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ON LOW PASS FILTERS
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Abstract. We give necessary and sufficient conditions for a measurable function to be
a low pass filter associated to a scaling function in a frame multiresolution analysis. Those
conditions involve the class of real-valued bounded measurable functions such that the origin
is a point of approximate continuity of such functions. The main result here is proved in a
general context where the considered dilation is given by a fixed expansive linear map.

1. Introduction. We give necessary and sufficient conditions on a measurable func-
tion H to be a low pass filter associated to a scaling function in a frame multiresolution
analysis.

Characterizations of low pass filters associated to scaling functions in a multiresolution
analysis are known (see Papadakis, Sikić and Weiss [20], Dobrić, Gundy and Hitczenko [10]
and [21]). Furthermore, necessary and sufficient conditions on the low pass filters associated
to scaling functions φ, such that {φ(x − k); k ∈ Zn} is a Riesz basis for the core subspace in
a multiresolution analysis were given by Gundy [13].

Although the results presented here are new under the classical definition of FMRA, we
present our conditions in a general context where, instead of the dyadic dilation, one considers
the dilation given by a fixed expansive linear map A : Rn → Rn such that A(Zn) ⊂ Zn.
Recall that A is expansive if all (complex) eigenvalues of A have modulus greater than 1.

Let us write basic notions. The theory of frames was introduced by Duffin and Schaeffer
[11]. A sequence {φn}∞n=1 of elements in a separable Hilbert space H is a frame for H if there
exist constants C,D > 0 such that

C‖h‖2 ≤
∞∑

n=1

|〈h, φn〉|2 ≤ D‖h‖2 for all h ∈ H .

The constants C and D are called frame bounds and 〈·, ·〉 denotes the inner product on H .
Recall that a frame is a complete set of elements in H . A frame {φn}∞n=1 is tight if we can
choose C = D, and if in fact C = D = 1, we will call the frame a Parseval frame. A
sequence {hn}∞n=1 of elements in a Hilbert space H is a frame sequence if it is a frame for
span{hn}∞n=1.
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A multiresolution analysis (MRA) is a general method introduced by Mallat [17] and
Meyer [18] for constructing wavelets. Afterwards, the notion of a frame multiresolution anal-
ysis (FMRA) was formulated by Benedetto and Li [1] as a natural extension of MRA. We will
consider an FMRA in a general context: Given a linear invertible map A as above, one defines
an A-FMRA as a sequence of closed subspaces Vj , j ∈ Z, of the Hilbert space L2(Rn) that
satisfies the following conditions:

(i) Vj ⊂ Vj+1 for every j ∈ Z;
(ii) f (x) ∈ Vj if and only if f (Ax) ∈ Vj+1 for every j ∈ Z;

(iii)
⋃

j∈Z Vj = L2(Rn);
(iv) There exists a function φ ∈ V0, that is called scaling function, such that the system

{φ(x − k) ; k ∈ Zn} is a frame for V0.
If in the condition (iv), the system {φ(x − k) ; k ∈ Zn} is a Parseval frame for V0 we

say that an A-FMRA is an A-PFMRA.

DEFINITION 1.1. A function φ ∈ L2(Rn) generates an A-FMRA if {φ(x − k) ; k ∈
Zn} is a frame sequence and the subspaces

(1) Vj = span{φ(Aj x − k) ; k ∈ Zn} , j ∈ Z

of the Hilbert space L2(Rn) satisfy the conditions (i) and (iii).

A key tool in the study of scaling functions in a frame multiresolution analysis is the
Fourier transform. We adopt the convention that the Fourier transform of a function f ∈
L1(Rn) ∩ L2(Rn) is defined by

f̂ (y) =
∫

Rn
f (x)e−2πix·ydx .

If φ is a scaling function of an A-FMRA, observe that d−1
A φ(A−1x) ∈ V−1 ⊂ V0,

where dA = |detA|. By the condition (iv) we express this function in terms of the frame
{φ(x − k) ; k ∈ Zn} as

d−1
A φ(A−1x) =

∑
k∈Zn

akφ(x − k) , ak ∈ C ,

where the convergence is in L2(Rn) and
∑

k∈Zn |ak|2 < ∞. Taking the Fourier transform,
we obtain

(2) φ̂(A∗t) = H(t)φ̂(t) a.e. on Rn

where A∗ is the adjoint map of A and

H(t) =
∑

k∈Zn

ake
−2πik·t

is a function in L2(T n) which is called low pass filter associated to the scaling function φ of
an A-FMRA, or shortly low pass filter in an A-FMRA.
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In Section 2 we give notation and definitions that we use throughout this manuscript.
Section 3 reviews a characterization of the scaling functions in an A-FMRA. Section 4 con-
tains some properties of the low pass filters in an A-FMRA. In Section 5, a characterization
of the low pass filters associated to a scaling function in an A-PFMRA is given. Finally, Sec-
tion 6 provides necessary and sufficient conditions on Zn-periodic functions to be a low pass
filter in an A-FMRA.

2. Notation and definitions. Before formulating our results let us introduce some
notation and definitions.

T n = Rn/Zn and with some abuse of the notation we consider also that T n is the unit
cube [0, 1)n. If we take f ∈ L2(T n) we will understand that f is defined on the whole space
Rn as a Zn-periodic function.

We will denote Br = {x ∈ Rn ; |x| < r}. For a set E ⊂ Rn, a point x ∈ Rn and a
linear map M : Rn → Rn, we will write x + E = {x + y ; for y ∈ E} and M(E) =
{M(y) ; for y ∈ E}. The Lebesgue measure of a measurable set E ⊂ Rn will be denoted by
|E|n and by χE the characteristic function of the set E, i.e., χE(t) takes the value 1 if t ∈ E

and 0 otherwise.
The following definitions were introduced in [8].

DEFINITION 2.1. We will say that x ∈ Rn is a point of A-density for a set E ⊂ Rn,

|E|n > 0, if for any r > 0

lim
j→∞

|E ∩ (A−jBr + x)|n
|A−jBr |n = 1 .

DEFINITION 2.2. Let f : Rn −→ C be a measurable function. We say that x ∈ Rn is
a point of A-approximate continuity of the function f if there exists E ⊂ Rn, |E|n > 0, such
that x is a point of A-density for the set E and

lim
y → x
y ∈ E

f (y) = f (x) .

DEFINITION 2.3. A measurable function f : Rn → C is said to be A-locally nonzero
at a point x ∈ Rn if for any ε, r > 0 there exists j ∈ N such that

| { y ∈ A−jBr + x ; f (y) = 0 } |n < ε|A−jBr |n .

Observe that if A = aI , where a > 1 and I is the identity map on Rn, the definition of
a point of A-approximate continuity coincides with the well-known definition of approximate
continuity (cf. [19], [5]).

If A : Rn → Rn is an expansive linear invertible map such that A(Zn) ⊂ Zn, then the
quotient group Zn/A(Zn) is well defined. We will denote by ΩA ⊂ Zn a full collection of
representatives of the cosets of Zn/A(Zn). Recall that there are exactly dA cosets (see [12]
and [22, p. 109]).

Let us fix ΩA∗ = {pi}dA−1
i=0 , where p0 = 0.
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For a given φ ∈ L2(Rn), set

(3) Φφ(t) =
∑

k∈Zn

|φ̂(t + k)|2

and denote

(4) Nφ = {t ∈ Rn ; Φφ(t) = 0} .

For a measurable function f : Rn → C the support of f is defined to be supp(f ) = {t ∈
Rn; f (t) �= 0}.

The sets are defined modulo a null measurable set and we will understand some equa-
tions as almost everywhere on Rn or T n. Moreover, in order to shorten the notation, we will
consider 0/0 = 0 or 0(1/0) = 0 in some expressions where such an indeterminacy appears.

For H ∈ L∞(T n) and for any measurable set E ⊂ Rn with E = E + Zn, the operator
PH,E : L1(T n) → L1(T n) defined by

PH,E(f )(t) =
dA−1∑
i=0

|H((A∗)−1(t + pi ))|2f ((A∗)−1(t + pi ))χRn\E((A∗)−1(t + pi ))

is linear and continuous.

3. Scaling functions. The definition of low pass filter is closely related with the no-
tion of scaling function, thus for studying the functions H ∈ L2(T n) which are low pass
filters we should know if a function φ ∈ L2(Rn) satisfying the refinement equation (2) is a
scaling function in an A-FMRA. In this section we review results (Theorem A, Lemma B and
Theorem C below) that provide a characterization of the scaling functions in an A-FMRA
together.

In Benedetto and Walnut [2], Benedetto and Li [1], Kim and Lim [16] and Casazza,
Christensen and Kalton [6] (see also [7]), different versions of a characterization of the func-
tions in L2(R) whose integer translates generate a frame sequence were given. Here we only
write a version on L2(Rn) because the proof is completely similar to the case L2(R).

THEOREM A. Let φ ∈ L2(Rn). The system {φ(x − k) ; k ∈ Zn} is a frame sequence
with frame bounds C and D if and only if

(5) C ≤ Φφ(t) ≤ D a.e. on T n \ Nφ .

Different versions of the following lemma appeared in various publications (cf. [1], [7], [15]).

LEMMA B. Let φ ∈ L2(Rn) and assume that {φ(x−k) ; k ∈ Zn} is a frame sequence
in L2(Rn). If the subspaces Vj , j ∈ Z, are defined by (1) then the following conditions are
equivalent:

a) Vj ⊂ Vj+1 for all j ∈ Z;
b) V0 ⊂ V1;
c) There exists a function H ∈ L∞(T n) such that

(6) φ̂(A∗t) = H(t)φ̂(t) a.e. on Rn .
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In a more general context, the following theorem was proved in [15]. The theorem is
formulated here in a modified form.

THEOREM C. Let Vj , j ∈ Z, be a sequence of closed subspaces in L2(Rn) satisfying
the conditions (i), (ii) and (iv) with the scaling function φ. Then the following conditions are
equivalent:

(A)
⋃

j∈Zn Vj = L2(Rn);

(B) The function φ̂ is A∗-locally nonzero at the origin;
(C) The origin is a point of A∗-approximate continuity of the function |φ̂|2 · (Φφ)−1,

provided that |φ̂(0)|2(Φφ(0))−1 = 1.

The following lemma can be found in an implicit form in the paper by de Boor, DeVore
and Ron [3], and in particular, it relates frames of translates with Parseval frames of translates.

LEMMA D. Let φ ∈ L2(Rn) and V = span{φ(x − k) ; k ∈ Zn}. Then the system
{ϕ(x − k) ; k ∈ Zn} is a Parseval frame for V, where ϕ ∈ L2(Rn) is the function defined by
ϕ̂ = φ̂ · (Φφ)−1/2.

4. Properties of the low pass filters. Let us show some properties of low pass filters
associated to a scaling function in an A-FMRA.

PROPOSITION 4.1. Let φ ∈ L2(Rn) be a scaling function of an A-FMRA where the
system {φ(x − k) ; k ∈ Zn} is a frame sequence with frame bounds C and D. Then there
exists H , a low pass filter associated to φ, such that

(7) C/D ≤
dA−1∑
i=0

|H((A∗)−1(t) + (A∗)−1pi )|2≤ D/C a.e. t ∈ Rn \ Nφ ,

and

(8)
dA−1∑
i=0

|H((A∗)−1(t) + (A∗)−1pi )|2= 0 a.e. t ∈ Nφ .

PROOF. Let H̃ be a low pass filter associated to the scaling function φ. If we denote by
H the Zn-periodic measurable function defined by H(t) = H̃ (t) on Rn \ Nφ and 0 on Nφ ,
we have that H ∈ L2(T n) and φ̂(A∗t) = H(t)φ̂(t) a.e. on Rn, thus H is a low pass filter
associated to φ. To check that H satisfies (7) and (8), we do the computations

Φφ(t) =
∑

k∈Zn

|H((A∗)−1t + (A∗)−1k)φ̂((A∗)−1t + (A∗)−1k)|2

=
dA−1∑
i=0

∑
q∈Zn

|H((A∗)−1t + (A∗)−1pi + q) |2| φ̂((A∗)−1t + (A∗)−1pi + q)|2(9)

=
dA−1∑
i=0

|H((A∗)−1t + (A∗)−1pi ) |2 Φφ((A∗)−1t + (A∗)−1pi )
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a.e. on Rn, where the third equality is true because H is Zn-periodic. Thus, by Theorem A
and taking into account that H(t) = 0 a.e. on Nφ , we obtain (7) and (8). �

PROPOSITION 4.2. If a function H ∈ L2(T n) is a low pass filter associated to a
scaling function φ in an A-FMRA where the system {φ(x − k) ; k ∈ Zn} is a frame sequence
with frame bounds C and D, then any function G ∈ L2(T n) such that |H(t)| = |G(t)| a.e.
on Rn \ Nφ is a low pass filter associated to some scaling function ϕ in an A-FMRA, where
the system {ϕ(x − k) ; k ∈ Zn} is a frame sequence with the same frame bounds C and D.

PROOF. In the proof of [21, Theorem 2], it is shown that for the following Zn-periodic
function

mG(t) =
{

G(t)/H(t) if t ∈ {v ∈ Rn \ Nφ ; H(v) �= 0}
1 otherwise ,

there exists a measurable function µ on Rn such that

(10) |µ(t)| = 1 and mG(t) = µ(A∗t)µ(t) ,

where the two above equalities should be understood almost everywhere on Rn.
We are going to check that G is a low pass filter associated to a scaling function ϕ of some

A-FMRA defined by ϕ̂ = µφ̂. For this purpose, we show that the conditions in Theorem A,
Lemma B and Theorem C are satisfied by ϕ. It is clear that if one replaces φ by ϕ, then
the condition (5) in Theorem A holds with the same frame bounds C and D, and also the
condition (B) in Theorem C is satisfied. Let us prove that the condition c) in Lemma B holds.
We have

ϕ̂(A∗t) = µ(A∗t)φ̂(A∗t) = µ(A∗t)H(t)φ̂(t)

= µ(A∗t)µ(t)H(t)µ(t)φ̂(t)(11)

= mG(t)H(t)ϕ̂(t) = G(t)ϕ̂(t) a.e. on Rn .

Let G̃(t) = 0 on Nϕ and G̃(t) = G(t) on Rn \ Nϕ . Then we obtain

ϕ̂(A∗t) = G̃(t)ϕ̂(t) a.e. on Rn .

In a similar way as in the proof of Proposition 4.1 we obtain that G̃ ∈ L∞(T n). Hence, the
condition c) of Lemma B is satisfied. �

PROPOSITION 4.3. Let θ ∈ L2(Rn) and H ∈ L∞(T n) satisfy θ̂ (A∗t) = H(t)θ̂(t) a.e.
Then Φθ is a fixed point for the operator PH,Nθ

.

PROOF. By the Monotone Convergence Theorem, one observes that the Zn-periodic
function Φθ belongs to L1(T n). In addition, that Φθ is a fixed point for the operator PH,Nθ

follows if one replaces φ by θ in (9). �

An interesting case for us is the study of low pass filters associated to a scaling functions
in an A-PFMRA. Thus, in the following we write some properties of those low pass filters.
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An immediate corollary of Proposition 4.1 is that if φ ∈ L2(Rn) a scaling function of an
A-PFMRA, then there exists H , a low pass filter associated to φ, such that

(12)
dA−1∑
i=0

|H((A∗)−1(t) + (A∗)−1pi )|2= 1 or 0 a.e. on Rn .

PROPOSITION 4.4. Let H be a low pass filter associated to a scaling function φ of an
A-PFMRA such that (12) holds. Then we have the following.

i) Setting |H(0)| = 1, the origin is a point of A∗-approximate continuity of |H |. More-
over, any point (A∗)−1pi , i = 1, . . . , dA−1, is a point of A∗-approximate continuity
of |H | if we set |H((A∗)−1pi )| = 0.

ii)

|φ̂(t)| =
∞∏

j=1

|H((A∗)−j t)| , a.e. on Rn .

For the proof of i), one only needs to use a refinement equation φ̂(A∗t) = H(t)φ̂(t) a.e.
and the A∗-approximate continuity of |φ̂| at the origin if we set |φ̂(0)| = 1 together with (12).

We skip the proof of ii) because, having in mind that Φφ = χRn\Nφ
, it is completely

similar to the case of low pass filters of an A-MRA in [21].

PROPOSITION 4.5. Let H ∈ L∞(T n) such that (12) holds. If the infinite product∏∞
j=1 |H((A∗)−j t)| converges almost everywhere on Rn, then

a) the function θ̂ (t) belongs to L2(Rn) and ‖ θ̂ ‖L2(Rn)≤ 1;
b) Φθ(t) ≤ 1 a.e. on Rn,

where the function θ is defined by θ̂ (t) := ∏∞
j=1 |H((A∗)−j t)|.

PROOF. Letting a Zn-periodic measurable function G such that |G(t)| ≥ |H(t)| a.e. on
Rn and

∑dA−1
i=0 |G(t + (A∗)−1pi )|2 = 1 a.e. on Rn, for instance

G(t) =
{

H(t) if
∑dA−1

i=0 |H(t + (A∗)−1pi )|2 = 1
1/dA otherwise ,

we have that
∏∞

j=1 |G((A∗)−j t)| converges a.e. on Rn. Thus, we know that the function

ĝ(t) = ∏∞
j=1 |G((A∗)−j t)| belongs to L2(Rn) and ‖ ĝ ‖L2(Rn)≤ 1 by Bownik [4] (cf. [9],

[14]), thus the condition a) follows from ĝ(t) ≥ θ̂ (t) a.e. on Rn. Furthermore, the condition
b) holds because Φθ(t) ≤ Φg (t) ≤ 1 a.e. on Rn, where the second inequality was proved in
the proof of main result in [21]. �

5. On low pass filters in an A-PFMRA. We present necessary an sufficient condi-
tions on the functions H ∈ L∞(T n) to be low pass filters associated to a scaling functions in
an A-PFMRA. For this purpose, we suppose that the infinite product

(13)
∞∏

j=1

|H((A∗)−j t)|
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converges almost everywhere on Rn and we are going to look for a scaling function φ of an
A-PFMRA which satisfies the condition

|φ̂(t)| =
∞∏

j=1

|H((A∗)−j t)| .

Hence, according to Theorem C, we should also suppose that |φ̂| is A∗-locally nonzero at
the origin. In order not to repeat those conditions, let HA be the class of all functions H ∈
L∞(T n) such that the infinite product (13) converges almost everywhere on Rn and is A∗-
locally nonzero at the origin.

Moreover, let ΠA be the class of all real-valued bounded measurable functions f on Rn

such that f (0) = 1 and the origin is a point of A∗-approximate continuity of f .
We prove the following.

THEOREM 5.1. Let H ∈ HA satisfy (12) and let θ ∈ L2(Rn) be defined by θ̂ (t) :=∏∞
j=1 |H((A∗)−j t)|. Then the following conditions are equivalent:

A) The function |H | is a low pass filter associated to a scaling function θ of an A-
PFMRA.

B) ‖θ‖2
L2(Rn)

= |T n \ Nθ |n.
C) The only function f ∈ L1(T n)

⋂
ΠA which is a fixed point of the operator PH,Nθ

is f ≡ χRn\Nθ
.

Observe that a characterization of all low pass filters in an A-PFMRA follows from
Theorem 5.1 and Proposition 4.2.

The rest of the section is devoted to prove Theorem 5.1. We need the following auxiliary
results.

The following proposition is proved in [21].

PROPOSITION E. Let f : Rn → C be a measurable function and y ∈ Rn a point of
A-approximate continuity of f . Then, there exists an increasing sequence of natural numbers
{jk}∞k=1 ⊂ N , jk+1 > jk , such that

lim
k−→∞ f (A−jk x + y) = f (y) a.e. on Rn .

The following lemma is a slight modification of [21, Corollary 1].

LEMMA F. Let H ∈ L∞(T n) such that (12) holds and let θ̂ (t) = ∏∞
j=1 |H((A∗)−j t)|

a.e. on Rn. Then either θ̂ is not A∗-locally nonzero at the origin or the origin is a point of
A∗-approximate continuity of θ̂ if we set θ̂ (0) = 1.

The following result is proved in [8]. Note that the equality (ii) in the following lemma
does not appear in the original result but it is an immediate consequence of the proof of (i).

LEMMA G. Let g ∈ L2(T n), let A : Rn → Rn be a fixed linear invertible map such
that A(Zn) ⊂ Zn and let Â : T n → T n be the induced endomorphism. Then

(i)
∫
T n g(Ât)dt = ∫

T n g(t)dt,
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(ii)
∫
[0,1]n g(t)dt = d−1

A

∫
[0,1]n

∑dA−1
i=0 g(A−1t + A−1pi )dt.

PROOF OF THEOREM 5.1. Let us begin with the proof of A) to B). Since {θ(x −
k) ; k ∈ Zn} is a Parseval frame sequence, Φθ(t) = χRn\Nθ

(t) a.e. on Rn, then

(14) ‖θ̂‖2
L2(Rn)

=
∑

k∈Zn

∫
[0,1]n+k

|θ̂ (t)|2dt =
∫

[0,1]n
Φθ (t)dt = |T n \ Nθ |n .

The implication B) to A) is proved as follow. According to the condition b) in Proposition 4.5
we have that Φθ(t) ≤ 1 a.e. on Rn. Further, by (14) we have that

|T n \ Nθ |n = ‖θ‖2
L2(Rn)

= ‖θ̂‖2
L2(Rn)

=
∫

[0,1]n
Φθ (t)dt .

Hence Φθ(t) = χT n\Nθ
(t) a.e. on Rn and therefore A) holds.

We prove A) to C). Let us check that χRn\Nθ
is a fixed point of the operator PH,Nθ

and
also it belongs to L1(T n)

⋂
ΠA.

Since θ is a scaling function in an A-PFMRA we have Φθ(t) = χRn\Nθ
(t) a.e., thus

according to Proposition 4.3 we have that

(15) PH,Nθ
(χRn\Nθ

) = χRn\Nθ
.

Moreover, setting χRn\Nθ
(0) = 1, that the origin is a point of A∗-approximate continuity of

χRn\Nθ
is true because θ̂ is A∗-locally nonzero at the origin. Thus according to Lemma F,

the origin is a point of A∗-approximate continuity of θ̂ if we set θ̂ (0) = 1, and finally, using
θ̂ (t) ≤ Φθ(t) = χRn\Nθ

(t) a.e. on Rn the assertion follows.
We now show that if f ∈ L1(T n)

⋂
ΠA is a fixed point of the operator PH,Nθ

, then
f ≡ χRn\Nθ

.
Let us first prove that f (t) ≥ χRn\Nθ

(t) a.e. on Rn. For this purpose, it suffices to prove
that given any measurable set J ⊂ [0, 1]n we have

∫
J

f (t)dt ≥ ∫
J

χRn\Nθ
(t)dt.

In order to shorten the notation in the following computation, we mention that since f is
a fixed point of the operator PH,Nθ

, the equality (15) says

(16) PH,Nθ
(f )(t) = f (t) = 0 a.e. on Nθ .

Let J ⊂ [0, 1]n be a measurable set and let S = J+Zn. Using the equalities PH,Nθ
(f ) =

f and (16), we obtain∫
J

f (t)dt =
∫

[0,1]n
χS(t)PH,Nθ

(f )(t)dt

=
∫

[0,1]n
χS(t)

dA−1∑
i=0

|H((A∗)−1(t + pi ))|2f ((A∗)−1(t + pi ))dt .

Since χS(A∗t) |H(t)|2 f (t) is a Zn-periodic bounded function, according to the condition (ii)
in Lemma G we have∫

J

f (t)dt = dA

∫
[0,1]n

χS(A∗t) |H(t)|2 f (t)dt
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= dA

∫
[−1/2,1/2]n

χS(A∗t) |H(t)|2 f (t)dt .

Putting A∗t = v and taking into account PH,Nθ
(f ) = f , we have∫

J

f (t)dt =
∫

Rn
χS(v)

∣∣H((A∗)−1v)
∣∣2

PH,Nθ
(f )((A∗)−1v)χ[−1/2,1/2]n((A∗)−1v)dv .

Given N ∈ N , repeating the above calculations and using the condition A∗(Zn) ⊂ Zn,
we obtain ∫

J

f (t)dt =
∫

Rn

ΓNf (t)dt ,

where

ΓNf (t) = χS(t)
N∏

j=1

∣∣H((A∗)−j t)
∣∣2f ((A∗)−N t)χ[−1/2,1/2]n((A∗)−N t) .

Since the origin is a point of A∗-approximate continuity of χ[−1/2,1/2]nf , by Proposition E,
there exists an increasing sequence {lN }∞N=1 ⊂ N such that

(17) lim
N−→∞ ΓlN f (t) = χS(t)

∞∏
j=1

∣∣∣H((A∗)−j t)
∣∣∣2 a.e. on Rn .

By Fatou’s lemma and (17),∫
J

f (t)dt = lim
N→∞

∫
Rn

ΓlN f (t)dt ≥
∫

Rn
lim

N→∞ ΓlN f (t)dt

=
∫

Rn
χS(t)

∞∏
j=1

∣∣H((A∗)−j t)
∣∣2dt =

∫
Rn

χS(t)|θ̂ (t)|2dt

=
∑

k∈Zn

∫
J+k

|θ̂ (t)|2dt =
∫

J

Φθ (t)dt =
∫

J

χRn\Nθ
(t)dt .

We now see that f (t) ≤ χRn\Nθ
(t) a.e. on Rn. We consider the auxiliary function

g(t) = (3/2)χRn\Nθ
(t) − (1/2)f (t) and observe that g ∈ ΠA ∩ L1(T n) if we set g(0) = 1.

Since PH,Nθ
(g) = g , (3/2)χRn\Nθ

(t) − (1/2)f (t) ≥ χRn\Nθ
(t) a.e. It follows that

f (t) ≤ χRn\Nθ
(t) a.e. on Rn and this finishes the proof.

To prove C) to A), we should see that conditions (5) in Theorem A, the condition c) in
Lemma B and the condition (B) in Theorem C are satisfied by the function θ . Observe that
according to the hypotheses, the condition c) in Lemma B and the condition (B) in Theorem C
hold. Now we show that the function Φθ defined by (3) belongs to L1(T n)

⋂
ΠA and is a fixed

point for the operator PH,Nθ
. Thus by the condition C) we will have that Φθ(t) = χRn\Nθ

a.e. on T n, and the proof of Theorem 5.1 will be finished.
First of all, according to Proposition 4.3 we know that Φθ is a fixed point for the operator

PH,Nθ
.

Furthermore, obviously 0 ≤ Φθ(t) a.e. on Rn and Φθ is Zn-periodic. Moreover, by b) in
Proposition 4.5, Φθ(t) ≤ 1 a.e. on Rn.
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It remains to prove that the origin is a point of A∗-approximate continuity of Φθ if we set
Φθ(0) = 1. By hypothesis, θ̂ is A∗-locally nonzero at the origin, thus according to Lemma F,
the origin is a point of A∗-approximate continuity of θ̂ if we set θ̂ (0) = 1. Hence, the inequal-
ities θ̂ (t) ≤ Φθ(t) ≤ 1 yield the required assertion. �

6. On low pass filters in an A-FMRA. We are ready to show a criterion on the
functions H ∈ L∞(T n) which are low pass filters associated to a scaling function φ in an
A-FMRA. Our conditions involve an appropriate subset of L1(T n) where we look for fixed
points of the operator PH,Nφ

.
We denote by

LA = {f ∈ L2(Rn) ; f̂ is A∗-locally nonzero at the origin} .

Moreover, given a real-valued function g in L1(T n), let ∆A,g be the class of all non negative
measurable functions, h, such that

(a) both h and 1/h are essentially bounded on the support of g;
(b) h(t) = g(t)f (t) where f ∈ ΠA.

We prove the following.

THEOREM 6.1. Let H ∈ L∞(T n). The two following conditions are equivalent:
(I) The function H is a low pass filter in an A-FMRA.

(II) (α) There exists φ ∈ LA such that |φ̂(t)| = |H((A∗)−1t)||φ̂((A∗)−1t)| a.e.;
(β) The only fixed point of the operator PH,Nφ

in the set L1(T n) ∩ ∆A,Φφ is Φφ .

PROOF. We prove (I) to (II). Since H is a low pass filter associated to a scaling function
φ in an A-FMRA, by (2) and (B) in Theorem C, the condition (α) holds. It remains to check
that (β) is satisfied. According to Theorem A, the function Φφ belongs to L1(T n) ∩ ∆A,Φφ ,
and further, by Proposition 4.3, we have PH,Nφ

(Φφ) = Φφ .

We see now the uniqueness. According to Lemma D, the function ϕ ∈ L2(Rn) defined
by ϕ̂ = φ̂ · (Φφ)−1/2 is a scaling function in an A-PFMRA with, G, a bounded low pass filter
associated defined by

G(t) = H(t)(Φφ(t))1/2(Φφ(A∗t))−1/2 .

On the other hand, let h ∈ L1(T n) ∩ ∆A,Φφ be a fixed point of the operator PH,Nφ
, then

Φφ(t)f (t) = h(t) = PH,Nφ
(h)(t)

=
dA−1∑
i=0

|H((A∗)−1(t + pi )|2h((A∗)−1(t + pi ))χRn\Nφ
((A∗)−1(t + pi ))

=
dA−1∑
i=0

|H((A∗)−1(t + pi )|2Φφ((A∗)−1(t + pi ))f ((A∗)−1(t + pi )) ,

where f ∈ L1(Rn) ∩ ΠA. Thus, having in mind that Nϕ = Nφ (except a null measur-
able set), we have f = PG,Nϕ

(f ), so according to the condition (ii) in Proposition 4.4
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and by Theorem 5.1, we really know that f must be χRn\Nφ
. We have just proved that if

h ∈ L1(T n) ∩ ∆A,Φφ is a fixed point of the operator PH,Nφ
, then h ≡ Φφ .

To prove (II) to (I), we should see that the function θ defined by θ̂ (t) = |φ̂(t)|, where φ is
given in (α), is a scaling function in an A-FMRA. Hence |H | is a low pass filter associated to θ ,
and finally we conclude that H is a low pass filter in an A-FMRA according to Proposition 4.2.
By (α) the function θ satisfies the conditions c) in Lemma B and (B) in Theorem C where one
replaces φ by θ . Furthermore, since Φφ = Φθ then (β) tells us that (5) in Theorem A holds.
We have really proved that θ is a scaling function in an A-FMRA. �
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