi, . . . , Xi+sa

are equal to each other.
Similarly, if i, . . . , i + sa is an R-brick such that i + sa = r − 1, then the restrictions

of the divisors Xi, . . . , Xi+(s−1)a (i.e., all but the last) to the R-resolution are equal to each
other.

Hence, it is enough to prove the lemma assuming i < a. Denote by Xi |R the restriction
of the divisor Xi to the R-resolution. Obviously X0|R = XR

0 and by Lemma 3.11 we obtain
relations

Xi |R + ZR
i+1 = ZR

i +Xi−a |R
for i = 0, . . . , a − 2. We have proven already that Xi−a |R = X〈i+r〉a |R, and so the above
relations can be rewritten as

Xi |R + ZR
i+1 = ZR

i +X〈i+r〉a |R .

These are exactly the equations (3.2) for rR = a and aR = 〈−r〉a, and we have

Xi |R = XR
i for i = 0, . . . , a − 2 .

Let j be the last element of an R-brick containing a − 1. Then j �= r − 1 so 0 ≤
〈j + a〉r < a − 1, and the equation (3.2) for i = j + a

Xj+a + Zj+a+1 = Xj + Zj+a ,

restricted to the R-resolution becomes

XR
j+a−r + ZR

j+a−r+1 = Xa−1|R + ZR
j+a−r .
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This finishes the proof since the above is exactly the equation (3.2) for rR = a, aR = 〈−r〉a
and i = j + a − r. �

EXAMPLE 3.13. For r = 5 and a = 2, there are 3 different L-bricks (0, 3), (1, 4), (2)

and 2 different R-bricks (0, 2, 4), (1, 3). The L-resolution contains divisors D0,D1,D2,D3,

E1 and the R-resolution contains divisors D3,D4,D5, E1. By Examples 3.8 and 3.10, we
note that

Z3|L = ZL
0 , Z4|L = ZL

1 , Z2|L = ZL
2 ,

Z0|R = ZR
0 , Z1|R = ZR

1 .

Moreover,

X0|L = XL
3 = XL

0 , X0|R = X2|R = XR
0 ,

X1|L = XL
1 , X1|R = XR

1 .

LEMMA 3.14. For a, r coprime, the divisors Xi −E1, Yi −E2, Zi −E3 are effective
for i = 0, . . . , r − 1.

PROOF. The result is true for Yi − E2 and Zi − E3 by definition, since E2 = D0 and
E3 = Dr . It remains to prove the result for Xi − E1.

Note that for a ∈ {1, r − 1} either Xi − E1 = Yi − E2 or Xi − E1 = Zi − E3 by
Lemma 3.7. For 1 < a < r − 1, by recursion and Lemma 3.12, the restrictions of Xi −E1 to
L- and R-resolution are effective for i �= r − 1. Finally, note that

Xr−1 − E1 = (Xr−a−1 − E1)+ (Zr−1 − Z0) ,

where both summands are effective, since Z0 = Dr for any r, a. �

DEFINITION 3.15. For fixed r and a, let

DX(r, a) = 1

r
div(re∗1) , DY (r, a) = 1

r
div(re∗2) , DZ(r, a) = 1

r
div(re∗3)

be Q-divisors on Y (r, a) where div(re∗i ) denotes the divisor of zeros and poles of the rational
function re∗i . We write them by DX,DY ,DZ for short.

We introduce the Q-divisors Ri(r, a) which later will define the desired family of McKay
quiver representations on Y (r, a).

DEFINITION 3.16. For fixed r and a, define the Q-divisors Ri(r, a) for i = 0, . . . , r−
1 by the equations

Zi(r, a) = DZ(r, a)+ Ri(r, a)− Ri−a(r, a) , R0(r, a) = 0 .

We write Ri for short when no confusion can arise.

The divisors Ri are uniquely determined by the condition R0 = 0 since r, a are coprime
and the rank of the matrix determining equations for Ri is equal to r − 1. Using the equation
Zi + Yi−a = DY +DZ we get Yi = DY + Ri − Ri+a .
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LEMMA 3.17. For any coprime r and a, we have

R1 = DX − E1 .

PROOF. By definition, we have

R1 = (r − b)DZ − (Z0 + Z−a + Z−2a + · · · + Z−(r−b−1)a)

= (r − b)DZ − (Za+1 + Z2a+1 + Z3a+1 + · · · + Z0)

since 〈−(r − b − i)a〉r = ia + 1. Therefore it is enough to show that

E1 = DX − (r − b)DZ − (Za+1 + Z2a+1 + · · · + Z0) .

Assume that a /∈ {1, r − 1} as otherwise the statement is trivial (cf. Lemma 3.7). We use a
recursive argument. Observe that the numbers in the sequence

(	) 〈a + 1〉r , 〈2a + 1〉r , 〈3a + 1〉r , . . . , 〈0〉r
not greater than a − 1 (i.e., the first numbers in R-bricks) are equal to the numbers

〈aR + 1〉a, 〈2aR + 1〉a, 〈3aR + 1〉a, . . . , 〈0〉a ,

where aR = 〈−r〉a. Moreover, the numbers in the sequence (	) greater or equal to a (i.e., the
last numbers in L-bricks) are equal modulo r − a to the numbers

〈aL + 1〉r−a, 〈2aL + 1〉r−a, 〈3aL + 1〉r−a, . . . , 〈0〉r−a ,

where aL = 〈r〉r−a. We omit a proof of this arithmetic fact. Let WL,WR denote the pullbacks
of the divisors DX(rL, aL)− (rL − bL)DZ(rL, aL) and DX(rR, aR)− (rR − bR)DZ(rR, aR)

(where aLbL = 1 modulo rL and aRbR = 1 modulo rR) by the rational inverses of the
inclusions Y (rL, aL) ↪→ Y (r, a) and Y (rR, aR) ↪→ Y (r, a), respectively. Note that the first
coordinate of the point pi+1 is not smaller than the first coordinate of the point pi if and
only if the toric ray dual to the cone 〈pi, pi+1〉 is equal to e∗1 − (r − b)e∗3, which gives an
intrinsic explanation of the value of e∗1 − (r − b)e∗3 on the generator of a ray. Since (e∗1 − (r −
b)e∗3)(

1
r
(1, a, r − a)) = bL − rL, we get DX − (r − b)DZ = WL + (bL − rL)WR − E1,

as E1 is counted twice. To finish the proof, observe that in the sequence (	) exactly rL − bL

numbers are greater than or equal to a and use Lemma 3.11. �

LEMMA 3.18. For fixed r and a, the divisors Ri satisfy the following equations for
i = 0, . . . , r − 1.

Xi = DX + Ri − Ri+1 ,

Yi = DY + Ri − Ri+a ,

Zi = DZ + Ri − Ri−a .

PROOF. It is enough to prove the first equality. Set X̃i = DX + Ri − Ri+1 and note
that

∑
X̃i = rDX. Moreover, the divisors X̃i satisfy the commutativity relations (3.2), and

hence Xi − X̃i is constant. Since X̃0 = DX −R1 = X0 by Lemma 3.17, the constant is equal
to 0. �
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4. The McKay quiver. By a quiver we mean a finite directed graph Q. The set of
vertices of Q will be denoted by Q0 and the set of arrows by Q1. For any arrow a in Q1

denote by t(a) the tail of a and by h(a) the head of a. In what follows, we restrict the general
definition of quiver representations to the simple case where the dimension vector is equal to
(1, . . . , 1). For any v ∈ Q0, let Cv denote 1-dimensional complex vector space assigned to
the vertex v. A representation of the quiver Q is an element of

Rep(Q) =
⊕
a∈Q1

HomC(Ct(a),Ch(a)) .

By fixing a basis in each Cv we can identify Rep(Q) with an affine space. With this choice,
for any representation V ∈ Rep(Q) and a ∈ Q1 denote by V (a) the constant representing the
linear map for the arrow a in V.

A path q in quiver Q is a sequence of arrows al, . . . , a2, a1 where h(ai) = t(ai+1).

For such path q and for any representation V of Q define V (q) = V (al) · · ·V (a1). A linear
combination of paths qi is called an admissible relation, if paths qi have the same heads and
tails. Any set R of admissible relations for a quiver Q defines an affine subscheme of Rep(Q)

cut by the polynomial equations coming from R, i.e.,

Rep(Q,R) := {V ∈ Rep(Q) ; V (c) = 0 for c ∈ R} ,
where the function V (c) denotes the linear extension of the functions V (qi).

Two representations of a quiver Q are isomorphic if and only if they lie in the same orbit
of the group GL(Q,C) =⊕

v∈Q0
C∗, acting from the left on the set Rep(Q) in the way

(g · V )(a) = g(h(a))V (a)g(t(a))−1 for any V ∈ Rep(Q) .

This action leaves Rep(Q,R) invariant. Dividing by the 1-dimensional subgroup acting triv-
ially, we are left with a faithful action of the group

PGL(Q,C) = GL(Q,C)/C∗(1, . . . , 1) .

DEFINITION 4.1. By a subquiver Q′ ⊂ Q we mean a subset of vertices Q′0 ⊂ Q0 and
a subset of arrows Q′1 ⊂ Q1 satisfying t(a), h(a) ∈ Q′0 for any a ∈ Q′1. Let V ∈ Rep(Q,R)

be a representation of Q. A subrepresentation V ′ of V is a representation of a subquiver
Q′ ⊂ Q satisfying

V ′(a) = V (a) for any a ∈ Q′1 .

We do not need the general definition of the McKay quiver, so we quote only the spe-
cialization to the case of a cyclic group action.

DEFINITION 4.2. (McKay) Let G be a cyclic group G ⊂ GL(3,C) of order r, such
that the quotient singularity C3/G is of type 1

r
(1, a, r − a). Define the McKay quiver for G

as a finite graph with r vertices 0, 1, . . . , r − 1 and 3r arrows x0, y0, z0, . . . , xr−1, yr−1, zr−1

such that t(xi) = t(yi) = t(zi) = i and

h(xi) = 〈i + 1〉r , h(yi) = 〈i + a〉r , h(zi) = 〈i − a〉r .

The vertices of the McKay quiver correspond to the characters of G.
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FIGURE 2. The McKay quiver for r = 5, a = 2.

DEFINITION 4.3. A representation of the McKay quiver is an element of
Rep(Q,R), where Q is the McKay quiver (for fixed r, a) and R is the set relations

R = {yi+1xi − xi+ayi, zi+1xi − xi−azi, yi−azi − zi+ayi ; i = 0, . . . , r − 1} ,
where all indices are meant modulo r.

5. Family of representations of the McKay quiver. In this section we will define
a family of the McKay quiver representations over the Danilov resolution using line bundles
determined by the effective divisors Xi, Yi, Zi.

DEFINITION 5.1 (King, Logvinenko). Fix coprime r, a and let Y (r, a) be the Danilov
resolution. By a family of McKay quiver representations on Y (r, a) for the action of type
1
r
(1, a, r − a), we mean a set of r Q-divisors Ri for i = 0, . . . , r − 1 on Y (r, a), such that

the Q-divisors

Xi = DX + Ri − Ri+1 , Yi = DY + Ri − Ri+a , Zi = DZ + Ri − Ri−a

are effective divisors for i = 0, . . . , r − 1 (where DX,DY ,DZ are as in Definition 3.15).

The above condition is called the reductor condition in [13]. It ensures that the family
of quiver representations on the resolution Y (r, a) is natural, that is, the support of a repre-
sentation (seen as a finite dimensional C[x, y, z]-module) parameterized by a point p in the
resolution coincides with the G-orbit parameterized by the image of p in the quotient space
(cf. [13, Definition 1.4]).

DEFINITION 5.2. For fixed a and r , denote by F(r, a) (or F for short) the family
given by the Q-divisors Ri(r, a) in Definition 3.16.
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REMARK 5.3. Note that the divisors Ri satisfy the reductor condition by Lemma 3.18
and the divisors Xi, Yi, Zi are effective by Lemma 3.14.

One could define the family F(r, a) by representing the arrows of the McKay quiver, on
each affine toric chart, by the corresponding character of the piecewise linear function given
by the effective Cartier divisors Xi, Yi and Zi from Definition 5.1. Note that in this case
every such character is a regular function on the toric chart. Equivalently, define line bundles
Li = OY (−Ri) on Y for 0 ≤ i ≤ r − 1. Then, for each 0 ≤ i ≤ r − 1, the multiplications by
the sections defining the divisors Xi, Yi and Zi , respectively, determine morphisms from Li

to Li+1, to Li+a and to Li−a , respectively.
We will show later that there exist stability conditions θ such that every representation

in the family F(r, a) is θ -(semi)stable. In fact, it will turn out that such stability conditions
θ are exactly those for which the representations parameterized by T -fixed point of the cones
σ0, . . . , σr−1 are simultaneously θ -(semi)stable.

DEFINITION 5.4. For the family F from Definition 5.2 and for any 3-dimensional
cone σ in the fan of the Danilov resolution, we call an arrow in the McKay quiver σ -
distinguished if the corresponding divisor (that is, Xi, Yi or Zi) does not contain the T -fixed
point of toric chart Uσ .

Observe, for example, that no zi-arrow is σr−1-distinguished since the divisors Zi − E3

are effective for any i.

LEMMA 5.5. For any 3-dimensional cone σ in the fan of the Danilov resolution, any
two vertices of the McKay quiver can be connected by an undirected path of σ -distinguished
arrows different from xr−1.

PROOF. The lemma is true for a ∈ {1, r − 1}. Note that any two vertices of the McKay
quiver lying in the same L-brick can be joined by a sequence of z-arrows for any L-cone σ, and
any two vertices lying in the same R-brick can be joined by a sequence of y-arrows if σ is an
R-cone. By the inductive step, any two bricks can be joined by a sequence of σ -distinguished
arrows. It is enough to consider the cone σ = 〈p0, pr−a, pr 〉, and we are done since the only
σ -distinguished arrows are x0, . . . , xr−2. �

LEMMA 5.6. Let p,p′ ∈ Y be two points in the Danilov resolution, belonging to two
distinct toric charts isomorphic to C3. Then the representations parameterized by p and p′ in
F are not isomorphic.

PROOF. Let σ and σ ′ be 3-dimensional cones in the fan of the Danilov resolution corre-
sponding to charts containing p and p′, respectively. There are at most two common primitive
generators of the cones σ and σ ′ belonging to the set {p0, . . . , pr }. This implies that at least
one y- or z-arrow is σ -distinguished and not σ ′-distinguished. Hence the representations pa-
rameterized by p and p′ in F are not isomorphic. �
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LEMMA 5.7. Let p,p′ ∈ Y be distinct points in the Danilov resolution belonging
to a single toric chart, isomorphic to C3, on the Danilov resolution. The representations
parameterized by p and p′ in F are not isomorphic.

PROOF. Let σ = 〈pl, pm, pn〉 be the 3-dimensional cone in the fan of Danilov resolu-
tion such that p,p′ ∈ Uσ , where Uσ stands for the toric chart given by σ. We claim that there
exist i, j, k ∈ {0, . . . , r − 1}, i �= r − 1, such that the restrictions of Xi, Yj , Zk to the chart
Uσ are equal to the restrictions of the divisors Dl |Uσ ,Dm|Uσ ,Dn|Uσ , respectively. This holds
for a ∈ {1, r − 1} and can be proven for a /∈ {1, r − 1} using recursion and Lemmas 3.11
and 3.12. In the orbit of the group GL(Q,C), there exists exactly one representation such that
all σ -distinguished arrows are represented by the number 1 (by Lemma 5.5). Therefore, in
this unique element of the orbit, the arrows xi, yj , zk are represented by toric coordinates on
Uσ . The points p,p′ have at least one different toric coordinate. Therefore they parameterize
non-isomorphic representations. �

COROLLARY 5.8. For any two distinct points p,p′ ∈ Y in the Danilov resolution, the
representations parameterized by p and p′ in F are not isomorphic.

DEFINITION 5.9. For fixed coprime r and a, let Fi denote the representation of the
McKay quiver parameterized in the family F(r, a) by the unique T -fixed point belonging to
the toric chart Uσi for i = 0, . . . , r − 1 (cf. Definition 2.5).

Since the divisors Xj −E1 are effective, no xj -arrow is σi-distinguished for any i. More-
over, by the definition of the permutation τ, for any i there exists a unique j such that y-arrow
and z-arrow joining vertices j and j + a are not σi -distinguished. For i and j as above, if
j ′ �= j , then among the y- and z-arrows joining j ′ and j ′ + a exactly once is σi -distinguished
(cf. Example 7.4). Hence the representations Fi are particularly easy to deal with.

6. Stability of quiver representations. In this section, we recall some facts and def-
initions concerning θ -stability of quiver representations (see [12]), note that we restrict to the
case of dimension vector equal to (1, . . . , 1). We prove that the representations in the family
F (cf. Definition 5.2) on the Danilov resolution are simultaneously θ -(semi)stable if and only
if the representation F0, . . . ,Fr−1 are θ -(semi)stable.

For any quiver Q, set

Wt(Q) =
{
θ : Q0 →Q ;

∑
v∈Q0

θ(v) = 0

}
.

Given a function θ ∈ Wt(Q) for which θ(Q0) ⊂ Z, we obtain a character χθ of
PGL(Q,C). Explicitly, for any such θ , the character is

χθ(g) =
∏

v∈Q0

g(v)θ(v) ,

where g ∈ PGL(Q,C). Therefore, we will call Wt(Q) the weight space for Q.
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DEFINITION 6.1. (A. King) For any subrepresentation V ′ of a representation V ∈
Rep(Q) and θ ∈Wt(Q), set

θ(V ′) =
∑
v∈Q′0

θ(v) .

A representation V is called θ -semistable if θ(V ′) ≥ θ(V ) = 0 for every proper non-zero
subrepresentation V ′ ⊂ V . A representation V is called θ -stable if an analogous condition
with strict inequality holds.

DEFINITION 6.2. We say that a stability parameter θ ∈ Wt(Q) is generic if every
θ -semistable representation is θ -stable.

THEOREM 6.3 (King). Let Q be a quiver, R a set of admissible relations for Q and
let θ ∈ Wt(Q). A point in Rep(Q,R) is χθ -(semi)stable under the action of PGL(Q,C) if
and only if the corresponding representation of Q is θ -(semi)stable. Denote by Mθ(Q,R) the
GIT quotient of Rep(Q,R) by PGL(Q,C) with respect to the χθ -linearization of the trivial
bundle over Rep(Q,R). That is, Mθ(Q,R) is the scheme constructed from the graded ring of
semi-invariants, namely,

Mθ(Q,R) := Rep(Q,R)//χθ
PGL(Q,C) = Proj

∞⊕
k=0

C[Rep(Q,R)]χk
θ ,

where elements of the set C[Rep(Q,R)]χ are regular functions f on the representation space
Rep(Q,R), such that f (g · v) = χ(g)f (v) for any g ∈ PGL(Q,C) and any v ∈ Rep(Q,R).

For a generic θ , the scheme Mθ(Q,R) is a fine moduli space of θ -stable representations.

PROOF. See [12, Propositions 3.1, 5.2, 5.3]. �

We need a fact concerning families of θ -(semi)stable quiver representations on affine
toric varieties, which is true in a more general setting.

LEMMA 6.4. Let Uσ be an affine toric chart in the Danilov resolution Y containing
a unique T -fixed point pσ . Let F be a family of McKay quiver representations on Y as in
Definition 5.1. If the representation parameterized by the point pσ is θ -(semi)stable, then all
representation in F parameterized by closed points in Uσ are θ -(semi)stable.

PROOF. The θ -(semi)stability is an open condition and it is invariant under the T -action
since the divisors Ri are T -equivariant. Moreover, the T -fixed point lies in the closure of all
orbits in Uσ . �

We need also two simple lemmas.

LEMMA 6.5. Let Uσ be a toric chart in the Danilov resolution, where σ =〈pl, pm, pn〉
and l < m < n. If the arrow yi is σ -distinguished, then it is σj -distinguished for j ≥ l. If the
arrow yi is not σ -distinguished, then it is not σj -distinguished for j ≤ l. If the arrow zi is
σ -distinguished, then it is σj -distinguished for j < n. If the arrow zi is not σ -distinguished,
then it is not σj -distinguished for j ≥ n− 1.
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PROOF. It follows directly from Definition 3.5. �

LEMMA 6.6. Let i, i+a, . . . , i+sa be an R-brick. Then, for j = i, i+(r−a), . . . , i+
(s − 1)(r − a), the yj -arrows are σ -distinguished for any cone σ in the R-resolution. Let
i, i + (r − a), . . . , i + s(r − a) be an L-brick. Then, for j = i + a, . . . , i + s(r − a), the
zj -arrows are σ -distinguished for any cone σ in the L-resolution.

PROOF. Let i, i + (r − a), . . . , i + s(r − a) be an L-brick. Then, i + k(r − a) < a for
k = 0, . . . , s − 1. Hence, by Definition 3.1, τ (r, a)(i + k(r − a)) ≥ r − a. This implies that
the supports of divisors Zi,Zi+(r−a), . . . , Zi+s(r−a) are disjoint from any torus-fixed point on
the L-resolution. The other case follows analogously. �

Using the above tools, we can prove that θ -stability of the representations F1, . . . ,Fr−1

(see Definition 5.9) controls stability of the whole family F .

LEMMA 6.7. Let θ be a stability parameter such that F0, . . . ,Fr−1 are
θ -(semi) stable. Then every representation in the family F is θ -(semi)stable.

PROOF. By Lemma 6.4, to conclude, it is enough to prove that every representation in
F , parameterized by a T -fixed point, is θ -(semi)stable.

Let pσ ∈ Uσ be a T -fixed point, where σ = 〈pl, pm, pn〉 is a 3-dimensional cone
in the fan of the Danilov resolution and l < m < n. Let V be a subrepresentation of the
representation parameterized by pσ in the family F . The proof is done by induction on r. We
will show that there exists j ∈ {0, . . . , r − 1} and a subrepresentation of Fj supported on the
same set of vertices as V.

The theorem is trivial if a ∈ {1, r−a}. Assume that r > 1 and the theorem is true for any
r ′ < r. Let V be a subrepresentation as above. By S(V ) ⊂ {0, . . . , r−1} we mean a subset of
the vertices of the McKay quiver, supporting V. Consider a sequence i, i + (r − a), . . . , i +
s(r − a) of vertices in the set S(V ), such that the vertices i − (r − a), i + (s + 1)(r − a)

are not in S(V ). The set S(V ) is a union of such sequences. There is no loss of generality in
assuming that S(V ) itself is a single sequence. Note that yi-arrow and zi+s(r−a)-arrow are not
σ -distinguished (V is a subrepresentation, see Definition 4.1).

Suppose that zi−(r−a)-arrow is σ -distinguished or the yi+(s+1)(r−a)-arrow is σ -distin-
guished. We can assume that k < r + 1, otherwise there is nothing to prove. By Lemma 6.5,
the vertices i, . . . , i + s(r − a) form a subrepresentation of some of the representations
Fi , . . . ,Fk−1.

Now we turn to the case when both the zi−(r−a)-arrow and the yi+(s+1)(r−a)-arrow are
not σ -distinguished. Assume that σ is an L-cone. Since the yi-arrow and the zi+s(r−a)-
arrow are not σ -distinguished, the sequence i, . . . , i + s(r − a) is concatenated out of some
L-bricks by Lemma 6.6. These L-bricks correspond to vertices of the McKay quiver for
(1/(r − a))(1, 〈r〉, 〈−r〉). Moreover, the vertices corresponding to these L-bricks form a sub-
representation of the representation parameterized by pσ in the family F(r − a, 〈r〉) on the
L-resolution. Now we can use the inductive assumption. �
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7. Stability of the representations F0, . . . ,Fr−1. We proved that every represen-
tation in the family F is θ -(semi)stable if and only if the representations F0, . . . ,Fr−1 are
simultaneously θ -(semi)stable. We will show how to get such parameters θ using permutation
τ.

DEFINITION 7.1. Let ξ(r, a) = τ (r, a)−1 denote the inverse of the permutation τ (see
Definition 3.1).

Since no xi-arrow is σj -distinguished, any two vertices of Fj can be joined by a sequence
of z- and y-arrows by Lemma 5.5. Moreover, the arrows zξ(r,a)(j) and yξ(r,a)(j)+(r−a) are
not σj -distinguished. Therefore, the quiver supporting representation Fj consists of vertices
0, 1, . . . , r−1 and every two vertices i, i+ (r−a) are joined either by a z-arrow or a y-arrow
(but not both) unless i = ξ(r, a)(j) (cf. Example 7.4).

DEFINITION 7.2. Let

V j = {i ; vertices i, i + (r − a), . . . , ξ(r, a)(j) of Q form a subrepresentation of Fj } ,

Wj = {i ; vertices ξ(r, a)(j)+ (r − a), . . . , i of Q form a subrepresentation of Fj } .
For any i ∈ V j , let Vi,j be the subrepresentation of Fj consisting of vertices i, i + (r −
a), . . . , ξ(r, a)(j). For any i ∈ Wj , let Vi,j be the subrepresentation of Fj consisting of
vertices ξ(r, a)(j)+ (r − a), . . . , i − (r − a), i.

Note that i ∈ V j if and only if the yi-arrow is not σj -distinguished, and i ∈ Wj if and
only if the zi-arrow is not σj -distinguished.

LEMMA 7.3. Let θ ∈ Wt(Q) be a fixed stability parameter. The representation Fj is
θ -semistable if and only if θ(Vi,j ) ≥ 0 for any i ∈ V j and θ(Wi,j ) ≥ 0 for any i ∈ Wj . It is
θ -stable if and only if the above conditions hold with strict inequalities.

PROOF. The ‘only if’ direction is obvious. Let U be a subrepresentation of Fj . Without
loss of generality, assume it is supported on the vertices i, i + (r − a), . . . , i + s(r − a).

Then, by Definition 4.1, i ∈ V j and i + s(r − a) ∈ Wj and hence Vi,j ,Wi+s(r−a),j are
subrepresentations of Fj . The lemma follows since θ(U) = θ(Vi,j )+ θ(Wi+s(r−a),j ). �

EXAMPLE 7.4. The following diagram shows the representationsF0, . . . ,F4, respec-
tively, in the case of 1

5 (1, 2, 3) (cf. Example 3.8). The solid arrows stand for arrows repre-
sented by a non-zero number, i.e., σj -distinguished.

F0 : 0
zo−→ 3

z3−→ 1
z1−→ 4

z4−→ 2

F1 : 2
y0←− 0

z0−→ 3
z3−→ 1

z1−→ 4

F2 : 1
z1−→ 4

y2←− 2
y0←− 0

z0−→ 3

F3 : 4
y2←− 2

y0←− 0
z0−→ 3

y1←− 1

F4 : 3
y1←− 1

y4←− 4
y2←− 2

y0←− 0
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Moreover, ξ(5, 2)(0)=2, ξ(5, 2)(1)=4, ξ(5, 2)(2)=3, ξ(5, 2)(3)=1, ξ(5, 2)(4) = 0
and, for example V 2 = {1, 3, 4}, W 2 = {2, 3, 4}. If U is a subrepresentation of F2 consisting
of vertices 2, 4, then θ(U) = θ(V4,2)+ θ(W2,2).

DEFINITION 7.5. We set ϕ(r, a)(j) = 〈ξ(r, a)(j)+ (r − a)〉r for any coprime a, r

and j = 0, . . . , r − 1.

Note that since ξ(r, a) is a permutation of the set {0, . . . , r − 1}, so is ϕ(r, a). Let
n0, . . . , nr−1 be some rational numbers. The addition in the indices of ni’s is modulo r .
Observe that there is a linear map Qr � (n0, . . . , nr−1) → Wt(Q) of rank r − 1 sending
(n0, . . . , nr−1) to the function θ ∈Wt(Q) such that θ(i) = ni−ni+(r−a) for i = 0, . . . , r−1
with kernel spanned by the vector (1, . . . , 1).

LEMMA 7.6. For any coprime r, a and any rational numbers n0, . . . , nr−1, set θ(i) =
ni − ni+(r−a). The representations F0, . . . ,Fr−1 are simultaneously θ -stable if and only if

nϕ(r,a)(0) < nϕ(r,a)(1) < · · · < nϕ(r,a)(r−1) .

PROOF. Fix j and i �= ξ(r, a)(j)+ (r − a). Then either the zi−(r−a)- or the yi-arrow is
σj -distinguished. In the first case, i ∈ V j and θ(Vi,j ) = ni − nξ(r,a)(j)+(r−a) > 0. Otherwise
i − (r − a) ∈ Wj and θ(Wi−(r−a),j ) = −ni + nξ(r,a)(j)+(r−a) > 0. By the definition of the
permutation τ and by the definition of the divisors Yi, Zi, exactly r − 1 − j of z-arrows are
σj -distinguished. Moreover, if yj ′-arrow is σj ′ -distinguished, then it is σj -distinguished for
any j ≥ j ′ (cf. Lemma 6.5). To prove the ‘only if’ direction, note that if F0 is θ -stable, then
nϕ(r,a)(0) is smallest in ni ’s. If in addition F1 is θ -stable, then nϕ(r,a)(1) is second smallest,
and so on. For the other direction, note that, for any j = 0, . . . , r − 1, we have θ(Vi,j ) > 0
for any i ∈ V j and θ(Wi,j ) > 0 for any i ∈ Wj . By Lemma 7.3 the representation Fj is
θ -stable for j = 0, . . . , r − 1. �

REMARK 7.7. For any coprime r and a, the set of stability conditions for which the
representations F0, . . . ,Fr−1 are simultaneously θ -stable is a simplicial and top dimensional
cone in the space Wt(Q), since it is in bijection with the cone given by the conditions
nϕ(r,a)(0) = 0 and 0 < nϕ(r,a)(1) < · · · < nϕ(r,a)(r−1).

8. Main theorem. We have defined a family of pairwise non-isomorphic representa-
tions of the McKay quiver Q on the Danilov resolution Y, which are θ -stable with respect to
stability parameters θ determined in Lemma 7.6. The universal property of the moduli space
Mθ(Q,R) will ensure that the Danilov resolution dominates one of its components.

DEFINITION 8.1 (Craw, Maclagan, Thomas). Let θ ∈ Wt(Q) be generic. The coher-
ent component Yθ is the unique irreducible component of the moduli Mθ(Q,R), containing
representations of the McKay quiver with all arrows represented by a non-zero number (cf.
[3, Theorem 4.3]).

Note that representations of the McKay quiver with all arrows represented by a non-
zero number are θ -stable under any stability condition θ ∈ Wt(Q). The coherent component
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is reduced irreducible, not-necessarily-normal, toric variety of dimension 3, projective over
X = C3/G (see [3, Theorem 4.3]). Denote by πθ the corresponding projective birational
morphism

πθ : Yθ → X .

Denote by π the natural toric morphism given by a sequence of toric weighted blowups

π : Y → X ,

where Y denotes the Danilov resolution.
Assume that the generic stability parameter θ is chosen so that all representations of the

McKay quiver in the family F on Y are θ -stable. Since θ is generic, by King [12, Proposi-
tion 5.3], there exists a universal family of McKay quiver representations over Mθ(Q,R) and
there exists a unique morphisms

ρ : Y → Mθ(Q,R) .

Since the family F is defined by Logvinenko’s reductor condition, by [13, Theorem 4.1,
Definition 1.4] we see that πθ ◦ ρ = π.

THEOREM 8.2 (Main Theorem). For any coprime natural numbers a, r and any
rational numbers n0, . . . , nr−1 such that

nϕ(r,a)(0) < · · · < nϕ(r,a)(r−1) ,

where ϕ(r, a)(j) = 〈ξ(r, a)(j)− a〉r and ξ(r, a) is the inverse of the permutation τ (r, a)

(see Definition 3.1), the Danilov resolution of the singularity of type 1
r
(1, a, r − a) is the

normalization of the coherent component Yθ ⊂ Mθ(Q,R) for generic θ ∈ Wt(Q), given by
the condition

θ(i) = ni − ni+(r−a) .

PROOF. Let θ be a generic stability condition satisfying the above conditions (cf. Re-
mark 7.7). By Lemma 7.6, every representation of the McKay quiver in the family F(r, a) on
the Danilov resolution, constructed in Section 5, is θ -stable. Therefore, there exists a unique
morphisms

ρ : Y → Mθ(Q,R) ,

and the following diagram commutes:

Y
ρ ��

π
���

��
��

��
� Yθ

πθ����
��

��
�

X

Morphism ρ is proper since morphisms π and πθ are proper (see [7, Corollary II.4.8.(e)], πθ

is projective, hence separated). By [7, Exercise II.4.4], the image of ρ in Yθ is closed and is
of dimension 3 (see Corollary 5.8).

By the work of Craw, Maclagan, Thomas [3], the coherent component Yθ is a not-
necessarily-normal toric variety of dimension 3, hence ρ is surjective onto Yθ . We are done
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if ρ is injective, that is, representations of the McKay quiver corresponding to distinct closed
points on the Danilov resolution are non-isomorphic. This is the content of Corollary 5.8. �

DEFINITION 8.3. A chamber of stability conditions is a connected component of the
set of generic stability conditions (cf. [5], [16]).

THEOREM 8.4. The closure of the cone defined by the condition of Theorem 8.2 is a
union of closures of chambers of stability conditions for the action of the group PGL(Q,C)

on the space Rep(Q,R).

PROOF. By proof of Lemma 7.6, if some of the inequalities in the condition for ni is
not strict, then some representation Fj is strictly θ -semistable. Conversely, if all inequalities
are strict, then all representations Fj for j = 0, . . . , r − 1 are θ -stable. �

We note that there may be non-generic points on the other components of Rep(Q,R)

which may define walls subdividing the simplicial cone of stability conditions defined in
Theorem 8.2.

EXAMPLE 8.5. The permutation τ (5, 2) is cyclic of length 5, namely

τ (5, 2) = (0, 4, 1, 3, 2) .

The sequence

n0 < n2 < n1 < n4 < n3

implies that the union of closures of chambers is given by the conditions θ0 + · · · + θ4 = 0
and

0 ≤ θ2 ≤ θ1 + θ2 + θ4 ≤ θ2 + θ4 ≤ −θ0 .

Using computer algebra packages, the author has checked that, for small values of a and
r and stability parameters as in the Main Theorem, the moduli space of representation of the
McKay quiver is normal. This suggests that the following holds.

CONJECTURE 8.6. The coherent component is normal in this case, that is, the Danilov
resolution is isomorphic to the coherent component Yθ for any θ in Theorem 8.2.
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