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Abstract. We survey works on collapsing Riemannian manifolds with a lower bound
of sectional curvature, focusing on the three-dimensional case. We also explain the basics of
Seifert manifolds and Alexandrov spaces quickly and a key idea of our proof of the volume
collapsing theorem.

Introduction. In 2002 and 2003, G. Perelman published three preprints [24, 25, 26],
in which he gave the proofs of the Poincaré conjecture and Thurston’s geometrization con-
jecture. In his proofs, he used a claim on collapsing Riemannian manifolds, say the Volume
Collapsing Theorem (see Theorem 1.8). However, he did not publish the proof of that. It is a
coincidence that the author and Takao Yamaguchi together had proved the Volume Collapsing
Theorem at the same time, for which we published the first version of a preprint in the same
year 2003 and the final version had been published as [29]. After our paper, Bessires-Besson-
Boileau-Maillot-Porti [1] gave another proof of it in a different approach. Morgan-Tian [19]
and J. Cao-Ge [4] presented a detailed proof based on our proof. Kleiner-Lott [17] gave a
proof similar to ours, but with some original ideas. Our proof completely depends on our
previous paper [28] published in 2000, in which we considered the case where the diameter
is bounded above. A key idea of our proof is ‘the critical point-rescaling argument’, which
is already contained in [28]. Further, the prior works [9, 30] of Fukaya and Yamaguchi were
necessary to achieve all of our results. In this article, we first survey works on collapsing
Riemannian manifolds with a lower bound of sectional curvature, focusing on the three-
dimensional case. We also explain the basics of Seifert manifolds and Alexandrov spaces
quickly, and the key idea of the proof of the Volume Collapsing Theorem, i.e., the critical
point-rescaling argument.

In the case where the sectional curvature is not only bounded from below but also from
above, we obtain a more complete information on the topology of manifolds (cf. [5]), which
we do not mention in this article. We emphasize that the study (the technique and the idea of
proofs) of collapsing manifolds in the case of only a lower curvature bound and that in the case
of a bound of the absolute values of curvatures are completely different from each other. The
difference comes from the difference between geometries of (almost) nonnegatively curved
manifolds and (almost) flat manifolds in a sense. Flat manifolds are completely characterized
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by the Deck transformation on the universal covering space Rn, but nonnegatively curved
manifolds are much more difficult to characterize. We have yet to know the complete structure
of nonnegatively curved manifolds. We refer to Fukaya’s article [8] for a more comprehensive
survey on Riemannian geometry.

1. Survey of collapsing Riemannian manifolds. Throughout this article, all mani-
folds are assumed to be connected. For given constants n ∈ N and D > 0, let M(n,D)

denote the set of the isometry classes of n-dimensional closed Riemannian manifolds of sec-
tional curvature KM ≥ −1 and diameter diam(M) ≤ D. We have the following theorem.

THEOREM 1.1 (Finiteness Theorem; Grove-Petersen [12] (see also Grove-Petersen-Wu
[13], Perelman [22])). For any number v > 0, the set of M ∈ M(n,D) with vol(M) ≥ v

contains at most finitely many homeomorphism types, where vol(M) indicates the volume of
M .

On the other hand, we have infinitely many topological types of manifolds in M(n,D)

with small volume. One of our motivations to study collapsing Riemannian manifolds is to
classify the topology of such manifolds. For that purpose, taking a sequence of manifolds
Mi ∈ M(n,D), i = 1, 2, . . . , with volume converging to zero, we investigate the topology of
Mi for large i. The Gromov compactness theorem (cf. [11]) implies that, by replacing {Mi}
with a subsequence, the sequence {Mi} converges to a compact metric space X with respect to
the Gromov-Hausdorff convergence (see Definition 3.1). The limit X becomes an Alexandrov
space whose dimension is an integer less than n (see Theorem 3.11). In this stuation, we say
that Mi collapses to X. We consider the two following problems.

• What sort of a space is the limit Alexandrov space X?
• What is the relation between X and Mi for large i?
Solving these two problems, we are able to determine the topology of Mi for large i.

If we remove the condition that the volume of Mi converges to zero, then the dimension of
the limit X is less than or equal to n. If it is equal to n, then Mi does not collapse to X,
(but converges to X) and Mi for sufficiently large i is homeomorphic to X, in which case
X becomes an n-dimensional topological manifold (see Perelman’s Stability Theorem 4.6 in
§4).

In the situation where Mi collapses to X, we have the following important theorem.

THEOREM 1.2 (Yamaguchi’s Fibration Theorem [30]). If a sequence {Mi} in
M(n,D) converges to a complete Riemannian manifold N with respect to the Gromov-
Hausdorff convergence, then, for every sufficiently large i, we have the following:

(1) Mi is diffeomorphic to a fiber bundle over N .
(2) The first Betti number, say b1, of a fiber is less than or equal to n − dim N .
(3) There exists a finite covering space of a fiber that is diffeomorphic to a fiber bundle

over a torus T b1 of dimension b1.

The Hopf fibration S1 → S2n+1 → CPn gives an example of the theorem, where Sk

denotes a k-dimensional sphere and CPn the n-dimensional complex projective space. There



COLLAPSING THREE-MANIFOLDS WITH A LOWER CURVATURE BOUND 473

is a sequence of Riemannian metrics g1, g2, . . . of positive sectional curvature on S2n+1 such
that (S2n+1, gi ) collapses to CPn.

In general, a limit of a sequence Mi ∈ M(n,D) has singularity. However, if we have
no singularity in the limit Alexandrov space, then the theorem says that, for sufficiently large
i, Mi becomes a fiber bundle over the limit. We remark that an Alexandrov space without
singularity becomes a complete C0 Riemannian manifold [21] and Yamaguchi’s Fibration
Theorem is true even in the case where N is a complete C0 Riemannian manifold.

If the limit space consists of a single point, we have the following.

THEOREM 1.3 (Fukaya-Yamaguchi [9]). For any natural number n ≥ 2, there exists
a constant δn > 0 such that any manifold M ∈ M(n, δn) satisfies the following (1) and (2).

(1) The fundamental group π1(M) of M has a nilpotent subgroup of finite index.
(2) If n = 3, then M has a finite covering space homeomorphic to either S1 × S2, T 3,

a nil-manifold, or a homotopy sphere.

REMARK 1.4. (1) By the Poincaré conjecture solved by Perelman, a homotopy
sphere in the above theorem can be replaced with a sphere.

(2) If two three-dimensional manifolds are homeomorphic to each other, then they are
diffeomorphic to each other.

(3) The theorem can be considered to be an extension of Gromov’s almost flat theorem
[10] in the sense of π1.

(4) A fiber of Mi in Yamaguchi’s Fibration Theorem 1.2 is not necessarily totally ge-
odesic, but is almost totally geodesic in some sense, so that the fiber has curvature bounded
below in a generalized sense and satisfies (1) and (2) of Theorem 1.3.

In the case where the limit Alexandrov space has singularity, we have the following
theorem for three-dimensional Mi . We explain Seifert manifolds in §2 below. Denote a two-
dimensional disk by D2.

THEOREM 1.5 (Shioya-Yamaguchi [28]). Assume that a sequence of three-dimen-
sional orientable Riemannian manifolds Mi ∈ M(3,D) converges to a two-dimensional
Alexandrov space X. (It is known that such an X is a two-dimensional topological manifold
possibly with boundary ∂X.) For every sufficiently large i, we have the following:

(1) If X has no boundary, then Mi is homeomorphic to a Seifert manifold over X.
(2) If X has non-empty boundary, then Mi is homeomorphic to the gluing of a Seifert

manifold over X and ∂X × D2 along their boundaries such that the fiber of Mi over each
point p ∈ ∂X is glued with {p} × ∂D2.

(3) In both cases of (1) and (2), the orbit type, say (µ, ν), of the fiber over each point
p ∈ X \ ∂X satisfies µ ≤ 2π/L(Σp), where L(Σp) is the length of the space of directions
Σp at p of X.

See §3 for the definition of the space of directions Σp.
We next consider the case where a sequence of orientable Mi ∈ M(3,D) converges to a

one-dimensional Alexandrov space X. In this case, the limit X is isometric to either a circle
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or a line segment (see Proposition 3.12). If X is a circle, then Yamaguchi’s Fibration Theorem
implies that Mi for large i is a fiber bundle over S1 and its fiber is either S2 or T 2.

Let us describe a result in the case where X is a line segment. In the following, P 3 de-
notes a three-dimensional real projective space and M#N the connected sum of two manifolds
M and N . Let Mö×̃S1 be the twisted S1-bundle over the Möbius band Mö. (Although the
usual product space Mö × S1 is not orientable, yet there exists an orientable S1-bundle over
the Möbius band Mö, which is called the twisted S1-bundle over Mö.)

THEOREM 1.6 (Shioya-Yamaguchi [28]). Assume that a sequence of three-dimen-
sional orientable Riemannian manifolds Mi ∈ M(3,D) converges to a line segment. Then,
for every sufficiently large i, Mi is homeomorphic to either S3, P 3, P 3#P 3, or U∪V , where U

and V are either S1 ×D2 or Mö×̃S1 and U ∪V is the gluing of them along their boundaries.

We have a four-dimensional version of the above theorems.

THEOREM 1.7 (Yamaguchi [31]). If a sequence of four-dimensional orientable Rie-
mannian manifolds Mi ∈ M(4,D) converges to an Alexandrov space X, then Mi has a
fibration structure over X for every sufficiently large i.

We here omit the definition of a fibration structure.
We hope to extend it to the case of general dimension, which seems to be a difficult

problem.
The following is a corollary to Theorems 1.3 (2), 1.5 and 1.6: There is a number v(D) >

0 depending on a real number D > 0 such that if an orientable manifold M ∈ M(3,D) has
volume vol(M) < v(D), then either M is a graph manifold or the fundamental group of M

is finite. A graph manifold is defined to be a three-dimensional topological manifold that is
a gluing of finitely many Seifert manifolds with boundary tori, where the gluing is obtained
along boundary tori.

In fact, v(D) can be taken to be independent of D, i.e., we have the following theorem.

THEOREM 1.8 (Volume Collapsing Theorem; Perelman [25], Shioya-Yamaguchi [29]).
There exists a universal constant v0 > 0 such that if a three-dimensional orientable closed
Riemannian manifold M has sectional curvature KM ≥ −1 and volume vol(M) < v0, then
we have one of the following (1) and (2).

(1) M is a graph manifold.
(2) The fundamental group of M is finite.

In [25], Perelman claimed (a version of) this theorem and used it in his proof of the
geometrization conjecture. However, he did not publish his proof of Theorem 1.8. Our proof
in [29] is based on those of Theorems 1.5 and 1.6 proved in [28].

REMARK 1.9. (1) Perelman stated the theorem under a weaker assumption, called
‘local lower curvature bound’. However, our proof works without any essential modification
under local lower curvature bound.
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(2) By the geometrization conjecture, any closed manifold satisfying (2) in the theo-
rem has a Riemannian metric of positive constant curvature and becomes a Seifert manifold.
Therefore, (1) in the theorem always holds.

We have the converse to the above theorem in the following sense.

PROPOSITION 1.10 (Cheeger-Gromov [7]). For any closed graph manifold M , there
exists a sequence {gi}i=1,2,... of Riemannian metrics on M such that |Kgi | ≤ 1 for all i and
vol(M, gi ) → 0 as i → ∞.

Combining Theorem 1.8 with Proposition 1.10 we have the following.

COROLLARY 1.11. Let M be a closed orientable three-dimensional manifold. Then,
M is a graph manifold if and only if M has a Riemannian metric g such that Kg ≥ −1 and
vol(M, g) < v0, where v0 is as in Theorem 1.8.

2. Seifert manifolds. In this section, we define the notions of a Seifert manifold, a
Riemann-Seifert manifold, and a graph manifold. A Riemann-Seifert manifold gives a typical
example of a collapsing manifold.

Let µ and ν be two coprime integers with 1 ≤ ν < µ/2, or (µ, ν) = (1, 0). We
take a Riemannian metric gD on the unit disk D2 := {(x, y) ∈ R2; x2 + y2 ≤ 1} that is
invariant under the positive rotation of angle 2π/µ centered at the origin of R2. Consider
the Riemannian manifold D := (D2, gD) and the product Riemannian manifold D × R. For
k ∈ Z and (x, t) ∈ D × R, let k · x be the positively rotated point from x with angle 2πkν/µ

and k · (x, t) := (k · x, t + kl), where l is a positive constant. This defines isometric Z-
actions on D and on D × R. We denote by S

µ,ν
l the quotient of D × R by the Z-action.

S
µ,ν
l is a three-dimensional Riemannian manifold diffeomorphic to a solid torus, D2 × S1.

The product D × R is the Riemannian universal covering space of S
µ,ν
l and D × [ 0, l ] is a

fundamental domain. S
µ,ν
l is also obtained from D×[ 0, l ] by gluing D×{0} and D×{l} via

(x, 0) ∼ (1 · x, l) (see Figure 1). We denote by C the quotient of D by the Z-action, which is
a two-dimensional cone. If µ = 1, then C = D and S

µ,ν
l = D × (R/lZ).

FIGURE 1. S
µ,ν
l

is obtained from D × [ 0, l ].
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For a point x ∈ D, we call {x} × R a vertical line in D × R. A vertical line {x} × R is
mapped by the covering map to a simple closed curve in S

µ,ν
l , which we call a fiber of S

µ,ν
l .

The fiber is said to be singular if µ �= 1 and if x is the origin o of D. The fiber is regular if it
is not singular. If x is the origin o of D, then the fiber is called the central fiber of S

µ,ν
l . The

image of a regular fiber of S
µ,ν
l in the fundamental domain D × [ 0, l ] consists of µ vertical

line segments, so that a regular fiber has length µl, while a singular fiber has length µ. For
each fiber of S

µ,ν
l we find a point in C via the projection D → C. This defines a natural

projection from S
µ,ν
l to C, which we denote by π : S

µ,ν
l → C. Each regular fiber of S

µ,ν
l can

be moved continuously onto the central fiber as a µ-fold covering. The pair (µ, ν) is called
the orbit type of the central fiber of S

µ,ν
l . As l → 0, S

µ,ν
l collapses to C.

A Seifert manifold is a manifold equipped with the structure of S
µ,ν
l locally. Precisely, a

three-dimensional topological manifold S is called a Seifert manifold if S is a union of simple
closed curves, called fibers, and if for each fiber F there exist two integers µ and ν as above
and a neighborhood U of F such that U is a union of fibers and is homeomorphic to S

µ,ν
l by

a homeomorphism that maps fibers to fibers. Note that the homeomorphism type of the fiber
structure of S

µ,ν
l is determined only by the orbit type (µ, ν). We call such a family of fibers

of a Seifert manifold a Seifert structure. If we identify all points in each fiber to each other,
then we have the quotient topological space, which we call the orbit surface of the Seifert
manifold. Let X be the orbit surface of a Seifert manifold S. Then the projection S → X

coincides with the projection π : S
µ,ν
l → C locally. Since C is homeomorphic to the disk

D2, the orbit surface is a two-dimensional topological manifold without boundary. We call a
point in the orbit surface corresponding to a singular fiber a singular point. The set of singular
points in the orbit surface is discrete.

A Seifert manifold S with a Riemannian metric is called a Riemann-Seifert manifold
if for each fiber F of S there exist a Riemannian manifold S

µ,ν
l as above and an isometry

between a neighborhood of F and S
µ,ν
l that maps fibers to fibers. The orbit surface of a

Riemann-Seifert manifold is locally a cone C whose vertex angle is equal to 2π/µ, where µ

depends on a fiber. Only in the case of µ �= 1, the vertex is a singular point. If we remove
all singular points from the orbit surface, then it has a natural Riemannian metric. The orbit
surface is, in fact, a Riemannian orbifold. The lengthes of regular fibers of a Riemann-Seifert
manifold are all equal to each other. We have a one-parameter family of Riemann-Seifert
metrics on a Riemann-Seifert manifold, parameterized by the length of regular fibers. As the
length goes to zero, the Riemann-Seifert manifold collapses to its orbit surface. This is a
typical example of Theorem 1.5.

Let S be a Seifert manifold, X the orbit surface, and π : S → X the projection. We take
a subset X′ ⊂ X that is a two-dimensional topological manifold with boundary, and assume
that the boundary contains no singular point. The three-dimensional manifold S′ := π−1(X′)
has a fibration structure induced from that of S. We call such an S′ with the fibration structure
a Seifert manifold with boundary. Any compact connected component of the boundary of
a Seifert manifold with boundary is homeomorphic to a torus. A closed three-dimensional



COLLAPSING THREE-MANIFOLDS WITH A LOWER CURVATURE BOUND 477

manifold is called a graph manifold if it is a gluing of finitely many compact Seifert manifolds
with boundary along their boundary tori.

3. Alexandrov spaces. This section is devoted to a quick introduction to Alexandrov
spaces.

DEFINITION 3.1 (Gromov-Hausdorff convergence; [11]). We say that a sequence of
metric spaces Xi , i = 1, 2, . . . , converges to a metric space X with respect to the Gromov-
Hausdorff convergence if there exist a sequence of (not necessarily continuous) maps ϕi :
Xi → X and a sequence of positive real numbers εi → 0 such that

(1) for any two points x, y ∈ Xi we have

|d(ϕi(x), ϕi(y)) − d(x, y)| < εi ,

where d is the distance function,
(2) the εi-neighborhood of the image ϕi(Xi) coincides with the whole space X.

The map ϕi is called an approximation map. For a sequence of points pi ∈ Xi and a point
p ∈ X, we say that pi converges to p if ϕi(pi) → p as i → ∞.

EXAMPLE 3.2. For a Riemann-Seifert manifold, as the length of regular fibers goes
to zero, the manifold converges to the orbit surface with respect to the Gromov-Hausdorff
convergence. The natural projection is an approximation map.

DEFINITION 3.3 (Pointed Gromov-Hausdorff convergence; [11]). We say that a se-
quence of pointed metric spaces (Xi, pi), i = 1, 2, . . . , converges to a pointed metric space
(X, p) with respect to the Gromov-Hausdorff convergence if there exist three sequences of
positive numbers εi → 0, ri, r

′
i → +∞ with |ri − r ′

i | → 0 and a sequence of maps
ϕi : B(pi, ri ) → B(p, r ′

i ), where B(p, r) indicates the open metric ball centered at p and of
radius r , such that

(1) for any two points x, y ∈ B(pi, ri ),

|d(ϕi(x), ϕi(y)) − d(x, y)| < εi,

(2) the εi-neighborhood of the image ϕi(B(pi , ri )) contains B(p, r ′
i ),

(3) ϕi(pi) = p.

EXAMPLE 3.4. Take a point pr in an n-dimensional round sphere Sn(r) of radius r in
Rn+1. As r → +∞, (Sn(r), pr) converges to (Rn, o) with respect to the Gromov-Hausdorff
convergence.

DEFINITION 3.5 (Geodesic space). A complete metric space X is called a geodesic
space if for any two points x, y ∈ X there exists a length-minimizing curve, say xy, joining
x to y whose length is equal to the distance d(x, y) between x and y. We call a length-
minimizing curve a minimal geodesic.

A complete Riemannian manifold is a geodesic space. Note that, for given two points x

and y in a geodesic space, a minimal geodesic xy joining them is not necessarily unique.
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DEFINITION 3.6 (Triangle). Let p, q, r be three distinct points in a geodesic space
and pq , qr , rp minimal geodesics joining them. The set of p, q, r, pq, qr, rp is called a
triangle and denoted by �pqr . We call p, q, r the vertices of �pqr and pq , qr , rp the edges
of �pqr respectively.

DEFINITION 3.7 (Comparison triangle). Let �pqr be a triangle in a geodesic space
and �p̃q̃r̃ a triangle in a complete simply connected space form of constant curvature κ ,
where κ is a real number. We call �p̃q̃r̃ a κ-comparison triangle of �pqr if it satisfies that
d(p, q) = d(p̃, q̃), d(q, r) = d(q̃, r̃) and d(r, p) = d(r̃, p̃). We denote by ˜� pqr the angle
at q̃ of a κ-comparison triangle �p̃q̃r̃ of �pqr .

Consider the following three conditions:
(i) κ ≤ 0.

(ii) κ > 0, d(p, q) + d(q, r) + d(r, p) ≤ 2π/
√

κ

and max{d(p, q), d(q, r), d(r, p)} < π/
√

κ .
(iii) κ > 0, d(p, q) + d(q, r) + d(r, p) ≤ 2π/

√
κ

and max{d(p, q), d(q, r), d(r, p)} = π/
√

κ .
A κ-comparison triangle exists and is unique if (i) or (ii) is satisfied. In the case of (iii), a
κ-comparison triangle exists, but is not unique.

DEFINITION 3.8 (Alexandrov space). Let κ be a real number. A complete geodesic
space X is called an Alexandrov space of curvature ≥ κ if, for any triangle �pqr in X and
for any point s on the edge qr , there exists a κ-comparison triangle �p̃q̃ r̃ of �pqr such that

d(p, s) ≥ d(p̃, s̃) ,

where s̃ is the point on q̃r̃ with d(q, s) = d(q̃, s̃).

Taking three points p, q, r ∈ X and two minimal geodesics qp and qr in an Alexandrov
space of curvature ≥ κ , we can define the angle � pqr between them, where we omit the
precise definition. The angle satisfies the following.

PROPOSITION 3.9 (Toponogov comparison). For any triangle �pqr in an Alexan-
drov space of curvature ≥ κ and for a κ-comparison triangle, we have

� pqr ≥ ˜� pqr .

EXAMPLE 3.10. (1) Compact Riemannian orbifolds are Alexandrov spaces. In par-
ticular, the orbit surface of a closed Riemann-Seifert manifold is an Alexandrov space.

(2) The boundary of a convex body in a Euclidean space is an Alexandrov space of
nonnegative curvature.

In general we have the following theorem.

THEOREM 3.11 (Burago-Gromov-Perelman [2]). We take any n ∈ N and κ ∈ R and
fix them. Then, any Gromov-Hausdorff limit of a sequence of n-dimensional complete Rie-
mannian manifolds of sectional curvature KM ≥ κ is an Alexandrov space of curvature ≥ κ
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and dimension ≤ n. For any Alexandrov space, its Hausdorff dimension and topological
(covering) dimension coincide with each other.

PROPOSITION 3.12. Any one-dimensional Alexandrov space is isometric to a one-
dimensional complete Riemannian manifold possibly with boundary.

We have a concept of the tangent cone, say Kp, at a point p in an Alexandrov space.
Instead of stating the definition of the tangent cones, we give some examples.

EXAMPLE 3.13. (1) For a Riemannian manifold, the tangent cone is nothing but the
tangent space at a point. The metric on the tangent space is just the Riemannian metric, so
that the tangent cone at any point in a Riemannian manifold is isometric to a Euclidean space.

(2) As we stated in Example 3.10 (2), the boundary of a convex body in a Euclidean
space is an Alexandrov space. The tangent cone at a boundary point p of a convex body
coincides with the union of rays emanating from p tangent to the boundary of the convex
body.

(3) Another example of the tangent cone comes from a Riemannian orbifold. At any
point p in a Riemannian orbifold (e.g. the orbit surface of a Riemann-Seifert manifold), there
is a neighborhood of p that is isometric to the quotient of a Riemannian manifold D diffeo-
morphic to a disk by an isometric finite group action fixing a point p̃ ∈ D, where p̃ is mapped
to p by the projection and the group is a subgroup of an orthogonal group. This group action
on D induces a linear isometric action on the tangent space Tp̃D at p̃. The tangent cone at p

of the Riemannian orbifold is obtained as the quotient of Tp̃D by this group action.

In general, the tangent cone has a Euclidean cone structure as explained in the following.

DEFINITION 3.14 (Euclidean cone). Let Y be a metric space. The cone over Y is de-
fined to be

K(Y ) := Y × [ 0,+∞ )/Y × {0} .

We define a metric on K(Y ) by

d((x, s), (y, t)) :=
√
s2 + t2 − 2st cos min{d(x, y), π} ,

x, y ∈ Y, s, t ∈ [ 0,+∞ ) .

The space K(Y ) equipped with this metric is called the Euclidean cone over Y . The point in
K(Y ) corresponding to Y × {0} is called the vertex of K(Y ). We sometimes identify Y with
the subset Y × {1} of K(Y ).

For example, if Y is a circle of length less than 2π equipped with the metric defined by
arc-lengths, then the Euclidean cone K(Y ) over Y is a cone in a standard sense.

Let X be an n-dimensional Alexandrov space. In general, the tangent cone Kp at a point
p in X is isometric to the Euclidean cone over a compact (n − 1)-dimensional Alexandrov
space, say Σp, of curvature ≥ 1. We call Σp the space of directions at p. Denote by op the
vertex of Kp. Then Σp is identified with the set of unit elements in Kp, where ‘unit’ means
that the distance from the vertex op is equal to one. For example, the space of directions Σp
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at a point p in a Riemannian orbifold is isometric to the quotient of the unit tangent sphere at
p̃ by the group action on the tanget space at p̃, where p̃ is as in Example 3.13 (3).

The tangent cone is obtained as the expansion-scaling limit of X.

THEOREM 3.15 (Burago-Gromov-Perelman [2]). Let p be a point in an Alexandrov
space X. As r → +∞, (rX, p) converges to the tangent cone (Kp, op) at p in the sense of
Gromov-Hausdorff, where rX denotes the space X with the metric multiplied by r-times.

We call an element of Kp a tangent vector at p. As well as Riemannian manifolds, for
a given geodesic γ : [ 0, l ] → X from a point p in X, the tangent vector γ̇ (0) is defined as
a point in Kp in a suitable way. The length of γ̇ (0), i.e., the distance between op and γ̇ (0),
coincides with the speed of γ . If the speed of γ is unit, then we can consider the tangent
vector γ̇ (0) as an element of Σp. From now on, we assume that all geodesics are of unit
speed unless otherwise stated. For two minimal geodesics pq and pr from p, if u, v are the
tangent vectors of pq, pr at p respectively, then the distance, say � (u, v), between u and v in
Σp is equal to the angle � qpr between qp and qr .

If the tangent cone Kp at p is not isometric to the Euclidean space Rn, n = dim X,
we call the point p a singular point. For the orbit surface of a Riemann-Seifert manifold,
this definition of a singular point is equivalent to that defined in §2. On one hand, the set of
singular points in a two-dimensional Riemannian orbifold (e.g., the orbit surface) is discrete.
On the other hand, the set of singular points of the boundary of a convex body in R3 is not
necessarily discrete and is much more complex in general. We have an example of a convex
body in R3 such that the set of singular points in the boundary of the body is dense in the
boundary. This phenomenon makes the study of Alexandrov spaces difficult. The following
theorem says that the set of singular points in an Alexandrov space is small in view of measure
theory.

THEOREM 3.16 (Burago-Gromov-Perelman [2], Otsu-Shioya [21]). The Hausdorff
dimension of the set of singular points in an n-dimensional Alexandrov space is at most n−1.

4. Critical point theory for distance functions. In this section, we explain the criti-
cal point theory for distance functions, which is a powerful tool to investigate the topology of
Riemannian manifolds and Alexandrov spaces.

Let M be a Riemannian manifold and p a point in M .

DEFINITION 4.1 (Critical point; [14]). A point q ∈ M with p �= q is a critical point
of the distance function d(p, ·) from p if for any tangent vector v ∈ TqM \ {o} there exists a
minimal geodesic pq joining p and q such that the angle at q between v and pq is not greater
than π/2. We regard that p is a critical point of d(p, ·). A point in M is called a regular point
of d(p, ·) if it is not a critical point of d(p, ·).

It is easy to prove that the set of critical points in M is a closed set. The following
theorem is important for the study of the topology of Riemannian manifolds.
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THEOREM 4.2 (Grove-Shiohama [14]). For any point p ∈ M , there exists a smooth
vector field V on the set of regular points of d(p, ·) such that V is non-zero everywhere and
d(p, ·) is strictly monotone increasing along any integral curve of V .

COROLLARY 4.3. Take any open metric ball B(p, r) in M . If B(p, r) contains no
critical point of d(p, ·), then B(p, r) is diffeomorphic to an open disk domain.

By using the theorem, the following famous theorem is obtained.

THEOREM 4.4 (Diameter Sphere Theorem; Grove-Shiohama [14]). Let M be a
closed Riemannian manifold. If the sectional curvature of M satisfies KM ≥ 1 and if the
diameter satisfies diam(M) > π/2, then M is homeomorphic to a sphere.

Perelman generalized the method of Grove-Shiohama [14] and proved the following two
theorems.

THEOREM 4.5 (Stratification Theorem; Perelman [22, 23]). Let X be an n-dimen-
sional Alexandrov space. Then, X has a stratification structure, i.e., there exists a sequence
of subsets

X = Xn ⊃ Xn−1 ⊃ · · · ⊃ X0 ⊃ X−1 = ∅
such that each Xk \ Xk−1 is either empty or a k-dimensional topological manifold.

THEOREM 4.6 (Stability Theorem; Perelman [22]). Let X and Xi , i = 1, 2, . . . , be
n-dimensional compact Alexandrov spaces of curvature ≥ −1, where n ∈ N is a fixed natural
number. If Xi converges to X with respect to the Gromov-Hausdorff convergence, then Xi is
homeomorphic to X for every sufficiently large i.

The proof of Stability Theorem leads us to the following.

COROLLARY 4.7. Any two-dimensional Alexandrov space is a two-dimensional topo-
logical manifold possibly with boundary.

5. Structure of noncompact spaces of nonnegative curvature. As we explain in the
next section, §6, to determine the topology of collapsing manifolds, it is useful to investigate
an expansion-scaling limit of the manifolds. The expansion-scaling limit is a noncompact
Alexandrov space of nonnegative curvature, for which we discuss the structure in this section.

First of all, we see the following well-known theorem. A manifold is said to be open if
it is noncompact and if it has no boundary.

THEOREM 5.1 (Soul Theorem; Cheeger-Gromoll [6]). Let M be a complete open Rie-
mannian manifold of nonnegative sectional curvature. Then, there exists a closed totally
convex submanifold S of M such that the normal bundle over S is diffeomorphic to M . In
particular, if S consists of a single point, then M is diffeomorphic to Rn, where n := dim M .

A subset S of M is said to be totally convex if any geodesic joining two points in S is
contained in S. Any totally convex set in M is a totally geodesic submanifold of M .

The submanifold S as in the above theorem is called a soul of M .
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EXAMPLE 5.2. We take a complete and nonnegatively curved Riemannian metric g
on R2 that is invariant under the 2π/µ-rotation around the origin of R2 for a natural number
µ. Let D be the Riemannian manifold (R2, g) and S

µ,ν
l be as obtained in §2 for D. Then,

S
µ,ν
l is a complete open Riemannian manifold of nonnegative sectional curvature. If µ �= 1,

the singular fiber in the center of S
µ,ν
l is a unique soul of S

µ,ν
l .

As a generalization of Theorem 5.1, we have the following. Let X be a noncompact
Alexandrov space of nonnegative curvature. An Alexandrov space is said to be closed if it is
compact and if it has no boundary, where we omit the definition of the boundary (see [2]).

THEOREM 5.3 (Perelman [22]). There exists a compact totally convex subset S of X

such that S is a closed Alexandrov space of nonnegative curvature with respect to the induced
metric, and is homotopy equivalent to X.

We call the set S in the theorem a soul of X. In the same way as for a Riemannian
manifold, we define the normal bundle over S to be the set of tangent vectors at points in S

orthogonal to S.

THEOREM 5.4 (Shioya-Yamaguchi [28]). If X is a three-dimensional topological
manifold, then a soul S of X is a closed topological manifold of dimension at most two and X

is homeomorphic to the normal bundle over S.

We consider a contraction-scaling limit of X. Let p be a point in X and let ε > 0. It is
known that, as ε → 0, the scaled space (εX, p) converges to a noncompact Alexandrov space
of nonnegative curvature in the sense of Gromov-Hausdorff and the limit is independent of
the point p. We call the limit the limit cone of X and denote it by X∞. The limit cone X∞
is a Euclidean cone over a compact Alexandrov space, say X(∞). We call X(∞) the ideal
boundary of X and an element of X(∞) a point at infinity. For a given sequence of points xi ,
i = 1, 2, . . . , in X with Ri := d(p, xi) → +∞, we consider each xi as a point in (R−1

i X, p).
Then the distance between xi and p is equal to one. Therefore, a limit of xi as i → ∞ is
identified with a point at infinity, say ξ ∈ X(∞), where we recall that X(∞) is identified with
the unit sphere at the vertex of the limit cone X∞. Such a convergence xi → ξ as i → ∞
induces a topology on the disjoint union X̄ := X � X(∞). X̄ is a compactification of X.

A curve γ : [ 0,+∞ ) → X is called a ray if we have d(γ (s), γ (t)) = |s − t| for any
s, t ≥ 0.

LEMMA 5.5. For any point p ∈ X and any point at infinity ξ ∈ X(∞), there exists a
ray from p to ξ , i.e., a ray γpξ : [ 0,+∞ ) → X with γpξ (0) = p such that γpξ (t) converges
to ξ as t → +∞ in the topology of the compactification X̄.

As an extension to the Toponogov comparison (Proposition 3.9), we have the following.

PROPOSITION 5.6. For any p ∈ X and any ξ, η ∈ X(∞), we have

� (γ̇pξ (0), γ̇pη(0)) ≥ d(ξ, η) .

In other words, the map X(∞) � ξ �→ γ̇pξ (0) ∈ Σp expands the distances.
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Moreover, if we take p as a point in a soul S of X, then we are able to take γpξ as a ray
orthogonal to S. As a result we have the following theorem.

THEOREM 5.7 (Dimension Formula; Shioya-Yamaguchi [27, 28]). For a soul S of X

we have

dim S + dim X∞ ≤ dim X .

It is an interesting problem to consider what happens if dim S + dim X∞ = dim X. For
a complete open Riemannian manifold M of nonnegative sectional curvature with a soul S,
if dim S + dim M∞ = dim M holds, then there exists a finite covering space M̂ of M that
is isometric to the Riemannian product N × Ŝ, where Ŝ is a soul of M̂ and N is a complete
Riemannian manifold diffeomorphic to a Euclidean space (see [27]).

6. A key idea of the proof of Theorem 1.5: critical point-rescaling argument. We
explain a key idea of the proof of Theorem 1.5 (1). The proofs of the other Theorems 1.5 (2),
1.6 and 1.8 are based on the same idea.

Let a sequence of three-dimensional orientable manifolds Mi ∈ M(3,D), i = 1, 2, . . . ,
converge to a two-dimensional Alexandrov space X without boundary in the sense of Gromov-
Hausdorff. For simplicity, we assume that X has at most finitely many singular points. Let
Σ = {p1, p2, . . . , pm} be the set of singular points in X. For each singular point pk ∈ Σ ,
we take a sequence of points pk

i ∈ Mi , i = 1, 2, . . . , converging to pk as i → ∞, and put
Σi := {p1

i , p
2
i , . . . , p

m
i }. We take any ε > 0 and fix it. Yamaguchi’s Fibration Theorem

implies that, for every sufficiently large i, there is a fiber bundle

S1 → Mi \ B(Σi, ε) → X \ B(Σ, ε) .

It therefore suffices to determine the topology around pk
i for each k. Fixing a number k, we

put pi := pk
i and p := pk . To prove that Mi is a Seifert manifold, it is essential to prove that

the closed ball B̄(pi, ε) is homeomorphic to the solid torus S1 × D2. We shall prove it in the
following.

Taking a small number ε > 0, since ∂B(p, ε) � S1, we have

∂B(pi, ε) � T 2

for every sufficiently large i. Since (rX, p) converges to Kp as r → ∞, we may assume that
B(p, ε) itself is a cone. Therefore, for i large enough, (B(pi , ε), pi) is close to a Euclidean
cone in the Gromov-Hausdorff sense. If B̄(pi, ε) contains no critical points of d(pi, ·), then
we have B̄(pi, ε) � D3, which contradicts ∂B(pi, ε) � T 2. So there is at least one critical
point of d(pi, ·) in B̄(pi, ε). Let qi be one of the critical points of d(pi, ·) in B̄(pi, ε) furthest
from pi . We are able to prove that

d(pi, qi) → 0 as i → ∞ .

Let δi := d(pi, qi). By replacing {(δ−1
i Mi, pi)}i with a subsequence, (δ−1

i Mi, pi) converges
to a pointed Alexandrov space (Y, p̂). We have dim Y ≤ 3. For the moment we assume that

dim Y = 3 .
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(We discuss the case dim Y ≤ 2 later.)
Using the critical point theory, we are able to prove that B(p̂, R) � Y for every suffi-

ciently large R > 0. By Perelman’s Stability Theorem 4.6, δ−1
i B(pi, ε) for large i is homeo-

morphic to Y , i.e., we have

B(pi, ε) � Y .

Note that we here use Perelman’s Stability Theorem for metric balls of Alexandrov spaces
and Perelman’s proof works for such metric balls to obtain the topological stability. Let S be
a soul of Y . We investigate the topology of Y using Theorem 5.4.

If dim S = 0, then S consists of a single point and Y � R3. Therefore we have
B̄(pi, ε) � D3, which contradicts ∂B(pi, ε) � T 2.

If dim S = 1, then Y is an R2-bundle over S � S1, i.e., Y � S1 × R2. Therefore we
have B̄(pi, ε) � S1 × D2, which is what we want.

If dim S = 2, then, by Dimension Formula (Theorem 5.7), we have

dim Y∞ ≤ dim Y − dim S = 1 .

Since Y∞ is a Euclidean cone, we have dim Y∞ = 1 and Y∞ is isometric to either R or
[ 0,+∞ ). Roughly speaking, Y is very thin globally. On the other hand, Y is obtained by
the magnification limit of the space close to the Euclidean cone Kp , which means that Y is
globally more spreading than Kp, because the curvature is bounded below. This leads to a
contradiction. Rigorously speaking, we are able to construct a map from Σp to Y (∞) that
does not contract the distances, for which we omit the proof. We have

dim Y (∞) ≥ dim Σp = 1 , i.e., dim Y∞ ≥ 2 .(6.1)

This is a contradiction and we have dim S = 1 and B̄(pi, ε) � S1 × D2.
The rest of the proof is to show dim Y = 3, but this is not true in general. In fact, we

consider the case where the cone angle of B(p, ε) is less than π and the convergence rate of
pi → p is much slower than the diameters of fibers in Mi , where one of our purposes is to find
fibers, but we here assume that there are fibers. See Figure 2. Then, for the furthest critical

FIGURE 2. dim Y = 3 does not hold in general.
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point qi of d(pi, ·) in B(pi, ε), the distance δi = d(pi, qi) is much greater than the diameters
of fibers, so that (δ−1

i Mi, pi) collapses and we cannot expect to obtain the homeomorphism
B(pi , ε) � Y as stated before.

To avoid this problem, we try to replace the point pi with a point at a pointed head of
B(pi , ε). To find such a point, we define a function as

fi(x) :=
∫

∂B(pi,ε)

d(x, y) dµi(y) , x ∈ Mi ,

where µi is the surface measure on ∂B(pi, ε). (The measure µi is a little different from the
original proof in [28]). Since B(pi, ε) is close to a cone, fi takes a local maximum near pi ,
for which we omit the proof. Letting p̂i be a local maximum point of fi near pi , we have
d(pi, p̂i) → 0. Using the critical point theory, we prove that B(pi, ε) � B(p̂i , ε), so that
the above discussion also works if we replace pi with p̂i . Let qi be as above, i.e., a critical
point in B̄(p̂i, ε) of d(p̂i, ·) furthest from p̂i . We set δi := d(p̂i, qi). The following lemma
completes the proof.

LEMMA 6.1 (Key lemma). If (Y, p̂) is a limit of (δ−1
i Mi, p̂i) in the sense of Gromov-

Hausdorff, then we have

dim Y = 3 .

PROOF. By replacing {qi} with a subsequence, qi converges to a point in Y , say q . We
fix a minimal geodesic segment joining p̂ and q . Let u ∈ Kp̂ be the unit vector at p̂ tangent
to the minimal geodesic segment. We prove the following.

CLAIM 6.2. For any ray γ from p̂, we have

� (γ̇ (0), u) = π/2 .

FIGURE 3. Proof of Key Lemma.
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Idea of the proof of the claim. We assume, for simplicity, that a minimal geodesic join-
ing given two points is always unique. Take any point x ∈ ∂B(pi, ε). Since qi is a critical
point of d(p̂i, ·), we have � p̂iqix ≤ π/2 (see Figure 3). By Toponogov comparison (Propo-
sition 3.9), the total sum of the angles of a triangle is almost greater than π , so that, recalling
d(p̂i , qi) → 0, we have

lim inf
i→∞

� qip̂ix ≥ π/2 .(6.2)

On the other hand, since p̂i is a local maximum point of fi , the directional derivative of
fi with the direction of p̂iqi is nonnegative. By the first variation formula,

−
∫

∂B(pi,ε)

cos � qip̂ix dµi(x) ≥ 0 .

This together with (6.2) shows

lim
i→∞

� qip̂ix = π/2 .

By replacing p̂i , qi , x with p̂, q, ξ for ξ ∈ Y (∞), a discussion similar to the above leads to
the claim, but we omit the details. �

For any point at infinity ξ ∈ Y (∞), we take a ray γp̂ξ from p̂ with γp̂ξ (∞) = ξ (see
Figure 3). Proposition 5.6 says that the map Y (∞) � ξ �→ γ̇p̂ξ (0) ∈ Σp̂ does not contract the
distances. The claim implies that

γ̇p̂ξ (0) ∈ A := {v ∈ Σp̂ ; � (u, v) = π/2} .

Comparing the Hausdorff dimensions we have dim Y (∞) ≤ dim A. By (6.1) we have
dim Y (∞) ≥ 1 and dim A = dim Σp̂ − 1 = dim Y − 2, which leads to dim Y ≥ 3. This
completes the proof. �
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