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EXTRINSICALLY FLAT MÖBIUS STRIPS ON GIVEN KNOTS
IN 3-DIMENSIONAL SPACEFORMS

KOSUKE NAOKAWA
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Abstract. We classify the topology of closed extrinsically flat strips which contain a
given knot in a 3-dimensional spaceform. This is a refinement and generalization of results of
Chicone-Kalton and Røgen.

1. Introduction. A C∞-curve in Euclidean 3-space R3 is called regular if its deriv-
ative never vanishes. A closed C∞-regular curve γ = γ (s) : S1 → R3 with arc-length
parameter s is called a knot if γ does not have a self-intersection, where S1 := R/l Z, and
l > 0 is the total arc-length of γ . We fix a knot γ (s) arbitrarily, and construct closed strips
along γ , i.e., immersed ruled strips generated by γ . In particular, we are interested in flat,
i.e., zero Gaussian curvature, Möbius strips on such surfaces. A flat and ruled strip is called
a developable strip. The topologies of such developable strips are determined by their twist-
ing numbers. Here, the twisting number of a strip takes a half-integer if and only if the strip
is non-orientable. If the twisting direction of the strip is clockwise, then its twisting num-
ber is positive. The book [13] of Sabitov is useful for references and the history related to
developable Möbius strips in R3.

The torsion function of a knot γ (s) with arc-length parameter s is defined by

(1.1) τ (s) := det(γ ′(s), γ ′′(s), γ ′′′(s))
κ(s)2

whenever the curvature function κ(s) := |γ ′′(s)| does not vanish, where γ ′ := dγ /ds and
‘det’ is the determinant. We have the following.

THEOREM 1.1. Let γ : S1 → R3 be a Cω-regular knot, i.e., real-analytic regular
knot, and Zκ the zeros of its curvature function κ . Denote by τ (s) the torsion function of γ (s)
defined on S1 \ Zκ . Then, the following assertions hold:

(1) Suppose that τ (s) vanishes identically on S1 \ Zκ . Then, a closed developable Cω-
regular (resp. C∞-regular) strip along γ can only have zero twisting number.

(2) Suppose that τ (s) changes sign. Then, for each n ∈ (1/2)Z, there exists a closed
developable Cω-regular strip along γ whose twisting number is n.
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(3) Suppose that τ ≤ 0 on S1 \ Zκ and there exists a point s0 ∈ S1 such that τ (s0) < 0.
Then, there exists λγ ∈ (1/2)Z such that
(i) for each n ≥ λγ (n ∈ (1/2)Z), there exists a closed developable Cω-regular

strip along γ whose twisting number is n, and
(ii) if n < λγ (n ∈ (1/2)Z), there is no closed developable C∞-regular strip along

γ whose twisting number is n.

The assumption τ ≤ 0 on S1 \ Zκ , or assuming τ ≥ 0 instead, in (3) is not essential. In
fact, the sign of the torsion function τ is reversed if one considers the reflection of γ across a
plane. The invariant λγ determined by γ in (3) can be written explicitly. In fact, if the zeros
Zκ of the curvature function κ is empty, then λγ is equal to the value called the ‘self-linking
number’ of γ (see Remark 2.3).

When Zκ is empty, the non-existence results (1) and (3)–(ii) have been implicitly proved
in Chicone-Kalton [2]. Also, in [2], the existence of a Möbius strip along a givenCω-knot was
shown if the twisting number with respect to the Frenet frame is equal to ±1/2. Therefore,
the assertions of the theorem are generalizations of the results in [2] to the case that Zκ is
a non-empty set. In fact, the assumption that γ admits a zero of its curvature function is
important in the present context. For example, a developable Möbius strip which contains
a closed geodesic is called a rectifying Möbius strip. Roughly speaking, a rectifying strip
can be constructed from an isometric deformation of a rectangular domain on a plane (cf. [7,
Proposition 2.14]). Such a rectifying Möbius strip has at least one zero point of the curvature
function of its closed geodesic (cf. [11]). Moreover, the zeros of the curvature function of the
geodesic are important when one considers the singularities on the extension of a rectifying
Möbius strip. In [9], the author showed that there exist at least three singular points other than
cuspidal-edge singularities on the extension of a rectifying Möbius strip. Such a non-cuspidal-
edge singular point has a special singularity which is ‘not a wave front’ (e.g. cuspidal cross
cap, open swallowtail) if it is on the asymptotic line through a zero curvature point of the
closed geodesic.

Røgen [12, Proposition 6] has already proved the existence of a closed developableC∞-
regular strip along γ whose twisting number is n ≥ λγ when γ is a C∞-knot and satisfies
some additional conditions (cf. Proposition 4.5). (His approach is somewhat different from
that in Chicone-Kalton [2].) However, if γ is real-analytic, then it is natural to expect that the
resulting strips can be Cω-regular. In this sense, the above assertions can be considered as a
refinement of his assertion. In fact, our assertion is much more difficult to prove. To obtain a
Cω-regular developable strip of given twisting number n ≥ λγ , we need a special technique
to control the higher order jets when we approximate a C∞-function by Fourier polynomials.

We also consider a generalization of the theorem to the other 3-dimensional spaceforms,
i.e., hyperbolic 3-space H 3 and 3-sphere S3. Here, a surface immersed in a spaceform is
called extrinsically flat if the product of its two principal curvatures vanishes identically. In
this paper, we prove Theorem 1.1 as a corollary of the following assertion:
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THEOREM 1.2. The statement of Theorem 1.1 holds also for extrinsically flat strips in
S3 (resp. H 3).

This implies that the condition ‘extrinsic flatness’ is appropriate for exhibiting its global
properties. In fact, Theorem 1.1 follows from the fact that R3 can be considered as an affine
space in the projective space P 3(R) and the extrinsically flatness is preserved in this inclusion
map. To prove Theorem 1.2, we use a technique which is a refinement of that in Chicone-
Kalton [2]. Since it is classically known that complete and extrinsically flat regular surfaces
in S3 are all totally geodesic, the extension of our strip in S3 must have singular points. It
should be remarked that Honda [5], [6] recently showed the existence of many non-trivial
such surfaces with singularities in S3 and H 3.

We also mention the difference between extrinsically flat surfaces and intrinsically flat
surfaces in spaceforms. In R3, the class of the extrinsically flat surfaces coincides with that
of the flat surfaces. On the other hand, it is known that flat surfaces immersed in H 3 are
all orientable (cf. [8]). In particular, there does not exist a flat C∞-regular Möbius strip in
H 3. In S3, there are many flat C∞-regular Möbius strips on an arbitrary knot, as shown by
Aledo-Gàlvez-Mira [1]. However, Gàlvez-Mira [3] showed that they cannot be real-analytic.
This implies that the properties of intrinsically flat surfaces in spaceforms other than R3 have
different global behaviors from the case of extrinsically flat surfaces.

In Section 2, we give several fundamental definitions. In Section 3, we show that the
same discussion as in [2] can be applied for a real-analytic knot whose curvature function
might have zero points and that the non-existence assertions (1) and (3)–(ii) of Theorems 1.1
and 1.2 still hold. In Section 4, we prove the existence results (2) and (3)–(i). In Appendix
A, we recall Chebyshev spaces and show a lemma with a special technique that is used in the
proof of the existence results in Section 4.

2. Preliminaries. We explain Theorem 1.2 for the case S3 in detail, and obtain the
same assertions for H 3 and R3. As a preliminary, we mention the gnomonic projection of S3

and the Klein model of H 3. We consider the 3-sphere as the unit sphere

S3 = {t(x0, x1, x2, x3) ∈ R4 ; x2
0 + x2

1 + x2
2 + x2

3 = 1}
in R4, and set the north hemisphere

S3+ := {t(x0, x1, x2, x3) ∈ S3 ; x0 > 0} ,
where ‘t’ denotes the transpose of a vector. A gnomonic projectionG : S3+ → R3 is defined
by

(2.1) G(x) := t
(
x1

x0
,
x2

x0
,
x3

x0

)

for x = t(x0, x1, x2, x3) ∈ S3. The ‘light source’ of the gnomonic projectionG is the origin of
R4, and its ‘screen’ is the hyperplane x0 = 1 in R4. The projectionG maps a geodesic in S3

into a line in R3. Moreover, it maps an extrinsically flat surface in S3 into a flat surface in R3.
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On the other hand, the ‘gnomonic projection’ for H 3 can also be considered. The hyperbolic
3-space H 3 is regarded as the Minkowski model in the Lorentz-Minkowski space R4

1, i.e.,

H 3 = {t(x0, x1, x2, x3) ∈ R4
1 ; 〈x, x〉 = 1, x0 > 0} ,

where the Lorentz inner product of R4
1 is defined by

〈x, y〉 := −x0y0 + x1y1 + x2y2 + x3y3

for x = t(x0, x1, x2, x3), y = t(y0, y1, y2, y3) ∈ R4
1. The projection G : H 3 → B3 ⊂ R3

defined by the same equality (2.1) maps a geodesic in H 3 into a line in R3, and an extrinsically
flat surface in H 3 into a flat surface in R3. Here, B3 is the open unit ball whose center is the
origin of R3. So-called Klein model is the model of H 3 realized as the open ball B3 in R3.
Consequently, through the two gnomonic projections, H 3 can be realized in R3, and R3 can
be realized in S3. These inclusions say that Theorem 1.2 for H 3 and Theorem 1.1 follow from
Theorem 1.2 for S3.

REMARK 2.1. The cases of R3 and H 3 can be also proven directly in the same man-
ner as that of S3. In fact, the author showed them individually in the earlier version of this
paper. The author appreciates referee’s comment that the extrinsic flatness of surfaces in 3-
dimensional spaceforms is preserved under the gnomonic projections.

From now on, we consider the case of S3. Let γ : S1 → S3 be a Cω-regular knot. We
may assume that γ (s) is regarded as the curve γ = γ (s) : R → S3 having the arc-length
parameter s and l-periodicity, i.e., γ (s + l) = γ (s) for s ∈ R, where l > 0. The tangent
bundle T S3 can be regarded as

TxS
3 = {v ∈ R4 ; x · v = 0} ⊂ R4

for each x ∈ S3, where the dot is the standard inner product in R4. We denote byD the Levi-
Civita connection of S3. If the curvature function κ(s) := |Dsγ ′(s)| of γ does not vanish, then
we can take the Frenet frame {e,n, b} and the torsion function τ of γ , where |v| := √

v · v
for v ∈ T S3. In fact,

e := γ ′, n := Dsγ
′

κ
, b := e ×γ n , τ := −(Dsb) · n

are the unit tangent vector field, the normal vector field, the binormal vector field and the
torsion function of γ , respectively. Here, the cross ×x : TxS3 × TxS

3 → TxS
3 for each

x ∈ S3 is an alternating (1, 2)-form on TxS3 such that

(v ×x w) · c = det(x, v,w, c)

for v,w, c ∈ TxS
3. Although the Frenet frame does not exist on the zeros of κ , the knot γ

is now real-analytic, and hence we can define an ‘extended’ Frenet frame on R as follows:
Suppose that there exists a point s = s0 such that κ(s0) �= 0. We denote all the zeros of κ(s)
by

0 ≤ s1 < s2 < · · · < sr < l .
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For each k = 1, 2, . . . , r , there exist a positive integer Nk and a Cω-vector field ϕk = ϕk(s) :
Ik → T S3 along γ such that

γ ′(s)×γ (s) Dsγ
′(s) = (s − sk)

Nkϕk(s) (ϕk(sk) �= 0)

for s ∈ Ik , where Ik is an open interval containing s = sk . We set

b̂(s) := (−1)N1+···+Nk ϕk(s)
|ϕk(s)|

on each Ik . Then, b̂(s) is equal to either b(s) or −b(s) for s ∈ Ik \ {sk}. We remark that b̂(s)

may change to the opposite direction as it goes around γ once. We set

n̂ := b̂ ×γ e , κ̂ := (Dse) · n̂ , τ̂ := −(Ds b̂) · n̂ .
The orthonormal Cω-frame {e, n̂, b̂} is called the extended Frenet frame of γ . Similarly, κ̂
and τ̂ are called an extended curvature function and an extended torsion function, respectively.
Then, the modified Frenet formula

(2.2) Dse = κ̂n̂ , Ds n̂ = −κ̂e + τ̂ b̂ , Ds b̂ = −τ̂ n̂
holds. We remark that there exists an orthonormalCω-frame satisfying the formula (2.2) even
if κ vanishes everywhere. In this case, we have κ̂ = τ̂ = 0. For each point s where κ(s) �= 0,
we have

n̂(s) = δ(s)n(s) , b̂(s) = δ(s)b(s) ,

where δ := κ̂/κ(= ±1) is a locally constant function. Although κ̂ is not equal to κ , the
extended torsion function τ̂ is equal to the torsion function τ if κ �= 0. Therefore, we do not
distinguish τ and τ̂ below and τ̂ is called the torsion function for short.

We explain definitions of closed strips and their twisting numbers. Let γ = γ (s) : R →
S3 be a Cω-regular knot with arc-length parameter s, and let ξ = ξ(s) : R → T S3 be a
Cω-vector field along γ . We assume that γ (s) is l-periodic and ξ(s) is linearly independent
of γ ′(s) for each s ∈ R. We define a C∞-map Fγ,ξ : R × (−ε, ε) → S3 ⊂ R4 by

(2.3) Fγ,ξ (s, u) := γ (s) cosu+ ξ(s)

|ξ(s)| sin u ,

where ε > 0. Since for each s = s0 ∈ R the curve u → Fγ,ξ (s0, u) is a geodesic in S3, the
map Fγ,ξ is a ruled surface. The ruled surface Fγ,ξ is called a closed strip if ξ(s) is either
l-periodic, i.e., ξ(s + l) = ξ(s) for s ∈ R, or l-odd-periodic, i.e., ξ(s + l) = −ξ(s) for s ∈ R.
The knot γ (s) is called the generating curve of Fγ,ξ and ξ(s) is called the ruling vector field
of Fγ,ξ . When a positive number ε is taken sufficiently small, Fγ,ξ can be a Cω-embedding.
We fix such a number ε > 0. Let B be the boundary of the image of Fγ,ξ . The number of
the connected components of B is one or two. We assign the orientation compatible with γ to
each connected component of B. Then,

(2.4) Mtn(Fγ,ξ ) := 1

2
Link(γ, B) ∈ (1/2)Z
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is called the topological twisting number, or the twisting number for short, of Fγ,ξ , where
Link(γ, B) is the sum of linking numbers of all (one or two) connected components of B (cf.
[12, Definition 3], [7]).

We normalize the ruling vector ξ(s) for each s ∈ R such that the projection of ξ(s) into
the normal plane at the point γ (s) is a unit vector, i.e.,

(2.5) |e(s)×γ (s) ξ(s)| = 1 (s ∈ R) ,

where the normal plane is the plane perpendicular to e(s). The vector field ξ(s) can be ex-
pressed as a linear combination of {e, n̂, b̂} by

(2.6) ξ(s) = p(s)e(s)+ cos θ(s)n̂(s)+ sin θ(s)b̂(s) ,

where p(s) and θ(s) are Cω-functions. Then, there exists an integerm such that

θ(s + l) = θ(s)+mπ .

The number m/2 is called the geometric twisting number of Fγ,ξ and denoted by Gtn(Fγ,ξ ).
One can easily check that the topological twisting number and geometric twisting number of
Fγ,ξ satisfy

(2.7) Mtn(Fγ,ξ ) = Mtn(Fγ,n̂)+ Gtn(Fγ,ξ ) .

The number Mtn(Fγ,n̂) can be regarded as the twisting number of the extended Frenet frame
of γ . Therefore, the geometric twisting number represents the difference between the topo-
logical twisting number of the strip Fγ,ξ and that of the extended Frenet frame.

REMARK 2.2. The number Mtn(Fγ,n̂) coincides with the invariant λγ in Theorems
1.1 and 1.2, i.e., λγ = Mtn(Fγ,n̂). This is discussed in Sections 3 and 4.

REMARK 2.3. If κ never vanishes on R, i.e., Zκ = ∅, then the Frenet frame of γ can
be defined globally, and hence the strip Fγ,n̂ is orientable. Moreover, its twisting number
Mtn(Fγ,n̂) is equal to the self-linking number SL(γ ). Here, the self-linking number SL(γ ) of
γ is defined by the linking number between γ (s) itself and the knot γ (s) + ε0n(s) (s ∈ S1),
where ε0 > 0 is sufficiently small ([10], see also [12]). Consequently, by Remark 2.2, if Zκ is
empty, then λγ in Theorems 1.1 and 1.2 is equal to the self-linking number, i.e., λγ = SL(γ ).

At the end of this section, we formulate a necessary and sufficient condition of the
extrinsic flatness of strips by using the expression (2.6). A closed strip Fγ,ξ is extrinsi-
cally developable if and only if det(γ, γ ′, ξ, ξ ′) = 0 on R, where ξ ′ is the derivative of
ξ : R → T S3 ⊂ R4 as an R4-valued function. By (2.2), the equality

(γ, γ ′, ξ, ξ ′) = (γ, e, n̂, b̂)

⎛
⎜⎜⎝

1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 cos θ pκ̂ − (θ ′ + τ̂ ) sin θ
0 0 sin θ (θ ′ + τ̂ ) cos θ

⎞
⎟⎟⎠

holds, where the asterisks are certain real numbers. So, the extrinsic flatness is equivalent to

(2.8) θ ′ = pκ̂ sin θ − τ̂
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(cf. [2, p. 35]). We remark that the sign of the definition (1.1) of the torsion function of γ is
opposite to that in [2]

3. Non-existence of extrinsically developable closed strips. Let γ = γ (s) : R →
S3 be a Cω-regular knot. We suppose that the torsion function τ̂ (s) of γ is non-negative.
Then, we prove that the twisting number of a extrinsically developable closed strip Fγ,ξ on
γ must be less than or equal to λγ := Mtn(Fγ,n̂) (remind Remark 2.2). By (2.7), this is
equivalent to the geometric twisting number Gtn(Fγ,ξ ) being non-positive. If the curvature
function of γ does not vanish, this assertion follows from the proof of [2, Theorem 2.4]. In
this section, we show that a discussion similar to [2] can be applied for an arbitraryCω-regular
knot whose curvature function might vanish.

LEMMA 3.1 ([2]). Let γ (s) be a Cω-regular knot in S3. If its torsion function τ̂ is
non-negative, the geometric twisting number of a closed extrinsically developableC∞-regular
strip Fγ,ξ on γ must be non-positive.

PROOF. Suppose that the geometric twisting number Gtn(Fγ,ξ ) is positive. The ruling
vector field ξ is normalized as in (2.5) and expressed by (2.6). Since Gtn(Fγ,ξ ) > 0, the
integer m satisfying θ(s + l) = θ(s) + mπ is positive. We may assume 0 < θ(0) ≤ π by
replacing ξ(0) with −ξ(0), if necessary. Moreover, we suppose 0 < θ(0) < π by a parallel
shift of the parameter s. Since θ(l) = θ(0)+mπ > π , we take the first point s = s1 ∈ (0, l)
where θ(s) is equal to π , and choose a point s = s0 such that 0 < θ(s) < π for s ∈ [s0, s1).
Then, for each s ∈ [s0, s1), we have∫ s

s0

p(s)κ̂(s)ds =
∫ s

s0

θ ′(s)+ τ̂ (s)

sin θ(s)
ds ≥

∫ s

s0

θ ′(s)
sin θ(s)

ds

= log

(
tan

θ(s)

2

)
− log

(
tan

θ(s0)

2

)
by (2.8). Therefore, when s approaches s1 from below, this left-hand side converges to a finite
value, but this right-hand side diverges to positive infinity. This is a contradiction. �

4. Constructions of extrinsically developable closed strips. We suppose that the
torsion function of a given Cω-regular knot γ (s) has a negative value. Let {e, n̂, b̂} be the ex-
tended Frenet frame, κ̂ the extended curvature function and τ̂ the torsion function of γ . Then,
we prove that for each n ≥ λγ := Mtn(Fγ,n̂) (n ∈ (1/2)Z), there exists an extrinsically de-
velopable Cω-regular strip Fγ,ξ along γ such that its topological twisting number Mtn(Fγ,ξ )
is equal to n (remind Remark 2.2). By (2.7), this is equivalent to constructing an extrinsically
developableCω-regular strip Fγ,ξ such that its geometric twisting number Gtn(Fγ,ξ ) is equal
to an arbitrary non-negative numberm/2 (m ∈ Z).

We fix an arbitrary non-negative integerm. We set

Θω := {θ ∈ Cω(R) ; θ(s + l) = θ(s)+mπ (s ∈ R)} ,
where Cω(R) is the set of the Cω-functions on R. We would like to take an appropriate Cω-
function θ(s) ∈ Θω such that the equation (2.8) is satisfied for a certain Cω-function p(s) on
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R. If the vector field ξ(s) is defined by (2.6), the closed strip Fγ,ξ is extrinsically developable.
We suppose that θ ∈ Θω is taken in an appropriate manner. If κ̂(s) sin θ(s) does not vanish,
such a function p(s) is determined by

(4.1) p(s) := θ ′(s)+ τ̂ (s)

κ̂(s) sin θ(s)
.

Then, the extrinsically flat condition (2.8) holds. Therefore, we wish to choose a function
θ ∈ Θω so that the right-hand side of (4.1) converges to a finite number when κ̂(s) sin θ(s)
approaches zero. If s = s0 is a zero point of κ̂(s) (resp. τ̂ (s)), then we denote its multiplicity
(see Appendix A) by N (resp. M). If s = s0 is not a zero point of κ̂(s) (resp. τ̂ (s)), then we
define N = 0 (resp.M = 0).

We would like to take a function θ ∈ Θω such that the following conditions (A) and (B)
are satisfied at any point s = s0 where κ̂(s) sin θ(s) vanishes:

(A) If θ(s0) is not an integer multiple of π , then

θ(k+1)(s0) = −τ̂ (k)(s0) (0 ≤ k ≤ N − 1) ,

(B) if θ(s0) is an integer multiple of π , then

θ ′(s0) = · · · = θ(M)(s0) = 0 (if M > 0) ,

θ (M+1)(s0) = −τ̂ (M)(s0), . . . , θ (M+N+1)(s0) = −τ̂ (M+N)(s0) .

When θ ∈ Θω satisfies these conditions, p(s) is real-analytic on R and satisfies (2.8). In fact,
suppose that κ̂(s) sin θ(s) vanishes at s = s0. In the case that θ(s0) is not an integer multiple
of π , i.e., in the case of the condition (A), we obtain

θ(k+1)(s0)+ τ̂ (k)(s0) = κ̂ (k)(s0) = 0 (0 ≤ k ≤ N − 1)

and κ̂ (N)(s0) �= 0. Since we have

lim
s→s0

θ ′(s)+ τ̂ (s)

κ̂(s) sin θ(s)
= 1

sin θ(s0)

θ(N+1)(s0)+ τ̂ (N)(s0)

κ̂(N)(s0)
,

p(s) defined by (4.1) has the limit as s tends to s0. Hence, p(s) is real-analytic at s = s0. On
the other hand, when θ(s0) is an integer multiple of π , i.e., in the case of the condition (B),
we obtain

dk(κ̂ sin θ)

dsk

∣∣∣∣
s=s0

= 0 (0 ≤ k ≤ M +N)

and

dM+N+1(κ̂ sin θ)

dsM+N+1

∣∣∣∣
s=s0

=
(
M +N + 1

N

)
κ̂ (N)(s)(sin θ(s))(M+1)|s=s0

= − cos θ(s0)

(
M +N + 1

N

)
κ̂ (N)(s0)τ̂

(M)(s0) �= 0 .

Therefore, the limit as s tends to s0 of p(s) exists, so p(s) is real-analytic at s = s0. Consid-
ering the above, we prove the following assertion.
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LEMMA 4.1. Let γ (s) be a Cω-regular knot in S3. If its torsion function τ̂ (s) has
a negative value, then for each non-negative integer m, there exists a closed extrinsically
developable Cω-regular strip on γ whose geometric twisting number is equal to m/2.

PROOF. Let s = s0 be a negative value of τ̂ (s). We denote by t1, t2, . . . , tr ∈ [0, l) all
the zeros of the extended curvature function κ̂(s) of γ and by N1, N2, . . . , Nr their multiplic-
ities. We may sort them so that t1 < t2 < · · · < tr . Moreover, since κ(s) does not vanish at
s = s0, we may assume 0 < t1 < t2 < · · · < tr < s0 < l by a parallel shift of the parameter
s, if necessary. We take a sufficiently small open interval neighborhood (a, b) of s = s0, such
that τ̂ (s) is negative on (a, b) and the interval (a, b) contains none of s = t1, t2, . . . , tr nor
s = l. We choose m arbitrary points from (a, b) and denote these points by s1, s2, . . . , sm
(a < s1 < s2 < · · · < sm < b). We would like to take a function θ(s) ∈ Θω with the
following properties:

(1) θ(s + l) = θ(s)+mπ for s ∈ R,
(2) 0 < θ(th) < π and θ(k+1)(th) = −τ̂ (k)(th) for each 1 ≤ h ≤ r and each 1 ≤ k ≤

Nh − 1,
(3) θ(sh) = hπ, θ ′(sh) = −τ̂ (sh) for each 1 ≤ h ≤ m,
(4) 0 < θ(s) < π for 0 ≤ s ≤ a, and mπ < θ(s) < (m+ 1)π for b ≤ s ≤ l,
(5) θ ′(s) > 0 for a < s < b.
If we can find such a function θ(s), the points where θ(s) are integer multiples of π in

[0, l) are only the m points s = s1, . . . , sm by (3), (4) and (5). Therefore, the vanishing points
of κ̂(s) sin θ(s) are only s = t1, . . . , tr and s = s1, . . . , sm. By (2), at s = th (1 ≤ h ≤ r),
the condition (A) is satisfied (N = Nh in this case). Also, by (3), at s = sh (1 ≤ h ≤ m), the
condition (B) is satisfied (N = M = 0 in this case). Hence, we can conclude the proof if such
a function θ(s) is found.

Let us construct θ(s) ∈ Θω such that (1) through (5) holds. Now, there obviously exists
a function θ(s) satisfying (1) through (5) such that it is of class C∞. We desire, however, a
real-analytic one. We denote by θ̃ (s) such a C∞-function θ(s). Then, we set

ϕ(s) := θ̃ (s)− mπ

l
s .

The C∞-function ϕ(s) is l-periodic. We replace s1, . . . , sm with tr+1, . . . , tr+m and put

ν1 := N1 + 1 , ν2 := N2 + 1, . . . , νr := Nr + 1 , νr+1 := νr+2 := · · · := νr+m := 2 .

We apply Lemma A.4 for the C∞-function ϕ(s), the points t1, . . . , tr+m and the positive inte-
gers ν1, . . . , νr+m. Then, we obtain a sequence {ϕq}∞q=1 of l-periodicCω-functions satisfying

ϕ(k)q (th) = ϕ(k)(th) (1 ≤ k ≤ Nh)

for each 1 ≤ h ≤ r and

ϕq(sh) = ϕ(sh) , ϕ′
q(sh) = ϕ′(sh)
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for each 1 ≤ h ≤ m, such that {ϕq} converges uniformly to ϕ on R and {ϕ′
q} also converges

uniformly to ϕ′. For each q ∈ N , a Cω-function θq on R is defined by

θq(s) := ϕq(s)+ mπ

l
s ,

and then θ = θq satisfies (1) through (3). Moreover, since θq and θ ′
q converge uniformly to θ̃

and θ̃ ′, respectively, we can take a sufficient large natural number q = q0 such that θ = θq0

also satisfies (4) and (5). We can construct θ = θq0 ∈ Θω satisfying the conditions (A) and
(B). Therefore, the assertion holds. �

REMARK 4.2. A technique to construct a Cω-function from a C∞-function, while
keeping some of the given properties (1) through (5) in the proof of Lemma 4.1, is a key point
of this proof. Although a similar technique is used in Kurono-Umehara [7, Proposition 4.3],
Lemma A.4 of Appendix A is a generalization of their discussion.

PROOF OF THEOREMS 1.1 AND 1.2. Since the extrinsic flatness of surfaces in space-
forms is preserved under gnomonic projections, the cases of H 3 and R3 follow from that
of S3 (see Remark 2.1). For a given knot γ , we set λγ := Mtn(Fγ,n̂). Then, by (2.7), the
topological twisting number Mtn(Fγ,ξ ) of a close strip Fγ,ξ is equal to λγ if and only if
the geometric twisting number Gtn(Fγ,ξ ) is equal to zero. So, Lemma 3.1 implies (1) and
(3)–(ii) of Theorems 1.1 and 1.2. Also, Lemma 4.1 implies (2) and (3)–(i). We obtain the
assertions. �

We show two examples of flat strips along γ in R3.

EXAMPLE 4.3 ([15]). The map Fγ,ξ (t, u) = γ (t)+ uξ(t) defined by

γ (t) := 1

9 + 4t2 + 4t4 + t6

⎛
⎝ 9t + 6t3 + 3t5

12t + 6t3

−72/5

⎞
⎠ , ξ(t) := τ (t)

κ(t)
e(t)+ b(t)

for t ∈ R∪{∞} gives a rectifying Möbius strip, where κ , τ , e and b are the curvature function,
the torsion function, the unit tangent vector and the binormal vector of γ , respectively. The
zeros of κ is only t = ∞. Since τ (0) is positive and τ (1) is negative, there exists a devel-
opable closed strip containing γ whose topological twisting number is an arbitrary number
n ∈ (1/2)Z by (2) of Theorem 1.1.

EXAMPLE 4.4. We consider the regular curve

γ (t) := 1

5

⎛
⎝ 5 cos t − cos t cos 5t

5 sin t − sin t cos 5t
sin 5t

⎞
⎠ (0 ≤ t < 2π) ,

which twists five times per turn on a torus. We can prove that the curvature function and
the torsion function of γ are both positive by using interval arithmetics. We have λγ =
Mtn(Fγ,n) = 5, where n is the normal vector field of γ . Hence, there exists a developable
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closed strip containing γ whose topological twisting number is less than or equal to five, but
there does not exist one whose topological twisting number is greater than five.

When γ is a C∞-regular knot in R3, an assertion similar to Theorem 1.1 was proven by
Røgen [12]. Strictly speaking, he classified the topologies of developable closed strips along
a given C∞-knot γ in R3 satisfying the following conditions; the curvature function κ of
γ vanishes only on a union of finite numbers of points and finite numbers of intervals, and
the torsion function of γ converges to zero whenever κ approaches zero. His result can be
generalized for 3-dimensional spaceforms as follows:

PROPOSITION 4.5. Theorem 1.2 is also true for a C∞-regular knot γ satisfying the
above conditions. The constructed closed strip corresponding to (2) and (3)–(i) in Theorem
1.2 is of class C∞.

It suffices to prove the assertion in the case of S3. Let γ = γ (s) : S1 → S3 ⊂ R4 be
a C∞-regular knot with the above conditions. Suppose that there exists a point s = s0 where
the curvature function κ(s) does not vanish and the torsion function τ (s) is negative. Then,
an extrinsically developable closed strip along γ is constructed by two parts, i.e., a twisting
part and the rest of the strip, as follows:

(a) We take a sufficiently small open interval I = (s0 − δ, s0 + δ) (δ > 0), on which
κ(s) does not vanish and τ (s) is negative. Let n ∈ (1/2)Z be an arbitrary non-
negative number. By the discussions of Theorems 1.1 and 1.2, there exists a (non-
closed) extrinsically developableC∞-regular strip along γ (I) such that the ‘twisting
number’ is equal to n. Here, the ‘twisting number’ is the number

1

2π
(θ(s0 + δ)− θ(s0 − δ)) ,

where θ(s) is defined by (2.6) for the Frenet frame {e,n, b} of γ .
(b) An extrinsically developable strip on the remainder γ (S1 \ I) is constructed as fol-

low: Let V be a unit normalC∞-vector field on S1 \ I which is parallel with respect
to the normal connection of γ , i.e., DsV (s) is linearly dependent of the unit tangent
vector e(s) at each point. Here, D is the Levi-Civita connection of S3. For an arbi-
trary fixed point s = s1 ∈ S1 \ I , the vector field V is determined by the initial value
V (s1). Then, the strip Fγ,V : (S1 \ I)× (−ε, ε) → S3 ⊂ R4 defined by

Fγ,V (s, u) := γ (s) cosu+ V (s) sinu (s ∈ S1 \ I, |u| < ε)

is extrinsically developable, where ε > 0 is sufficiently small.
Although the ruling vectors at both ends of these two strips do not coincide in general,

the two strips can be joined smoothly by the following lemma:

LEMMA 4.6. Let J = [a, d], J1 := [a, c] and J2 := [b, d] (a < b < c < d) be closed
intervals, and γ : J → S3 ⊂ R4 a C∞-regular space curve. Suppose that two C∞-regular
extrinsically developable strips Fγ (Jk),ξk defined by (2.3) along γ (Jk) (k = 1, 2) satisfy

(1) the curvature function κ of γ does not vanish on γ (J1 ∩ J2),
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(2) the ruling vectors ξk(s) (k = 1, 2) do not contain the osculating plane of γ (s) for
each s ∈ J1 ∩ J2, where the osculating plane is the plane spanned by the tangent
vector and the principal normal vector of γ .

Then, there exists a C∞-regular extrinsically developable strip Fγ,ξ satisfying either

ξ(s) =
{
ξ1(s) (s ∈ J1 \ J2) ,

ξ2(s) (s ∈ J2 \ J1) ,
or ξ(s) =

{
ξ1(s) (s ∈ J1 \ J2) ,

−ξ2(s) (s ∈ J2 \ J1) .

To apply this lemma, we must slightly enlarge the intervals I and S1 \ I and denote them
by J1 and J2. Moreover, to satisfy the above two conditions (1) and (2), the strip Fγ (S1\I ),V
can be deformed a little by changing the initial value V (s1), if necessary.

PROOF OF LEMMA 4.6. On J1 ∩ J2 the two ruling vector fields ξk (k = 1, 2) can be
expressed by the linear combination of the Frenet frame {e,n, b} of γ as

ξk(s) = pk(s)e(s)+ cos θk(s)n(s)+ sin θk(s)b(s) (s ∈ J1 ∩ J2) .

We may assume that 0 < θ1(s), θ2(s) < π (s ∈ J1 ∩J2) by reversing the direction of ξ2(s), if
necessary. Let {ϕ1, ϕ2} be a partition of unity subordinate to {J1, J2}. We set the C∞-function

θ(s) := ϕ1(s)θ1(s)+ ϕ2(s)θ2(s) (s ∈ J1 ∩ J2) .

For s ∈ J1 ∩ J2, the functions p(s) and ξ(s) are defined as in (4.1) and (2.6), respectively.
Then, Fγ,ξ is extrinsically developable. �

PROOF OF PROPOSITION 4.5. If the torsion function τ of γ takes both sign, a con-
structed closed strip on γ is divided into a part of τ < 0, a part of τ > 0 and the rest of the
strip. For example, in the part of τ < 0, we can construct a developable strip along γ so that it
twists clockwise across the osculating plane of γ . By the above discussion (a), (b) and Lemma
4.6, we obtain the assertion corresponding to (2) and (3)–(i). On the other hand, suppose that
τ is non-positive on S1 \ Zκ , where Zκ is the zero of κ . By Lemma 3.1, any extrinsically
developable strip along γ (S1 \ Zκ) can not be twisted anti-clockwise across the osculating
planes of γ . Moreover, such a strip along γ (Zκ) is contained in totally geodesic surfaces in
S3. Since the limit of the principal normal vector n(s) of γ as s tends to the boundary of
S1 \ Zκ exists, (1) and (3)–(ii) hold. �

Finally, in Theorems 1.1 and 1.2, we consider the case that finitely many ruling vectors
are arbitrarily prescribed. An extrinsically flat strip along γ having the prescribed ruling
vectors can also be constructed as well as that of the theorems. The number λγ , determined
by γ , does not change under generic choices of the ruling vectors, and the following assertion
holds:

COROLLARY 4.7. Let X3 be a 3-dimensional spaceform, i.e., X3 = S3, R3 or H 3,
and γ = γ (s) : S1 → X3 a Cω-regular knot whose torsion function τ̂ has a negative
value. Take finite points c1, c2, . . . , ch ∈ S1 and tangent vectors {ξk ∈ Tγ (ck)X

3}hk=1. Sup-
pose that for each k = 1, 2, . . . , h, the vector ξk is not parallel to γ ′(ck) and is not per-
pendicular to b̂(ck). Then, for each n ∈ (1/2)Z satisfying n ≥ λγ := Mtn(Fγ,n̂), there
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exists a closed extrinsically developable Cω-regular strip Fγ,ξ on γ such that ξ(ck) ∈ {±ξk}
(k = 0, 1, 2, . . . , h) and Mtn(Fγ,ξ ) = n.

PROOF. For each k = 1, 2, . . . , h, we may normalize ξk so that |e(ck) ×γ (ck) ξk| = 1.
If necessary, the direction of ξk is reversed. Then, ξk can be expressed by

ξk = pke(ck)+ cos θkn̂(ck)+ sin θkb̂(ck) (pk ∈ R, θk ∈ [0, π)) .
Since ξk is not perpendicular to b̂(ck), we have θk �= 0. We take an open interval (a, b) ⊂
(0, l) which contains neither c1, . . . , ch nor the zeros t1, . . . , tr of κ . Without loss of general-
ity, we may assume that 0 < c1, . . . , ch, t1, . . . , tr < a is satisfied. Let s1 < · · · < sn be n
points in (a, b). By Lemma A.4, we can take a Cω-function θ ∈ Θω satisfying the properties
(1) through (5) in the proof of Lemma 4.1, and the following properties (6), (7):

(6) θ(ck) = θk (k = 1, 2, . . . , h),
(7) lims→ck p(s) = pk (k = 1, 2, . . . , h), where p(s) is defined by (4.1).

In fact, the property (7) is equivalent that θ(Ñk+1)(ck) satisfies

θ(Ñk+1)(ck) = pkκ
(Ñk)(ck) sin θk − τ̂ (Ñk)(ck) ,

where Ñk is the multiplicity of the zero point s = ck of κ̂ if κ̂(ck) = 0 (resp. Ñk = 0 if
κ̂(ck) �= 0). By Lemma A.4, there exists {θq}∞q=1 ⊂ Φω such that θq satisfies (1) through
(3), (6) and (7) for each positive integer q , and θq0 satisfies (4) and (5) for a sufficiently large
positive integer q = q0. If we set θ := θq0 , then the closed strip Fγ,ξ defined by (2.3) and (2.6)
is a Cω-regular extrinsically developable strip and has a required twisting number. Moreover,
its ruling vector field ξ(s) is parallel to ξk at s = ck for each k = 1, 2, . . . , h. �

We remark the condition “ξk is not perpendicular to b̂(ck)” is not essential. In fact, even
if θk = 0 for some k = 1, 2, . . . , h, we can construct a Cω-regular extrinsically developable
strip so that ξ(ck) ∈ {±ξk} (k = 0, 1, 2, . . . , h). However, the number λγ might depend on
the choices of ck and ξk .

Appendix A. Chebyshev spaces. We recall Chebyshev spaces (cf. Thorbergsson-
Umehara [14]). Let C∞(R) be the function space of class C∞ on R. If a zero t = t0 of
ϕ(t) ∈ C∞(R) satisfies

(A.1) ϕ(t0) = ϕ′(t0) = · · · = ϕ(μ−1)(t0) = 0, ϕ(μ)(t0) �= 0 ,

μ is called the order or multiplicity of ϕ at t = t0.

DEFINITION A.1 ([14]). A linear subspace A of C∞(R) is called a Chebyshev space
of order n if it has the following:

(1) dimA ≥ n.
(2) If n is an odd number, each ϕ ∈ A \ {0} is 2π-periodic, i.e., ϕ(t + 2π) = ϕ(t) for

t ∈ R. Moreover, ϕ ∈ A has at most n − 1 zeros counted with multiplicities, when
it is regarded as a function on R/2πZ.
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(3) If n is an even number, each ϕ ∈ A\{0} is 2π-odd-periodic, i.e., ϕ(t+2π) = −ϕ(t)
for t ∈ R. Moreover, ϕ ∈ A has at most 2(n− 1) zeros counted with multiplicities,
when it is regarded as a function on R/4πZ.

EXAMPLE A.2 (cf. [14]). For N ∈ N ,

A2N+1 :=
{
ϕ ∈ C∞(R) ; ϕ(t) = a0 +

N∑
k=1

(ak cos kt + bk sin kt)

}

is a Chebyshev space of order 2N + 1. Similarly,

A2N :=
{
ϕ ∈ C∞(R) ; ϕ(t) =

N∑
k=1

(
ak cos

(
(2k − 1)t

2

)
+ bk sin

(
(2k − 1)t

2

))}

is a Chebyshev space of order 2N .

The following lemma means that a Chebyshev space of order n is isomorphic to Rn. In
particular, (1) of Definition A.1 can be replaced by the condition dimA = n.

LEMMA A.3 (cf. [4], [14]). Let A ⊂ C∞(R) be a Chebyshev space of order n. Take
r (≤ n) arbitrary points t1, t2, . . . , tr satisfying 0 ≤ t1 < t2 < · · · < tr < 2π and r positive
integers ν1, . . . , νr satisfying ν1 + · · · + νr = n. Then, the linear map T : A → Rn defined
by

T (ϕ) := (jν1−1ϕ(t1), j
ν2−1ϕ(t2), . . . , j

νr−1ϕ(tr ))

is an isomorphism, where jkϕ(t) is the k-jet of ϕ of t , i.e.,

jkϕ(t) := (ϕ(t), ϕ′(t), ϕ′′(t), . . . , ϕ(k)(t))

for each non-negative integer k.

PROOF. We suppose that ϕ ∈ A satisfies T (ϕ) = 0. Then, ϕ has at least n zeros
with multiplicities unless ϕ vanishes identically. This is a contradiction by the definition of
Chebyshev spaces, so ϕ = 0. Therefore, the linear map T is injective. Moreover, T is bijective
by the condition dimA ≥ n. �

We consider a method to approximate a C∞-function by Cω-functions while fixing the
jets at given points. The next lemma is used in the proof of Lemma 4.1 in order to control jets
and to construct a required Cω-function.

LEMMA A.4. Let ϕ(t) be a 2π-periodic C∞-function. Let t1, t2, . . . , tr be r points
satisfying 0 ≤ t1 < t2 < · · · < tr < 2π and ν1, . . . , νr be positive integers. Then, there exists
a sequence {ϕq}∞q=1 of 2π-periodic Cω-functions such that

jνi−1ϕq(ti) = jνi−1ϕ(ti ) (1 ≤ i ≤ r)

for each q ∈ N and {ϕ(k)q }∞q=1 converges uniformly to ϕ(k) on R for each k ∈ N .

PROOF. We may assume that the equality ν1 + · · · + νr = 2N + 1 holds for some
N ∈ N by replacing νr + 1 with νr , if necessary. We set A := A2N+1. The linear map
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T : A → R2N+1 as in Lemma A.3 gives an isomorphism. A 2π-periodic Cω-function b(t)
is defined by T (b) = (jνi−1ϕ(ti ))1≤i≤r . Then, there exists a 2π-odd-periodic C∞-function
ψ(t) such that

ϕ(t) = b(t)+
( r∏
i=1

sinνi
(
t − ti

2

) )
ψ(t) .

Actually, for each i = 1, . . . , r , we have the equalities

lim
t→ti

(ϕ − b)(k)(t) = lim
t→ti

dk

dtk

(
sinνi

(
t − ti

2

))
= 0 (k = 0, 1, . . . , νi − 1)

and

lim
t→ti

dνi

dtνi

(
sinνi

(
t − ti

2

))
= νi !

2νi
�= 0 .

Moreover, sin((tl−ti)/2) does not vanish if l �= i, soψ(t) is even smooth at t = ti . Then, there
exists a sequence {ψq}∞q=1 of 2π-odd-periodic Cω-functions such that {ψ(k)q }∞q=1 converges

uniformly to ψ(k) on R for each k ∈ N . Therefore, we set

ϕq(t) = b(t)+
( r∏
i=1

sinνi
(
t − ti

2

))
ψq(t) ,

and then {ϕ(k)q }∞q=1 converges uniformly to ϕ(k) on R. Moreover, we have

jνi−1ϕq(ti) = jνi−1b(ti) = jνi−1ϕ(ti) (1 ≤ i ≤ r)

for each q ∈ N . �
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