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APPROXIMATION BY CESARO MEANS OF NEGATIVE ORDER
OF DOUBLE WALSH-KACZMARZ-FOURIER SERIES
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Abstract. In this article we investigate the rate of the approximation by Cesaro means
of the quadratical partial sums of double Walsh-Kaczmarz-Fourier series of a function in the
Lebesgue space over the Walsh group. The approximation properties of Cesaro means of neg-
ative order of one- and two-dimensional Walsh-Fourier series was discussed earlier by Gogi-
nava.

1. Introduction. Now, we give a brief introduction to the Walsh-Fourier analysis [1,
9].

Let denote by N the set of natural numbers, P := N\{0}. Let denote by Z, the discrete
cyclic group of order 2, the group operation is the modulo 2 addition and every subset is open.
The normalized Haar measure on Z; is given in the way that the measure of a singleton is
1/2. Let G := ]2 Z2, which is called the Walsh group. The elements of G are sequences
x = (x0, X1, ..., Xk, . ..) With coordinates x; € {0, 1} (k € N).

The group operation on G is the coordinate-wise addition (denoted by +), the normalized
Haar measure is the product measure (denoted by 1) and the topology is the pruduct topology.
Dyadic intervals are defined by

In(x) =G, Lix)={yeG;y=(x0,...,Xn—1, Yns Yntl,---)}

for x € G,n € P. They form a base for the neighborhoods of G. Let0 = (0;i € N) € G
denote the null element of G and I, := I,,(0) forn € N. Sete, :=(0,...,0,1,0,...) e G
for n € N, where the n-th coordinate of which is 1 and the rest are zeros.

Let LP(G?) denote the usual Lebesgue spaces on G? (with the corresponding norm
Il ). For the sake of brevity in notation, we agree to write L>(G?) instead of C, where C
is the set of continuous functions on G2 (for more details see [9, pp.9—11]) and set || f|loo 1=
sup{| f(x)[; x € G?}.

For x € G we define |x| by |x| := )72, xj2707L

Next, we define the dyadic partial modulus of continuity in L? (GH, 1 < p <oo,ofa
function f € LP(G?) by

1
) (z_A f) =sup || f(x' + 1,07 = fOeh 2D,

tely
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1
w; (27 f) =sup (' x40 = )

tely
If the modulus of continuity w(§) (§ = 1/ 24 for some A) is given, then denote
H[‘f = {f € LP(G?); w;(f, 8) = 0(w()), i=1,2}.
The Rademacher functions are defined as
re(x) = (D% (xeG,keN).

Let the Walsh-Paley functions be the product functions of the Rademacher functions. Namely,
each natural number n can be uniquely expressed as n = Z?io n;2', n; €{0,1} (i € N),
where only a finite number of n;’s are different from zero. Define the order |n| of n > 0 by
|n| := max{j € N;n; # 0}. Walsh-Paley functions are wyp = 1 and forn > 1

wn (x) = [ [oe)™ = Fin (0 (= 1) DA ek
k=0

The Walsh-Kaczmarz functions are defined by ko = 1 and forn > 1

[n|—1

kn () = 1y () [ i1 )™ = g () (— )Tk 01
k=0

The set of Walsh-Kaczmarz functions and the set of Walsh-Paley functions are equal in each
dyadic block. Namely,

{kn: 28 < n < 28H1) = {wy; 2F < < 2FHy
forall k € P and ko = wy.
A relation (given by Skvortsov [12]) between the Walsh-Kaczmarz functions and the
Walsh-Paley functions can be given by the transformation t4 : G — G defined by
TA(X) = (XA—1, XA=2, + « -, X1, X0, XA, XA+15 -+ )
for A € P. By the definition of 74, we have
Kkn(X) = 1) (X)W, ol (T (x)) (n € N, x € G).

The transformation 74 is measure-preserving and 74(t4(x)) = x for all x € G (for more
details, see [12]).

In 1948, Sneider [13] introduced the Walsh-Kaczmarz system and showed that the in-
equality

K
lim sup Dy (x) >C>0
n—00 10g n
holds a.e. A number of pathological properties are due to this “spreadness” property of the
kernel. For example, for Walsh-Kaczmarz-Fourier series it is impossible to establish any local
test for convergence at any point or on any interval, since the principle of localization does

not hold for this system.
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On the other hand, the global behavior of the Walsh-Kaczmarz-Fourier series is similar in
many aspects to the Walsh-Paley-Fourier series. In 1974, Schipp [10] and Young [16] proved
that the Walsh-Kaczmarz system is a convergence system. Skvortsov in 1981 [12] showed
that the Fejér means with respect to the Walsh-Kaczmarz system converge uniformly to f for
any continuous functions f.

In 1998, Gat [2] proved, for any integrable functions, that the Fejér means with respect
to the Walsh-Kaczmarz system converge almost everywhere to the function. In 2004, Gét’s
result was generalized by Simon [11].

The Dirichlet kernels are defined by

n—1
DY =Y u,
k=0

where Y, = w, (n € P)or Y, =k, (n € P), Dgf := 0. The 2"-th Dirichlet kernels have a
closed form (see e.g. [9])

2" xel,,

(D Dy (x) = D3 (x) = Don (x) = {0 otherwise (n € N).

We consider the double systems {, ") x Y (x?);n,m € N} on G2 Suppose that f is an
integrable function on G2. Its Walsh-(Kaczmarz)-Fourier series is defined by

o o0
DDA (RN ACOITCDR
k=0 =0
(x = (x',x?) e G?), where f‘”(k, D = sz fkyy is the (k, [)-th Walsh-(Kaczmarz)-
Fourier coefficient of the function f.
The n-th Cesaro (C, a)-mean and the kernel of the double Walsh-(Kaczmarz)-Fourier
series of a function f are defined by

1
of e (it )i o YA ().
n=l =1
1 n
Kyl )= =3 ALy p! "D} x?)
n=l k=1
for (x!, x?) € G%, where ¥, = w, (n € P) or ¥, = k,, (n € P), and
_(a+1)---(@+n)

Ay=1, Aj: '
n!

n

, (@#-1,-2,...).
It is well known that
n
-1
Ay = Z A(r)l[—k ’
k=0
AL AL = A

A% ~n®
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[18]. The n-th Cesaro (C, «) kernel of the one-dimensional Walsh-(Kaczmarz)-Fourier series
is defined by
l n
Ko@) = 1 Y avipl ) (xeG).
n—=1 =1

In the papers [14, 15], Tevzadze has studied the uniform convergence of Cesaro means of
negative order of Walsh-Fourier series. In particular, he proved a criterion in terms of modulus
of continuity and variation of a function f € Cw ([0, 1]) for the uniform summability by the
Cesaro method of negative order of Walsh-Fourier series. In [4], Goginava gave sufficient
conditions for the convergence of Cesaro means of negative order of Walsh-Fourier series in
the space L? ([0, l]N), 1 < p < oo. In the papers [4, 14, 15], the results were established
without any estimation of the approximation. In 2002, Goginava [5] studied the rate of the
approximation by Cesaro (C, —«)-means (where 0 < o < 1) of Walsh-Fourier series of a
function in L? ([0, 1]).

In 2004, the rate of the approximation by Cesaro (C, —«)-means (where 0 < o < 1)
of double Walsh-Fourier series of a function in L? ([0, 1]) was studied by Goginava in [6].
Analogical questions for double trigonometric Fourier series was studied by Zhizhiashvili
[17], and recently by Goginava [7].

2. The main results. In this article we investigate the rate of the approximation by
(C, —a)-means (where 0 < o < 1) of double Walsh-Kaczmarz-Fourier series of a function
in L? (1 < p < 00). We show that the approximation behavior of the Cesaro (C, —«)-means
of double Walsh-Kaczmarz-Fourier series is so good as the approximation behavior of the
double Walsh-Cesaro (C, —«)-means (where 0 < a < 1).

We note that the rate of the approximation of (C, 1)-means of one-dimensional Walsh-
Kaczmarz-Fourier series for functions in L? (G) (1 < p < o0o) was studied by Skvortsov [12]
earlier.

THEOREM 2.1. Let f € LP(G*) for1 < p <ooand0 < o < 1. Then

_ 1 1
o= () = 1 §c<ln|2"°‘w},(2ln|_l,f) + In2"0} (S f)

In|=2 In|=2

+ Y2 Mo a2 p+ Y 2 el (12, f))

=0 =0
holds, where c depends only on p and a.
The following corollary follows from the proof of Theorem 2.1.

COROLLARY 2.2. Let f € LP(G*) for1 < p < oo and0 < a < 1. Then for any
k € N the inequality

ok~ () = fllp = c<2’c“w}7(%, 1) +202 (55 /)
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k=2 k=2
+Y 2wl /2, )+ 2 b2, f))
=0 =0
holds, where ¢ depends only on p and a.

To prove Theorem 2.1, we need the following lemmas of Glukhov [3] and Goginava [6]:

LEMMA 2.3 (Glukhov [3]). Letay,..., o, be real numbers. Then
d c n 172
l_[ DYl =— ( Z ot,%) )
j=1 1V k=1
where c is an absolute constant.
LEMMA 2.4 (Goginava [6]). LetO<a <landp= 2k 2k+l . Then

S Dy Dy () |dp(x) < () <00, k=1,2,....

J 2

By the method of the proof of Lemma 2.4 we get the following lemma:

LEMMA 2.5. LetO<a <1, p=2K 21 Then
2lni=1_1

—a—1 DV
Z Anz\nllzl

< c(a)

fork=1,2,....
LEMMA 2.6 (Goginava [6]). LetO < «a < 1. Then the inequality

J 2

We prove the following lemma:

LEMMA 2.7. Let f € LP(G*) for1 < p <ooand0 < a < 1. Then

—2 D, (YD, (x?)|du(x) < c(a) logn

holds.

2=
1
H —a Z A le (x! ) Dy D+ x) — FO)du(x)
Ay k=0 P
[n|—2 [n|—2

<Z 2ol (172!, f) + Z 22 (172, f))

=0
holds, where c depends only on p and a.

PROOF. Set
zln\—l_]
Y A DECDDE (S (4 x) = F()du(x)

k=0

Iy = ||—
171 ' e )
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To discuss [|1]», we use the following equality [12]:
@) DE(x) = Dy (x) + 1 () DYy (T (1)) -

For |||, we write

|n|]—2 2411

1
||1||p=' e /G 2 2 AL DEGHDECH (A x) = fO)dp()
n—l1 =0 [=2! P
1 In|—22/—1
= |- / 33 A DY @HDE L D+ x) — fO)du(x)
A,0176 13 S P
In|—22!—1
1
== / L2 2 A D Dy ) (f (1) = fO)dp )
n—1YG% |0 k=0 p
In|—22/—1
1
+ = /G 2 2 AL Dy GHn DY @) (f (4 x) = F()du(x)
n—1 =0 k=0 P
|n]—22/—1
1
+ = | Do A nYDE () Dy () (f (4 x) = F(O))dp(x)
n—1Y6% 10 k=0 P
In|—22/—1
1
tHae ng kZOA;f;Lkrz<x1>r1(x2)D,t”(n(xlnD,'f(n(xz))(f(. +x) = f()dp(x)
=1l + 120, + 15311y + sl -
From the equation (1) and by generalized Minkowski inequality, we have
H / Dy (x") Dy () (f (. +x) — f(Ddp(x)
G2 P
3
© < /G Dy YDy S 40 = FOlpdpo)
<ob(1/2, ))+e31/2, f).
This gives
| [n|—22—1
iy <— > D 140 / Dy (x YDy () (f (- +x) = f()dp(x)
A1 15 =0 G? P
c |n|—2 2l—1
<= 2 @172, D172 ) Y IA L
n—1 ]=0 k=0
c [n|—2
< Y (@, (/2 )+ o172, 2NA
=1 1=0

p
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[n]—2
<c Y 27,72, )+ eh/2 £)).
1=0
To discuss || 12|, we docompose G as a disjoint union. Define the set X; by X; := {z €
G;z=1(z0,...,21-1,0,0,...)}, that is, X; has 2! elements. Then we have
) G=|Jnw 0=0.

z€X]

On the sets /;(z) the function D}’ o 7; is constant for 0 < k < 2! By generalized Minkowski
inequality we write that

- 2l
12l < —5 Z / oA DueHYn DY () (f(+x) — F(O)du(x)
Al 1o et i3 P
n|— 21 1
/ doat  nEAHDP @)+ x) = f(O)dpx)
zeXl leh(z)k 0 p
In \
1
<— 2’2 ZA;“Z,lk DY (TI(Z))H nE S+ x) = fO)dux)
A1 1% zeX;' k=0 I x1i(2) P

Set el1 = (¢;,0) € G? and el2 := (0, ¢/) € G. Since

Ii(z) = I1+1(2) U [111(z +ep)

and

1 wenn), -1 uwe (),

riw) = {—1 e, O "1W= { ue ().

we obtain

‘ / OO+ x) = FOIR )

11 x11(2) p
_ / A4 x) — FO)R)
I x141(2)
+ / PG (F (A4 x) — FO)du)

(5) I xIp1 (z+er) p

<2

/ (A = ftx+eNdu)
I x1141(2)

p

52/ [fC+x) = FC+x+ed)] duw)
I xI41(2)

<203/2, 027 [ dued),

I14+1(2)
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This yields that

|n|—2 21
C —a—
120y = = D @(1/2 f)Z/ n“;_kD,i“m(xZ))‘du(xZ)
n—=1 =0 zex; 1@
c |n|—2 21
1
S e Y wr/2 Y A Do
n—=2 =0 k=1 1
In|—2 21
= 2o ep(/2 0 > AL DY
n 1 =0 k=1

By Lemma 2.3 of Glukhov, we have that

2'-1 o _q 2] 172
- _ —20— -1
S| s (T ann) s
1 2 -1\
and
[n]—2
I, <c Y 2 Mo/, f).
1=0
Analogously,
n|—2
151, <c Y 2 Mo /2, f).
1=0

At last, we discuss || I4]| ,. We use the disjoint decomposition (4) of G. We write that

Z AL
G2 n—20—

x (! + ) DY (@ (x ) DY () (f (4 x) — f()dp(x)

\n\ -2

|II4|Ip_ —
n 1 1 0

P
[n|—2 201
= 2| Z e S A
AL LSk, T noxne (=
x i (x! + x) DY ("N DP () (f( A+ x) — F(O))du(x)
P

|n|—2

LYy

n—1 [=0 z,veX;

n—=2!

Z At D,?a,(z))z)g)(f,(v))‘

X

/ G 4 )4 x) — FO)dr)
I (2)x<1;(v)

p
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It is easy to show that

H / e (fFC+x) = FO)du(x)
I (2) <1 (v)

p

(6)
< c(op(1/2', /) + 0 (1/2, ) dp(x)
L1 %1141 (v)
(for more details see the inequality (5)). By this we immediately get
[n|—2

4l p < Afa > (wp1/2' f) + (172, f))

n—1 [=0

x 3 / ZA;"‘Z,I DY (m(x) D} (Tz(xz))‘dM(X)
D412 x 1141 (v)

z,veX)
|n|—2

== D (@y(1/2 P+ (/2

n=2 =0

-1

—a—1
na2l D/ICU) o(t x 1)

1
In|=2

== D (@ 1/2L D+ @172 /)

n—1 =0

21 1
Z AL (DY x DY)

1
By Lemma 2.3 of Glukhov, we have that

anDF < DY) =2 An,
and
|n|]—2
Hall, < c Y 27w, (172, ) + (172, 1)) .
1=0
This completes the proof of Lemma 2.7. g

LEMMA 2.8. Let f € LP(G*) for1 < p <ooand0 < a < 1. Then
2]

H / D Al DECHDECDS 40 = f(Ddp)

k=2lnl-1

< o (o ey 1) 1))

where ¢ depends only on p and «.

p

PROOF. Set
2l

/ Y AZDECH DA+ x) = FO)dp(x)

111 :='
k=2Inl=1

p
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olnl=1_1
H— /G i Z At Dt D D GO+ x) = F()dp(x) )
By the equation (2) we have that
k=11
1y, < f Z A e Dot (1) Do (x%)
X(f(+x) = fO)du(x)
P
2M=1_1
/ Z A Dot (-1 () D (T -1 ()
X(f(+x) = fO)du(x)
p
1 2lnl=1_1
+H e fG 2 g A Tin—1 (DD} (xn -1 (1) D1 ()
X(f(+x) = f()dp(x)
P
| 2=l
+H ~ > A Dt DD (-1 () DY (21 ()
A4S M6 3
X(f(+x) = fO)du(x)
P

=1y + LIy + 1l p + 11l -

From the inequality (3) we immediately get that

An 1 1 |n]—1 In]—1
ye (w,(1/2 f)+w 17277, )

n—2Inl-1

<clwp(1/2"7 Hy+wn 2" f)).

Iy < ———

To discuss || 2], we use the disjoint decomposition (4) of G for [ = |n| — 1. Then

2lnl=1_1

—a—1 2
_/ Z A, gt Tin—1(X7)
Lnj—1 X Ln)-1(2)

=0

iy

2
IElp === >

n—1 ZEXM,I

X DY (-1 2N (F( + x) — f())du(x)

p
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, M=1_p g .
The function 1220 1Ani"2‘,}|,l_ZDl’” O Tjp|—1 is constant on the set /j,—1(z) for a fixed

z2=1(20,...,2n—2,0,0,...). By the inequality (5) we write
k=11

Z A;az_nlll_zD}”(fn—l(Z))‘

In|—=1

2
AR =Y

n— IZEXM 1

x / Pinj—1 (X2 (f(+ x) — F()dp(x)
Tnj=1 =1 (2) »
2i=l—p
A - f) Z Z A;az_\nl I lDlw(Tn—l(Z))"/I du(x)
Z€X|n|-1 =0 1n(2)
2|n\ 1_1
fcznawf,(l/zlm—l,f)H Z A,Zfiﬁ-._,DZ”onn\—]
= 1
2lm=1_1

< 2wl (/271 )

—a—1 w
Z An—2‘”|’l—lDl
[=0

1

Lemma 2.5 yields

L, < 2wl (/2" f).
Analogously,

5], < 2w, 2" p).

At last, we discuss ||/ I4|| p- By the help of the disjoint decomposition (4) of G, the fact

. I .
that the function 12 0 lAn "‘2‘”1' 1 (D"D}’) o (Tjuj—1 X Tjp—1) is constant on the set
Linj—1(2) x Ijp—1(v) for fixed z = (2o, ..., 2n—2,0,0,...), v = (vo, ..., Vy=2,0,0,...)

and the inequality (6), we have that

2lnl=1_1

M Iallp < 2", (172" Y+ r 2" ol Y A (DD})
=0 1

Since,
2= olnl—1
Z A I(Dlelw) Z A (DI DY)
1
—i—”An 2|n\(D2\”| 1 Dyjnj- 1)”1
Lemma 2.4 and the equation (1) complete the proof of Lemma 2.8. O

Now, we prove our main theorem.
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PROOF OF THEOREM 2.1. We carry out the proof for 1 < p < oo. The proof for
p = oo is similar and even simpler. It is simple to calculate

1 n
lox=(f) = fllp = HF / A DEGHDEGA) (S (40 = FO)dp(x)
n—1 k=1 14
| 2=l
< H e /G oD ASCDEGHDECD (S +2) = f(O)dp)
n—1 k=0 P
1 p L.
+' = / o2 ASDEGDDECA(F(+x) — F(O)dp )
n—1 G k=2In1—1 V4
1 . —a—1 k.1 K2
+' A /62 k:%:”‘ A D () D () (f (4 x) — f())du(x) ,
=1l + 1+ L]
By Lemma 2.7 we obtain that
[n]—2 [n|—2
I, < c( o2 el fy+ Y 2 el 2, f)).
=0 =0
From Lemma 2.8 we get that
nio 1 njo 1
Iy, < c<2| | “’11’<—2\n\—1’ )+2‘ | wi(zlnl_l,f)> .
Thus, we have to discuss [I11]|,.
The equality (2) yields that
1 n—2M
||III||1J:HF/G2 > A;f‘27,3|_jD§|n‘+j(x1)D§|n‘+j(xz)(f(.+x)—f(.))du(x)
n—1 j=0 P
1 n—2ll
< [ A D DDA ) = )
An—l G? j=0 p
Ay Sy I 21 g 2
+ T/ Do () rin) (VK oy (T N4 x) — f())dn(x)
An—l G? p
A;(—XZW—l 1 w,—o 1 2
+ T/ Finf (XK, (T (X)) Dyt (X)) (f (- + %) — f())dp(x)
An—l G? p
A;ixz\"l—l 1, 2y pw—a 1 2
+ T/ Fin) (6" +x)K 0 (T (), T (X)) (f (+x) = f())dp(x)
An—l G? p

=TIl + 1L, + T3], + [ 1114l .
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By the inequality (3) we immediately get that
11, < 2", (172", ) + wp (1727, ).

To discuss || I112]|p, we use the decomposition (4) of G for [ = |n| and the fact that the

function K zl’,)f‘ o T|y| i8 constant on the set /|, (z) (forafixed z = (z1, ..., Zjn|-1, 0,0, ...)).

By generahzed Minkowski inequality we have that

_ Arth"”—l 2\ o, 2
11|, = H i /G Dyt (x )i (x VK (@ D (F A+ x) = f()dp(x)
n—1

p

kA~
:Hifll > / P ) K0 (@ D (4 %) = f()dp(x)
An—l ZEX\nl Iln\><[|n\(Z) »
2\n\An az\nl 1 :
<— Z |Kn 2n|(T|n|(Z))|‘/ Pl ) (F G+ x) — FO)dpu(x)
n 1 ZEXH I\nIXIln\(Z) p

The inequality (5) yields
L, < cAY on (172", f) Y / JA K @ ()| d i (x)
2€X )y 7 lin+1@)

<cAY (12" PHIAC L KO8 o tailh

n—2In—1
<cAY w12 PIAC L KT
It is well known that
1
) 1A KX < = < o0
o

for 0 < o < 1[8] . Thus, the inequality (7) yields

111Dy < 2™ 1/2", ).
Analogously, we have that

1L, < c2™@wl /2, f).

The discussion of ||I114]|, goes analogously. Thus, we write only a few steps of it.
By the disjoint decomposition (4) of G for [ = |n| and the fact that the function K
(T|n| X Tjn|) 1s constant on the set I}, (z) x I} (v), we write

2|n\ 0

A _
||1114||p=’j4+a11 > KO (@ (2D i ()]
.

Z,U€X|n\

X

/ P ) GO FC A4 1) — £ ()
L) (2) x 1) ()

p
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By the inequality (6) we write that

T Hallp < A (@, (172", )+ wp (172 POIA (KO0 o (T X T

<cAY (o, (1/2M )+ on /2", IAE KO
By Lemma 2.6
T4l < cln2" (o), (172, £) + o (1727, 1)) .
This completes the proof of Theorem 2.1. O

THEOREM 2.9. Let f belongto H” and0 < a < 1. Then
K,—o o 1
(a) oo~ (f) — flh = O| n®w - logn | .

(b) Let w(1/24)/(1/24) 4 00 as A — o0o. Then there exists a function f € H{ for which

i low ™ (f) = flh
im sup

0.
n—>00 n"‘a)(%) logn ”

To prove Theorem 2.9 (b) we use the counterexample function given by Goginava in the
Walsh case [6].
The construction: Let {n; k > 1} be a monotonicaly increasing sequence of positive

integers such that
1 1 1
wo|l—)<-w , k=2
2Nk 27\ 2nk-1

=l 1 2k 1
Y 2o (o) < o5 ).
- 2 kO \ 2

Let {my; k > 1} be a sequence of positive integers such that 2+ =1 < m; < 2" and | Dy 11 =
clogmy. Set

and

fEy) =) filx, ),

k=1
where
1
Si(x,y) = o (27k) (Do (X) = Doyng—1(x)) (Do (y) — Domg-1(¥))

The function f satiesfies the conditions of Theorem 2.9 (see [6]). The proof of Theorem 2.9
goes analogously as Goginava did in the Walsh case [6, Theorem 5]. Thus, it is left to the
readers.
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