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PROJECTIVE NORMALITY OF TORIC 3-FOLDS
WITH NON-BIG ADJOINT HYPERPLANE SECTIONS
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Abstract. Let L be an ample line bundle on a nonsingular toric 3-fold. We show that
if the adjoint bundle of L has no global sections, then L is normally generated. Even if the
adjoint bundle is effective, it is shown that L is normally generated if it is not big.

Introduction. It is known that any ample line bundle on a projective nonsingular toric
variety is very ample (cf. [11, Corollary 2.15]). A line bundle L on a projective variety is
called normally generated if the multiplication map Γ (L)⊗l → Γ (L⊗l ) is surjective for all
l ≥ 1. If an ample line bundle L is normally generated, then L is very ample. Furthermore, if
the variety X is normal, then a normally generated ample line bundle L defines the embedding
ΦL : X → P (Γ (L)) of X as a projectively normal variety, i.e., the homogeneous coordinate
ring is a normal ring.

When we would ask questions about defining ideals of projective varieties, we often
assume that the varieties are projectively normal. For example, Sturmfels [13] asked whether
any projective nonsingular toric varieties embedded by normally generated ample line bundles
are defined by only quadrics (see also Cox [2]). In practice, it is difficult to check the condition
that the variety is projectively normal, or equivalently the very ample line bundle is normally
generated.

Only few criteria of normal generation are known even for toric varieties. Koelman
[7] showed that any ample line bundle on a toric surface is normally generated. Ewald and
Wessels [3] showed that, for an ample line bundle L on a projective toric variety of dimension
n, the twisted bundle L⊗l is very ample for l ≥ n − 1, and Nakagawa [9] proved that L⊗l is
normally generated for these l (see also [10, Theorem 1]). More precisely, he proved that the
multiplication map

Γ (L) ⊗ Γ (L⊗l ) → Γ (L⊗(l+1))

is surjective for l ≥ n − 1. Ogata [12] showed that, if a toric 3-fold is the quotient of the
projective 3-space P 3 by an action of a finite abelian group, then a very ample line bundle on
it is normally generated. Note that weighted projective 3-spaces are such toric varieties.
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A polarized toric variety (X,L) of dimension n corresponds to an integral convex poly-
tope P of dimension n in Rn. Then L is normally generated if and only if the equalities

(lP ) ∩ Zn + P ∩ Zn = ((l + 1)P ) ∩ Zn

hold for all positive integers l. If the condition holds, then P is called normally generated (cf.
Definitions 1.2 and 1.3).

In this paper we shall prove the following theorems.

THEOREM 0.1. Let X be a nonsingular projective toric variety of dimension three.
Then any ample line bundle L on X satisfying H 0(X,L ⊗ OX(KX)) = 0 is normally gener-
ated.

The theorem is proved by showing that a nonsingular integral convex polytope of di-
mension three without interior lattice points is normally generated, which is given as Propo-
sition 2.7 in Section 2.

THEOREM 0.2. Let L be an ample line bundle on a nonsingular projective toric vari-
ety X of dimension three. If H 0(X,L ⊗ OX(KX)) �= 0 and L ⊗ OX(KX) is not big, then L

is normally generated.

Theorem 0.2 is also interpreted as follow. A nonsingular integral convex polytope of
dimension three with non-empty internal polytope of dimension less than three is normally
generated. See Corollary 3.2 in Section 3.

For a proof of Theorems 0.1 and 0.2 we use the following result.

THEOREM 0.3 (Fakhruddin [4]). Let X be a nonsingular projective toric surface.
Then, for an ample line bundle A and a nef line bundle B on X, the multiplication map

Γ (A) ⊗ Γ (B) → Γ (A ⊗ B)

is surjective.

This theorem means that, for a nonsingular integral convex polygon P and an integral
convex polygon Q whose inner fan is a subfan of that of P , the equality

P ∩ Z2 + Q ∩ Z2 = (P + Q) ∩ Z2

holds, where it includes the case when Q is a line segment. Kondo and Ogata [8], and Haase,
Nill, Paffenholz and Santos [6] generalized this to the case of singular toric surfaces.

Since the statements in the theorems can be interpreted into equalities on lattice points of
integral convex polytopes, we need to investigate properties of convex polytopes of dimension
three for the proof of Theorems 0.1 and 0.2.

The structure of this paper is as follows: In Section 1, we recall basic results about
toric varieties and line bundles on them. In Section 2, we give a classification of nonsingular
integral convex polytopes of dimension three without interior lattice points (Proposition 2.3).
By using the classification, we prove Theorem 0.1. In Section 3, we treat the case that the
adjoint bundle of L has a non-trivial global section and give a characterization of the internal
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polytope (Proposition 3.1). From this, we prove that P is normally generated if the internal
polytope has dimension less than three (Corollary 3.2).

The author would like to thank Professor Masanori Ishida for his comments for improv-
ing the presentation and for his help in the last part of the proof of Proposition 3.1.

1. Projective toric varieties. In this section, we recall the facts on toric varieties
which we need in this paper. For the proofs, see Oda’s book [11] or Fulton’s book [5]. For
simplicity, we assume that toric varities are defined over the complex number field.

Let N be a free Z-module of rank n, M its dual and 〈, 〉 : M × N → Z the canonical
pairing. By the scalar extension to the field R of real numbers, we have real vector spaces
NR := N ⊗Z R and MR := M ⊗Z R. We denote also by 〈, 〉 the pairing of MR and NR

defined by the scalar extension. Let TN := N ⊗Z C∗ ∼= (C∗)n be the algebraic torus over the
field C of complex numbers, where C∗ is the multiplicative group of C. Then the character
group Homgr(TN ,C∗) of TN is identified with M and TN = Spec C[M]. For m ∈ M we
denote e(m) as the character of TN . Let ∆ be a finite complete fan in N and X = TN emb(∆)

a complete toric variety of dimension n (see [11, Section 1.2] or [5, Section 1.4]). We note
that a toric variety defined by a fan is always normal.

Let L be an ample line bundle on X. Then we have an integral convex polytope P in MR

with

H 0(X,L) ∼=
⊕

m∈P∩M

Ce(m) ,(1)

where e(m) are considered as rational functions on X because they are functions on an open
dense subset TN of X (see [11, Section 2.2] or [5, Section 3.5 ]). Here an integral con-
vex polytope P in MR is the convex hull Conv{u1, u2, . . . , us} in MR of a finite subset
{u1, u2, . . . , us} ⊂ M . We note that dimR P = dim X. The l-th power L⊗l corresponds
to the convex polytope lP := {lx ∈ MR; x ∈ P }.

DEFINITION 1.1. An integral convex polytope P in MR of dimension n is called non-
singular if, for each vertex u of P , the cone R≥0(P −u) := {λ(x−u) ∈ Rn; x ∈ P and λ ≥ 0}
is nonsingular, that is, there exists a Z-basis {m1, . . . ,mn} of M such that

R≥0(P − u) = R≥0m1 + · · · + R≥0mn .

A face F ⊂ P is said to be nonsingular if it is nonsingular with respect to the sublattice
R(F ) ∩ M , where R(F ) is the smallest affine subspace of MR containing F .

We note that a nonsingular polytope P is simple, that is, each vertex of P is contained in
just n faces of dimension n − 1, or equivalently contained in just n faces of dimension one.

The ample line bundle L is very ample if and only if, for each vertex u of P , the semi-
group R≥0(P −u)∩M is generated by (P −u)∩M , i.e., all lattice points x in the semigroup
are represented as a finite sum of elements y1, . . . , ys in (P − u) ∩ M . An ample line bundle
on a nonsingular complete toric variety is very ample (see [11, Corollary 2.15]).
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DEFINITION 1.2. An ample line bundle L on a projective variety X is called normally
generated if the multiplication map SymlH 0(X,L) → H 0(X,L⊗l ) is surjective for all l ≥ 1.

DEFINITION 1.3. An integral convex polytope in MR is called normally generated
if for the corresponding polarized toric variety (X,L) the ample line bundle L is normally
generated.

REMARK 1.4. If X is toric and if (X,L) corresponds to an integral convex polytope
P in MR satisfying (1), then the normal generation of L is equivalent to the condition that for
all l ≥ 1 every element v ∈ lP ∩ M is written as a sum v = u1 + · · · + ul of l lattice points
ui ∈ P ∩ M . This is equivalent to the condition

(lP ) ∩ M + P ∩ M = ((l + 1)P ) ∩ M for all l ≥ 1 .(2)

2. Convex polytopes without interior lattice points. In this section we prove The-
orem 0.1. In the theorem we assume that Γ (L ⊗ OX(KX)) = 0.

Let X be a nonsingular projective toric 3-fold and L an ample line bundle on X. Let P be
the integral convex polytope of dimension three corresponding to the polarized toric variety
(X,L). From [11, Theorem 3.6] we have

Γ (X,L ⊗ OX(KX)) ∼=
⊕

m∈Int(P )∩M

Ce(m) .(3)

Hence we see that Γ (L ⊗OX(KX)) = 0 is equivalent to Int(P ) ∩ M = ∅. In this section, we
consider an integral convex polytope P of dimension three satisfying the condition Int(P ) ∩
M = ∅.

Before investigating convex polytopes of dimension three, we have to classify non-
singular integral convex polytopes of dimension two without lattice points in the interior.
Set G0 := Conv{(0, 0), (1, 0), (0, 1)} and Ga,b := Conv{(0, 0), (0, 1), (a, 1), (b, 0)} for
a ≥ b ≥ 1.

The following lemma is checked easily (cf. [1]).

LEMMA 2.1. A nonsingular integral convex polytope of dimension two without lattice
points in its interior coincides with one of G0, 2G0 and Ga,b up to affine transformations of
Z2.

See Figure 1. The convex polygons G0 and 2G0 correspond to the projective plane P 2

with O(1) and O(2), respectively. Ga,b corresponds to the Hirzebruch surface P (O(a) ⊕
O(b)) of degree a − b with a suitable ample line bundle.

First we introduce typical examples of nonsingular integral convex polytope P of dimen-
sion three with Int(P ) ∩ M = ∅. Set P1 := Conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} the
basic 3-simplex. Then P1 defines the polarized toric variety (P 3,O(1)). Since the canonical
line bundle of P 3 is isomorphic to OP 3(−4), we see that lP1 does not contain lattice points
in its interior for l = 1, 2, 3. Set P2 := 2P1 and P3 := 3P1. We note that lP1 is normally
generated for all l ≥ 1.
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FIGURE 1. Nonsingular integral polygons without lattice points in their interior.

Set P
(1)
2 := Conv{(0, 0, 0), (2, 0, 0), (0, 2, 0), (1, 0, 1), (0, 1, 1), (0, 0, 1)} and P

(1)
3 :=

Conv {(0, 0, 0), (3, 0, 0), (0, 3, 0), (1, 0, 2), (0, 1, 2), (0, 0, 2)}. The polytope P
(1)
2 is obtained

by cutting off the top of P2 at z = 1. P
(1)
3 is obtained by cutting P3 at z = 2. In particular,

we have that Int(P (1)
2 ) ∩ M = Int(P (1)

3 ) ∩ M = ∅. The convex polytopes P
(1)
2 and P

(1)
3

define the blowup of P 3 at a TN -invariant point. This is also a toric P 1-bundle over P 2, that
is, X ∼= P (O ⊕ O(1)). We also have convex polytopes defining the blowup of P 3 at several
points. We write as P

(1)
3 = (P3) ∩ (0 ≤ z ≤ 2). Then we set P

(2)
3 := P

(1)
3 ∩ (0 ≤ x ≤ 2),

P
(3)
3 := P

(2)
3 ∩ (0 ≤ y ≤ 2) and P

(4)
3 := P

(3)
3 ∩ (1 ≤ x + y + z ≤ 3). See Figure 2 (a).

FIGURE 2. Typical P with (IntP ) ∩ M = ∅.

For integers a, b, c ≥ 1, set

Pa,b,c := Conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 0, a), (0, 1, b), (0, 0, c)} .

This is a bounded triangular prism over the basic triangle with the three edges of lengths a, b

and c. See Figure 2 (b). The convex polytope Pa,b,c defines a toric P 2-bundle over P 1, that
is, X ∼= P (O(a) ⊕ O(b) ⊕ O(c)). For integers d, e, f ≥ 1, set

Qd,e,f := Conv{(0, 0, 0), (2, 0, 0), (0, 2, 0), (2, 0, d) , (0, 2, e), (0, 0, f )} .

Then we see that Q2a,2b,2c = 2Pa,b,c and that Q2a−1,2b−1,2c−1 also corresponds to an ample
line bundle on P (O(a) ⊕ O(b) ⊕ O(c)). We note that d + f and e + f are even integers if



130 S. OGATA

Qd,e,f is nonsingular, for the points (1, 0, (d + f )/2) and (0, 1, (e + f )/2) must be lattice
points. See Figure 3 (a).

FIGURE 3. The shape of Q
(1)
d,e,f .

We obtain nonsingular polytopes from Qd,e,f by cutting off one or two basic 3-simplices.

For f ≥ 2, set Q
(1)
d,e,f := Qd,e,f ∩ (x + y + z ≥ 1). See Figure 3 (a). Since Q

(1)
d,e,f

is nonsingular, we see that d + f and e + f are also even integers. If f is even, then set
d = 2a, e = 2b and f = 2c. If f is odd, then set d + 1 = 2a, e + 1 = 2b and f + 1 = 2c.
Then the polytope Q

(1)
d,e,f defines the blowup of P (O(a) ⊕O(b) ⊕O(c)) at a point on a TN -

invariant fiber. We say that Q
(1)
d,e,f is obtained from Qd,e,f by cutting off one basic 3-simplex

at the vertex (0, 0, 0). Note that Q
(1)
d,e,f coincides with Qd+1,e+1,f−1 ∩ (x + y − z ≤ 1) by a

suitable affine transform of M . See Figure 3 (b).
If one cuts off one more basic 3-simplex from Q

(1)
d,e,f at the vertex (2, 0, 0) or (0, 2, 0)

in Figure 3 (a), then the resulting polytope is singular. Set Q
(2)
d,e,f the polytope obtained from

Q
(1)
d,e,f by cutting off one basic 3-simplex at one of the vertices (2, 0, d), (0, 2, e) (if d, e ≥ 2)

and (0, 0, f ) (if f ≥ 3) of the top triangle. Then the polytope Q
(2)
d,e,f defines the blowup of

P (O(a) ⊕ O(b) ⊕ O(c)) at two points contained in the distinct two TN -invariant fibers.
We call a face of dimension two a facet and a face of dimension one an edge.

LEMMA 2.2. Let P is a nonsingular polytope of dimension three contained in the
prism {x ≥ 0, y ≥ 0, z ≥ 0, x + y ≤ 2}. Assume that P has three facets F1, F2 and F3

contained in the planes (x = 0), (y = 0) and (x + y = 2), respectively. Furthermore, we
assume that P has three edges E1, E2 and E3 contained in the lines (x = 2, y = 0), (x =
0, y = 2) and (x = y = 0), respectively. Then, by a suitable affine transformation of M , P

coincides with one of Qd,e,f ,Q
(1)
d,e,f and Q

(2)
d,e,f such that d − f and e − f are even.

PROOF. We may assume that the origin (0, 0, 0) is a vertex of P and the two edges
at the origin, besides E3, contain (1, 0, 0) and (0, 1, 0), respectively, since P is nonsingular.
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Since F2 (resp. F1) is nonsingular in the plane (y = 0) (resp. (x = 0)), the shape of F2 (resp.
F1) near the line (z = 0) is one of the Figure 4.

FIGURE 4. The shape of F2 or F1 near the line (z = 0).

If both of the points (2, 0, 0) and (0, 2, 0) are vertices of P , then P ∩ (z = 0) is 2G0 (see
Figure 1).

If both of the points (2, 0, 0) and (0, 2, 0) are not vertices of P , then both of the points
(1, 0, 0) and (0, 1, 0) are vertices and the bottom facet F0 = P ∩ (z = 0) is the basic triangle.
In this case, P ∩ (z = 1) is a triangle isomorphic to 2F0 since P ∩ (x + y = 2) �= ∅ and
since the points (1, 0, 0) and (0, 1, 0) are nonsingular vertices of P . The shape of P near the
bottom is as Figure 3 (b).

If the point (2, 0, 0) is a vertex and the point (0, 2, 0) is not a vertex of P , then the points
(0, 1, 0) and (1, 1, 0) are vertices of P and the bottom facet F is a tetragon. Since (0, 1, 0) is
a nonsingular vertex, the edge from (0, 1, 0) on the facet F1 has the direction (0, b, 1). Since
the facet F3 = P ∩(x+y = 2) is not empty, we have 0 ≤ b ≤ 1. If b = 0, then P is contained
in {0 ≤ y ≤ 1}. This contradicts to the assumption that P contains the edge E2. If b = 1,
then the point (0, 2, 1) is a vertex of P . The shape of P near the bottom is as Figure 3 (a) by
a suitable affine transform of M .

Since the condition of P near the top is the same, if P satisfies our assumption, then it is
one of Qd,e,f ,Q

(1)
d,e,f and Q

(2)
d,e,f with even d − f and e − f . �

Let F0 be a facet of P . We take a coordinate of M such that P ⊂ (z ≥ 0) and F0 ⊂
(z = 0). Since P is nonsingular, F0 is nonsingular in the plane (z = 0). We fix a notation
of lattice points in P near F0. Denote {u0, u1, . . . , ur } the set of vertices of F0. Assume that
ui is adjacent to ui+1 for i = 0, 1, . . . , r (set ur+1 = u0). Take m1 ∈ M on the edge u0u1

of F0 and m2 ∈ M on u0ur so that {m1 − u0,m2 − u0} be a Z-basis of M ∩ (z = 0). Since
P is nonsingular, we can take the lattice point m3 ∈ M ∩ P on the third edge at u0 so that
{m1 − u0,m2 − u0,m3 − u0} is a Z-basis of M . Let (x, y, z) be the coordinates of MR

∼= R3

with respect to this basis. For each ui we take the point wi ∈ P ∩M with the coordinate z = 1
on the third edge at ui . See Figure 5.

Now set P(F0) := (0 ≤ z ≤ 1) ∩ P and G := (z = 1) ∩ P ⊂ P(F0). Then P(F0) is an
integral convex polytope with the parallel faces F0 and G. If dim G ≤ 1, then P(F0) = P and
G is a face of P . When dim G = 0, that is, when w0 = w1 = · · · = wr , we see that r = 2
and P = P1 since P is nonsingular. When dim G = 1, we see r = 3 since {w0, . . . , wr }
are vertices of G and P is simple. In this case, we may assume w0 = w1, then we see that
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FIGURE 5. P and F0 centered at u0.

u1 = m1 since P is nonsingular. The point w0 = w1 is one end of G. Since the other
end of G is w2 = w3, the vertex u2 has the coordinate of the form (1, a, 0). If we write as
u3 = (0, b, 0),w2 = w3 = (0, c, 1), then we see that P ∼= Pa,b,c by a change of coordinates.

We assume that dim G = 2. If G is a facet of P , then all wi’s are distinct since P is
simple. On the other hand, we note that if all wi’s are distinct, then G has the same number of
vertices as that of F0 and G is nonsingular. Furthermore, P(F0) defines a toric 3-fold which
is a toric P 1-bundle over a toric surface Y defined by F0.

When G = (z = 1) ∩ P is not a face of P , it may happen that w0 = w1. In this case, we
see that u1 = m1 because the facet Conv{u0, u1, w0} of P is nonsingular. If w0 = w1 = w2,
then r = 2 and u2 = m2, that is, P = P1. Thus we see that if dim G = 2 and if w0 = w1,
then w2 �= w1. See Figure 6.

FIGURE 6. P and F0 centered at u0.

In general, if wi �= wi+1, then the edge wiwi+1 of G is parallel to the edge uiui+1 of F0.

PROPOSITION 2.3. Let P be a nonsingular integral convex polytope in MR of dimen-
sion three. We assume that P has no lattice points in its interior. Then, by a suitable affine
transformation of M , P coincides with one of the following.

(1) The convex hull P of parallel two nonsingular facets F0 and F1 of distance one
such that they define a same 2-dimensional nonsingular fan. This P defines a toric P 1-bundle
over the nonsingular toric surface defined by this fan.

(2) P1, P2 or P3. The convex polytope Pl = lP1 corresponds to (P 3,O(l)).
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(3) Pa,b,c or Qd,e,f with even d−f and e−f . The convex polytopes Pa,b,c and Qd,e,f

define the same toric P 2-bundle P (O(a)⊕O(b)⊕O(c)) over P 1 if d−f = 2(a−c), e−f =
2(b − c).

(4) P
(i)
3 for i = 1, . . . , 4. The convex polytope P

(i)
3 defines the blowup of P 3 at TN -

invariant i points. In this case, we have P = P(F0)∪P(F1) by taking the parallel two facets
F0 and F1 of distance two.

(5) Q
(i)
d,e,f with d −f = 2(a − c), e−f = 2(b − c) for i = 1, 2. The convex polytope

Q
(1)
d,e,f defines the blowup of P (O(a) ⊕ O(b) ⊕ O(c)) at a TN -invariant point on a TN -

invariant fiber. Q
(2)
d,e,f defines the blowup of Q

(1)
d,e,f at a TN -invariant point on the other TN -

invariant fiber. Q
(i)
d,e,f has three facets F1, F2 and F3 contained in the planes (x = 0), (y = 0)

and (x + y = 2), respectively. We have P = P(F1) ∪ P(F2).

PROOF. First we assume that P is contained in the prism R := {x ≥ 0, y ≥ 0, z ≥
0, x + y ≤ 2} and P has three facets F1, F2 and F3 contained in the planes (x = 0), (y = 0)

and (x + y = 2), respectively. We may assume that the origin (0, 0, 0) is a vertex of P and
the points (1, 0, 0) and (0, 1, 0) are contained in the boundary of P since P is nonsingular.

If P has three edges E1, E2 and E3 in the sense of Lemma 2.2, then it is one of
Qd,e,f ,Q

(1)
d,e,f and Q

(2)
d,e,f with even d − f and e − f from Lemma 2.2.

If P does not have the edge E1, then it is contained in {0 ≤ x ≤ 1}. In this case, the facet
contained in the plane (x = 1) is a tetragon isomorphic to Ga,b for some a, b ≥ 1. Since P is
nonsingular, the facet F1 is a tetragon whose edges are parallel to those of Ga,b.

If P does not have the edges E1 and E2, then it does not have the facet F3.
Next we use the notation described just before Proposition 2.3. The vertex u0 of P is the

origin, P is contained in the region {x ≥ 0, y ≥ 0, z ≥ 0}, the facet F0 = P ∩ (z = 0) has the
vertices {u0, u1, . . . , ur } and P has three edges from u0 with the directions (1, 0, 0), (0, 1, 0)

and (0, 0, 1). Set G = P ∩ (z = 1). If dim G ≤ 1, then we see that P = P1, or P ∼= Pa,b,c as
discussed before this proposition. In the following we assume dim G = 2.

(I) We treat the case that F0 and G have the same number of edges. Then G is nonsin-
gular as we noted before. If G is a facet of P , then it is in the case (1).

Assume that G is not a facet of P . Then the interior lattice points Int(G) ∩ M are
contained in the interior of P . Thus by our assumption G does not contain lattice points in its
interior. From Lemma 2.1, G coincides with one of G0, 2G0 and Ga,b.

(a) The case that G ∼= G0: We claim that P = P2, or Pa,b,c.
To see this, note that F0 ∼= kG0 for a positive integer k since F0 and G have parallel edges.
In this case, P(F0) is given as 0 ≤ z ≤ 1, 0 ≤ x, 0 ≤ y and x + y + (k − 1)z ≤ k. We divide
it into the cases k = 1 and k ≥ 2.

If k = 1, then P = Pa,b,c.
If k ≥ 2, then the three affine hyperplanes defined by the last three inequalities intersect

in the point (0, 0, k/(k − 1)), whose z-coordinate is less than or equal to 2, with equality only
for k = 2. Since G is not a facet of P , there has to exist a vertex of P whose z-coordinate is
greater than or equal to 2. Hence this implies k = 2 and P = 2P1 = P2.
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(b) The case that G ∼= 2G0: In this case, we note that F0 ∼= kG0 for a positive integer
k. By the same reason above, we have k ≤ 4. If k = 4, then the point (0, 0, 2) is a singular
vertex of the cone over F0. Hence, 1 ≤ k ≤ 3. We consider each of the cases.

If k = 3, then P is contained in 3P1 = P3. Set F1 := P ∩ (x = 0). Then F1 is contained
in the triangle Conv{(0, 0, 0), (0, 3, 0), (0, 0, 3)}. If the point (0, 0, 1) is a vertex of F1, then
there has to exist an edge connecting (0, 0, 1) with (0, 1, 2) or (0, 2, 1). If the edge connects
with (0, 1, 2), then the point (0, 1, 2) is a singular vertex of F1. The situation is the same
in the facet P ∩ (y = 0). Thus, if the point (0, 0, 1) is a vertex of P , then there have to
exist two edges connecting (0, 0, 1) with (0, 2, 1) and (2, 0, 1), hence, G is a facet of P . This
contradicts to the assumption. None of points (0, 0, 1), (2, 0, 1), (0, 2, 1) is a vertex of P . If
the point (0, 0, 2) is a vertex of P , then it has to be connected with (1, 0, 2) by an edge, hence,
we have P = P

(1)
3 , otherwise P = P3.

If k = 2, then P is contained in the prism R = {x ≥ 0, y ≥ 0, z ≥ 0, x + y ≤ 2}, which
is contained in the case considered first.

If k = 1, then we claim that P is of the form (5), or P
(i)
3 for i = 1, . . . , 4 in (4).

We assume that P is not of the form (5), that is, P is not contained in the prism R = {x ≥
0, y ≥ 0, z ≥ 0, x + y ≤ 2}. See Figure 3 (b). Set G′ := P ∩ (z = 2). Then G′ is a rational
polygon. We will prove that G′ contains the point (1, 1, 2) in its interior. We note that G′ is
contained in the triangle G̃ := {0 ≤ x, 0 ≤ y, x + y ≤ 3, z = 2} ∼= 3G0. The point (1, 1, 2)

is the center of G̃ and G′ is obtained by cutting G̃ several times.
If the point (0, 0, 1) is a vertex of P , then there have to exist two edges connecting

(0, 0, 1) with (1, 0, a) and (0, 1, b). Since G is not a facet of P , we see a, b ≥ 1 and one of
them is greater than 1. If both a and b are greater than 1, then G′ is obtained by cutting off a
triangle with the vertex (0, 0, 2) and with two edges of lengths 1/(a − 1) (≤ 1) and 1/(b − 1)

(≤ 1). See Figure 7 (a). In this case, G′ contains (1, 0, 2) and (0, 1, 2), and the point (1, 1, 2)

is in the interior of G′. If a = 1 and b = 2, then G′ is obtained by cutting G̃ at the line {y = 1}
and G′ ∼= 2G0, and this implies that P has the form (5) after an affine transform of Z3, since
P is contained in the prism {x ≥ 0, z ≥ 0, y ≥ z − 1, x + y − z ≤ 1} with the cross-section
isomorphic to 2G0. Hence, if a = 1, then b ≥ 3. In this case G′ is obtained by cutting G̃ at
the line {y = 1/(b − 1)}. See Figure 7 (b). The point (1, 1, 2) remains in the interior of G′

FIGURE 7. G̃ containing G′.
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since b − 1 ≥ 2. Even if all three points (0, 0, 1), (2, 0, 1) and (0, 2, 1) are vertices of P , then
(1, 1, 2) is the interior point of G′ unless P is of the form (5).

Since P has no lattice points in its interior, G′ is a facet of P . This implies that a = b =
2. This corresponds to P

(2)
3 . If (2, 0, 1) or (0, 2, 1) is a vertex of P , then we have P ∼= P

(3)
3

or P ∼= P
(4)
3 .

(c) The case that G ∼= Ga,b: In this case, F0 is a tetragon with two parallel edges. If
P is contained in the region {0 ≤ y ≤ 1}, then it is in the case (1). If F0 is a tetragon of the
form Conv{(0, 0), (0, k), (a′, k), (b′, 0)} with k ≥ 2, then k = 2 since G is not a facet of P .
In this case, P is contained in the prism {x ≥ 0, y ≥ 0, z ≥ 0, x + z ≤ 2}, hence, we see that
P is Qd,e,f or of the form (5) by exchanging the role of F0 with the facet of P contained in
the plane (x = 0).

(II) Next we consider the case that wi = wj for some i �= j . By our numbering we
may set j = i + 1. By an affine transform of M , we can set ui = u0 and ui+1 = u1. Then
we have w0 = w1 as in Figure 6. Since P is nonsingular, we see that m1 = u1 = (1, 0, 0)

and that w0 is a vertex of P . By exchanging the role of F0 with the facet Conv{u0, u1, w0},
we can reduce to the case that F0 ∼= G0 in the cases (a) and (b) of (I) treated above. �

We will use the following Lemmas for the proof of the normal generation of polytopes.

LEMMA 2.4. Let P be an integral convex polytope in MR . If P is a union of normally
generated integral convex polytopes, then P is also normally generated.

PROOF. Let P = ⋃r
i=1 Qi be a decomposition into a union of integral convex polytopes

such that each Qi is normally generated. For an positive integer l, take a lattice point in lP ,
i.e., m ∈ (lP )∩M . Then we can choose i so that m ∈ lQi because lP = ⋃r

i=1 lQi . Since Qi

is normally generated, there exist m1, . . . ,ml ∈ Qi ∩M ⊂ P ∩M such that m = m1+· · ·+ml

from Remark 1.4. �

LEMMA 2.5. The integral convex polytope P(F0) is normally generated.

PROOF. We show that P(F0)∩M +P(F0)∩M = (2P(F0))∩M . We note that F0 and
G are normally generated because they are of dimension two. From the result of Fakhruddin
(Theorem 0.3), we see that

F0 ∩ M + G ∩ M = (F0 + G) ∩ M(4)

because F0 and G define an ample and a nef line bundles on the nonsingular toric surface Y ,
respectively.

Take m ∈ (2P(F0)) ∩ M . If the z-coordinate of m is 0, 1 or 2, then m is in 2F0, F0 + G

and 2G, respectively. Thus we can find m1,m2 ∈ P(F0) ∩ M with m = m1 + m2. �

REMARK 2.6. In the proof of lemma 2.5 the equality (4) is essential. The result of
Fakhruddin [4] says that if each edge of G has the same inner normal direction as that of
some edge of F0, then the equality (4) holds. The condition contains the case when G is a line
segment E and F0 is a tetragon with two edgs parallel to E.
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From Proposition 2.3 and Lemmas 2.4 and 2.5 we prove Theorem 0.1.

PROPOSITION 2.7. Let X be a projective nonsingular toric variety of dimension three
and let L be an ample line bundle on X. If Γ (X,L ⊗ OX(KX)) = 0, then L is normally
generated.

PROOF. Let P be the integral convex polytope corresponding to the polarized toric
variety (X,L). By the assumption Γ (X,L⊗OX(KX)) = 0, the polytope P does not contain
lattice points in its interior. We have a classification of such polytopes in Proposition 2.3.

We can apply Lemmas 2.4 and 2.5 to the polytopes in (1), (4) and (5) of Proposition 2.3
for the normal generation of P and also to P = Qd,e,f in (3) in the same way of (5).

The basic 3-simplex P1 is trivially normally generated. If P = kQ for some integral
convex polytope Q and k ≥ 2, then P is normally generated from [9]. (2) is in this case.
When P = Pa,b,c, we may set F1 := Pa,b,c ∩ (x = 0) and E := Pa,b,c ∩ (x = 1). Then E

is a line segment and F1 is a tetragon with two edges parallel to E. From Remark 2.6 we see
that Pa,b,c is normally generated. This completes the proof. �

3. Adjoint bundles. In this section we investigate properties of the adjoint bundle
L ⊗ OX(KX) of an ample line bundle L on X.

Let L be an ample line bundle on a nonsingular projective toric variety X = TN emb(∆)

of dimension n. Let {ρ1, . . . , ρr } = ∆(1), i.e., the set of all cones of dimension one in ∆, and
Di the TN -invariant prime divisor on X corresponding to ρi for each i. Then there exists a
divisor D = ∑

i aiDi with L ∼= OX(D). We may assume ai ≥ 0.
In this case,

P := {u ∈ MR; 〈u, n(ρi)〉 ≥ −ai for all i}
is the corresponding polytope, where n(ρi) ∈ ρi ∩ M is the primitive element for each i.
Recalling that the canonical divisor KX is − ∑

i Di , we set

PK := {u ∈ MR; 〈u, n(ρi)〉 ≥ −ai + 1 for all i} .(5)

Assume that Γ (L ⊗ OX(KX)) �= 0, equivalently that Int(P ) ∩ M �= ∅. We know
PK ∩ M = Int(P ) ∩ M . Set Q := Conv(Int(P ) ∩ M). We call Q the internal integral
polytope of P . We see that Q ⊂ PK because PK is convex and Int(P ) ∩ M ⊂ PK .

Let u0 ∈ P be a vertex of P . Then there is the n-dimensional cone σ ∈ ∆(n) such
that σ∨ ∼= R≥0(P − u0). Since σ = ρi1 + · · · + ρin is nonsingular, {n(ρi1), . . . , n(ρin )} is
a Z-basis of N and there are m1, . . . ,mn ∈ P ∩ M such that {m1 − u0, . . . ,mn − u0} is the
dual basis of M and that R≥0(P − u0) = ∑n

i=1 R≥0(mi − u0). From this notation, we see

〈u, n(ρik )〉 = 〈u − u0, n(ρik )〉 + 〈u0, n(ρik )〉 ≥ 〈u0, n(ρik )〉
for u ∈ P and k = 1, . . . , n .

(6)

By definition we see 〈u0, n(ρik )〉 = −aik . Set l̄σ := u0 + ∑n
i=1(mi − u0). Then the lattice

point l̄σ − u0 = ∑n
i=1(mi − u0) is in the interior of σ∨ = R≥0(P − u0) and (Int σ∨) ∩ M =

(l̄σ − u0) + σ∨ ∩ M .
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Since the set of all vertices of P bijectively corresponds to ∆(n), we can define l̄σ ∈ M

for all σ ∈ ∆(n). We note that it may happen l̄σ = l̄τ for σ, τ ∈ ∆(n) with σ �= τ . If
σ = ρi1 + · · · + ρin , then from (6) we see that

〈l̄σ , n(ρik )〉 = −aik + 1 for k = 1, . . . , n .

If there is a ρi ∈ ∆(1) with 〈l̄σ , n(ρi)〉 ≤ −ai , then l̄σ is not contained in PK . If all l̄σ are
contained in PK , then the line bundle OX(D + KX) is generated by global sections from [5,
Section 3.4] and hence PK is the convex hull of {l̄σ ; σ ∈ ∆(n)} (see [11, Theorem 2.7]). In
this case, we have PK = Q because PK ∩ M = Q ∩ M .

Even if not the case, we will see PK = Q when dim X = 3 in the following Proposition.

PROPOSITION 3.1. Let P be a nonsingular integral convex polytope of dimension
three in MR corresponding to a polarized toric variety (X,OX(D)). We assume that
Γ (X,OX(D + KX)) �= 0, that is, Int(P ) ∩ M �= ∅. Set PK the rational convex polytope
of the adjoint divisor D + KX defined by (5), and set Q = Conv(Int(P ) ∩ M) the internal
polytope of P . Then we have PK = Q.

PROOF. Let u0 ∈ P be a vertex and F0 a facet containing u0. The two edges of F0

meeting at u0 have the lattice points m1 and m2 respectively so that {m1 − u0,m2 − u0} is a
Z-basis of (RF0) ∩ M ∼= Z2. Then we have the same figure as Figure 5 and the coordinate
system (x, y, z) of M ∼= Z3.

Consider the point (1, 1, 1), which is l̄σ − u0 of σ∨ = R≥0(P − u0) as described above.
If (1, 1, 1) is contained in PK −u0, then it is a vertex because PK −u0 is contained in l̄σ +σ∨,
hence, (1, 1, 1) is also a vertex of Q − u0.

We assume that the point (1, 1, 1) is not contained in PK − u0. As in the proof of
Proposition 2.3, we set G := (P − u0) ∩ (z = 1). We note that G is not a facet of P since P

contains interior lattice points. Then the assumption implies that (1, 1, 1) is not contained in
the interior of G. We may assume that G contains the points (1, 0, 1) and (0, 1, 1). If (1, 0, 1)

is not contained in G, then (0, 0, 1) is a vertex of P and the facet P ∩ (y = 0) is the basic
triangle Conv{(0, 0, 0), (1, 0, 0), (0, 0, 1)}. In this case, if we exchange the role of F0 with
the facet P ∩ (y = 0), then new G satisfies the assumption.

If the lattice polygon G containing (0, 0, 1), (1, 0, 1) and (0, 1, 1) does not contain
(1, 1, 1), then we may assume that it is a triangle with vertices (1, 0, 1) and (0, a, 1) (a ≥
1). Let (p, q, r) be a lattice point in the interior of P . Then p, q and r are positive in-
tegers. The line segment connecting (p, q, r) and (1, 0, 0) crosses the plane (z = 1) at
(1 + (p − 1)/r, q/r, 1), which is not contained in G. This contradicts that P is convex.
Thus the point (1, 1, 1) is contained in the boundary of G.

If G is a tetragon, then it has two parallel edges with the distance one, hence, F0 also
has two parallel edges. In this case, P belongs to (1) or (5) in Proposition 2.3. Then P cannot
contain lattice points in its interior.

From this argument, we see that if Int(P )∩M �= ∅, then G is the triangle Conv{(0, 0, 1),

(2, 0, 1), (0, 2, 1)} ∼= 2G0 containing the point (1, 1, 1) in its boundary.
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Since l̄σ ∈ P , we have 〈l̄σ , n(ρj )〉 ≥ −aj for all ρj ∈ ∆(1). If (1, 1, 1) = l̄σ − u0 is not
contained in PK − u0, then there exists a ρi ∈ ∆(1) with 〈l̄σ , n(ρi)〉 = −ai , that is, the point
(1, 1, 1) is contained in the plane H = {u ∈ MR; 〈u + u0, n(ρi )〉 = −ai} bounding P − u0.
If H is defined by the equation x + y = 2, then P is one of (5) in Proposition 2.3 and P does
not contain lattice points in its interior. Thus in the defining equation x + y − az = b with
a + b = 2 of the plane H , the assumption Int(P ) ∩ M �= ∅ implies that a is positive. Since
F0 ⊂ {0 ≤ x, 0 ≤ y, x + y ≤ b} and since b < 2 we see that F0 ∼= G0. See Figure 8 (a).

FIGURE 8. Local shapes of P .

We claim that (1, 1, 2) is an interior lattice point of P − u0. We denote (1, 1, 2) =
m0 − u0 in P − u0. Take the lattice point u− = (0, 0,−1) outside P − u0. By taking
an affine transformation of M ∼= Z3, we may set u0 = (0, 0, 1),m1 = (1, 0, 0),m2 =
(0, 1, 0), u− = (0, 0, 0). Then the point (1, 1, 2) in P −u0 is transformed to the point (1, 1, 1).
See Figure 8 (b). Let P̃ be the convex hull of u− and P − u0. Then P̃ is nonsingular and
Int(P̃ ) ∩ M = Int(P − u0) ∩ M . We note that three facets of P̃ with the vertex u− are
not isomorphic to the basic triangle G0. The lattice point (m0 − u0) − u− is l̄σ̃ of the cone
σ̃∨ := R≥0(P̃ −u−). From above if m0 −u0 is not contained in Int(P̃ )∩M = Int(P −u0)∩
M = (PK − u0) ∩ M , then one of three facets with vertex u− is isomorphic to G0. This is a
contradiction.

In the new coordinates, since PK − u0 is contained in the region {1 ≤ x, 1 ≤ y, 1 ≤ z}
and since the point m0 − u0 = (1, 1, 1) is contained in (Q − u0) ∩ M = (PK − u0) ∩ M , the
point m0 is a vertex of PK . We also know that the cone R≥0(PK − m0) is contained not only
in the cone R≥0(P − u0) but also in the cones R≥0(P − m1) and R≥0(P − m2).

We claim that a vertex of PK is an l̄σ ∈ PK or these m0. If l̄σ ∈ PK , then the cone
σ = R≥0(P − u0)

∨ is contained in the cone R≥0(PK − l̄σ )∨. On the other hand, if l̄σ is not
contained in PK , then the cone σ = R≥0(P − u0)

∨ is contained in R≥0(PK − m0)
∨ in the

above manner. Since ∪σ∈∆(3)σ = NR , the union of the dual cones defined by these vertices
of PK covers whole NR . This implies that all vertices of PK are these kinds. �
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Set {Fi ⊂ P ; i ∈ I } the set of all facets of P . We define the integral polytope P(Fi)

similarly as we defined P(F0) for F0. Then Proposition 3.1 shows that we have a decomposi-
tion

P = Q ∪
⋃

i∈I

P (Fi ).(7)

If dim Q ≤ 2, then we can delete Q in the decomposition (7), since
⋃

i∈I P (Fi ) is closed and
P = P \ Q ⊂ ⋃

i∈I P (Fi ). Thus we have the following corollary.

COROLLARY 3.2. Let P be a nonsingular integral convex polytope of dimension three
in MR . We assume that P has lattice points in its interior and that the internal polytope
Q = Conv(Int(P ) ∩ M) has dimension less than three. Then P is normally generated.

Let (X,OX(D)) be the nonsingular polarized toric 3-fold corresponding to a nonsingular
integral convex polytope P . If H 0(X,OX(D +KX)) �= 0 and if the internal polytope Q of P

has dimension three, then the dimension of Γ (X,OX(l(D + KX))) is equal to the cardinality
�{(lPK)∩M} = �{(lQ)∩M} for each positive integer l, which is asymptotically proportional
to l3 times the volume of Q for large l. This implies that D + KX is big. Thus Theorem 0.2
follows from Corollary 3.2.
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