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MEASURE OF A 2-COMPONENT LINK

JUN O’HARA

(Received October 24, 2011, revised February 5, 2013)

Abstract. A two-component link produces a torus as the product of the component
knots in a two-point configuration space of a three-sphere. This space can be identified with
a cotangent bundle and also with an indefinite Grassmannian. We show that the integration
of the absolute value of the canonical symplectic form is equal to the area of the torus with
respect to the pseudo-Riemannian structure, and that it attains the minimum only at the “best”
Hopf links.

Introduction. Since energy of knots was introduced in [14] about twenty years ago,
aiming at producing an optimal knot for each knot type as an energy minimizer, a lot of
related works have appeared, which form so-called geometric knot theory (see, for example,
[4, 5, 16]). The present paper deals with the same type of topic. We introduce a functional
on the space of 2-component links such that the absolute minimum is attained only at “best”
Hopf links, not at trivial links.

Let C1 ∪ C2 be a 2-component link in S3. The value of our functional A(C1, C2) can
be interpreted in the following two ways. Observe that the link produces a torus C1 × C2 in
S3 × S3 \Δ, where Δ is the diagonal set.

First, there is a natural identification between S3×S3 \Δ and the total space of the cotan-
gent bundle T ∗S3. The pull-back ω of the canonical symplectic form of T ∗S3 to S3 × S3 \Δ
is the unique 2-form (up to multiplication by a constant) which is invariant under the diagonal
action of the Möbius group. The 2-formω can also be considered as a natural symplectic form
on the space of geodesics in a hyperbolic 4-space H 4. As ω is exact,

∫
C1×C2

ω vanishes, but∫
C1×C2

|ω| does not, which is A(C1, C2). In this sense, it can be considered as an “absolute

symplectic measure” of the torus C1 ∪ C2 in T ∗S3.
Second, from a Möbius geometric viewpoint, S3×S3\Δ can be identified with the Grass-

mannian manifold SO(4, 1)/SO(1, 1) × SO(3) of oriented time-like 2-dimensional vector
subspaces in the 5-dimensional Minkowski space R5

1. By taking a pseudo-orthogonal com-
plement of an oriented time-like 2-dimensional vector subspace, we can identify this space
with the Grassmannian manifold of oriented space-like 3-dimensional vector subspaces in
R5

1.
It has a natural pseudo-Riemannian structure which is compatible with the action of the

Lorentz group, which induces the diagonal action of the Möbius group to S3 × S3 \Δ. Then
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A(C1, C2) is equal to the measure (area) of the torus C1 ∪ C2 with respect to the pseudo-
Riemannian metric.

The key of the proof is that both the pull-backω of the canonical symplectic form and the
“imaginary signed area element” with respect to the pseudo-Riemannian structure coincide
with the real part of the infinitesimal cross ratio, which is a “complex valued 2-form” on
C1 × C2 used in the joint paper with Langevin [12]. Geometrically, it can be considered as
the cross ratio of x, x + dx, y and y + dy, where these four points are considered as complex
numbers by identifying a sphere through them with the Riemann sphere C ∪ {∞}.

Some remarks on the result on the energy of links [1], which is another characterization
of the “best” Hopf link, will be given in Subsection 4.4.

Throughout the paper, a link means a smooth (or at least of class C1) 2-component link.

Acknowledgment. The author thanks deeply Rémi Langevin, Masahiko Kanai and Luisa Paoluzzi
for helpful suggestions. He also thanks the referee for a helpful suggestion concerning the symplectic
form.

1. Two structures on S3 × S3 \ Δ. We introduce two structures on S3 × S3 \ Δ,
the symplectic structure and the pseudo-Riemannian structure, both compatible with Möbius
transformations. It is easy to see that both can be naturally generalized to Sn × Sn \Δ for any
n.

1.1. Symplectic structure of S3 × S3 \Δ.

1.1.1. Via hyperbolic space. As S3 can be considered as the boundary of 4-dimen-
sional hyperbolic spaceH 4, S3 ×S3 \Δ can be considered as the space of oriented geodesics
in H 4, which is denoted by G. The tangent space TγG along a geodesic γ is the space of
Jacobi fields along γ . Let ∇ denote the Levi-Civita connection. Then, if we put

ωg (ξ, η) = (ξ(t),∇.
γ η(t))− (η(t),∇.

γ ξ(t)) (t ∈ R)

for ξ, η ∈ TγG, where ( , ) denotes the standard inner product on Tγ (t)H 4, then ωg is an
isometry-invariant symplectic form on G (see [3, 2C], [11, 3.1]). Since an isometry of H 4

induces a Möbius transformation of the boundary sphere S3, ωg defines a symplectic form on
S3 × S3 \Δ which is invariant under the diagonal action of the Möbius group.

1.1.2. Via cotangent bundle. It is known that the space G of geodesics in H 4 is
symplectomorphic to the cotangent bundle T ∗S3 [6]. Let us give an identification between
S3 × S3 \Δ and T ∗S3 explicitly.

Assume S3 is the unit sphere in R4. Let x be a point in S3 and px : S3 \ {x} →
(Span〈x〉)⊥ be a stereographic projection. By identifying (Span〈x〉)⊥ with TxS

3 ∼= T ∗
x S

3,
we obtain a bijection

ϕx : S3 \ {x} � y → (
TxS

3 � v → px(y) · v ∈ R
) ∈ T ∗

x S
3,

where · denotes the standard inner product in R4. It induces a bijection

(1) ϕ : S3 × S3 \Δ � (x, y) → (x, ϕx(y)) ∈ T ∗S3.
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LetωS3 be the canonical symplectic form of the cotangent bundle T ∗S3. Putω = ϕ∗ωS3 .
In [12], we showed that ω is invariant under the diagonal action of the Möbius group. The
converse is also true. Namely, if a 2-form ρ is invariant under the diagonal action of the
Möbius group, then ρ = c ω for some c ∈ R (Proposition 4.1 in Appendix). Therefore, we
can see that ω coincides with ωg mentioned above up to a constant factor.

1.2. Pseudo-Riemannian structure of S3 × S3 \Δ. The Minkowski space R5
1 is R5

with the indefinite inner product

〈x, y〉=−x0y0 + x1y1 + · · · + x4y4 .

The set of light-like vectors and the origin L = {v ∈ R5
1 ; 〈v, v〉 = 0} is called the light

cone. The 3-sphere can be considered as the projectivization PL of the light cone. It can also
be identified isometrically with the intersection of the light cone and a hyperplane given by
{x ; 〈x, n〉 = −1}, where n is a unit time-like vector. A 2-dimensional vector subspace Π of
R5

1 is said to be time-like if 〈 , 〉|Π is non-degenerate and indefinite, namely, if Π intersects
the light cone transversely.

A pair of points in S3 can be considered as the intersection of S3 and a 2-dimensional
time-like subspace of R5

1. Therefore, if we also take the order of the points into account,
S3 × S3 \ Δ can be identified with the Grassmannian manifold G̃r−(2; R5

1) of oriented 2-
dimensional time-like subspaces of R5

1, i.e., a homogeneous space SO(4, 1)/SO(3) ×
SO(1, 1).

Let Π be an oriented time-like 2-dimensional plane spanned by an ordered basis {u, v}.
Then Π corresponds to a pure 2-vector u ∧ v ∈

2∧
R5

1, which is determined by Π up to a
positive factor. As is stated on page 280 of [9], u ∧ v is time-like, i.e., 〈u ∧ v, u ∧ v〉 < 0,

where the indefinite inner product on
2∧

R5
1 is given by

〈u1 ∧ u2, v1 ∧ v2〉 = det
(〈ui, vj 〉) .

On the other hand, it is known that a pure 2-vector determines a 2-plane. Thus the Grass-
mannian manifold G̃r−(2; R5

1) of oriented 2-dimensional time-like subspaces of R5
1 can be

identified with the set of unit time-like pure 2-vectors in
2∧

R5
1, where the norm of

2∧
R5

1
is given by ‖v‖ = √|〈v, v〉|. It is a 6-dimensional pseudo-Riemannian manifold with index
3. By taking a pseudo-orthogonal complement of an oriented time-like 2-dimensional vector
subspace, we can identify G̃r−(2; R5

1) with the Grassmannian manifold G̃r+(3; R5
1) of ori-

ented space-like 3-dimensional vector subspaces in R5
1, which, in turn, can be identified with

the set Θ(0, 3) of unit space-like pure 3-vectors in
3∧

R5
1.

Through the identifications mentioned above, the bijection from G̃r−(2; R5
1) to

G̃r+(3; R5
1) is equal to the minus of the restriction of the Hodge � which is an isomorphism

from
2∧

R5
1 to

3∧
R5

1 given by

a ∧ �b = 〈a, b〉 e0 ∧ e1 ∧ · · · ∧ e4
(
a, b ∈

2∧
R5

1

)
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(see [9, p. 288]).

Let u and v be light-like vectors in R5
1. Put u × v = − � (u ∧ v) ∈

3∧
R5

1. Since the

Hodge � satisfies 〈�a, �b〉 = −〈a, b〉, where a, b ∈
2∧

R5
1, we have

(2) 〈u1 × u2, v1 × v2〉 = − det
(〈ui, vj 〉) .

Thus we have a bijection

(3) ψ : S3 × S3 \Δ � (x, y) → x × y

‖x × y‖ ∈ Θ(0, 3).

Since the indefinite inner product in (2) is invariant under the action of the Lorentz group
O(4, 1), the pseudo-Riemannian structure on S3 ×S3 \Δ induced by ψ is invariant under the
diagonal action of the Möbius group.

2. Measure of a 2-component link. All the pairs of points {(x, y) ; x ∈ C1, y ∈ C2}
form a torus in S3×S3\Δ. Let us call it the product torus of a 2-component linkL = C1∪C2.

2.1. Area of the product torus of a link. Let σ be the composite of maps:

σ : C1 × C2
ι
↪→ S3 × S3 \Δ ∼=−−−→

ψ
Θ(0, 3) .

We identify σ(C1 × C2) with C1 × C2 in what follows. The area element dv of C1 × C2

associated with the pseudo-Riemannian structure of Θ(0, 3) is given by

dv =
√ ∣∣∣∣det

( 〈σx, σx〉 〈σx, σy〉
〈σy, σx〉 〈σy, σy〉

)∣∣∣∣ dx ∧ dy ,

where σx and σy denote ∂σ/∂x(x, y) and ∂σ/∂y(x, y) in Tσ(x,y)Θ(0, 3), respectively.

DEFINITION 2.1. Define the measure of a 2-component link L = C1 ∪C2 by the area
of the product torus

A(C1, C2) =
∫
C1×C2

dv =
∫
C1×C2

√ ∣∣∣∣det

( 〈σx, σx〉 〈σx, σy〉
〈σy, σx〉 〈σy, σy〉

)∣∣∣∣ dx ∧ dy .

2.2. Main Theorem.

THEOREM 2.2. (i) The measure of a 2-component link satisfies

(4) A(C1, C2) =
∫
C1×C2

|ι∗ω| ,

where ι is the inclusion from C1 ×C2 into S3 ×S3 \Δ and ω is the pull-back of the canonical
symplectic form of T ∗S3 to S3 × S3 \Δ.

(ii) The measure of a 2-component link takes its minimum value 0 if and only if L is
the image of the “best” Hopf link

(5) {(z,w) ∈ C2; |z| = 1, w = 0} ∪ {(z,w) ∈ C2; z = 0, |w| = 1} ⊂ S3

by a Möbius transformation.
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The equation (4) implies that the area of the product torus can also be called the “absolute
symplectic measure” of it.

We prove the theorem in the next section.
2.3. Area element of a product torus in S3 × S3 \Δ.

LEMMA 2.3. Both σx and σx are null vectors, i.e., 〈σx, σx〉 = 〈σy, σy〉 = 0. Therefore
the area element dv is given by σ ∗dv = |〈σx, σy〉| dx ∧ dy.

PROOF. Suppose S3 is embedded in R5
1, and points in C1 and C2 are expressed by x̄(s)

and ȳ(t), respectively. Put p(s, t) = x̄(s)× ȳ(t) and σ̃ (s, t) = σ(x̄(s), ȳ(t)). Then it is given
by

σ̃ (s, t) = p(s, t)

〈p(s, t), p(s, t)〉1/2
.

Since x̄ and ȳ are light-like vectors, the formula (2) implies

〈p,p〉 = 〈x̄, ȳ〉2 , 〈p,ps 〉 = 〈x̄, ȳ〉〈x̄s, ȳ〉 , 〈ps, ps〉 = 〈x̄s, ȳ〉2 .

Therefore

〈σ̃s , σ̃s〉 = 〈p,p〉〈ps , ps〉 − 〈p,ps 〉2

〈p,p〉2 = 0 .

�

We also put geometric explanation in Subsection 4.2 in Appendix.

Let us call 〈σx, σy〉 dx∧dy the imaginary signed area element of a product torusC1×C2.

3. Proof of the main theorem.
3.1. The infinitesimal cross ratio. We assume that both components C1 and C2 are

oriented. Suppose x ∈ C1 and y ∈ C2. Let Γ (x, x, y) be the circle which is tangent to C1 at
x that passes through y, oriented by the tangent vectors to C1 at x. Let θ (0 ≤ θ ≤ π) be the
angle between Γ (x, x, y) and the tangent vector to C2 at y. We call it the conformal angle
between x and y and denote it by θL(x, y). It was introduced by Doyle and Schramm.

Let ΩL be a complex valued 2-form on C1 × C2 given by

(6) ΩL(x, y) = eiθL(x,y)
dx ∧ dy
|x − y|2

(see [12]). As both the conformal angle θL and the 2-form dxdy/|x − y|2 are equivariant
under the diagonal action of a Möbius transformation T , so isΩL, namely, (T ×T )∗ΩT(L) =
ΩL [12].

Let us give a geometric interpretation of ΩL. Let ΣL(x, y) be a sphere that passes
through four points x, x + dx, y and y + dy, i.e., a sphere which is tangent to C1 at x and
to C2 at y. Let p be a stereographic projection from ΣL(x, y) to C ∪ {∞} and x̃, x̃ + d̃x, ỹ
and ỹ + d̃y the images by p of the four points x, x + dx, y and y + dy, respectively. Then
ΩL(x, y) is equal to the cross ratio (x̃ + d̃x, ỹ; x̃, ỹ + d̃y):

(7) ΩL(x, y) = d̃xd̃y

(x̃ − ỹ)2
∼ (x̃ + d̃x)− x̃

(x̃ + d̃x)− (ỹ + d̃y)
: ỹ − x̃

ỹ − (ỹ + d̃y)
.
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This is why we call ΩL the infinitesimal cross ratio. We remark that the cross ratio does not
depend on the stereographic projection p.

REMARK 3.1. The form dzdw/(z − w)2 on C × C \ Δ, which has been used in
complex analysis, can also be obtained as the cross ratio of w,w + dw, z and z + dz, as
was mentioned by Rob Kusner, for example. In this sense, the infinitesimal cross ratio can
be considered as generalization of dzdw/(z − w)2 to a complex valued 2-form on C1 × C2,
or in general, C × C \ Δ, where C is a union of space curves. In fact, when C is a plane
curve, the infinitesimal cross ratio coincides up to complex conjugacy with the 2-form that is
obtained by restricting dzdw/(z−w)2 to C ×C \Δ , which was used by Hélein [8] to show
the isoperimetric inequality.

However, there is difficulty for space curves. First, dzdw/(z−w)2 cannot be generalized
to a 2-form on the ambient space S3 × S3 \ Δ, so the restriction which works for the planar
case does not work. To be precise, while the real part of dzdw/(z − w)2 can be generalized
to a 2-form on Sn × Sn \ Δ as we will see in the next subsection, the imaginary part cannot
when n ≥ 3 as we will see in Proposition 4.1.

Secondly, even if we try to use the cross ratio to define the 2-form, the cross ratio of four
points in Rn (n ≥ 3) is not so well-behaved as in the planar case. This might be a reason
why Ahlfors studied only the absolute cross ratio for the points in Rn (n ≥ 3) [2]. When we
want to define the cross ratio of (ordered) four points in R3, we need the orientation of the
sphere through the four points to avoid the ambiguity of complex conjugacy. There is a way to
assign continuously the orientations to all the spheres given by the sets of ordered four points

in R3, i.e., there is a continuous map from (R3)
4 \Δ, whereΔ is a big diagonal set, to the set

of oriented 2-speres in R3, which can be identified with the de Sitter space in 5-dimensional
Minkowski space R5

1. However, according to this method, the imaginary part of the cross
ratio of any four points in R3 is always non-negative (or, always non-positive according to

the choice of a continuous map from (R3)
4 \Δ to the de Sitter space). The reader is referred

to [15] for the details. As a result, the imaginary part of the infinitesimal cross ratio may
have singularity where it vanishes, just like that of the absolute value of a smooth function.
Anyway, we do not use the imaginary part in this paper.

3.2. The real part of the infinitesimal cross ratio. In [12] we showed that the pull-
back of the canonical symplectic form of T ∗S3 to C1 × C2 coincides with the real part of the
infinitesimal cross ratio up to a constant;

(8) ι∗ω = ι∗ϕ∗ωS3 = −2 �eΩL = −2
cos θL(x, y) dx ∧ dy

|x − y|2 .

It seems that this fact in the case of S2 is well known in symplectic geometry.

LEMMA 3.2. The imaginary signed area element ofC1×C2 with respect to the pseudo-
Riemannian structure coincides with the real part of the infinitesimal cross ratio up to a con-
stant;

〈σx, σy〉 dx ∧ dy = 2 �eΩL .
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FIGURE 1.

PROOF. Suppose points in C1 and C2 are expressed as x(s) and y(t). Suppose S3 is
embedded in R5

1 as the intersection of the light cone and a level hyperplane {x0 = 1}. Let
x̄ and ȳ be points in R5

1 corresponding to x(s) and y(t), i.e., x̄(s) = (1, x(s)) and ȳ(t) =
(1, y(t)). Put σ̃ (s, t) = σ(x̄(s), ȳ(t)) as before.

The pull-back of the real part of the infinitesimal cross ratio is given by

(9)
(
(x × y)∗�eΩL

)
(s, t) = cos θL(x(s), y(t))

|x(s)− y(t)|2 |x ′(s)||y ′(t)| ds ∧ dt .
On the other hand, the pull-back of the imaginary signed area element is given by

(10)
(
(x × y)∗(〈σx, σy〉 dx ∧ dy)) (s, t) = 〈σ̃s , σ̃t 〉(s, t) ds ∧ dt .

Fix any (s0, t0). The Möbius invariance of the both sides allows us to assume that x(s0)
and y(t0) are antipodal. Then, at (s0, t0),

〈x̄, x̄〉 = 〈ȳ, ȳ〉 = 0 , 〈x̄, ȳ〉 = −2 .

Therefore, by the formula (2), at (s0, t0) there holds

〈p,p〉 = 4 , 〈p,ps 〉 = 0 , 〈ps, pt 〉 = −2x ′(s0) · y ′(t0) ,

which implies

〈σ̃s , σ̃t 〉 = 〈p,p〉〈ps , pt 〉 − 〈p,ps 〉〈p,pt 〉
〈p,p〉2

= −1

2
x ′(s0) · y ′(t0) .

Since x0 = x(s0) and y0 = y(t0) are antipodal, we have (Figure 1)

θL(x(s0), y(t0)) = π − � x ′(s0) · y ′(t0) .

It follows that

〈σ̃s , σ̃t 〉(s0, t0) = −1

2
x ′(s0) · y ′(t0) = 2

|x ′(s0)||y ′(t0)|
|x(s0)− y(t0)|2 cos θL(x(s0), y(t0)) ,

which implies that the right-hand sides of (9) and (10) coincide. �
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FIGURE 2. The circles of Cx . FIGURE 3. The image by π .

We remark that an alternative geometric proof can be obtained if we use pseudo-
orthonormal basis of S3 × S3 \Δ illustrated in Figure 10. This is because

〈σ̃s + σ̃t , σ̃s + σ̃t 〉(s0, t0) = −x ′(s0) · y ′(t0)

implies 〈σ̃s , σ̃t 〉(s0, t0) = −(1/2) x ′(s0) · y ′(t0).

COROLLARY 3.3. The imaginary signed area element of a product torus C1 ×C2 with
respect to the pseudo-Riemannian structure is equal to minus the pull-back of the canonical
symplectic form:

〈σx, σy〉 dx ∧ dy = −ι∗ϕ∗ωS3 .

This completes the proof of Theorem 2.2 (i).

We remark that a statement similar to that of the above corollary does not hold for a
general surface in S3 × S3 \Δ as we will see in Subsection 4.3 in Appendix.

3.3. Proof of Theorem 2.2 (ii). As

(11) A(C1, C2) = 2
∫
C1×C2

| cos θL(x, y)|
|x − y|2 dx dy ,

it is equal to 0 if and only if the conformal angle θL(x, y) is equal to π/2 for any x ∈ C1 and
y ∈ C2.

Suppose A(C1, C2) = 0. Let x be a point in C1. Let Cx be the set of the circles which
are tangent to C1 at x. Then C2 can intersect circles in Cx only at a right angle (Figure 2).
Consider a stereographic projection π from S3 \ {x} to R3. It maps Cx to the set of parallel
lines. Since π(C2) can intersect lines of π(Cx) only at a right angle, π(C2) is contained in a
2-plane which is orthogonal to the lines in π(Cx) (Figure 3). Therefore, C2 is contained in a
sphere Σx which intersects C1 at a right angle at x (Figure 4).

Let x ′ be a point of C1 close to x. As C1 intersects Σx orthogonally at x, we can take
x ′ outside Σx . Therefore,Σx �= Σx ′ . Since C2 is contained in the intersection Σx ∩Σx ′ , C2

must be a circle (Figure 5). The same argument shows that C1 is also a circle.
Consider the stereographic projection π again. Since C1 is a circle, π(C1) is a line. Then

π(C2) is the intersection of two spheres which intersect the line π(C1) at a right angle (Figure
6). Therefore, π(C2) is symmetric in the line π(C1). It follows that π(C1) ∪ π(C2) is an
image of the standard Hopf link (Figure 7).



MEASURE OF A 2-COMPONENT LINK 435

FIGURE 4. FIGURE 5. FIGURE 6.

FIGURE 7. A satellite link of a Hopf link.

This completes the proof of Theorem 2.2 (ii).

3.4. Corollary and Conjecture. Let [L] denote an isotopy class of a link L. Define

A([L]) = inf
C ′

1∪C ′
2∈[L]

A(C′
1, C

′
2) .

COROLLARY 3.4. If L is a separable link or a satellite link of a Hopf link, then
Area ([L]) = 0.

PROOF. Suppose L = C1 ∪ C2 is a separable link in R3. We can make |x − y| (x ∈
C1, y ∈ C2) as big as we like. Now the conclusion follows from the formula (11).

Suppose L = C1 ∪ C2 is a satellite link of a Hopf link. Then, after an ambient isotopy,
it can be contained in a very thin tubular neighbourhood of the standard Hopf link given by
(5). Furthermore, for any positive constants δ1 and δ2, the link can be placed so that, outside
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a small region of C1 ×C2 whose measure is δ1Length(C1) · Length(C2), the conformal angle
satisfies |θL − π/2| ≤ δ2. Then the formula (11) implies the assertion of the corollary since
|x − y| (x ∈ C1, y ∈ C2) is bounded below. �

CONJECTURE 3.5. We conjecture that A([L]) does not always vanish. For example,
if L = C1 ∪ C2 is a hyperbolic link each component of which is a non-trivial knot, then there
is no solid torus H1 so that C1 is contained in H1 and C2 in R2 \ H1. We conjecture that
A([L]) is positive for such a link type.

4. Appendix.
4.1. Diagonal Möbius invariance characterizes ω.

PROPOSITION 4.1. Suppose ρ is a 2-form on Sn×Sn \Δ which is invariant under the
diagonal action of orientation preserving Möbius transformations. Then ρ = c ω for some
constant c if n �= 1, where ω is the pull-back of the canonical symplectic form of T ∗Sn by the
bijection from Sn × Sn \Δ to T ∗Sn given by (1), and ρ = c1ω+ c2�m(dz∧ dw/(w − z)2)

under the identification S2 ∼= C ∪ {∞} for some c1, c2 ∈ R if n = 2.

This fact has been mentioned in [10] in a more general form (see § 3.2). We put the proof
here since the author could not find it in the literature.

PROOF. Since Sn × Sn \ Δ is a homogeneous space of the Möbius group, it suffices
to show the statement for ρ restricted to a point (x,−x) and the action of its isotropy group
H(x,−x).

We may assume, without loss of generality, that x and −x correspond to (1, 1, 0, . . . , 0)
and −x = (1,−1, 0, . . . , 0) in the Minkowski space Rn+2

1 , respectively. Suppose an orienta-
tion preserving Möbius transformation TA ∈ H(x,−x) is given by A ∈ SO(n + 1, 1). Then,
since A keeps both Span〈e0, e1〉 and Span〈e2, . . . , en+1〉 invariant, A can be expressed as

A =
(
A1 O

O A2

)
,

where A1 ∈ SO(1, 1) andA2 ∈ SO(n), orA1 ∈ O(1, 1)\SO(1, 1) and A2 ∈ O(n)\SO(n).
However, in the latter case we have TA(x) = −x, which does not fit the assumption that TA
belongs to the isotropy groupH(x,−x). It follows that the action of an element of H(x,−x) on

T(x,−x)(S
n × Sn \Δ) = TxS

n ⊕ T−xS
n ∼= Rn ⊕ Rn

is generated by

(12)
(u, v) → (cu, c−1v) (c ∈ R×),
(u, v) → (gu, gv) (g ∈ SO(n)) .

Thus, it is enough to give ρ(e2, v) (e2 ∈ TxS
n, v ∈ T−xS

n) to determine ρ.
(i) Suppse n ≥ 3. Let R be a 180 degree rotation of Rn = Span〈e2, . . . , en+1〉 around

x2-axis. Then, since ω(e2, v) = (1/2) v · e2, we have

ρ(e2, v)= 1

2
(ρ(e2, v)+ ρ(e2, Rv)) = ρ

(
e2,

v + Rv

2

)
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FIGURE 8. Pseudo-orthogonal basis of a tangent space of S1 × S1 \ Δ. A picture in
Poincaré disc model.

= ρ(e2, (v · e2)e2) = (v · e2)ρ(e2, e2)

= 2ρ(e2, e2) ωSn(e2, v),(13)

which implies ρ = 2ρ(e2, e2)ω.
(ii) When n = 1, the equation (13) also holds, which implies ρ = 2ρ(e2, e2) ω.

(iii) Suppose n = 2. Then

ρ(e2, v)= (v · e2)ρ(e2, e2)+ (v · e3)ρ(e2, e3)

= 2ρ(e2, e2) ω(e2, v)+ 4ρ(e2, e3)�m
(
dz ∧ dw/(w − z)2

)
(e2, v) ,

which implies ρ = 2ρ(e2, e2) ω + 4ρ(e2, e3)�m
(
dz ∧ dw/(w − z)2

)
.

�

It follows that the imaginary part of dz∧dw/(w−z)2 cannot be generalized to Sn×Sn\Δ
when n ≥ 3. In fact, it can naturally be generalized to a Kähler form on SO(n+1, 1)/SO(2)×
SO(n− 1, 1), which is the space of oriented codimension 2 spheres in Sn.

4.2. Pseudo-orthogonal basis of S3 × S3 \Δ. Let us start with a baby case S1 ×
S1 \ Δ. It can be identified with the set of oriented time-like planes in the 3-dimensional
Minkowski space R3

1. By taking a positive unit normal vector to each of these planes, S1 ×
S1 \ Δ can be identified with the 2-dimensional de Sitter space Λ = {x ∈ R3

1 ; 〈x, x〉 = 1}.
Let Σ = {x, y} be a pair of points in S1 ∼= ∂H 2. Let l denote the geodesic in H 2 which joins
x and y. Take a point M on l (Figure 8), then it determines two pencils as follows.

Let a and b be the “end points” of the geodesic in H 2 which is orthogonal to l at point
M (the third of Figure 8). Let P+ be a pencil obtained by rotating the geodesic l around M
and P− the Poncelet pencil with limit points a and b. Then P+ and P− can be considered as
geodesics in Λ, namely, the intersections with Λ and space-like and time-like 2-planes Π±.
A pair of the unit tangent vectors to P+ and P− at σ can serve as a pseudo-orthonormal basis
of TσΛ, where σ is a point in Λ that corresponds to Σ . These vectors can be obtained in
Π± by rotation and Lorentz boost (hyperbolic rotation) of σ . The corresponding vectors in
S1 × S1 \Δ are illustrated as the second and the last of Figure 8

Suppose {u, v} is a pseudo-orthonormal basis of TσΛ. Then we have another basis,
{(u+ v)/

√
2, (u− v)/

√
2} consisting of two light-like vectors (Figure 9). This illustrates

why σx and σy in Subsection 2.3 are null vectors.



438 J. O’HARA

FIGURE 9. Light-like basis of a tangent space of S1 × S1 \ Δ. A picture in Poincaré
disc model.

FIGURE 10. Pseudo-orthogonal basis of a tangent space of S3 ×S3\Δ. Space-like vec-
tors above and time-like vectors below. A picture in R3 obtained through
a stereographic projection.

The pseudo-orthonormal basis of S3 × S3 \Δ can be given by that of S1 × S1 \ Δ. In
fact, we can consider three mutually orthogonal circles through a given pair of points, and
take a pseudo-orthonormal basis in each circle as illustrated in Figure 10.

4.3. The imaginary signed area element and the symplectic form. Corollary 3.3
does not necessarily hold for a surface in S3 × S3 \Δ which is not the product of two curves
in S3. Let us show it in R3 ×R3 \Δ, fixing a stereographic projectionp from S3 to R3 ∪{∞}.

Suppose a pair of points in R3 are expressed by X(s, t) and Y (s, t). Let M be a surface
{(X(s, t), Y (s, t))}(s,t)∈D in R3×R3\Δ, whereD is a domain in R2. PutXs = ∂X/∂s,Xt =
∂X/∂t , and

X̃s = 2

(
Xs,

X − Y

|X − Y |
)
X − Y

|X − Y | −Xs, X̃t = 2

(
Xt,

X − Y

|X − Y |
)
X − Y

|X − Y | −Xt .

Then X̃s is the tangent vector at Y to a circle which is tangent to Xs at X that passes through
Y with

∣∣X̃s ∣∣ = |Xs |. The same interpretation also holds for X̃t .
Note that the pull-back ωR3 of the symplectic form ω introduced in Subsection 1.1 by a

map p−1 ×p−1 from R3 ×R3 \Δ to S3 ×S3 \Δ, where p is a stereographic projection from
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S3 minus one point to R3, is given by

ωR3 = 2

(∑3
i=1 dXi ∧ dYi
|X − Y |2 − 2

(∑3
i=1(Xi − Yi) dXi

) ∧ (∑3
j=1(Xj − Yj ) dYj

)
|X − Y |4

)
(see [12]). The pull-back of ωR3 by the map X × Y fromD to R3 × R3 \Δ is given by

(X × Y )∗ωR3 = −2
(
X̃s · Yt − X̃t · Ys

) ds ∧ dt
|X − Y |2 .

This can be verified by showing that the both sides coincide when X and Y are located on
specific positions, say X(s0, t0) = (1, 0, 0) and Y (s0, t0) = (−1, 0, 0) because the both sides
are equivariant under the diagonal action of Möbius transformations.

On the other hand, the “signed area element” αM of M associated with the pseudo-
Riemannian structure of Θ(0, 3) can be given as follows. Let σ̂ be the composite

σ̂ : D X × Y−−−−−→M ↪→ R3 × R3 \Δp
−1 × p−1

−−−−−−−→ S3 × S3 \Δ ∼=−−−→
ψ

Θ(0, 3) .

Using the pseudo-orthonormal basis illustrated in Figure 10 and the Möbius invariance, we
have

(X × Y )∗αM =
√

det

(〈σ̂s , σ̂s〉 〈σ̂s , σ̂t 〉
〈σ̂t , σ̂s〉 〈σ̂t , σ̂t 〉

)
ds ∧ dt

= 2

√
det

(
2X̃s · Ys X̃s · Yt + X̃t · Ys

X̃s · Yt + X̃t · Ys 2X̃t · Yt
)
ds ∧ dt
|X − Y |2 .

Therefore, the imaginary signed area element
√−1αM coincides with the pull-back of

the canonical symplectic form ωR3

∣∣
C1×C2

up to sign if and only if (X̃s · Yt )(X̃t · Ys) =
(X̃s · Ys)(X̃t · Yt ), which holds if and only if X̃s × X̃t ⊥ Ys × Yt . It does not always hold in
general.

We remark that this condition does not necessarily imply that the surface is a product
of two curves. We also remark that the above condition is always satisfied for a surface in
S1 × S1 \Δ.

4.4. Remark on energy minimizing Hopf links. There is another variational char-
acterization of the “best” Hopf link.

The Möbius cross energy [7] of a 2-component link C1 ∪ C2, which is generalzation of
the energy for knots defined by the author [14], is given by

E(C1, C2) =
∫
C1×C2

dxdy

|x − y|2 .
This energy is also invariant under Möbius transformations. Recently, Agol, Marques and
Neves proved Freedman-He-Wang’s conjecture, namely, they showed that if the linking num-
ber of C1 and C2 is equal to ±1, then E(C1, C2) ≥ 2π2, and that the equality holds if and
only if C1 ∪ C2 is an image of the “best” Hopf link by a Möbius transformation. This is a
much more difficult problem, and was proved using min-max theory which has also been used
in the proof of the Willmore conjecture [13].
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The formula (11) impliesE(C1, C2) ≥ (1/2)A(C1, C2). To be more precise, the equality
does not occur since the conformal angle between different components of a link cannot be
identically zero. It might be interesting to point out that the infimum of A(C1, C2) over all the
2-component links is attained not at trivial links, but at the “best” Hopf link and the conformal
image of it, whereas the infimum of E(C1, C2) over all the 2-component links is not attained,
as E(C1, C2) tends to +0 as the distance between C1 and C2 tends to +∞.
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