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REPRESENTATION OF SCHRODINGER OPERATOR
OF A FREE PARTICLE VIA SHORT-TIME FOURIER TRANSFORM
AND ITS APPLICATIONS
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Abstract. We propose a new representation of the Schrodinger operator of a free par-

ticle by using the short-time Fourier transform and give its applications.

1. Introduction. We consider the Schrodinger equation of a free particle,

1
i0u + EAM =0, (t,x) € Rx R",

u(0,x) =up(x), xe€R",

ey

where i = +/—1, u(t, x) is a complex valued function of (¢, x) € R x R", ug(x) is a complex
valued function of x € R", ,u = du/dt and Au =)}, 82u/8xi2.
When u is a function in S(R™), the solution u(¢, x) of (1) can be written as

u(t, x) = (2" ug)(x) = F! [e72"F Fug(@®)(x).

Here we use the notation F f(§) = f r S (x)e~*%dx for the Fourier transform of f and
Flfix) = fRn f&)e*Ede with @& = (2)"dé& for the inverse Fourier transform of f.

. 1;
The Schrodinger operator e2'/2 and closely related operators such as

@Pug)(x) = F L 16 Fug@®1) .« € R,

have been studied extensively by many authors. Hérmander [8] has proved e/ ” is bounded
on LP(R") if and only if p = 2, and Miyachi [11] has proved the sharp endpoint L?-
Sobolev estimates for ¢ ‘a, a > 1. We also remark that ¢/!P 2 is bounded on the Besov space
BP9(R™) or BP"Y(R") if and only if p = 2 (Mizuhara [13] and Li [10]). On the other hand, a
recent work by Bényi, Grochenig, Okoudjou and Rogers [1] has shown ¢//P1* 0 < & < 2, is
bounded on the modulation space M?-7 forall 1 < p,q < oo, which means e%” A preserves
the MP-4-norm (see the precise definition of M”79 in Section 2.2 below). For further develop-
ments in this direction we refer to Bényi-Okoudjou [2], Cordero-Nicola [3], Miyachi-Nicola-
Rivetti-Tabacco-Tomita [12], Sugimoto [14], Wang-Zhao-Guo [17], Wang-Hudzik [16] and
the references therein.

In this paper, we propose a new representation of the solution u(¢, x) by using the short-
time Fourier transform and give its applications. More precisely, let ¢y be a function in
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S(R™) \ {0} and suppose ¢(t,x) = (e%i’ Ao)(x), which solves the initial value problem
(1) with initial data ¢g. Then we have
; V*

(po (), @z, ) #0IH=x
where Vi, uo denotes the short-time Fourier transform of u with respect to the window ¢g
and V(;‘(t’_) denotes the (informal) adjoint operator of the short-time Fourier transform V)
for a fixed ¢, which are defined in Section 2.1.

By using the representation (2), we have the following propositions.

) u(t, x) = [e™ 2"V, ug(y — &1, 8)1(x)

PROPOSITION 1.1. Let1 < p,q < oco. Suppose g9 € S(R"™) \ {0} and ¢(t,x) =
1.
(ef”Atpo) (x), which solves the initial value problem (1) with initial data ¢o. Then
3) e Magra = Nuoll e
holds for ug € MP41(R™).
REMARK 1.2. We note that the norms on the left-hand and right-hand side of (3) are

. . . L
measured by different windows. Moreover, by putting e~ 254

ity (3), we have

@0, s € R, into ¢ in the equal-

4 t, ° D, = D) ’
“4) flueC )IIMqI)(;f_m IIMOIIM&Q)
where ¢ is the solution of (1) with initial data ¢q.
PROPOSITION 1.3. Letl < p,q < oo and g9 € S(R™) \ {0}. Then there exists a
positive constant C such that
5 t)yra < C(L+ |1)"? ,
(5) flu( )IIMqI)(g") <C+ D IIMOIIM&Z')
forup € S(R") andt,s € R.
PROPOSITION 1.4, Let2 < p < 00,1 < g < ocoand gy € S(R") \ {0}. Then there
exists a positive constant C such that

©) lut, Hlygra = CA+1e)™ V2P gl g
o (s,

forup € S(R") andt,s € Rwith1/p+1/p = 1.

PROPOSITION 1.5. Let2 < p < 00,1 < g < ocoand gy € S(R") \ {0}. Then there
exists a positive constant C such that

) e Mpgra < CA+ 1" 2P gl
foruy € S(R") andt,s € R.

REMARK 1.6. By taking s = 0 in each of the estimates (5), (6) and (7), we have the
estimates due to Bényi-Grochenig-Okoudjou-Rogers [1] and Wang-Hudzik [16].

The paper is organized as follows. In Section 2, we recall the definitions and basic prop-
erties of the short-time Fourier transform and the modulation spaces. In Section 3, we prove
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the representation (2). In Section 4, we prove Propositions 1.1 through 1.5. Finally, in Section
5, we give a local well-posedness result for the nonlinear Schrédinger equations with Cauchy
data in the modulation spaces M?-!.

Acknowledgments. The authors are grateful to the referee for several valuable comments and
suggestions, which improve the statements of Propositions 1.3 through 1.5.

2. Preliminaries. Throughout this paper the letter C denotes a constant which may
be different in each occasion.

2.1. The short-time Fourier transform. We recall the definitions of the short-time
Fourier transform and its adjoint operator. Let f € S’(R") and ¢ € S(R"). Then the short-
time Fourier transform Vs f of f with respect to the window ¢ is defined by

®) Vol (5,6 = (F00.00 = 0e6) = [ £0190 = ie > dy.
Let F be a function on R" x R" and ¢ € S(R"). Then the adjoint operator qu of Vg is
defined by

virw = [[ | Fo.066 - yetayas

with @& = (2m)7"d&. It is known that for f € S’(R") and ¢ € S(R"), Vy f is a continuous
function on R" x R" and
Vo f(x, &) < C(1+ Ix|+[EDY  forall (x,£) € R" x R"

for some constant C, N > 0 ([7, Theorem 11.2.3]). Moreover, for ¢, ¥, y € S(R") satisfying
(¥, @) # 0and (y, ¥) # 0, we have the inversion formula

1
9 ——ViVuf=Ff, S'(R"
©) G Vel =1 JeS®)
([7, Corollary 11.2.7]) and the pointwise inequality
C
(10) Vo f(x, 6 < I 1M(IwaI*IVWI)()c,f?), feS R,

forall (x, &) € R*" ([7, Lemma 11.3.3]).

2.2. Modulation spaces. We recall the definition of modulation spaces M”-9 which
were introduced by Feichtinger [5] to measure smoothness of a function or a distribution in
a way different from Besov spaces. Let 1 < p,q < oo and ¢ € S(R") \ {0}. Then the
modulation space M (f “I(R™) = MP4 consists of all tempered distributions f € S’(R") such
that the norm

q/p 1/q
||f||M£-4 = </R” (/R" |V¢f(x,$)|”dx) df) = ||V¢f(xw§)||L§Lg

is finite (with usual modifications if p = oo or g = ).

The space M;*? (R") is a Banach space, whose definition is independent of the choice
of the window ¢, i.e., Mg’q (R") = Mg*q (R™) for all ¢, ¥ € S(R™) \ {0} ([5, Theorem
6.1]). This property is crucial in the sequel, since we choose a suitable window ¢ to estimate
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the modulation space norm. If 1 < p,q < oo then S(R") is dense in MP-9 ([S, Theorem
6.1]). We also note L2 = M%2, and MP19 < MP2% if p; < pa, q1 < g2 ([5, Proposition
6.5]). Let us define by MP-9(R") the completion of S(R") under the norm || - || p7r.¢. Then
MP9(R") = MP9(R") for 1 < p,q < oo. Moreover, the complex interpolation theory
for these spaces reads as follows: Let 0 < 8 < land 1 < p;,q; < oo,i = 1,2. Set
I/p=0—=0)/p1+0/p2, 1/qg = (1 —0)/q1 + 0/q2, then (MPLI1 MP202)19) = MP4
([5, Theorem 6.1], [15, Theorem 2.3]). We refer to [5] and [7] for more details.

3. Representation of the solution of free Schrodinger equation. In this section, we
show that the solution u(z, x) of (1) is represented by (2). Let u(¢, x) be the solution of (1)
with (0, x) = ugp € S(R"). Note that u(¢, x) is in C*°(R; S(R")) in this case. Let ¢(¢, x) be
the solution of (1) with (0, x) = @o(x) € S(R™) \ {0}, which is used as a window function.
Using integration by parts, we have

1
Vo, <§Au(f7 ')) (x,8)

_ 1 v _— —iy-§
=5 - o(t,y —x)Ayu(t, ye dy

I iy g iy
=/Rn 3 A(t,y =X, ye 1y5dy+/Rn(—z.s-vym(t,y—x)u(t,y)e Edy

1 - .
——I$I2/ o,y = u(t, y)e " Edy
20 Jgn

1
=V (u(t, ) (x, &) + (l'f Vi — EISIZ) Vot ))(x, §).

1apa)
Since u(t, x) and ¢(¢, x) are solutions of (1) and

10 Vo, u(t, ))(x, §) = V_igp,) u(t, ) (x,8) + Vo, (i ult, ) (x, &)

is valid, we obtain

1
10 Vo, (u(t, ) (x, §) + (ié Vi — §|§|2) Vo, (u(t, ) (x, )

) 1
= V(p(l,‘) (latu(t, ) + EAM(I’ )) (xa S) - V[iaftp(l‘,')"r%A(/’(tﬁ'

NGO
=0.

Hence the initial value problem (1) is transformed via the short-time Fourier transform with
window function ¢(¢, x) to

1
(iaz +i§- Vi — §|€|2> Vo, (u(t,))(x, ) =0,

Vo0, @(0, ) (x, &) = Vyyuo(x, §) .

It is easy to see that

(12) Vi ((t, ) (x, ) = e 2EPV, ug(x — £1,£)

(1)
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is the solution of (11). Applying the adjoint operator V . (l of Vi, to the both sides of (12),
we have the representation (2) by the inversion formula (9). It is easy to check that the above
argument is valid for ug(x) € S’'(R™).

4. Proof of Propositions. In this section, we prove Propositions 1.1 through 1.5.
PROOF OF PROPOSITION 1.1. Taking LY Lg norm of the both sides of (12), we have
llu(z, -)IIM;’(-;{) = WV @, N Ol p e
— |l 2itIER
= lle 2" Vgguolx — 81, 6) [l g
= ||V<p0140(xs ";:)”Lng

= IIMOIIMgdq-

PROOF OF PROPOSITION 1.3. By Remark 1.2, it suffices to prove
u(t, - P4 = ||lu pa < C( 4+t n/2 u P s
e Mgrs = lollyza < CA+ 1D luollygpa

where C is independent of ¢ and s. We note that

1
Vo(=s.t0 = Vo(=s.,) [m V;(—s,~) Vw(t—‘s,-)”0i|

by the inversion formula (9) and (¢ (—s, ), @(t — s, -)) = (@o(-), ¢ (¢, -)). Then, we have
Vo(=s,yuo(x, &)

1 y-
= V¢(—s,~)[y_>(x’s)]|:m //RZn Vo(i—s.oto(z, Me(=s, y — 2)e"’ "dzd‘n} (x, &)

1 . v
= W ///R3 o(=s,y — )"V Vs yuo(z, Me(—s, y — 2)e” dydzdn

900() go(t //Rzn</ o=,y — 0)p(—s,y — 2)e "¢~ n)vdy>

X Vy(1—s,yuo(z, n)dzdn

1 .
T @0 elt) // o Vo) @5 NG =208 = e T Vs uo(z. mdzdy

By Young’s inequality, we have

C
u g < — —s, - 1,1 u g .
l olleHﬁ) < lle( )||M¢(_s,.) l olle(H“)

|<‘P0()’ (P(t’ )>|

Since
~  _Lingr~ Ling2, ~
l@o(). ¢t ) = kG0, e 2" o) = ‘/Rnez”'é' Po(6)ds |,

the stationary phase method yields that
(13) Heo(), o(t, N ~ Cl@oO) 2] ™"/*  (as |t] — o0).
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The fact that [l¢(=s, )11 = 9oll,p1 and (13) yield (5). O

PROOF OF PROPOSITION 1.4. Firstly, we prove (6) for p = 2. By Remark 1.2, it suf-
fices to show that || Vi,(—s, yuo(x, &) IILng = [|Vp—s,yuo(x, &)l ;2 Le By Plancherel theorem,
we have

WVet—s. uo(x, E)ll 219 = /muo(y)e_iy'sdy 2
R L2

q
Lg

= /@(t—s,n)e_iy'”uo(y)e_iy'gdy

2
Ly Lg

= / e%i(t_s)‘n‘2@)(n)e_iy‘nuo(y)e_iy‘sdy

2
Ly Lg

= /” e%is|n|2@(n)e—iy-nuo(y)e—iy-édy

2
Ly Lg

= / o(=s,y — 0ug(y)e > dy
Rn

L2 Ll

= IVe(—s.yuoCx, )l 21 -

Secondly, we prove (6) for p = co. By the same argument as in the proof of Proposition
1.3, we have

u 00,q
llwollpgeea |

1
Vo(—s )| —————————— \% uo(x,
v S”[nw(r s, Votis.) Vetr=s.tt0€ é)}

LgOLg

//Rzn V(s )@t — s, N — 2, & — e “EDV g yuo(z, ndzdn

= 2
llwoll; LeL!

C
|| 0||2 IVe(—s.) (@t = 5. DN Ol o 1 IVoe—s. oG E)l 1 g

ot = s, )l ppeer Muoll .
|2 M M,

t—s,")

Since
V(=5 (@t — s, ) (x,8) = -/R” o(=s,y — )t — s, y)e VEdy

= I8 / Gt — 5, MP(—s, n — £)e* Ndn
R?‘l
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et [ h G e B .
the stationary phase method (see [6], [9]) yields that
[Vop(—s,) (@ — s, ))(x, )|

o{-Dp(-2-)

8 “ o~ AN
+Cl T Y /R <8_n) [wo(n)wo(n—%)]‘dn (as |¢] — 00).

loe|<2(1+4n)

<Cl|™?

Hence we have (6) for p = oo. By the complex interpolation method, we have (6) for all
1 <p<oo. O

PROOF OF PROPOSITION 1.5. By using the complex interpolation method between
p = oo for (5) and p = 2 for (6), we have the conclusion. ]

5. nonlinear Schrodinger equation. Next we consider the following initial value
problem of the nonlinear Schrodinger equation,

. o
(14) latu+§Au—f(u),
u(0, x) = uo(x),

where f(u) is a polynomial of u and u with f(0) = 0.

The following result is already known, but we obtain it as a corollary of our representa-
tion (2).

PROPOSITION 5.1 (Bényi-Okoudjou [2]). For ugeM? Y(R™) with 1<p<oo, there
exists a positive constant T and a unique solution of (14) such that u € C ([0, T]; MP-1(R™)).

. . L L
PROOF. Using the representation (2) of the Schridinger operator ¢2/'2, we have the

integral equation associated to (14),

Vit (t, ) (x, §)
t
= e 2Py o (x — 18, &) + /0 e TRy TR — (t — $)E. E)ds .

We recall that MP-! is a Banach algebra, i.e., for ¢ € S(R") \ {0}, there exists a positive
constant C such that

<
(15) lueallypt < Cluarllypa all

forall uy, up € MPL(R™) ([2, Corollary 2.7], [17, Corollary 4.2]).
We define the mapping F (u) from C([0, T']; MP1(R™)) to itself by
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LR LS PP
x[e 21l V¢0uo(x—t5,$)+_/ e 2=l V(p(s,.)[f(u)](x—(t—S)é,S)dS}-
0

Putting A = ||u0||Mp,1 and X7 = C([0, T]; MP-1(R™)), we define a closed subset XT.A
)
of C([0, T]: MP-'(R™)) by

Xr.4 = {u e C([0, T]; MP'(R")) ‘ lullx; = sup [lu(, Il p1 =< 2A}.
1€[0,T] )
The mapping F is well defined on X7 4 for small 7 > 0. In fact, the above fact (15) for
multiplication on M”-!(R") yields that

T
I1F@)lxy < lluollpr. +./o C(S)f(IIMIIMp(,I ))ds,
(s,

where C(s) is a positive continuous function of s and f(u) is a polynomial of u and u which
is made from f(u) replacing all the coefficients to their absolute values. Hence we have

IF)lx, <A+ f(ACIT

with Cy = sup,(o 7 C(s), which implies F(u) € X7 4 for small T > 0.

The same argument as above yields that F is a contraction mapping from X7 4 to itself
for small 7 > 0. Picard’s fixed point theorem for a contraction mapping on X7, 4 implies the
conclusion. O
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