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Abstract. Let S be a complex nonsingular minimal projective surface of general type
with ¢ (S) = 2, and let G be the group of the automorphisms of S acting trivially on H 23, 0).
In this note we classify explicitly pairs (S, G) with G of order four.

Introduction. Let S be a complex minimal nonsingular projective surface of general
type, and let G C AutS be the subgroup of automorphisms of S inducing trivial actions
on H%(S, Q). In [Cal], we proved that |G| < 4 provided x (Og) > 188. In this note, we
continue the classification of the pairs (S, G) with |G| = 4, started in [Ca2]. Whereas there
we considered the case g(S) > 3, here we study the case ¢(S) = 2. Our main result is the
following.

THEOREM 0.1 (Theorems 2.3 and 3.1). Let S be a complex nonsingular minimal pro-
Jective surface of general type with q(S) = 2. Assume that there is a subgroup G C AutS,
of order 4, acting trivially in H*(S, Q). If pg(S) > 61, then S is isogenous to a product of
curves; in particular, it satisfies K% = 8x(Os). Explicitly, the pair (S, G) is as in one of
Examples 1.1, 1.2 and 1.3.

NOTATIONS. We use standard notations as in [Ha].
For a finite Abelian group G, we denote by G the character group of G. For a represen-
tation V of G and a character x € G, we let

Vé:{veV; g-v=x(g)vforall g € G}.

If G is a cyclic group generated by o, we shall also use the notation V¢ to denote VC);(, where
¢ = x (o). If moreover o is of order two, V! is also denoted by V.
The symbol Z,, denotes the cyclic group of order n.

Acknowledgments. 1 am grateful to the referee for his helpful suggestions.

1. Examples. In this section, we construct explicitly pairs (S, G) with |G| = 4,
where S is a complex nonsingular minimal projective surface of general type with g (S) = 2
and G is the subgroup of automorphisms of § acting trivially on H2(S, Q). These surfaces
are isogenous to products of curves; in particular, they satisfy K2 = 8 (Os).
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EXAMPLE 1.1 (G =~ Z?Z). Let B be a hyperelliptic curve of genus § and t the hy-
perelliptic involution of B. Suppose there is a curve F of genus g = 3 with involutions ¢, o
and o3 r such that

(i) the subgroup of AutF generated by ¢, o1 and o2 is isomorphic to 2?3;

(i) ¢ has no fixed points;

(iii) fori = 1and 2, ojF induces the identity on HO(2}),".

Let S = (B x F)/{(t xt),and  : B x F — S the quotient map. Then S is a smooth
surface with py(S) = 7, ¢(S) =2 and K3 = 8(§ — 1).

Let o; be the automorphism of § induced by idj X ojF € Aut(l§ x F). We have that the
group G generated by o; (i = 1 and 2) is isomorphic to Z;ez and acts trivially on H2(S, Q).
Indeed, (iii) implies that (id ; x 0;)* = idon H'(B)® H' (F);” and hence on H*(B x F)!,.
Since 7* : H(S) — H2(B x F)iXt is an isomorphism and 7* o 0" = (idg x 0jF)* o ¥,
we have that 0" = id on H%(S, 0).

1.1.1. A curve F of genus 3 with involutions (, o1r and oy satisfying conditions (i)—
(iii) in Example 1.1.

Let 0, 0o, 1, b1 and b; be different points of B := P! Fori =1,2, let7; : Ei — B be
the double cover branched along points 0, 0o, 1, b;. Using 7; instead of 7;, we may modify
the construction in [Ca2, 1.1.1] to give a curve F of genus 3 with involutions ¢, o1 and o2 F
satisfying conditions (i)—(iii) in Example 1.1.

EXAMPLE 1.2 (G ~ Z4). Let B be a hyperelliptic curve of genus § and t the hyper-
elliptic involution of B. Suppose there is a curve F of genus 3 with automorphisms ¢, o such
that

(i) the subgroup of AutF generated by ¢ and oF is isomorphic to Z, @ Zy4;

(i) ¢ has no fixed points;

(iii) o induces the identity on HO(22});.

Let S = (1§ x F)/{t x ). Then § is a smooth surface with p4(S) = g, ¢(S) = 2 and
KZ=8(7-1D.

Let o be the automorphism of S induced by idz x oF € Aut(B x F). One checks easily
as in Example 1.1 that the group G generated by o is isomorphic to Z4 and acts trivially on
H*(S. Q).

1.2.1. A curve F of genus 3 with automorphisms (, o satisfying conditions (1)—(iii) in
Example 1.2.
Let F be the hyperelliptic curve given by the equation

y2 = (x4 + 1)(x4 +a),
where a € C \ {0, 1}. Let 77 be the hyperelliptic involution (given by (x, y) +— (x, —y)), and

« the automorphism given by (x, y) > (+/—1x, y). Note that w; := xldx/y(j =0, 1, 2)
is a basis of HO(SZ}V). We have that o*w; = \/—lea)j. So (tpot2)*a)j = (—l)ja)j and
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(tra)*w) = w;. One checks easily that ¢ := tra? and oF = tra have the desired properties
(1)—(iii) in Example 1.2.

EXAMPLE 1.3 (G =~ Zgaz). Suppose there is a curve F of genus 5 with automor-
phisms B1, B2, o1F, oaF such that
(i) the subgroup of AutF generated by B1, 2, o1F and oaF is isomorphic to
(i) g(F/A) =2, where A == (B1, f2);
(iii)) fori = 1 and 2, o;r induces the identity on HO(.QF) (j = 1and 2), where yx; is
the character of A with Kery; = (8;).

®4.
Z5y

Let B be a hyperelliptic curve of genus §j with a faithful action of the group A such
that B3 := B, is the hyperelliptic involution of B. (In other words, A is isomorphic to the
subgroup of automorphisms generated by a non-hyperelliptic involution and the hyperelliptic
involution of B.)

Let S = (B x F)/A, where the action of A on B x F is the diagonal action. Then S is a
smooth surface with p4(S) = g, ¢(S) =2 and K% =8(g—1).

Fori = 1, 2, let 0; be the automorphism of § induced by id3 X o;F € Aut(é x F).

We have that the group G generated by o; (i = 1 and 2) is isomorphic to Z?Z and acts
trivially on H 2(s, Q). Indeed, let x3 := x1x2, since Keryx3 = (B3) and B3 is the hyperelliptic
involution of B, we have H'(B)%* = 0. So

H*BxF)y=weH (B @ H'(F){' ® H'(B)} @ H'(F)}

where W = HO(B) ® H*(F) ® H*(B) ® H(F). Now (iii) implies that (id3 x o;r)* = id
on H2(B x F),l4- By the argument as in Example 1.1, we have that 6* = id on H%(S, 0).
1.3.1. A curve F of genus 5 with automorphisms B1, B2, 01F, o2 F satisfying conditions
(1)-(iii) in Example 1.3.
Let E be an elliptic curve, and 7 : C — E be a double cover branched along two

points. Let &1, 8> be different non-trivial 2-torsion elements of Pic’ E. We have a commutative
diagram

Cl=E xgCL F:=C xcCy

TN

C<—C2 =FEyxg C

o1 j” L”z
P2

E%EZa

where p; : E; — E (i = 1, 2) is the double cover defined by 8?2 = Og.
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We have that F is an irreducible (smooth) curve of genus 5. Indeed, o; : C; — C is the
double cover defined by (7*8;)®*> = Oc¢. Since n* : Pic’E — PicC is injective, we have
T*81 % m*8. So Cy is not isomorphic to Cp over C, which implies F is irreducible.

Let 7; (resp. 7) be the hyperelliptic involution of C; (resp. C). Then 7; is the lift of t,
that is, we have t o 9; = g; o 7;. One checks easily that F is t] X tp-invariant.

Let o4, y; (resp. y) be the involutions of C; (resp. C) corresponding to the double covers
0i, i (resp. ). Then y; is the lift of y, that is, we have y o o; = g; o y;. One checks easily
that F is y; X y»-invariant.

By the construction of C;, we have «;y; = y;«;. Since t; is in the center of Aut(C;), we
have o;7; = 7;o; and y;7; = Ty, So 1 X idc,, idc, X a2, Y1 X y2 and 71 X T2 mutually
commute.

Let B1, B2, ¥ and T be the restriction of a1 x idc,, id¢, X @2, ¥1 X y2and 71 X T2 to F,
respectively. Let A be the subgroup of AutF generated by 81, 8>, ¥ and 7. Then A ~ 2?4.

Let A = {idg, B1, B2, B3 := P1B2}. For j = 1, 2, 3, let x; be the character of A with
Keryx; = (Bj). Let V.= H%wr). By the construction of F, we have that V} = (g; o
ui)*HO(wc) is of dimension two, and dim ij = 1forall j.

Let (Vp+ = (oi o ui)*H%wc)y and (V)™ = (oi o ui)*H(wc);. We have
dim(VH* =dim(V))~ = 1.

By the construction of F, we have that there are exactly eight y-fixed points on F.
Indeed, y; x 2 has 4 x 4 = 16 fixed points, eight of which belong to F. So y is a bi-elliptic
involution. Since y is the lift of y, we have that y induces id on (VAI)+.

Fori = 1, 2, since 7 is the lift of t;, which is the hyperelliptic involution of C;, we have
that 7 induces —id on VA1 &) VX". So g(F/ (t)) < 1. On the other hand, since A/ (T) >~ Z;B3
is isomorphic to a subgroup of Aut(F/ (7)), F'/ (T) can not be rational. So 7 is a bi-elliptic
involution.

In sum, we have that the generators 81, B2, ¥, T of A acting on V are as follows:

Vot | v | v ve | v
Bl 1 1 1 | =1 ] -1
Bl 1 1 | -1 1 | -1
7l o1 —1 | -1] -1] -1
| -1 —1 | -1]|-1]1

One checks easily that 81, 2, o1 := YT and oaF := yB18> have the desired properties
(i)—(iii) in Example 1.3.

2. ¢s is generically finite. In this section, we prove Theorem 0.1 in case that the
canonical map ¢g of S is generically finite. We begin with the following lemmas.

LEMMA 2.1. Let S be a complex nonsingular projective surface, and f: S — B be
a fibration of genus g > 2. Let o be a non-trivial automorphism of S with f oo = f. Ifo
induces a trivial action on H(S, ws), then g(B) < 1.
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PROOF. Consider the induced action of o on f,wg, which is a locally free sheaf of rank
g. We have frows = € @ F, where £ is the eigen-subsheaf of f,.wgs with eigenvalue 1, and F
is the direct sum of eigen-subsheaves of f,wg with eigenvalue # 1. We claim that F # 0 and
hence r := rank F > 0. Otherwise, since the natural map f,ws ® C(p) — HO(F, wp) is an
isomorphism, where p = f(F) (cf. [Ha, Chap. III, Corollary 12.9]), we have that o induces a
trivial action on H 0(F , wr), which implies 0| and hence o must be trivial, a contradiction.

Let & C fiws be the subsheaf generated by global sections of fiws. The assumption
that o induces a trivial action on H%(S, wg) implies that &’ C €. So h%(B, £) = h%(B, fiws)
and hence hO(B, F) = 0. So by the Riemann-Roch, we have

deg F +r(1 — g(B)) = —h' (B, F) < 0.

Since fiws ® wgl is semi-positive by a theorem of Fujita [Fu], we have
deg F —2r(g(B) — 1) = deg(F ® wz') > 0.
Combining the two inequalities above, we have g(B) < 1. O

LEMMA 2.2. Let S be a complex nonsingular minimal projective surface of general
type with q(S) = 2. Let G C AutS be a subgroup of order 4 acting trivially in H>(S, Q). As-
sume that the Albanese map alb : § — Alb(S) of S is surjective. Then HO(.Qé) = HO(.Q;)é
for some x € G of order at most 2.

PROOF. LetV = HO(22 é). It is enough to exclude the following two possibilities:

() V=Vl ®VEP, where x1 # x2 € G, and both V' and V}? are of dimension
one;

(i) V = VX, where x € G is of order 4.
In case (i), fori = 1,2, letw; € Vé" be a non-zero holomorphic 1-form. Since the Albanese
map alb : S — AIB(S) is surjective, by [BPV, p.11, Corollary 1.2], H>(AIB(S), C) —
H?(S, C) is injective. This implies the natural map induced by cup product A2H (S, C) —
HZ(S, C) isinjective. So w; Awy # 0, w1 Awy # Oin H2(S, C), where complex conjugation
acts naturally on

H'(S,R)®C =H'(S,C)=H"(25) ® H'(S, Os) .

Since G acts trivially on H2(S, C), from o* (w] A o) = x1(a@) x2()w; Awy foreacha € G,
we have x1x2 = 1in G. Since x1 # x2, we have that y; is of order 4. Then G >~ Z4. Let o
be the generator of G, such that x1(c) = +/—1 and x2(c) = —+/—1. We have

o* (w1 Awp) = x1(0) x2(0)wi AWy = —wi Ay,

which is a contradiction since o acts trivially on H>(S, C).

In case (ii), we have G ~ Z4. Let o be the generator of G such that x (o) = +/—1.
Let w1, wy € Vé be linearly independent holomorphic 1-forms. We have o*(w; A wp) =
—w1 A wy. By the argument as above, we get a contradiction. O

THEOREM 2.3. Let S be a complex nonsingular minimal projective surface of general
type with q(S) = 2 and py4(S) > 61. Let G C AutS be a subgroup of order 4 acting trivially
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on H%(S, Q). If the canonical map ¢s of S is generically finite, then the pair (S, G) is as in
Example 1.3.

PROOF. Thanks to [X2], by the argument as in [Ca2, 2.3], we have that, if p,(S) > 61,
then S has a fibration
f:S—B
of genus g = 5 or 6, and ¢g separates fibers of f and maps them onto a pencil of straight
lines on Im¢g, which is ruled over B, and the numerical invariants of S and B satisfy

(2.3.1) K22 _2(gp (S) — 69 + 20)
- §$= 045719 ’
(2.3.2) g(B) <1.

Since G induces trivial actions on Im¢g, and hence on B, G is included in AutF for a
general fiber F of f. O

2.4. The case g = 6 is excluded provided p4(S) > 36 as in [Ca2, 2.8]. Indeed, by the
argument in loc. cit., we may assume that G >~ Z4. Let o be the element of G of order 2. We
may estimate the upper bound of H? for each o-fixed curve H and apply [Ca2, Lemma 2.1]
to obtain an upper bound for K § In our case g (S) = 2 the inequality in loc. cit. reads

480 40
=59 P =D+ 5.

2
Ks = 59

While (2.3.1) gives
10
K> = (6py($) — 16).

Combining the two inequalities above, we get py(S) < 36, a contradiction provided pg4(S) >
36.

2.5. From now on, we assume that ¢ = 5. By [Ca2, Lemma 2.4], g(F/G) = 2. So G
acts freely on F.

2.6. Letw : S — S/G be the quotient map, and 7’ the minimal desingularization of
S/G.Leth: T — B be the relatively minimal fibration of the (induced) fiber space T’ — B.

LEMMA 2.7. We have g(B) = 0.
PROOF. Otherwise, by (2.3.2), g(B) = 1. Consider the canonical map
$s: S --» ¥ :=1Imgpg C PPsS1,
Since X is ruled over B, we have g(X) = g(B) = 1. By the classification of nondegenerate
surfaces of minimal degree in PP9(=1 we have that deg ¥ > codim X' + 1 = py(S) — 2.
So
K3} > deg¢s deg X > 8x(Os) .
On the other hand, by the argument as in [Ca2, 3.1], we have
K3 <8x(Os).

Combining the two inequalities above, we have K§ = 8x(Os) and K§ = deg¢sdeg X,
which implies |Kg| is base-locus free. Consequently, we have
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(2.7.1) foreachid # o € G, since every o-fixed curve is contained in the fixed part of | K|
(cf. [Cal, 1.14.1]), o has no fixed curves.
(2.7.2) §/G has at most rational double singularities since G acts trivially on H O(ws).

Let T, T’ be as in 2.6. By (2.7.1) and (2.7.2), we have that Kg = 7*Kg/G, T’ is minimal
and T = T'. So K% = 2x(0Os) = 2x(Or). On the other hand, the assumption g(B) = 1
implies that the Albanese map of S is generically finite. Since G induces trivial actions on
B, we have 0 # f*H%wp) C HO(.Qé)lG. By Lemma 2.2, we have that G induces trivial
action on HO(.Qé). So g(T) = 2. By a theorem of Debarre (cf. [De, Theorem 6.1]), we have
K3 > 2py(T) = 2x(Or) + 2, a contradiction. O

Let C be the image of the Albanese map alb : § — Alb(S).
LEMMA 2.8. C is a curve of genus 2.

PROOF. Suppose alb is surjective. By Lemma 2.2, H(2)) = H(2){. for some
X € G of order at most 2. If x =1,leth: T — Bbeasin 2.6, then g(T) = 2. By [Be2,
Lemma, p. 345], h is trivial, and so p4(T) = 0. This is absurd since py(T) = py(S) > 0.

If x is of order 2, then the kernel Ker(x) of x : G — C* is not trivial. Let o be the
generator of Ker(x). LetV = HO(.Q}F). Then VGIGBVC);( = VU]. Since dim VG1 =g(F/G) =2,
this implies dim V% = 1. On the other hand, let r : H%(2§) — H(£2}) be the restriction
map, and W be its image. We have dim W = 2 (since F is a general fiber of f,if r(zw) = 0
for some holomorphic 1-form @ of S, @ = f*w’ for some holomorphic 1-form @’ of B)
and W C V. This is a contradiction. O

2.9. Foreach o € G, denote by ¢ the automorphism of C induced by o. The homo-
morphism from G to Aut C, sending o to &, is injective by Lemma 2.1. Let G be its image
in Aut C. Then G ~ G.

LEMMA 2.10. f has constant moduli.

PROOF. By Lemma 2.8, we have that u := albjy : F — C is a finite morphism. Let
d = deg jt. By the Hurwitz formula, we have 2 < d < 4.

We show that d = 4, which implies u is étale, and so f has constant moduli.

Case 1. G == Z4. Leto € G be a generator of G. By the Hurwitz formula, there exists
a o-fixed point x on C. Since 6 o4 = oo, w1 (x) is o-invariant. Since o has no fixed
points on F (cf. 2.5), we have that #1 ! (x) divides by 4 and hence d = 4.

Case 2. G ~ Z%. Assume d < 3. We will get a contradiction. Since G ~ Z% in
this case, there exist o € G such that ¢ is the hyperelliptic involution of C. By the Hurwitz
formula, there is a point x € C such that x is o-fixed and p is étale over x. So wt(x) is
o-invariant and d = #u~!(x). This implies d divides by 2 since o has no fixed points on F
(cf. 2.5). Hence d = 3 does not occur.

Now we assume d = 2. Then f x alb : § — P := B x C is generically finite of
degree 2. Let S — §’ L P be the Stein factorization of f xalb. Let (A, §) be the (singular)
double cover data corresponding to 7. Let/ = B x ptand I’ = pt x C. We have Al' = 4
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and § = 2/ + ml’ for some m. We show that each singular point of A is either a double
point or a triple point with at least two different tangents, and hence S’ has at most canonical
singularities. Indeed, if there exists a point x := (b, c) € B x C with mult, Ay > 3, where
Ay is the horizontal part of A w.r.t. the projection P — B, then ¢ must be G-fixed since A,
is idgp x G-invariant and Al’ = 4. This is absurd since G >~ G is not cyclic. Now by the
double cover formula, we have that
Ki=16(m —2), x(Os)=3m—4.

So § satisfies K§ = 16(x(Os) — 2)/3, contrary to (2.3.1). O

2.11. By Lemma 2.10, there exists a finite group A acting faithfully on a general fiber
F of f and on some smooth curve B such that f is equivalent to the fiber surface

p:(BxF)/JA— BJ/A,

where the action of A on B x F is the diagonal action and p is the projection to the first factor
(cf. e.g., [Se]).
We have g(F/A) = q(S) = 2. This implies the projection

g:(BxF)/JA— F/A

is equivalent to the Albanese map alb : § — C. We have |A| = 4 since the degree of
albjr : F — C is 4 by the proof of Lemma 2.10. So A acts freely on F and S >~ (B x F)/A.
In particular, we have g(1§) = py(9).

2.12. LetV = H%wr) and W = H%(wj). We have

-1
(2.12.1) H(w5) ~ @, 2Vi @ W) .

Since ¢s separates fibers of f and maps them onto a pencil of straight lines on Im¢s, we
have that the image of H O(ws) in H(wr) is of dimension two. This implies that, among the
direct sum factors of the right side of (2.12.1), there are exactly two factors having positive
dimension. So

-1 -1
(2.12.2) Ho®s) = VI @ W) @VieWw)

for some xi, x2 € A. Since dim W}\ = g(E/A) = ¢g(B) = 0 (Lemma 2.7), we have that
xj # 1 (the idenity character) for j = 1, 2.

2.13. For each o0 € G, o induces an automorphism of B xp S, which is of the form
idz x op for some of € Aut(F’) under the identification of B xp S with B x F. We have
thatidz x oF is alift of o to B x F, and

(2.13.1) albjr oo =06 oalbr

where & is as in 2.9.

Let GF = (oF; 0 € G). Clearly, GF >~ G. Since idz X oF acts trivially on the right
side of (2.12.2) for each o € GF, we have that G induces trivial action on V{' & V{2,
where x1, x2 are as in (2.12).
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2.14. Let & be the subgroup of AutF generated by A and Gr. Then V{' @V ?isa &-
submoduleof V. Letp : & — GL(V 2“ 2% 2(2) be the corresponding linear representation. By
(2.13), we have G C Kerp. We show that pja : A — GL(V)' @ V%) is injective indeed,

since both V} and V' @ V{2 are contained in VKer(mA > dim VKer(p ) = dimV, i +dim(V' @

VZ‘Q) = g(F/A) +2 =4 (cf. (2.11)). This implies Ker(p|4 ) must be trivial. So G = Kerp,
and hence G is a normal subgroup of . Note that A is a normal subgroup of &. We have
that & is the internal direct product of G r and A; in particular, Z is an Abelian group.

Now we distinguish four cases according to A and G.

215. A~ Zjand G =~ 22 We show that this case does not occur. Otherwise, let
B be a generator of A. Let V be as in 2.12. We have dim Vﬁ g(F/A) = 2. By the
holomorphic Lefschetz formula, dim Vﬂ = dim Vﬁ = dim Vﬂ =1.

We have G ~ 22 (cf. (2.9)). So there is an involution ¢ € G such that ¢ is the hy-

perelliptic involution of C. The operation of o* and (08)* acting on eigenspaces of 8* is as
follows:

(ap)*

Indeed, since & is Abelian (cf. 2.14), the eigenspace of each eigenvalue of 8* is = -invariant.
The equality 0* = —id on Vﬂ] follows by (2.13.1), and o* = id on the others since g(F /o) =
3 (cf. (2.5)).

By the above table, we have

tr(0f|V) = —(dim V4 + dim Vﬁ_l) —idimVj +idimVy' = -3.
Applying the holomorphic Lefschetz formula to o8, we have
b
(2.15.1) 1—(=3)=1-tr(cB|V) = —+
14

where a (resp. b) is the number of fixed points of o such that the induced action of o8 on
the tangent space at each of these points is given by v +— iv (resp. v — —iv). Soa +b = 8.
Applying the Riemann-Hurwitz formula to F — F/(of), we have 8§ = 2¢(F) — 2 >
4(=2+4 (1 — 1/4)(a + b)) = 16, a contradiction.

2.16. A ~ Z4 >~ G. Let y be a generator of G. By (2.9), y is of order 4, and so
g(C/y) = 0. Applying the topological Lefschetz formula to y, we have that y has 2 +
2dim H O(wc); fixed points. Applying the Riemann-Hurwitz formulato C — C/y, we have

2=29(C)-2= 4( -2+ (1 - %)(2 + 2dimH0(wC);)) .

This implies dim Ho(wc); = 0. So )72 induces —id on H%w¢), and hence y2 induces
—id on Ho(a)p)}g. Now by the argument as in 2.15 (consider y2B instead of 08), we geta
contradiction.
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217. A~Z3>~G. Lety, xobeasin2.12, and let x3 = x1x2. For j = 1, 2, 3,
let B; be the generator of Kery ;. Then 8; (j = 1, 2, 3) are non-unit elements of A. Note that
vﬂlj =Vie Vvl dmV) = g(F/A) =2, and dim Vﬂlj = g(F/(B;) =3.SodimV}/ =1
for j = 1, 2, 3, and the action of generators of Aon V = HO(F, wr) is as follows:

LA
1 1 -1 | -1
1| -1 1

B1
B2

Let&y, 672 € G be bi-elliptic involutions of C, and o1F, o2 € GF be their corresponding
elements, where G is as in 2.9 and Gpr is asin 2.13. For /[ = 1, 2, let v; be a basis of
HO(C, a)c);{l, and vy € VA the corresponding element of v; under the identification of V /1
with HO(C, wc) (cf. 2.11). Then v; and v, is a basis of Vf{. Note that the action of G on
V! is the same as that of G on H*(C, wc) by (2.13.1), and G acts trivially on V{' and V}?
(cf. 2.13). So the action of generatorsof Gr on V = HO(F, wp) is as follows:

o | v [ VRV |V
1 ‘ —1 ‘ 1 ‘ 1 ‘ —1

O1F
—1] 1 1 1 —1

O2F

Combining V{* # 0 with (2.12.2), we have W/* = 0, and hence ¢(B/B3) = 0, i.e., B
is hyperelliptic with the hyperelliptic involution 3. So (S, G) is as in Example 1.3.

2.18. A~ Z% and G >~ Z4. Note that G acts freely on F (cf. 2.5), and that A induces
a faithful action on F/ G (cf. 2.14). Observing that the proof of the case A >~ Z4 and G =~ Z%
uses only the properties of representations of G and A on V, by the argument as in 2.15 with
the role of G and A being transposed, we have that this case does not occur.

This completes the proof of Theorem 2.3. o

3. ¢s is composed with a pencil. In this section, we prove Theorem 0.1 in the case
that the canonical map ¢g of S is composed with a pencil.

THEOREM 3.1. Let S be a complex nonsingular minimal projective surface of general
type with q(S) = 2 and py(S) = 23. Let G C AutS be a subgroup of order 4 acting trivially
in H*(S, Q). If the canonical map ¢s of S is composed with a pencil, then the pair (S, G) is
as in Example 1.1 or Example 1.2 depending on G ~ Zgaz or Za.

PROOF. By [Bel, Prop. 2.1], the moving part of | Kg| has no base points. Let
dps=¢o f:S— B— Impsg C PPsS!

be the Stein factorization of ¢g, and let F' be a general fiber of f. Let g be the genus of a
general fiber of f. One has 2 < g < 5 (cf. [Bel]) and g(B) = 0 (cf. [X1]).

Since G acts trivially on H O(S, ws), we have that G induces the trivial action on B, and
the inclusion G < AutF (cf. [Cal, 2.2]). In particular, we have that any section of f is G-
fixed.
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Let C be the image of the Albanese map of S.
LEMMA 3.2. Ifg <4, then C is a curve (of genus 2).

PROOF. If the Albanese map of S is surjective, by Lemma 2.2, H%(2§) = H*(2)%
for some x € G of order at most 2. Then the kernel Ker(x) of x : G — C* is not trivial. Let
o € Ker(x) be an element of order 2. Then H*(2)% € H(223)., and so ¢(S/0) = 2. The
assumption g < 4 implies that S/o — B is a fiber space of genus ¢’ < 2. Hence we have
that ¢’ = g(S/o) — g(B). This implies S/o — B is trivial by [Be2, Lemma, p. 345], and so
pg(S/0) = 0, a contradiction since py(S/0) = py(S) > 0. O

LEMMA 3.3. The cases g = 2,4 and 5 do not occur.

PROOF. Let M and Z be the moving part and the fixed part of | K|, respectively. We
write Z = H+ V,and H =n1 I +nal» +--- withny > ny > ..., where H (resp. V) is
the horizontal part (resp. the vertical part) of Z with respectto f,and I; (i = 1,2,...) are
the irreducible components of H, with n; the multiplicity of I in H.

Since M = x(Og)F (cf. e.g. [Cal, 2.1.2]), we have

(3.3.1) K§=Ks(M+H+V)>(29—2)x(Os) + KsH .

We distinguish three cases according to g.
3.3.1. g =235. Inthis case we have that

8
(3.3.2) KsH > g(x(Os) -8).
Indeed, since n1Ks/p + H + V is nef, from
(i +1)Ks—M +2nF)H = (mKs)p+ H+V)H >0,

we get KsH > 8(x(Og) —2n1)/(n; + 1). Soif n; < 5, we obtain (3.3.2).

Now we can assume that n1 > 5. Then I7 is a section of f. This implies I'1 and hence
the point F N I} € F is G-fixed. So G is cyclic (of order four).

Let RF be the set of ramified points of the quotient map F — F/G. Using the Hurwitz
formula for F — F/G (note that g(F/G) > 1 and FNI7 is aramification point of index 4 of
the quotient map), we have that Ry consists of four points and among them there are exactly
two G-fixed points. Since Rr C Hyeg N F (cf. [Cal,2.4.1))and (H —n1I)F =8 —n1 <3,
we have #(Hieg N F) =4 and H =511 + > + I3 with I F = 1 and I3 F = 2.

From KsI; = (M + H+ V)I; > x(Os) + n,-Fi2 and the adjunction formula for I, we
get

KsI > W, KsI} > W fori =2, 3.
KsH =5KsI'1 + KsI» + KsI'3 > (11/6) x (Os) — 31/3. This finishes the proof of (3.3.2).

Combining (3.3.1) with (3.3.2), if x (Og) > 22, we get K§ > (48/5)x(Os) — 64/5 >
9x(Os), contrary to the Bogomolov-Miyaoka-Yau inequality.
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3.3.2. g=4 ByLemma3.2, wehavethatalbjr : FF — C is either an étale cover of
degree 3 or a ramified double cover, where F is a general fiber of f.

In the former case, we have that f has constant moduli. So it is equivalent to p : (B x
F)/A — B/A for some A, B asin2.11.

We have g(F/A) = q(S) = 2. So F/A ~ C. This implies |A| = 3 and § =~ (B x
F)/{(t x t), where ¢ € AutB of order 3 with g(B/L) = 0 and T € AutF of order 3 without
fixed points.

By the explicit description of S above, f has multiple fibers with multiplicity 3. So I} F
divides by 3 for each i. Thus there are only three possibilities for H:

(a) H =2 withINF =3;

(b)y H=TIwithIF =6;

(¢ H=I1+IhwithIF =1>F =3.

Let D be the horizontal part (w.r.t. f) of the ramification divisor of S — S/G. We have
D < H (cf. [Cal, 2.4]). Using the Hurwitz formula for the quotient map F — F/G, which
is ramified exactly at points D N F, we have either (i) DF = 2 and the ramification index of
each points of D N F is four, or (ii) DF = 6 and that of D N F is two. Since D < H, by the
possibilities for H listed above, we see easily that the case (i) does not occur.

Consider therefore the case (ii). Note that H F = 6, we have H = D. This implies that H
is contained in sums of fibers of alb. Indeed, if alb;- : I" — C is surjective for some I" < H,
let @ € G be a non-trivial automorphism such that I" is «-fixed (such an automorphism exists
since I" < D), then the induced action of & on C is trivial, a contradiction by Lemma 2.1.
Since alb*(c¢)F = 3 for any point ¢ € C, (b) is ruled out; since H = D is reduced, (a)
is ruled out. So H is as in (c) with I, I being fibers of alb. Hence KsI'1 = KsI» =
2g(1§) —2=2x(0s). By (3.3.1), K§ > 6x(0s)+ KsI't + KsI', = 10x(Ogs), contrary to
the Bogomolov-Miyaoka-Yau inequality.

In the latter case, we have that

fxab:S—>T:=BxC

is generically finite of degree 2. Let § — §’ X T be the Stein factorization of f x alb. Let
[ =B xpt,and !’ = pt x C. Let (A, §) be the (singular) double cover data corresponding to
7. We have Al’ =2, and § = [ + ml’ for some m. This implies that each singular point of A
is either a double point or a triple point with at least two different tangents, and hence S’ has
at most canonical singularities. By the double cover formula, we have

Ki=K2 =2(Kr +8)>=12(m —2),
1
x(Os) = x(Og) =2x(Or) + ES(KT +8)=2m—-3.

Hence K§ = 6x(Os) — 6, and we get a contradiction by (3.3.1).

3.33. g=2 Since py(S/G) = py(S) > 0, we have g(F/G) = 1. The commuta-
tivity of G implies that the quotient map F' — F/G has at least two branch points. Applying
the Hurwitz formula to F' — F/G, we get a contradiction. O
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3.4. By Lemma 3.3, we may assume that ¢ = 3. Then albjr : FF — C is an étale
double cover by Lemma 3.2. So f has constant moduli, and it is equivalent to

p:(BxF)/A— B/A

for some A, Basin2.11.

We have g(F/A) = q(S) = 2. This implies |A| = 2 and § ~ (B x F)/ (t x ), where
7 is the hyperelliptic involution of B and : is an involution of F without fixed points.

For each o in G, since o induces trivial action on B, B xp S C B x S is (idE X 0)-
invariant. Then there is an automorphism o of F such that, under the identification of BxF
with B x B S, idj X oF equals to the restriction of idz x o to B x B S. Clearly, we have
(idg x op) ow =7 oo, where 7 : B x F — S is the induced map. Since o induces trivial
action on H2(S, C), we have that o induces the identity on HO(.Q},)T. So (S, G) is as in
Example 1.1 (resp. Example 1.2) provided that G ~ Z% (resp. Z4).

This completes the proof of Theorem 3.1. a
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