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Abstract. In this paper, we study the invariant theory of Viberg’s Θ-groups in classi-
cal cases. For a classical Θ-group naturally contained in a general linear group, we show the
restriction map, from the ring of invariants of the Lie algebra of the general linear group to that
of the Θ-representation defined by the Θ-group, is surjective. As a consequence, we obtain ex-
plicitly algebraically independent generators of the ring of invariants of the Θ-representation.
We also give a description of the Weyl groups of the classical Θ-groups.

0. Introduction. In this paper, we study the invariant theory of Viberg’s Θ-groups.
To be precise, let G be a complex reductive algebraic group with Lie algebra g and θ : G → G

an automorphism of order m. We also denote by θ : g → g the Lie algebra automorphism
defined by θ . Let g1 be the eigenspace of θ with eigenvalue e2π

√−1/m. Then the isotropy
subgroup G0 := Gθ acts on g1 by the adjoint action. We call (G, θ) a Θ-group of order
m and (G0, g1) the Θ-representation defined by (G, θ). If G is GL(V ), O(V ) or Sp(V )

and θ : G → G is an automorphism of classical type, we call (G0, g1) a classical Θ-
representation. Here we call that θ is of classical type if θ is an inner automorphism of G or
an outer automorphism of G = GL(V ). By the fact that the automorphism group of a simple
Lie algebra is a semidirect product of the inner automorphism group and the automorphism
group of the Dynkin diagram, we know that a finite order automorphism of non-classical type
exists only for G = O(V ) with dim V = 8. We call (G0, g1) a Θ-representation of type (A-I)
(resp. (BCD-I)) if G = GL(V ) (resp. G = O(V ), Sp(V )) and θ is an inner automorphism.
If G = GL(V ) and θ is an outer automorphism, we call (G0, g1) a Θ-representation of type
(A-O).

For a classical symmetric pair (G,K) with (−1)-eigenspace p (a Θ-representation of
order 2), it is known by Helgason and other mathematicians, that the restriction map rest :
C[g]G → C[p]K is surjective (cf. [H]). It is also mentioned in [H] that the restriction map is
not surjective for four cases of type E.

In [Pa], Panyushev also give a similar results for N-regular Θ-representations. That is,
for an N-regular Θ-representation (G0, g1), the restriction map rest : C[g]G → C[g1]G0

is surjective. Here a Θ-representation (G0, g1) is called N-regular if the regular nilpotent
G-orbit in g meets g1.

Suppose that a reductive group H̃ ⊂ GL(V ) acts on a vector subspace L̃ ⊂ gl(V ) by the
adjoint action, and a reductive subgroup H of H̃ acts on a subspace L of L̃. In [O3], based
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on the theory of Luna [L], we studied a sufficient condition on (H,L) ↪→ (H̃ , L̃) for the

restriction map rest : C[L̃]H̃ → C[L]H to be surjective. The purpose of this paper is to prove
the following theorem by applying the above results of [O3] to a classical Θ-representation
(G0, g1) included in (GL(V ), gl(V )).

THEOREM 0.1. For a classical Θ-representation (G0, g1) naturally included in
(GL(V ), gl(V )), the restriction map

(0.1) rest : C[gl(V )]GL(V ) → C[g1]G0, f �→ f |g1

is surjective.

We also determine algebraically independent generators of C[g1]G0 explicitly. Since the
map C[gl(V )]GL(V ) → C[g1]G0 decomposes as

C[gl(V )]GL(V ) → C[g]G → C[g1]G0 ,

we know that the restriction map C[g]G → C[g1]G0 is also surjective. Thus we obtain the
following generalization of the surjectivity which is known for classical symmetric pairs and
N-regular Θ-representations.

COROLLARY 0.2. For any classical Θ-representation (G0, g1), the restriction map
C[g]G → C[g1]G0 is surjective.

Based on [O3], the surjectivity of the map (0.1) is proved by using the fact that the map

(0.2) gss
1 /G0 → gl(V )ss/GL(V ), O �→ Ad(GL(V )) · O ,

from the set of semisimple orbits in g1 to that in gl(V ), is injective. The injectivity of the
map (0.2) is shown in Sections 2 and 3, with the proof based on a classification of semisimple
G0-orbits.

The injectivity of the map (0.2) can be used not only for showing the surjectivity of the
map (0.1), but also for computation of the Weyl groups of Θ-representations.

In [V], Vinberg introduced the notions of Cartan subspaces and Weyl groups of Θ-
representations (G0, g1) and determined them for classical Θ-representations.

Let c ⊂ g1 be a Cartan subspace of g1, i.e., a maximal abelian subspace of g1 which
consists of semisimple elements. Let t be a Cartan subalgebra of gl(V ) which contains c. Let
us consider the following groups:

W(G0, c) = NG0(c)/ZG0(c) ⊂ GL(c), W = NGL(V )(t)/ZGL(V )(t) .

Here the former is called the Weyl group of the Θ-representation (G0, g1) and the latter
is the Weyl group of (GL(V ), gl(V )) isomorphic to the symmetric group of degree dim V .
Then W(G0, c) is naturally identified with a subgroup of NW (c)|c. The injectivity of the
map (0.2) simplifies the computation of W(G0, c), since it implies W(G0, c) = NW (c)|c.
Thus we can compute W(G0, c) as the normalizer of c in the symmetric group W . As a
consequence, we know that the Weyl group W(G0, c) is isomorphic to the complex reflection
group G(k, 1, r) (in the notation of [ST]), where r = dim c and k is a number which depends
on the Θ-representation (G0, g1). Vinberg already computed the Weyl groups of classical
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Θ-representations under the setting that G = SL(V ), SO(V ) or Sp(V ) and G0 = (Gθ)0 (the
identity component of Gθ ). In some cases in types (BD-I) and (A-O), his Weyl groups are
G(k, 2, r) (cf. [ST]). Since our method of computation is different from that of Vinberg, the
author thinks that there is some meaning to present a computation of the Weyl groups by the
method which use the injectivity of the correspondence of semisimple orbits.

Now we are going to explain the contents of this paper briefly.
In Section 1, we see that any Θ-representation (G0, g1) of type (BCD-I) or (A-O) is

naturally contained in a Θ-representation (G̃0, g̃1) of type (A-I) (cf. (1.1)) and show that the
map g1/G0 → g̃1/G̃0 of adjoint orbits is injective. By [O3], we know that C[g1]G0 is the
integral closure of C[g̃1]G̃0 |g1 in its quotient field.

In Section 2, we give a classification of general orbits of the Θ-representation (G̃0, g̃1)

↪→ (GL(V ), gl(V )) of type (A-I) by means of Zm-labeled Young diagrams with eigenval-
ues. The classification of nilpotent orbits of Θ-representations of type (A-I) was given in
Kempken [Ke] by using Zm-labeled Young diagrams (called “words" in [Ke]). Zm-labeled
Young diagrams with eigenvalues are a generalization of Zm-labeled Young diagrams. By
using this classification, we know that the map g̃ss

1 /G̃0 → gl(V )ss/GL(V ) between the sets
of semisimple orbits is injective. We also know, by the inclusion g1/G0 ↪→ g̃1/G̃0, that gen-
eral orbits of Θ-representations of types (BCD-I) and (A-O) can be classified by Zm-labeled
Young diagrams with eigenvalues and that the map (0.2) is injective.

In Section 3, we give a classification of semisimple orbits of Θ-representations of types
(BCD-I) and (A-O) as a preparation of Section 4.

In Section 4, we first show the surjectivity of the map (0.1) by using the injectivity of the
map (0.2) for a Θ-representation of type (A-I). From the fact that C[g̃1]G̃0 =
C[gl(V )]GL(V )|g̃1 , we know that C[g̃1]G̃0 |g1 = C[gl(V )]GL(V )|g1 for a Θ-representation
(G0, g1) of type (BCD-I) or (A-O). By using the classification of semisimple orbits in Section
3, we know that the ring C[gl(V )]GL(V )|g1 is a polynomial ring. Since C[g1]G0 is the integral

closure of C[g̃1]G̃0 |g1 , we have

C[g1]G0 = C[g̃1]G̃0 |g1 = C[gl(V )]GL(V )|g1 ,

and the surjectivity of the restriction map (0.1) is shown for a Θ-representation of type (BCD-
I) or (A-O).

In Section 5, we determine the Weyl groups of classical Θ-representations.

1. Inclusion theorem for orbits in the classical Θ-representations. Let G be a
complex reductive algebraic group with the Lie algebra g and m a positive integer. Let
θ : G → G be an automorphism of G such that θm = idG and θk �= idG (1 ≤ k < m).
We write θ : g → g the induced automorphism. We put ζ := e2π

√−1/m,

G0 = {g ∈ G ; θ(g) = g} and gj := {X ∈ g ; θ(X) = ζ jX} (j ∈ Zm = Z/mZ) .

Then g is decomposed as

g = ⊕j∈Zmgj
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and we obtain a Zm-graded Lie algebra. We call the pair (G, θ) a Θ-group of order m. For
each j ∈ Zm, the isotropy group G0 acts on gj by the adjoint action. In this paper, we mainly
consider the adjoint representation (G0, g1) of G0 on g1 and call it the Θ-representation
defined by (G, θ).

(1.1) Classical Θ-representations. In this paper, we call the following Θ-representa-
tions, defined by finite order automorphisms of GL(V ), O(V ) or Sp(V ), classical Θ-repre-
sentations.

Type (A-I). Let V be a finite dimensional vector space over C and S ∈ GL(V ) a linear
transformation of V such that Sm = idV and Ad(Sk) �= idGL(V ) for any 1 ≤ k ≤ m − 1. We
call such a transformation S an m-automorphism of V and such a pair (V , S) a vector space
with m-automorphism.

For a vector space (V , S) with m-automorphism, by putting G = GL(V ) and θ(g) =
SgS−1 (g ∈ G), we obtain a Θ-group (G, θ) of order m. We call (G, θ) the Θ-group of type
(A-I) defined by (V , S), since θ is an inner automorphism of a group G = GL(V ) of type A.
Also, we call the corresponding (G0, g1) a Θ-representation of type (A-I).

Type (BCD-I). Let V be a finite dimensional vector space over C and ( , ) a non-
degenerate ε-symmetric form on V , where ε = ±1. An ε-symmetric form means a bilinear
form such that (u, v) = ε(v, u) (u, v ∈ V ). For X ∈ End(V ), we denote by X∗ the adjoint of
X with respect to ( , ). Put

G := {g ∈ GL(V ); g∗ = g−1} =
{
O(V ) (ε = 1)

Sp(V ) (ε = −1) .

Let a ∈ G be an element of G such that the automorphism θ : G → G defined by
θ(g) = aga−1 (g ∈ G) has finite order m. Then we easily see that am = ±idV . We put
ζ = e2π

√−1/m and ξ = eπ
√−1/m. Let us define ω ∈ {0, 1} and S ∈ GL(V ) by

ω =
{

0 (am = idV )

1 (am = −idV ) ,
S := ξωa .

Then we see easily the following.

LEMMA 1.1. (i) Sm = idV and θ(g) = SgS−1 (g ∈ GL(V )).

(ii) S∗ = ζωS−1, in particular (Su, Sv) = ζω(u, v) (u, v ∈ V ).

DEFINITION 1.2. (i) For (ε, ω) ∈ {±1} × {0, 1} and a positive integer m, if a triple
(V , ( , ), S) consisting of a finite dimensional vector space V , a non-degenerate ε-symmetric
form ( , ) on V and S ∈ GL(V ) satisfies the following conditions (a) and (b), we call
(V , ( , ), S) an (ε, ω)-space with m-automorphism:

(a) Sm = idV and Ad(Sk) �= idG (1 ≤ k ≤ m − 1).
(b) S∗ = ζωS−1.

This notion is a generalization of (ε, ω)-spaces in [O1], which define symmetric pairs of type
B, C, and D.

(ii) For the above (V , ( , ), S), by putting G := {g ∈ GL(V ); g∗ = g−1} and defining
θ : G → G by θ(g) = SgS−1, we obtain a Θ-group (G, θ). We call it the Θ-group of type
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(BCD-I) defined by the (ε, ω)-space (V , ( , ), S) with m-automorphism, since θ is an inner
automorphism of a group G of type B, C or D.

(iii) For the Θ-group (G, θ) defined by (V , ( , ), S), we call (GL(V ), Ad(S)) the
associated Θ-group of type (A-I).

Type (A-O). Let V be a finite dimensional vector space over C and 〈 , 〉 a non-
degenerate bilinear form on V . For X ∈ End(V ), we denote by X∗ the adjoint of X with
respect to the bilinear form 〈 , 〉 defined by 〈Xu, v〉 = 〈u,X∗v〉 (u, v ∈ V ). We put
G = GL(V ) and consider the automorphism θ : G → G defined by θ(g) = (g∗)−1.

LEMMA 1.3. Define an element a ∈ GL(V ) by 〈u, v〉 = 〈v, au〉 (u, v ∈ V ). Then we
have the following.

(i) a∗ = a−1.
(ii) θ2(g) = aga−1 (g ∈ G). In particular, θ has finite order if and only if so does

Ad(a) : G → G.
(iii) If Ad(a) has finite order m, then am = ±idV .

PROOF. (i) Since 〈u, v〉 = 〈v, au〉 = 〈au, av〉 (u, v ∈ V ), we have a∗ = a−1.
(ii) For X ∈ End(V ), we see

〈u, (X∗)∗v〉 = 〈X∗u, v〉 = 〈v, aX∗u〉 = 〈Xa−1v, u〉 = 〈u, aXa−1u〉
and hence (X∗)∗ = aXa−1. In particular, we have θ2(g) = [{(g∗)−1}∗]−1 = (g∗)∗ = aga−1.
Thus (ii) holds.

(iii) Since am is a scalar matrix, we put am = c idV (c ∈ C×). Then c idV =
(c idV )∗ = (am)∗ = a−m = (c idV )−1 = c−1idV and we have c2 = 1. �

As before, we define ω ∈ {0, 1} and S ∈ GL(V ) by

ω =
{

0 (am = idV )

1 (am = −idV ) ,
S := ξωa .

Then we easily see the following.

LEMMA 1.4. (i) Sm = idV and θ2(g) = SgS−1 (g ∈ G).
(ii) 〈u, v〉 = ξ−ω〈v, Su〉 (u, v ∈ V ).

(iii) S∗ = ζωS−1.

DEFINITION 1.5. (i) Let ω be an element of {0, 1} and m a positive integer. A pair
(V , 〈 , 〉) of a finite dimensional vector space V and a non-degenerate bilinear form 〈 , 〉 on
V is called a vector space with (ω,m)-bilinear form, if there exists an element S ∈ GL(V )

satisfying the following conditions (a) and (b).
(a) 〈u, v〉 = ξ−ω〈v, Su〉 (u, v ∈ V ).
(b) (X∗)∗ = SXS−1 (X ∈ End(V )), Sm = idV and Ad(Sk) �= idGL(V ) (1 ≤ k ≤

m − 1).
We call S the (ω,m)-automorphism of V corresponding to (V , 〈 , 〉).
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(ii) For the above (V , 〈 , 〉), by defining G := GL(V ) and θ : G → G by θ(g) =
(g∗)−1, we obtain a Θ-group (G, θ) of order 2m. We call this the Θ-group of type (A-O)
defined by the vector space (V , 〈 , 〉) with (ω,m)-bilinear form, since θ is an outer automor-
phism of a group G = GL(V ) of type A.

(iii) Let (G, θ) be a Θ-group of type (A-O). Then θ2 = Ad(S) for the above S, and
(G, θ2) is called the associated Θ-group of type (A-I). If (G, θ) is of order 2m, then (G, θ2)

is of order m.

REMARK 1.6. (i) Let (G, θ) be one of the above Θ-groups and put H := {g ∈
G; det(g) = 1}, h := Lie(H). In [V], Vinberg called (H, θ) the classical Θ-group and
studied the adjoint action ((H θ)0, h1), where (H θ)0 is the identity component of Hθ . But
from the viewpoint of giving a classification of orbits and the ring of invariants in a unified
manner, we call (G, θ) the classical Θ-group and study it.

(ii) For the above H , any finite order automorphism of h can be obtained as θ which we
have described above, except for automorphisms of so(8,C) coming from the automorphism
of the Dynkin diagram of order 3.

(1.2) Embedding of orbits into those in a Θ-representation of type (A-I). We conclude
this section with showing that the set of G0-orbits of a Θ-representation of type (BCD-I) or
(A-O) can be embedded injectively to those of a Θ-representation of type (A-I). We first treat
a Θ-representation of type (BCD-I).

Let (G, θ) be a Θ-group of type (BCD-I) defined by an (ε, ω)-space (V , ( , ), S) with
m-automorphism (cf. Definition 1.2), and (G̃, θ) = (GL(V ), Ad(S)) the associated Θ-group
of type (A-I). We put ζ = e2π

√−1/m and write X∗ the adjoint of X ∈ End(V ) with respect
to ( , ). Thus we obtain a C-linear anti-automorphism σ : End(V ) → End(V ) defined by
σ(X) := X∗. Then G̃0, G0, g̃j , gj (j ∈ Zm) can be written as

G̃0 = {g ∈ GL(V ); SgS−1 = g}, G0 = {g ∈ G̃0; σ(g) = g−1} ,

g̃j = {X ∈ End(V ); SXS−1 = ζ jX}, gj = {X ∈ g̃j ; σ(X) = −X} .

We have the following.

PROPOSITION 1.7. For any j ∈ Zm, the map

gj /G0 → g̃j /G̃0, O �→ Ad(G̃0) · O
is injective.

The proof is given by applying the following proposition to the case when H̃ = G̃0,
H = G0, L̃ = g̃j , L = gj and α(X) = −X (X ∈ L̃).

PROPOSITION 1.8 ([O3, Theorem 1]). Let V be a finite dimensional vector space over
C and σ : End(V ) → End(V ) a C-linear anti-automorphism of the associative algebra. Let
H̃ be a subgroup of GL(V ) such that

(a) 〈H̃ 〉C ∩GL(V ) = H̃ , where 〈H̃ 〉C denotes the subspace of End(V ) spanned by H̃ .
(b) σ(H̃ ) = H̃ and σ 2|H̃ = idH̃ .
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Let L̃ be an Ad(H̃ )-stable and σ -stable subspace of End(V ), and α an element of GL(L̃) such
that α(Ad(g)X) = Ad(g)α(X) for any g ∈ H̃ and X ∈ L̃, i.e., α ∈ ZGL(L̃)(AdL̃(H̃ )). Define

a subgroup H := {g ∈ H̃ ; σ(g) = g−1} of H̃ and a subspace L := {X ∈ L̃; σ(X) = α(X)}
of L̃. Then the map L/H → L̃/H̃ of adjoint orbits defined by O �→ Õ := Ad(H̃ ) · O is
injective.

Next we consider a Θ-group of type (A-O). Let (G, θ) be a Θ-group of order 2m

of type (A-O) defined by a vector space (V , 〈 , 〉) with (ω,m)-bilinear form, and S the
(ω,m)-automorphism of V corresponding to (V , 〈 , 〉) (cf. Definition 1.5). Let (G̃, θ2) =
(GL(V ), Ad(S)) the associated Θ-group of order m of type (A-I). We put ξ = eπ

√−1/m,
ζ = ξ2 = e2π

√−1/m. We note that σ : End(V ) → End(V ) defined by σ(X) := X∗ is a
C-linear anti-automorphism. Then G̃0, G0, g̃i , gj can be written as

G̃0 = {g ∈ GL(V ); SgS−1 = g}, G0 = {g ∈ G̃0; θ(g) = g (⇔ g∗ = g−1)} ,

g̃i = {X ∈ End(V ); SXS−1 = ζ iX (⇔ θ2(X) = ξ2iX)} (i ∈ Zm) ,

gj = {X ∈ g̃j ; θ(X) = ξjX (⇔ X∗ = −ξjX)} (j ∈ Z2m) .

Apply Proposition 1.8 to σ(X) = X∗ = −θ(X) (X ∈ End(V )), H̃ = G̃0, H = G0,
L̃ = g̃j , L = gj (j ∈ Z2m) and α(X) = −ξjX (X ∈ L̃). Then we obtain the following.

PROPOSITION 1.9. For any j ∈ Z2m, the map

gj /G0 → g̃j /G̃0, O �→ Ad(G̃0) · O
is injective.

2. Classification of orbits of Θ-representations of type (A-I). Let (G, θ) be a Θ-
group of type (A-I) defined by a vector space (V , S) with an m-automorphism. We put ζ =
e2π

√−1/m and V j := {v ∈ V ; Sv = ζ j v} for j ∈ Zm. Then G0 and g1 can be written as

G0 = {g ∈ GL(V ); gV j = V j , j ∈ Zm}, g1 = {X ∈ gl(V ); XV j ⊂ V j+1, j ∈ Zm} .

A classification of nilpotent G0-orbits in g1 was already given in Kempken [Ke] (see
also [O2]) by means of Zm-labeled Young diagrams defined in [Ke] which we call 〈ζ 〉-signed
diagrams in [O2]. A similar classification of nilpotent orbits is also given in [DKP] in the
category of color Lie algebras. We may say that classifications of nilpotent orbits of Θ-
representation of types (A-I), (BCD-I) and (A-O) are given in [DKP]. A classification of
nilpotent orbits by means of weighted Dynkin diagrams is also given in [Ka].

In this section, we give a classification of general orbits of Θ-representations of type
(A-I) by means of Zm-labeled Young diagrams with eigenvalues. By Propositions 1.7 and
1.9, we know that general orbits of Θ-representations of types (BCD-I) and (A-O) can also
be classified by Zm-labeled Young diagrams with eigenvalues.

The classification is mainly based on the following proposition.

PROPOSITION 2.1. For any A ∈ g1, V is represented as a direct sum V = V1 ⊕ V2 ⊕
· · · ⊕ Vp of A-stable and S-stable subspaces with one of the following properties:
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(i) A|Vk is nilpotent, and there exists a basis {v0, v1, . . . , vl} of Vk contained in
∪j∈ZmV j such that Avi = vi+1 (0 ≤ i ≤ l − 1) and Avl = 0. We denote such an oper-
ation of A by A : v0 → v1 → · · · → vl → 0 .

(ii) A|Vk is isomorphic. Denote by A = As + An the Jordan decomposition of A in
gl(V ) with the semisimple part As and the nilpotent part An. Since θ(A) = ζA, we know
As, An ∈ g1 by the uniqueness of the Jordan decomposition. Then there exist α ∈ C× and a
basis {vj

i ; j ∈ Zm, 0 ≤ i ≤ l} of Vk such that α−1As and An map this basis in the following
manner:

v0
0 → v0

1 → v0
2 → · · · → v0

l → 0
↓ ↓ ↓ ↓
v1

0 → v1
1 → v1

2 → · · · → v1
l → 0

↓ ↓ ↓ ↓
...

...
...

...
...

↓ ↓ ↓ ↓
vm−1

0 → vm−1
1 → vm−1

2 → · · · → vm−1
l → 0

↓ ↓ ↓ ↓
v0

0 → v0
1 → v0

2 → · · · → v0
l → 0

,

where ↓ (resp. →) denotes the operation of α−1As (resp. An) on this basis.

We introduce two lemmas before the proof of Proposition 2.1. Let A be an element of
g1. For an S-stable and A-stable subspace W of V and α ∈ C, we write

WA(α) := {v ∈ W ; (α idW − A)kv = 0 for k >> 0} .

LEMMA 2.2. If α is an eigenvalue of A|W , so is ζ−1α and it holds SWA(α) =
WA(ζ−1α).

PROOF. For k ≥ 0, we see

(ζ−1α idV − A)kS = SS−1(ζ−1α idV − A)kS = S(ζ−1α idV − S−1AS)k

= S(ζ−1α idV − ζ−1A)k = ζ−kS(α idV − A)k .

If v ∈ WA(α), there exists k ≥ 0 such that (α idV −A)kv = 0. Hence (ζ−1α idV −A)kSv =
ζ−kS(α idV − A)kv = 0. Therefore Sv ∈ WA(ζ−1α). �

For α ∈ C×, we put

WA(〈ζ 〉α) :=
⊕
j∈Zm

WA(ζ jα) ,

where 〈ζ 〉 denotes the subgroup of C× generated by ζ and 〈ζ 〉α denotes the set {ζ jα; j ∈
Zm}. Then W is decomposed as W = WA(0) ⊕ (

⊕q

i=1 WA(〈ζ 〉αi)) for some non-zero eigen-
values α1, . . . , αq of A. If A is semisimple, by decomposing each WA(〈ζ 〉αi) into indecom-
posable S-stable and A-stable subspaces, we obtain the following.
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LEMMA 2.3. Suppose that A ∈ g1 is semisimple and W is an S-stable and A-stable
subspace of V . Then there exists a decomposition W = WA(0) ⊕ W1 ⊕ W2 ⊕ · · · ⊕ Wp of
W into A-stable and S-stable subspaces such that each direct summand Wk has the following
properties.

For any eigenvalue α ∈ C× of A|Wk , there exists a basis v0, v1, . . . , vm−1 of Wk with
vj ∈ V j (j ∈ Zm) such that α−1Avj = vj+1. We denote such an operation of α−1A by

α−1A : v0 → v1 → · · · → vm−1 → v0 .

In particular, the eigenvalues of A|Wk are α, ζα, ζ 2α, . . . , ζm−1α each of which appears with
multiplicity one.

PROOF OF PROPOSITION 2.1. If A ∈ g1 is nilpotent (resp. semisimple), V has a
decomposition of components belong to Proposition 2.1, (i) (resp. (ii)) by [O2, Proposition
1.2] (resp. Lemma 2.3). Therefore we assume that A is neither nilpotent nor semisimple.

Then there exist non-zero eigenvalues β1, β2, . . . , βq of A such that

V = VA(0) ⊕ VA(〈ζ 〉β1) ⊕ · · · ⊕ VA(〈ζ 〉βq) .

Thus it is sufficient to show that VA(0) and VA(〈ζ 〉βk) (1 ≤ k ≤ q) have the direct sum
decomposition of Proposition 2.1. Again by [O2, Proposition 1.2], VA(0) has such a decom-
position.

Let A = As + An be the Jordan decomposition of A. As mentioned before, As and An

are in g1. We write x := An. Since As is semisimple, the centralizer zg(As) is reductive.
Since SAsS

−1 = ζAs , zg(As) is θ = Ad(S)-stable and we obtain Zm-graded Lie algebra
zg(As) = ⊕

j∈Zm
zgj (As). Since x ∈ zg1(As) is nilpotent, there exist h ∈ zg0(As) and

y ∈ zg−1(As) such that (h, x, y) is an sl2-triple as in the proof of [KrP, Lemma 7.3], i.e.,
[h, x] = 2x, [h, y] = −2y and [x, y] = h. We write h the 3-dimensional subalgebra spanned
by h, x, y.

Let α be a nonzero eigenvalue of A. Then, clearly, W := VA(〈ζ 〉α) = VAs (〈ζ 〉α) is
an S-stable h-submodule of V . For an integer p ≥ 0, we write Kp := {v ∈ W ; yv =
0, hv = −pv}. Since h, y are in zg(As) and ShS−1 = h, SyS−1 = ζ−1y, Kp is As-stable
and S-stable.

Let Wp be the h-submodule of V generated by Kp. Clearly, Wp is also As-stable and
S-stable, and W is equal to

⊕
p≥0 Wp by the representation theory of sl2.

Since As is semisimple, Kp has a decomposition Kp = ⊕
k K

p

k in Lemma 2.3 with
respect to As . Then α is an eigenvalue of As restricted to each K

p
k , and K

p
k has a basis

{vj ; j ∈ Zm} with α−1As : v0 → v1 → · · · vm−1 → v0. Since each vj is an h-lowest weight
vector of weight −p, we have xpvj �= 0 and xp+1vj = 0. Denote by W

p
k the h-submodule

of V generated by K
p
k . Then {xivj ; j ∈ Zm, 1 ≤ i ≤ p} is a basis of W

p
k , and α−1As and

x = An map this basis as in Proposition 2.1, (ii). By the representation theory of sl2, we have
Wp = ⊕

k W
p
k . �

DEFINITION 2.4 (cf. [O2, Definition 1.1]). (i) A Young diagram η for which an ele-
ment of Zm is placed in each box is called a Zm-labeled Young diagram (called “word” in
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[Ke]) if the attached number in Zm of each box is +1 of that of the left adjacent box if exists.

For example, η =
1 2 3 0 1 2 3

0 1 2 3 0 1

3 0 1 2

is a Z4-labeled Young diagram.

(ii) For a Zm-labeled Young diagram η and j ∈ Zm, we denote by nj (η) the number of
j ’s which occur in η. We write YDm(n0, n1, n2, . . . , nm−1) for the set of Zm-labeled Young
diagrams η such that nj (η) = nj (j ∈ Zm).

For example, η =
3 0 1 2 3 0 1 2 3

2 3 0 1 2 3

3 0 1 2

is in YD4(4, 4, 5, 6).

Write nj := dim V j (j ∈ Zm). It is known that nilpotent G0-orbits in g1 are classified
by YDm(n0, n1, n2, . . . , nm−1) ([Ke], see also [O2] and [DKP]).

To give the classification of general G0-orbits in g1, we generalize this notion as follows.

DEFINITION 2.5. (i) For l ≥ 0 and α ∈ C×, we denote by ∆m
l (〈ζ 〉α) a pair (δm

l ,

〈ζ 〉α) of the Zm-labeled Young diagram

δm
l :=

0 1 2 · · · l

1 2 3 · · · l + 1
...

...
... · · · ...

m − 2 m − 1 0 · · · l + m − 2
m − 1 0 1 · · · l + m − 1

and the set 〈ζ 〉α of complex numbers. For j ∈ Zm and l ≥ 0, we denote by ∆m
l (j, {0}) a pair

(νm
l (j), {0}) of the Zm-labeled Young diagram

νm
l (j) := j j + 1 j + 2 · · · j + l − 1 j + l

and the set {0}.
(ii) We call a formal sum of the components ∆m

l (〈ζ 〉α) and ∆m
l (j, {0}) for various l,

α and j a Zm-labeled Young diagram with eigenvalues (abbreviated Zm-YDE).
(iii) For a Zm-YDE ∆ and j ∈ Zm, we denote by nj (∆) the number of j ’s which occur

in ∆. We write YDEm(n0, n1, n2, . . . , nm−1) the set of Zm-YDE’s ∆ such that nj (∆) = nj

for each j ∈ Zm.

For any A ∈ g1, let us attach a Zm-YDE ∆(A) to A as follows. Take the decomposition
V = V1 ⊕ V2 ⊕ · · · ⊕ Vp given in Proposition 2.1. To a component Vk for which A|Vk is
nilpotent and v0 ∈ V j , we attach the Zm-YDE ∆(A,Vk) := ∆m

l (j, {0}). For a component

Vk in Proposition 2.1, (ii), let us define a basis {uj

h ; j ∈ Zm, 0 ≤ h ≤ l} of Vk by u
j

h =∑
i∈Zm

(ζ−j )ivi
h. Then we easily see that

Asu
j
h = (αζ j )u

j
h and An : u

j

0 → u
j

1 → · · · uj
l → 0 ,
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and know the set of eigenvalues of A|Vk is 〈ζ 〉α. Thus, to a component Vk for which A|Vk is
isomorphic, let us attach the Zm-YDE ∆(A,Vk) := ∆m

l (〈ζ 〉α). In such a way, we obtain a
Zm-YDE ∆(A) which is the sum of ∆(A,Vk) for 1 ≤ k ≤ p, i.e., ∆(A) := ∑p

k=1 ∆(A,Vk).
Then we easily see the following.

LEMMA 2.6. ∆(A) (A ∈ g1) is independent of the choice of the decomposition V =
V1 ⊕ V2 ⊕ · · · ⊕ Vp nor that of the basis of each Vk .

Let V = V 0 ⊕ V 1 ⊕ · · · ⊕ V m−1 be the Zm-gradation of V defined by S and put
nj := dim V j for j ∈ Zm. Then, for an element A ∈ g1, we can define an element ∆(A) ∈
YDEm(n0, n1, . . . , nm−1) which we call the Zm-YDE of A.

THEOREM 2.7. (i) Suppose that A,B ∈ g1 are mutually conjugate under Ad(G0).
Then we have ∆(A) = ∆(B). Thus we obtain a map

g1/G0 → YDEm(n0, n1, . . . , nm−1), Ad(G0) · A �→ ∆(A) .

We write ∆(Ad(G0) · A) := ∆(A) and call it the Zm-YDE of the orbit Ad(G0) · A.
(ii) The map in (i) is bijective: g1/G0 � YDEm(n0, n1, . . . , nm−1).

PROOF. Since (i) is clear, we only show (ii). Suppose A,B ∈ g1 satisfy ∆(A) =
∆(B). Let V = V1 ⊕ V2 ⊕ · · · ⊕ Vp be a decomposition for A in Proposition 2.1 and
V = U1 ⊕ U2 ⊕ · · · ⊕ Up for B. We can assume that ∆(A,Vk) = ∆(B,Uk) for 1 ≤ k ≤ p.
Then we can take g ∈ GL(V ) which maps the basis of each Vk to that of Uk . Then clearly
g ∈ G0 and B = gAg−1. Hence the map in (i) is injective.

Let ∆ be any element of YDEm(n0, n1, . . . , nm−1). Suppose that ∆ = ∑
k ∆k , where

each ∆k is a Zm-YDE in Definition 2.5, (i). By corresponding the boxes of ∆ with the attached
number j ∈ Zm to linearly independent vectors of V j , we can construct a basis B of V . Let
us construct an element A ∈ gl(V ) as follows.

Let ∆k = ∆m
l (j, {0}) be a diagram which appears in ∆ and v0, v1, . . . , vl the vectors in

B corresponding to ∆m
l (l, {0}). We put Vk := 〈v0, v1, . . . , vl〉C and define Ak ∈ gl(Vk) by

Ak : v0 → v1 → · · · → vl → 0.
Suppose that ∆k = ∆(〈ζ 〉α, l) and {vj

i ; j ∈ Zm, 0 ≤ i ≤ l} are the vectors in B
corresponding to ∆k . We put Vk := 〈vj

i ; j ∈ Zm, 0 ≤ i ≤ l〉C and define sk, xk ∈ gl(Vk) by

the operations on the basis {vj

i ; j ∈ Zm} similar to those of As,An of Proposition 2.1. For
each k, we put Ak := sk + xk ∈ gl(Vk). Then V = ⊕kVk . We define A := ∑

k Ak ∈ gl(V ).
Then by the construction, A is in g1 and clearly we have ∆ = ∆(A). Therefore, the map is
surjective. �

Let us consider the classification given by Theorem 2.7 in the special case m = 1.
Suppose that S = idV . Then we have

m = 1, Z1 = {0}, ζ = 1, V 0 = V, G0 = GL(V ), g1 = g0 = gl(V ) ,
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and the Z1-YDE’s given in Definition 2.5, (i) can be written as the sum of components of the
form

∆1
l ({α}) = (

l+1︷ ︸︸ ︷
. . . , {α}) and ∆1

l (0, {0}) = (

l+1︷ ︸︸ ︷
. . . , {0}) ,

where we omit the number 0 ∈ Z1 = {0} which appears in the Young diagrams. Then, by
Proposition 2.1, ∆1

l ({α}) (resp. ∆1
l (0, {0})) is considered as a diagram which corresponds to

the Jordan block of size l + 1 with the eigenvalue α (resp. 0). Therefore the classification
of G0-orbits in g1 given by Theorem 2.7 is considered as a generalization of that of GL(V )-
orbits in gl(V ) by Jordan normal forms.

Now let us describe the map

γ : g1/G0 → g/G = gl(V )/GL(V ), O �→ Ad(G) · O
by means of Young diagrams with eigenvalues. We write n = ∑

j∈Zm
nj = dim V . Under

the identifications

g1/G0 = YDEm(n0, n1, . . . , nm−1) and gl(V )/GL(V ) = YDE1(n) ,

the map γ : YDEm(n0, n1, . . . , nm−1) → YDE1(n) is described as follows.
For a Zm-YDE ∆m

l (〈ζ 〉α), let us define the Z1-YDE [∆m
l (〈ζ 〉α)]1 by

[∆m
l (〈ζ 〉α)]1 =

∑
j∈Zm

∆1
l ({ζ jα}), while we define [∆m

l (j, {0})]1 = ∆1
l (0, {0}) .

For A ∈ g1, let us consider the decomposition V = V1 ⊕ V2 ⊕ · · · ⊕ Vp given in Proposition
2.1 and the Zm-YDE ∆(A) = ∑p

k=1 ∆(A,Vk) ∈ YDEm(n0, n1, . . . , nm−1) defined after

Definition 2.5. Then we easily see that the Z1-YDE of A ∈ g is given by
∑k

i=1[∆(A,Vk)]1.
Hence we know that, for ∆ = ∑k

i=1 ∆i ∈ YDEm(n0, n1, . . . , nm−1) which is a sum of
components ∆i in Definition 2.5, (i), the corresponding Z1-YDE γ (∆) is give by γ (∆) =∑k

i=1[∆i]1.
By considering the case when A is semisimple, we obtain the following.

COROLLARY 2.8. (i) The eigenvalues of any semisimple element of g1 can be writ-
ten as

α1, ζα1, . . . , ζ
m−1α1, α2, ζα2, . . . , ζ

m−1α2, . . . , αq , ζαq, . . . , ζm−1αq,

dim V −mq︷ ︸︸ ︷
0, . . . , 0

for some α1, α2, . . . , αq ∈ C×, with q ≤ r := min{dim V j ; j ∈ Zm}.
(ii) For any set of complex numbers of the form (i), there exists a semisimple element

of g1 whose set of eigenvalues coincides with it.
(iii) Write gss

1 the set of semisimple elements of g1. Then the map gss
1 /G0 → g/G =

gl(V )/GL(V ) defined by O �→ Ad(G) · O is injective.
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PROOF. Let A ∈ g1 be a semisimple element. By the definition of the diagram ∆(A),
we easily see that ∆(A) is of the form

(2.1)
q∑

i=1

∆m
1 (〈ζ 〉αi) +

∑
j∈Zm

(nj − q)∆m
1 (j, {0})

for some α1, . . . , αq ∈ C×. Since each number j ∈ Zm appears once in each ∆m
1 (〈ζ 〉αi), j

appears q-times in
∑q

i=1 ∆m
l (〈ζ 〉αi). Thus we have q ≤ r and the non-zero eigenvalues of A

are
⋃q

i=1〈ζ 〉αi . This proves the claim (i).
For a given set of complex numbers of the form in (i), by Theorem 2.7, (ii), there exists

an element A ∈ g1 whose Zm-YDE ∆(A) is of the form (2.1). Therefore the eigenvalues of
A are of the form in (i) and the claim (ii) is proved.

Suppose that A ∈ gss
1 and that the eigenvalues of the GL(V )-orbit of A is the complex

numbers in (i). Then the Zm-YDE of A must coincide with the diagram (2.1). Hence the map
in (iii) is injective. �

By Propositions 1.7, 1.9 and Theorem 2.7, we obtain the following.

COROLLARY 2.9. Let (G, θ) be a Θ-group of order m of type (BCD-I) (resp. Θ-
group of order 2m of type (A-O)) and (G̃,Θ) = (GL(V ), θ) (resp. (G̃,Θ) = (GL(V ), θ2))

the associated Θ-group of order m of type (A-I). Then, for the corresponding Θ-representa-
tions (G0, g1) and (G̃0, g̃1), we have the following.

(i) The map g1/G0 → YDEm(n0, n1, n2, . . . , nm−1) which maps O ∈ g1/G0 to the
Zm-YDE ∆(Ad(G̃) · O) of the orbit Ad(G̃) · O ∈ g̃1/G̃0, is injective.

(ii) Write gss
1 the set of semisimple elements of g1. Then the map gss

1 /G0 → gl(V )/

GL(V ) defined by O �→ Ad(GL(V )) · O is injective.

3. Classification of semisimple orbits of Θ-representation of type (BCD-I) and (A-
O).

(3.1) Type (BCD-I). Let (G, θ) be a Θ-group of order m of type (BCD-I) defined by an
(ε, ω)-space (V , ( , ), S) with m-automorphism and (G̃, θ) = (GL(V ), Ad(S)) the associated
Θ-group of type (A-I). We write V = ⊕

j∈Zm
V j the Zm-gradation of V defined by S.

Let A be a semisimple element of g1. Let U (resp. W) be an A-stable and S-stable
subspace of V with basis {uj ; j ∈ Zm} (resp. {wj ; j ∈ Zm}) such that

α−1A : u0 → u1 → · · · um−1 → u0 and uj ∈ V j

(resp. β−1A : w0 → w1 → · · · wm−1 → w0 and wj ∈ V j ) ,

where α (resp. β) is a non-zero complex number.

LEMMA 3.1. Suppose that (U,W) �= {0}. Then we have the following.
(i) (ui, wj ) �= 0 if and only if i + j = ω in Zm

(ii) −β/α ∈ 〈ζ 〉.
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PROOF. (i) Suppose that (ui , wj ) �= 0. By the definition of (V , ( , ), S), it holds

ζω(ui, wj ) = (Sui, Swj ) = ζ i+j (ui , wj )

(cf. Lemma 1.2). Hence i + j = ω in Zm.
(ii) Since (U,W) �= {0}, there exist p, q ∈ Zm such that (up,wq) �= 0. Then p + q =

ω in Zm. From this, we compute

(up,wq) = (up,wω−p) = α−p(Apu0, wω−p) = (−α)−p(u0, Apwω−p)

=
(

− β

α

)p

(u0, (β−1A)pwω−p) =
(

− β

α

)p

(u0, wω) .

Hence (u0, wω) �= 0. Suppose i + j = ω in Zm. Then (ui, wj ) �= 0 follows from (ui, wj ) =
(−β/α)i(u0, wω). If we put i = m in the last equation, we obtain

(u0, wω) = (um,wω−m) =
(

− β

α

)m

(u0, wω) .

Hence (ii) follows. �

LEMMA 3.2. Suppose that (U,U) �= {0}. Then m is even and (ε, ω) = (1, 0) or
(ε, ω) = (−1, 1).

PROOF. Suppose that (U,U) �= {0}. Apply Lemma 3.1 by putting U = W , α = β and
uj = wj . Then we see (u0, uω) �= 0 and

ε(u0, uω) = ε((α−1A)mu0, uω) = ε(−1)m−ω((α−1A)ωu0, (α−1A)m−ωuω)

= ε(−1)m−ω(uω, u0) = (−1)m−ω(u0, uω) .

Hence (−1)m−ω = ε. On the other hand, by Lemma 3.1, (ii), −1 ∈ 〈ζ 〉 and hence m is even.
Therefore Lemma 3.2 follows. �

LEMMA 3.3. Suppose that m is even and that (ε, ω) = (1, 0) or (ε, ω) = (−1, 1).
Then there exists a ( , )-orthogonal direct sum decomposition V = V0⊥V1⊥V2⊥ · · ·⊥Vl

into A-stable and S-stable subspaces Vi of V with the following properties:
(a) A|V0 = 0.
(b) For each 1 ≤ k ≤ l, there exist αk ∈ C× and a basis v0, v1, . . . , vm−1 of Vk with

vj ∈ V j (j ∈ Zm) such that A maps this basis as αk
−1A : v0 → v1 → · · · → vm−1 → v0.

PROOF. If A = 0, the statement is trivial. We suppose that A �= 0. It is enough to show
that there exists a subspace V1 with the property (b) such that ( , )|V1 is non-degenerate. Then
apply the same procedure to the orthogonal complement V ⊥

1 , and we obtain Lemma 3.3.

Since A ∈ g̃1, by Lemma 2.3, there exist a subspace U of V , α ∈ C× and a basis
u0, u1, . . . , um−1 of U with uj ∈ V j (j ∈ Zm) such that A maps this basis as α−1A : u0 →
u1 → · · · → um−1 → u0. If (U,U) �= {0}, it follows from Lemma 3.1 that ( , )|U is
non-degenerate. Then V1 = U is a desired subspace.

Next suppose that (U,U) = {0}. Then there exists a direct summand W in Lemma 2.3
such that (U,W) �= {0}. Since (U, VA(0)) = (AU,VA(0)) = (U,AVA(0)) = {0}, we have
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W �= VA(0). If (W,W) �= {0}, ( , )|W is non-degenerate as before and we get a desired
subspace V1 = W . Hence we assume (W,W) = {0}.

Take a basis w0, w1, . . . , wm−1 of W with wj ∈ V j (j ∈ Zm) such that A maps this
basis as β−1A : w0 → w1 → · · · → wm−1 → w0. Since (U,W) �= {0} and m is even, we
have β/α ∈ 〈ζ 〉 by Lemma 3.1, (ii). By changing of basis of W , if necessary, we may assume
that β = α, i.e.,

α−1A : u0 → u1 → · · · → um−1 → u0, α−1A : w0 → w1 → · · · → wm−1 → w0 .

By Lemma 3.1, (i), we have (uω,w0) �= 0. Let us put vj = uj + wj ∈ V j (j ∈ Zm) and
V1 := 〈v0, v1, . . . , vm−1〉C . Then we have α−1A : v0 → v1 → · · · → vm−1 → v0. If
some vj = 0, we conclude U = W which contradicts the assumption (U,W) �= {0}. Hence
any vj �= 0 and v0, v1, . . . , vm−1 are linearly independent. We easily compute (vω, v0) =
{1 + ε(−1)ω}(uω,w0). Since (ε, ω) = (1, 0) or (ε, ω) = (−1, 1), we have (vω, v0) =
2(uω,w0) �= 0. Therefore, ( , )|V1 is non-degenerate by Lemma 3.1, (i). �

LEMMA 3.4. Suppose that m is odd or (ε, ω) = (1, 1) or (ε, ω) = (−1, 0), i.e.,
the complementary cases of Lemma 3.3. Then there exists an ( , )-orthogonal direct sum
decomposition V = V0 ⊥ (V1 ⊕ V ′

1) ⊥ (V2 ⊕ V ′
2) ⊥ · · · ⊥ (Vl ⊕ V ′

l ) into A-stable and
S-stable subspaces of V with the following properties:

(a) A|V0 = 0.
(b) For each 1 ≤ k ≤ l, there exist αk ∈ C×, bases u0, u1, . . . , um−1 of Vk and

w0, w1, . . . , wm−1 of V ′
k with uj ,wj ∈ V j (j ∈ Zm) such that A maps these bases as

αk
−1A : u0 → u1 → · · · → um−1 → u0, −αk

−1A : w0 → w1 → · · · → wm−1 → w0 .

(c) For each 1 ≤ k ≤ l, (Vk, Vk) = (V ′
k, V

′
k) = {0} and ( , )|Vk⊕V ′

k
is non-degenerate.

PROOF. As before, it is enough to show that there exists a subspace V1 ⊕ V ′
1 with the

properties (b) and (c). Let V = VA(0) ⊕V1 ⊕V2 ⊕ · · ·⊕Vp be the direct sum decomposition
of V for A ∈ g̃1 (cf. Lemma 2.3). As before, (Vk, VA(0)) = {0} (1 ≤ k ≤ p). By Lemma
3.2, we see (Vk, Vk) = {0} (1 ≤ k ≤ p). Since ( , ) is non-degenerate, we may assume
that (V1, V2) �= {0}. Take bases u0, u1, . . . , um−1 of V1 and w0, w1, . . . , wm−1 of V2 with
uj ,wj ∈ V j (j ∈ Zm) so that

α−1A : u0 → u1 → · · · → um−1 → u0, β−1A : w0 → w1 → · · · → wm−1 → w0 .

Since β ∈ 〈ζ 〉(−α) by Lemma 3.1, (ii), by changing of basis of V2, if necessary, we may
assume that β = −α, i.e., (−α)−1A : w0 → w1 → · · · → wm−1 → w0. Then by putting
V ′

1 := V2, we obtain the desired V1 ⊕ V ′
1. �

THEOREM 3.5. Let (G, θ) be a Θ-group of order m of type (BCD-I ) defined by an
(ε, ω)-space (V , ( , ), S) with m-automorphism and V = V 0 ⊕ V 1 ⊕ · · · ⊕ V m−1 the Zm-
gradation of V defined by S.

(i) Suppose that (ε, ω) = (1, 0) or (−1, 1) and m is even. We write r := min{dim V j ;
j ∈ Zm}.
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(1) The eigenvalues of any semisimple element of g1 can be written as

α1, ζα1, . . . , ζ
m−1α1, α2, ζα2, . . . , ζ

m−1α2, . . . , αq , ζαq, . . . , ζm−1αq,

dim V −mq︷ ︸︸ ︷
0, . . . , 0

for some α1, α2, . . . , αq ∈ C× with q ≤ r .
(2) Conversely, for any set of complex numbers of the form (1), there exists a semisim-

ple element of g1 whose set of eigenvalues coincides with it.
(ii) For any triple (ε, ω,m) except for the case (i), we write r := min{[dim V j/2]; j ∈

Zm}.
(1) The eigenvalues of any semisimple element of g1 can be written as

α1, ζα1, . . . , ζ
m−1α1,−α1,−ζα1, . . . ,−ζm−1α1 ,

α2, ζα2, . . . , ζ
m−1α2,−α2,−ζα2, . . . ,−ζm−1α2, . . . ,

αq , ζαq, . . . , ζm−1αq,−αq,−ζαq, . . . ,−ζm−1αq,

dim V −2mq︷ ︸︸ ︷
0, . . . , 0

for some α1, α2, . . . , αq ∈ C× with q ≤ r .
(2) Conversely, for any set of complex numbers of the form (1), there exists a semisim-

ple element of g1 whose set of eigenvalues coincides with it.

PROOF. The claims (i, 1) and (ii, 1) follow from Lemmas 3.3 and 3.4.
The claims (i, 2) and (ii, 2) follow from the construction of Cartan subspaces in Section

5 (Lemma 5.12). �

(3.2) Type (A-O). Let (G, θ) be a Θ-group of order 2m of type (A-O) defined by a
vector space (V , 〈 , 〉) with (ω,m)-bilinear form and S the (ω,m)-automorphism of V cor-
responding to (V , 〈 , 〉). Write (G̃, Ad(S)) = (G, θ2) the associated Θ-group of order m of
type (A-I). We put ξ = eπ

√−1/m and ζ = e2π
√−1/m = ξ2.

Let A be a semisimple element of g1. Let U (resp. W) be an A-stable and S-stable
subspace of V with basis {uj ; j ∈ Zm} (resp. {wj ; j ∈ Zm}) such that

α−1A : u0 → u1 → · · ·um−1 → u0 with uj ∈ V j

(resp. β−1A : w0 → w1 → · · · wm−1 → w0 with wj ∈ V j ) ,

where α (resp. β) is a non-zero complex number (cf. Lemma 2.3). We notice that 〈wj , ui〉 =
ξ−ω〈ui, Swj 〉 = ξ−ωζ j 〈ui,wj 〉.

The proofs of the following two lemmas are similar to those of Lemmas 3.1 and 3.2, and
we omit them.

LEMMA 3.6. Suppose that 〈U,W 〉 �= {0}. Then we have the following.
(i) 〈ui,wj 〉 �= 0 if and only if i + j = ω in Zm.

(ii) ξ(−β/α) ∈ 〈ζ 〉.
LEMMA 3.7. Suppose that m is even or ω = 1. Then 〈U,U〉 = {0}.
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LEMMA 3.8. Suppose that m is odd and that ω = 0. Then there exists an orthogonal
direct sum decomposition V = V0⊥V1⊥V2⊥ · · · ⊥Vl into A-stable and S-stable subspaces of
V with the following properties:

(a) A|V0 = 0.
(b) 〈Vi, Vj 〉 = 〈Vj , Vi〉 = {0} if i �= j .
(c) For each 1 ≤ k ≤ l, there exist αk ∈ C× and a basis v0, v1, . . . , vm−1 of Vk with

vj ∈ V j (j ∈ Zm) such that αk
−1A : v0 → v1 → · · · → vm−1 → v0.

PROOF. If A = 0, the statement is trivial. Thus we suppose that A �= 0. We will
show that there exists a subspace U such that 〈 , 〉|U is non-degenerate and (c) is satisfied for
Vk = U . Then for v ∈ V , we see 〈U, v〉 = ξ−ω〈v, SU〉 = 〈v,U〉. By applying the same
procedure to the orthogonal complement U⊥ := {v ∈ V ; 〈U, v〉 = 〈v,U〉 = 0} (which is
A-stable and S-stable subspace of V ), we obtain Lemma 3.8.

Let V = VA(0) ⊕ V1 ⊕ V2 ⊕ · · · ⊕ Vp be the direct sum decomposition of V for A ∈ g̃1

(cf. Lemma 2.3). If 〈Vk, Vk〉 �= 0 for some 1 ≤ k ≤ p, U = Vk is the desired subspace.
Suppose that 〈Vk, Vk〉 = {0} for any 1 ≤ k ≤ p. Since 〈Vk, VA(0)〉 = 〈VA(0), Vk〉 = 0

(1 ≤ k ≤ p) as before, we may assume that 〈V1, V2〉 �= {0}. Take bases u0, u1, . . . , um−1 of
V1 and w0, w1, . . . , wm−1 of V2 with uj ,wj ∈ V j (j ∈ Zm) so that

α−1A : u0 → u1 → · · · → um−1 → u0 and β−1A : w0 → w1 → · · · → wm−1 → w0 .

Then ξ(−β/α) ∈ 〈ζ 〉 by Lemma 3.6. Since m is odd and ξm = −1, we easily see β/α ∈ 〈ζ 〉.
By changing of a basis of W , if necessary, we may assume that β = α, i.e.,

α−1A : u0 → u1 → · · · → um−1 → u0, α−1A : w0 → w1 → · · · → wm−1 → w0 .

By Lemma 3.6, (i), we have 〈u0, w0〉 �= 0. Let us put vj = uj + wj ∈ V j (j ∈ Zm)

and U := 〈v0, v1, . . . , vm−1〉C . Then α−1A : v0 → v1 → · · · → vm−1 → v0. Clearly
v0, v1, . . . , vm−1 are linearly independent and we compute

〈v0, v0〉 = 〈u0, w0〉 + 〈w0, u0〉 = 〈u0, w0〉 + ξ−ω〈u0, Sw0〉 = 2〈u0, w0〉 �= 0 .

Therefore, 〈 , 〉|V1 is non-degenerate by Lemma 3.6, (i). �

LEMMA 3.9. Suppose that m is even or ω = 1, i.e., the complementary cases of
Lemma 3.8. Then there exists an orthogonal direct sum decomposition V = V0 ⊥ (V1⊕V ′

1) ⊥
(V2 ⊕ V ′

2) ⊥ · · · ⊥ (Vl ⊕ V ′
l ) into A-stable and S-stable subspaces of V with the following

properties:
(a) A|V0 = 0.
(b) For each 1 ≤ k ≤ l, there exist αk ∈ C×, bases u0, u1, . . . , um−1 of Vk and

w0, w1, . . . , wm−1 of V ′
k with uj ,wj ∈ V j (j ∈ Zm) such that

αk
−1A : u0 → u1 → · · · → um−1 → u0 and

(−ξ−1αk)
−1A : w0 → w1 → · · · → wm−1 → w0 .

(c) For each 1 ≤ k ≤ l, 〈Vk, Vk〉 = 〈V ′
k, V

′
k〉 = {0} and 〈 , 〉|Vk⊕V ′

k
is non-degenerate.
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PROOF. We assume that A �= 0. It is enough to show that there exists a subspace
U ⊕ U ′ with the properties (b) and (c). Let V = VA(0) ⊕ V1 ⊕ V2 ⊕ · · · ⊕ Vp be the direct
sum decomposition in Lemma 2.3 for A ∈ g̃1. As before, 〈Vk, VA(0)〉 = {0} (1 ≤ k ≤ p).
By Lemma 3.6, 〈Vk, Vk〉 = {0} (1 ≤ k ≤ p). Since 〈 , 〉 is non-degenerate, we may assume
that 〈V1, V2〉 �= {0}. Take bases u0, u1, . . . , um−1 of V1 and w0, w1, . . . , wm−1 of V2 with
uj ,wj ∈ V j (j ∈ Zm) as

α−1A : u0 → u1 → · · · → um−1 → u0 and β−1A : w0 → w1 → · · · → wm−1 → w0 .

Since β ∈ 〈ζ 〉(−ξ−1α) by Lemma 3.6, (ii), there exists integer i such that β = ζ i(−ξ−1α).
Then (ζ i)jwj (j ∈ Zm) is a basis of V2 such that

(−ξ−1α)
−1

A : w0 → (ζ i)w1 → (ζ i)2w2 → · · · → (ζ i)m−1wm−1 → w0 .

Put U = V1 and U ′ = V2 . Then 〈 , 〉|U⊕U ′ is non-degenerate by Lemma 3.6, (i). �

THEOREM 3.10. Let (G, θ) be a Θ-group of order 2m of type (A-O) defined by a
vector space (V , 〈 , 〉) with (ω,m)-bilinear form and S the (ω,m)-automorphism of V cor-
responding to (V , 〈 , 〉). Let V = V 0 ⊕ V 1 ⊕ · · · ⊕ V m−1 be the Zm-gradation of V defined
by S.

(i) Suppose that ω = 0 and m is odd. We write r := min{dim V j ; j ∈ Zm}.
(1) The eigenvalues of any semisimple element of g1 can be written as

α1, ζα1, . . . , ζ
m−1α1, α2, ζα2, . . . , ζ

m−1α2, . . . , αq , ζαq, . . . , ζm−1αq,

dim V −mq︷ ︸︸ ︷
0, . . . , 0

for some α1, α2, . . . , αq ∈ C× with q ≤ r .
(2) Conversely, for any set of complex numbers of the form (1), there exists a semisim-

ple element of g1 whose set of eigenvalues coincides with it.
(ii) For any pair (ω,m) except for the case (i), we write r := min{[dim V j /2] ; j ∈

Zm}.
(1) The eigenvalues of any semisimple element of g1 can be written as

α1, ζα1, . . . , ζ
m−1α1,−ξ−1α1,−ξ−1ζα1, . . . ,−ξ−1ζm−1α1 ,

α2, ζα2, . . . , ζ
m−1α2,−ξ−1α2,−ξ−1ζα2, . . . ,−ξ−1ζm−1α2, . . . ,

αq , ζαq, . . . , ζm−1αq,−ξ−1αq,−ξ−1ζαq, . . . ,−ξ−1ζm−1αq,

dim V −2mq︷ ︸︸ ︷
0, . . . , 0

for some α1, α2, . . . , αq ∈ C× with q ≤ r .
(2) Conversely, for any set of complex numbers of the form (1), there exists a semisim-

ple element of g1 whose set of eigenvalues coincides with it.

PROOF. The claims (i, 1) and (ii, 1) follow from Lemmas 3.8 and 3.9.
The claims (i, 2) and (ii, 2) follow from the construction of Cartan subspaces in Section

5 (Lemma 5.23). �
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4. Rings of invariants of classical Θ-representations.
(4.1) Surjectivity of the restriction maps. The main theorem of this section is the fol-

lowing.

THEOREM 4.1. Let (G, θ) be a classical Θ-group of types (A-I), (BCD-I) or (A-O).
Then for the inclusion (G0, g1) ↪→ (GL(V ), gl(V )), the restriction map

rest : C[gl(V )]GL(V ) → C[g1]G0, f �→ f |g1

is surjective.

Since C[gl(V )]GL(V ) → C[g1]G0 decomposes as

C[gl(V )]GL(V ) → C[g]G → C[g1]G0 ,

we know that the restriction map C[g]G → C[g1]G0 is also surjective and obtain the follow-
ing.

COROLLARY 4.2. For a classical Θ-group (G, θ) of types (A-I), (BCD-I) or (A-O),
the restriction map rest : C[g]G → C[g1]G0 is surjective.

The proof of Theorem 4.1 will be given in (4.2) and (4.3). Before giving a proof of Theo-
rem 4.1, we recall some facts on the affine quotients by reductive groups. Suppose a reductive
algebraic group G acts on an affine variety X. Since the invariant ring C[X]G is finitely gen-
erated by Hilbert’s theorem, we can consider the affine variety X//G := Spec(C[X]G). It
is known that X//G is the categorical quotient of X under the action of G. The morphism
π(G,X) : X → X//G defined by the inclusion C[X]G ↪→ C[X] is called the affine quotient
map under G. Clearly π(G,X) maps any G-orbit to a point of X//G. Moreover, any fibre of
π(G,X) contains exactly one closed G-orbit (see for example [PoV, Section 4]). Therefore, we
obtain a natural identification

{closed G-orbits in X} � X//G, O �→ π(G,X)(O) .

For a Θ-representation (G0, g1) defined by (G, θ), we denote by gss
1 the set of semisim-

ple elements in g1. Then it is known by [V, Proposition 3] that the set gss
1 /G0 of semisimple

G0-orbits coincides with that of closed G0-orbits in g1. Thus we have a natural identification
gss

1 /G0 = g1//G0.
(4.2) Type (A-I). Let (G, θ) be a Θ-group of order m of type (A-I) defined by a vector

space (V , S) with m-automorphism. We also consider the group GZ
0 := {g ∈ G ; Ad(θ(g)) =

Ad(g)} which contains G0.

LEMMA 4.3. (i) G0 is a normal subgroup of GZ
0 and the quotient GZ

0 /G0 is a finite
group.

(ii) For x ∈ g1, the orbit Ad(G0) · x is closed in g1 if and only if x is semisimple.
(iii) The map gss

1 /G0 → gss
1 /GZ

0 , O �→ Ad(GZ
0 ) ·O is bijective. In particular, it holds

Ad(GZ
0 ) · O = O for any O ∈ gss

1 /G0.

(iv) C[g1]G0 = C[g1]GZ
0 .
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PROOF. (i) For g ∈ GZ
0 , we put α(g) := θ(g)g−1. Clearly α(g) ∈ Z(G) and we obtain

a homomorphism α : GZ
0 → Z(G). It is easily verified that Im α ⊂ {c idV ; c ∈ 〈ζ 〉}. Since

Ker α = G0, the claim (i) follows. The claim (ii) follows from [V, Proposition 3]. (iii) By
Corollary 2.8, (iii), the map gss

1 /G0 → g/G (O �→ Ad(G) ·O) is injective. Since this map is
decomposed as gss

1 /G0 → gss
1 /GZ

0 → g/G, gss
1 /G0 → gss

1 /GZ
0 is also injective. (iv) Take an

invariant f ∈ C[g1]G0 . To show that f ∈ C[g1]GZ
0 , it is enough to show that f (g · x) = f (x)

for any x ∈ g1 and any g ∈ GZ
0 . Take y ∈ G0 · x so that G0 · y is the unique closed orbit in

G0 · x. Then f (y) = f (x). Since G0 is a normal subgroup of GZ
0 , we have

g · y ∈ g · G0 · x = (gG0g−1) · (g · x) = G0 · (g · x) .

Hence f (g · y) = f (g · x). Since y is semisimple by (ii), we have g · y ∈ GZ
0 · y = G0 · y.

Hence f (g · y) = f (y). Thus we obtain f (g · x) = f (g · y) = f (y) = f (x). �

THEOREM 4.4 ([O3, Theorem 8]). Let θ : G → G be an automorphism of a re-
ductive algebraic group G over C. We denote by θ : Lie(G) → Lie(G) the correspond-
ing automorphism of the Lie algebra. Let G̃ be a θ -stable reductive subgroup of G and
L̃ a θ -stable and Ad(G̃)-stable subspace of Lie(G). Define a closed subgroup G′ of G̃

by G′ = {g ∈ G̃ ; AdL̃(g) = AdL̃(θ(g))}. Let α be an element of GL(L̃) such that
α(Ad(g)X) = Ad(g)α(X) for any g ∈ G̃ and X ∈ L̃. Define an element ϕ ∈ GL(L̃) by
ϕ(X) = α−1(θ(X)) (X ∈ L̃). Put L := {X ∈ L̃; ϕ(X) = X (⇔ θ(X) = α(X))}. Suppose
that ϕ has a finite order. Then, for the inclusion (G′, L) ↪→ (G̃, L̃), we have the following:

(i) For the correspondence

L/G′ → L̃/G̃, O �→ Õ := Ad(G̃) · O ,

Õ is closed in L̃ if and only if O is closed in L.
(ii) The morphism L//G′ → L̃//G̃ corresponding to the restriction map rest :

C[L̃]G̃ → C[L]G′
is finite, that is, C[L]G′

is integral over the image C[L̃]G̃|L.
(iii) Suppose that the morphism L//G′ → L̃//G̃ of (ii) is injective. Then the mor-

phism L//G′ = Spec(C[L]G′
) → Spec(C[L̃]G̃|L) corresponding to C[L̃]G̃|L ↪→ C[L]G′

is

bijective and birational (i.e., the quotient fields of C[L̃]G̃|L and C[L]G′
coincide). In particu-

lar, since C[L]G′
is normal (i.e., integrally closed in the quotient field), C[L]G′

is the integral
closure of C[L̃]G̃|L in the quotient field.

By putting G = G̃ = G = GL(V ), L̃ = g = gl(V ), θ = Ad(S) and α(X) = ζX(X ∈
g), G′ and L become G′ = GZ

0 and L = g1. By Corollary 2.8 and Lemma 4.3, (iii), the map

g1//GZ
0 → g//G is injective. Then by Theorem 4.4, (iii), C[g1]GZ

0 is the integral closure of

C[g]G|g1 in its quotient field. Since C[g1]G0 = C[g1]GZ
0 , we have the following.

LEMMA 4.5. C[g1]G0 is the integral closure of C[g]G|g1 in its quotient field.

NOTATION 4.6. (i) For an n-dimensional vector space V , define functions P1, P2,

. . . , Pn ∈ C[gl(V )] by

det(t idV − X) = tn + P1(X)tn−1 + · · · + Pn(X) .
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It is well-known that C[gl(V )]GL(V ) = C[P1, P2, . . . , Pn].
(ii) For r-variables t1, t2, . . . , tr , we define elementary symmetric polynomials F1, F2,

. . . , Fr ∈ C[t1, t2, . . . , tr ] by

(t − t1)(t − t2) · · · (t − tr ) = tr + F1(t1, t2, . . . , tr )t
r−1 + · · · + Fr(t1, t2, . . . , tr ) .

PROOF OF THEOREM 4.1 FOR THE TYPE (A-I). We put n = dim V . It is enough to
show that C[g]G|g1 = C[gl(V )]GL(V )|g1 is a polynomial ring. For any X ∈ g1, by Corollary
2.8, the eigenvalues of X are of the form

α1, ζα1, . . . , ζ
m−1α1, α2, ζα2, . . . , ζ

m−1α2, . . . , αr , ζαr , . . . , ζ
m−1αr ,

n−mr︷ ︸︸ ︷
0, . . . , 0 .

Since

det(t idV −X) =
( r∏

k=1

(t −αk)(t −ζαk) · · · (t −ζm−1αk)

)
tn−mr =

( r∏
k=1

(tm −αm
k )

)
tn−mr ,

we have Pmj (X) = Fj (α
m
1 , αm

2 , . . . , αm
r ) and Pk(X) = 0 (k �= mj, 1 ≤ j ≤ r). Since

α1, α2, . . . , αr can take any values, Pmj |g1(1 ≤ j ≤ r) are algebraically independent. There-
fore C[g]G|g1 = C[Pmj |g1]1≤j≤r is a polynomial ring. �

Cosequently, we have

(4.1) C[g1]G0 = C[Pmj |g1]1≤j≤r .

(4.3) Types (BCD-I) and (A-O). Let (G, θ) be a Θ-group of order m of type (BCD-I)
or a Θ-group of order 2m of type (A-O). We put G̃ = GL(V ) and consider the associated
Θ-group (G̃, Ad(S)) of order m of type (A-I). We notice that θ = Ad(S) in the case of type
(BCD-I) and that θ2 = Ad(S) in the case of type (A-O). As before, we put ζ = e2π

√−1/m

and ξ = eπ
√−1/m. We also notice that

G0 = Gθ = {g ∈ G̃0; g∗ = g−1} , g1 =
{{X ∈ g̃1; X∗ = −X} ((BCD-I)) ,

{X ∈ g̃1; X∗ = −ξX} ((A-O)) .

In both cases, we write V = V 0 ⊕ V 1 ⊕ · · · ⊕ V m−1 the Zm-gradation of V defined by S. To
give a proof of Theorem 4.1 for these cases, we need the following.

THEOREM 4.7 ([O3, Theorem 12]). In the setting of Proposition 1.8, we assume fur-
thermore the following.

(c) The element ϕ ∈ GL(L̃), defined by ϕ(X) = α−1(σ (X)) (X ∈ L̃), has a finite
order.
Then we have the following:

(i) For the correspondence

L/H → L̃/H̃ , O �→ Õ := Ad(H̃ ) · O ,

Õ is closed in L̃ if and only if O is closed in L.
(ii) The morphism L//H → Spec(C[L̃]H̃ |L), defined by C[L̃]H̃ |L ↪→ C[L]H , is

bijective and gives a normalization of the variety Spec(C[L̃]H̃ |L) (i.e., L//H is normal and
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the morphism is finite, birational). In particular, C[L]H is the integral closure of C[L̃]H̃ |L
in its quotient field.

By applying Theorem 4.7 to the inclusion (G0, g1) ↪→ (G̃0, g̃1), we obtain the following.

LEMMA 4.8. C[g1]G0 is the integral closure of C[g̃1]G̃0 |g1 in its quotient field.

By the case of (A-I) of Theorem 4.1, we have C[g̃1]G̃0 = C[gl(V )]GL(V )|g̃1 . Hence
C[g1]G0 is the integral closure of C[gl(V )]GL(V )|g1 . Therefore, to prove Theorem 4.1 for the
cases (BCD-I) and (A-O), it is enough to show that C[gl(V )]GL(V )|g1 is a polynomial ring.

Before giving a proof for types (BCD-I) and (A-O), we prepare the polynomials Q1,Q2,

. . . ,Qr defined as follows.

LEMMA 4.9. Let x1, x2, . . . , xr be variables. Define a1, a2, . . . , a2r ∈ C[x1, x2, . . . ,

xr ] by

(tr + x1t
r−1 + · · · + xr−1t + xr)

2 = t2r + a1t
2r−1 + · · · + a2r−1t + a2r .

Then it holds C[a1, a2, . . . , ar ] = C[x1, x2, . . . , xr ]. In other words, there exist polynomials
Q1,Q2, . . . ,Qr ∈ C[t1, t2, . . . , tr ] in variables t1, t2, . . . , tr such that

xi = Qi(a1, a2, . . . , ar) (1 ≤ i ≤ r) .

To give a proof of Theorem 4.1 for Types (BCD-I) and (A-O), we separate the Θ-groups
of type (BCD-I) and (A-O) into the following three cases.

Case I. (a) (G, θ) is of type (BCD-I), (ε, ω) = (1, 0) or (−1, 1) and m is even.
(b) (G, θ) is of type (A-O), ω = 0 and m is odd.

For Case I, we put r = min{dim V j ; j ∈ Zm} (cf. Theorem 3.5, (i) and Theorem 3.10, (i)).
Case II. (a) (G, θ) is of type (BCD-I) and m is odd.
(b) (G, θ) is of type (A-O) and m is even.
Case III. (a) (G, θ) is of type (BCD-I), (ε, ω) = (1, 1) or (−1, 0) and m is even.
(b) (G, θ) is of type (A-O), ω = 1 and m is odd.

For Cases II and III, we put r = min{[dim V j/2]; j ∈ Zm} (cf. Theorem 3.5, (ii) and Theorem
3.10, (ii)).

PEROOF OF THEOREM 4.1 FOR CASE I. Let (G, θ) be a Θ-group in Case I. As in the
proof for type (A-I), we can show that C[g]G|g1 = C[Pmj |g1]1≤j≤r and that Pmj |g1(1 ≤
j ≤ r) are algebraically independent, by using Theorem 3.5, (i) and Theorem 3.10. Thus,
C[g]G|g1 is a polynomial ring and hence Theorem 4.1 is proved for Case I. �

Consequently, we have

(4.2) C[g1]G0 = C[Pmj |g1]1≤j≤r .

From now on, we assume that (G, θ) is a Θ-group in Case II or Case III. Then the following
lemma is an easy consequence of Theorem 3.5, (ii) and Theorem 3.10, (ii).

LEMMA 4.10. For a Θ-group (G, θ) contained in Case II or Case III, we have the
following.
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(i) For any X ∈ g1, there exist complex numbers α1, α2, . . . , αr ∈ C such that

det(t idV − X) =
{
(
∏r

k=1(t
2m − α2m

k ))tn−2mr (Case II)
(
∏r

k=1(t
m − αm

k ))2tn−2mr (Case III).

(ii) For any α1, α2, . . . , αr ∈ C, there exists an element X ∈ g1 which satisfies (i).

PROOF OF THEOREM 4.1 FOR CASES II AND III. Let us give a proof of Theorem 4.1
for Cases II and III.

Let (G, θ) be a Θ-group in Case II. For any X ∈ g1, there exist complex numbers
α1, α2, . . . , αr ∈ C such that

det(t idV − X) = ((t2m)r + F1(α
2m
1 , . . . , α2m

r )(t2m)r−1 + · · · + Fr(α
2m
1 , . . . , α2m

r ))tn−2mr

by Lemma 4.10. Therefore P2im(X) = Fi(α
2m
1 , . . . , α2m

r ) (1 ≤ i ≤ r) and Pk(X) for other
k’s are zero. Hence we have C[gl(V )]GL(V )|g1 = C[P2im|g1]1≤i≤r .

On the other hand, for given α1, α2, . . . , αr ∈ C, there exists X ∈ g1 such that P2im(X)

= Fi(α
2m
1 , . . . , α2m

r ) (1 ≤ i ≤ r). Hence P2im|g1 (1 ≤ i ≤ r) are algebraically independent
and C[gl(V )]GL(V )|g1 is a polynomial ring. Consequently, we have

(4.3) C[g1]G0 = C[P2mj |g1]1≤j≤r .

Next consider Case III. Let (G, θ) be a Θ-group in Case III. For any X ∈ g1, there exist
complex numbers α1, α2, . . . , αr ∈ C such that

det(t idV − X) = ((tm)r + F1(α
m
1 , . . . , αm

r )(tm)r−1 + · · · + Fr(α
m
1 , . . . , αm

r ))2tn−2mr

by Lemma 4.10. Therefore Pk(X) = 0 for k �= im (1 ≤ i ≤ 2r). Let Q1,Q2, . . . ,Qr be the
polynomials obtained in Lemma 4.9. Define functions f1, f2, . . . , fr ∈ C[gl(V )] by

fi = Qi(Pm, P2m, . . . , Prm) .

Then we have fi(X) = Fi(α
m
1 , . . . , αm

r ) (1 ≤ i ≤ r). Since

((tm)r + f1(X)(tm)r−1 + · · · + fr(X))2 = (tm)2r + Pm(X)(tm)2r−1 + · · · + P2rm(X) ,

we have

C[Pm|g1, P2m|g1, . . . , Prm|g1] ⊃ C[f1|g1, f2|g1, . . . , fr |g1]
⊃ C[Pm|g1, P2m|g1, . . . , Prm|g1] = C[gl(V )]GL(V )|g1 .

Hence we have

C[Pm|g1, P2m|g1, . . . , Prm|g1] = C[f1|g1, f2|g1, . . . , fr |g1] = C[gl(V )]GL(V )|g1 .

By Lemma 4.10, (ii), f1|g1, f2|g1, . . . , fr |g1 are algebraically independent and hence
C[gl(V )]GL(V )|g1 is a polynomial ring. Consequently, we have

(4.4) C[g1]G0 = C[fj |g1]1≤j≤r = C[Pmj |g1]1≤j≤r .

Therefore the proof of Theorem 4.1 is completed. �
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COROLLARY 4.11. For a classical Θ-group (G, θ), C[g1]G0 is isomorphic to a poly-
nomial ring of r variables. Moreover, algebraically independent generators of the ring
C[g1]G0 are given in the equations (4.1) through (4.4).

5. Cartan subspaces and Weyl groups.
(5.1) Inclusion theorem for orbits and Weyl groups. Let (G, θ) be a general reductive

Θ-group. A maximal abelian subspace c of g1 which consists of semisimple elements is called
a Cartan subspace of the Θ-representation (G0, g1) ([V]). It is known by [V, Theorem 3.1]
that any two Cartan subspaces are conjugate by an element of the identity component (G0)

0

of G0.
Let c be a Cartan subspace of (G, θ). Although Vinberg studied the Weyl group

W((G0)
0, c) = N(G0)

0(c)/Z(G0)
0(c), in this paper, we study

W(G0, c) := NG0(c)/ZG0(c)

which we call the Weyl group of the Θ-representation (G0, g1).

THEOREM 5.1 (cf. [V, Theorem 3.2]). The correspondence of orbits

c/W(G0, c) → g1/G0, O �→ Ad(G0) · O
is injective.

PROOF. It was shown in [V, Theorem 3.2] that the map c/W((G0)
0, c) → g1/(G0)

0 is
injective. But the proof can be applied to our setting and we obtain Theorem 5.1. �

THEOREM 5.2. Let H be a complex reductive algebraic group and K a reductive
closed subgroup. Let t be a Cartan subalgebra of h = Lie(H) and c a subspace of t. Let us
consider the following groups:

W = W(H, t) := NH (t)/ZH (t) ⊂ GL(t), W(K, c) := NK(c)/ZK(c) ⊂ GL(c) ,

NW (c)|c := {w|c; w ∈ W, w · c = c} .

Then we have the following.
(i) As subgroups of GL(c), it holds W(K, c) ⊂ NW(c)|c.

(ii) If the map c/W(K, c) → h/H defined by O �→ Ad(H) · O is injective, it holds
that W(K, c) = NW (c)|c.

PROOF. (i) Let us put

a := z(zh(c)), s := [zh(c), zh(c)] .

Since zh(c) is reductive, we have zh(c) = a ⊕ s. Since t is a Cartan subalgebra of zh(c),
there exists a Cartan subalgebra t′ of s such that t = a ⊕ t′. Then for any g ∈ NH (c), since
Ad(g) · zh(c) = zh(c), we have Ad(g) · a = a and Ad(g) · s = s.

Let us take w ∈ W(K, c) and g ∈ NK(c) such that w = Ad(g)|c. Since Ad(g) · a = a,
Ad(g) · s = s and Ad(g) · t′ is a Cartan subalgebra of s, there exists an element h of the
connected subgroup of H corresponding to s such that t′ = Ad(h)Ad(g) · t′ = Ad(hg) · t′.
Since h ∈ ZH(c) and a is the center of zh(c), Ad(h) acts trivially on a. Thus we see Ad(hg) ·
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a = Ad(g) · a = a and Ad(hg) · t = t. Hence hg ∈ NH (t). Let us put w′ := Ad(hg)|t ∈ W .
Then, since Ad(h) acts trivially on c, we have w′ ∈ NW (c) and w = Ad(g)|c = Ad(hg)|c =
w′|c ∈ NW(c)|c.

(ii) Since W(K, c) ⊂ NW (c)|c, it holds that W(K, c) · x ⊂ W · x for any x ∈ c. Hence
the injection c/W(K, c) → h/H is decomposed as

c/W(K, c) → t/W → h/H .

Therefore, c/W(K, c) → t/W is also injective. Since this map is decomposed as

c/W(K, c) → c/NW (c)|c → t/W ,

the map c/W(K, c) → c/NW (c)|c is bijective. Thus, for any x ∈ c, we have W(K, c) · x =
NW (c)|c · x.

Let us show that there exists x ∈ c such that ZH(c) = ZH(x). We may assume that
H ⊂ GL(V ). It is clear that we can take x ∈ c so that ZGL(V )(c) = ZGL(V )(x). Then,
by taking the intersections with H , we obtain the above equality. Thus we take x ∈ c as
above. For any w ∈ NW(c)|c, take g ∈ NH (c) ∩ NH(t) such that w = Ad(g)|c. Since
w · x ∈ NW (c)|c · x = W(K, c) · x, there exists w1 ∈ W(K, c) such that w · x = w1 · x.
Take g1 ∈ NK(c) so that w1 = Ad(g1)|c. Then clearly Ad(g−1

1 g) · x = x and hence g−1
1 g ∈

ZH(x) = ZH(c). Therefore, for any y ∈ c, we have w · y = Ad(g) · y = Ad(g1) · y = w1 · y.
Hence w = w1 ∈ W(K, c) and we obtain NW (c)|c ⊂ W(K, c). �

THEOREM 5.3. Let (G, θ) be one of the classical Θ-groups in (1.1); (G0, g1) ↪→
(GL(V ), gl(V )). Let c ⊂ g1 be a Cartan subspace and t a Cartan subalgebra of gl(V ) which
contains c. We consider the following groups:

W(G0, c) = NG0(c)/ZG0(c), W(GL(V ), t) = NGL(V )(t)/ZGL(V )(t) ,

NW(GL(V ),t)(c)|c := {w|c; w ∈ NW(GL(V ),t)(c)} .

Notice that W(GL(V ), t) is isomorphic to the symmetric group of degree dim V . Then we
have W(G0, c) = NW(GL(V ),t)(c)|c.

PROOF. By Corollary 2.8, (iii) or Corollary 2.9, (iii), the map gss
1 /G0 → gl(V )/GL(V )

defined by O �→ Ad(GL(V )) · O is injective. On the other hand, c/W(G0, c) → gss
1 /G0 is

also injective by Theorem 5.1. Hence c/W(G0, c) → gl(V )/GL(V ) is injective. By applying
Theorem 5.2, (ii) to H = GL(V ) and K = G0, we obtain the equality. �

(5.2) Cartan subspaces and Weyl groups of Θ-representations of type (A-I). Let (G,

θ) = (GL(V ), Ad(S)) be a Θ-group of order m of type (A-I) defined by a vector space (V , S)

with an m-automorphism. Let V = ⊕
j∈Zm

V j be the Zm-gradation of V defined by S. We
put

ζ = e2π
√−1/m, n = dim V, nj = dim V j (j ∈ Zm), r = min{nj ; j ∈ Zm} .

For each j ∈ Zm, take a basis v
j

1 , v
j

2 , . . . , v
j
r , v

j

r+1, . . . , v
j
nj

of V j and define Xk ∈ g (1 ≤
k ≤ r) by Xkv

j
l = δk,lv

j+1
k . It is clear that Xk ∈ g1. We define a subspace c of g1 by
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c = 〈X1,X2, . . . , Xr 〉C . Next we put

u
j
k =

∑
i∈Zm

(ζ−j )ivi
k (1 ≤ k ≤ r, j ∈ Zm) ,

Bc = {uj

k ; 1 ≤ k ≤ r, j ∈ Zm}, B0 = {vj

l ; l > r, j ∈ Zm} .

Thus we obtain a basis B := Bc ∪ B0 of V . Then we have the following.

LEMMA 5.4. (i) Xku
j

l = δk,lζ
ju

j

k and Xkv = 0 for v ∈ B0.
(ii) c is a Cartan subspace of (G, θ).

PROOF. (i) is obtained by easy computation.
(ii) We easily see that (a) c is abelian, and (b) c consists of semisimple elements.

By Corollary 4.11, dim(g1//G0) = dim Spec(C[g1]G0) = r = dim c. By [V, Theorem
4.5], dim(g1//G0) coincides with the dimension of a Cartan subspace of (G, θ). Hence c is
maximal in the sense of (a) and (b). Therefore c is a Cartan subspace of (G, θ). �

Let us show that the Weyl group of (G0, g1) is essentially the normalizer of c in the Weyl
group of G = GL(V ).

By using the basis B, we define a Cartan subalgebra t of gl(V ) and the Weyl group
WGL(V ) of G = GL(V ) by
(5.1)

t = {X ∈ gl(V ); Xu ∈ Cu for any u ∈ B}, WGL(V ) = NGL(V )(t)/ZGL(V )(t) � Sn ,

where Sn denotes the symmetric group of degree n. The permutation group P(B) of the set B
is naturally identified with a subgroup of GL(V ) and we have a natural identification

(5.2) WGL(V ) = Ad(P (B))|t .

DEFINITION 5.5. (i) For σ ∈ Sr and (p1, p2, . . . , pr ) ∈ (Zm)r (1 ≤ k ≤ r), define
g = g(p1, p2, . . . , pr ; σ) ∈ P(B) so that it satisfies (a) gu

j
k = u

j−pk

σ(k) , and (b) gv = v for any
v ∈ B0.

(ii) Define a subgroup Wc of WGL(V ) by

Wc := {Ad(g(p1, p2, . . . , pr ; σ))|t ; σ ∈ Sr , (p1, p2, . . . , pr ) ∈ (Zm)r } .

LEMMA 5.6. The equalities Ad(g(p1, p2, . . . , pr ; σ))Xk = ζ pkXσ(k) (1 ≤ k ≤ r)

hold.

PROOF. By the definition of g = g(p1, p2, . . . , pr ; σ), it is easy to see that g−1ui
l =

u
i+p

σ−1(l)

σ−1(l)
. Then we have (gXkg−1)ui

l = gXku
i+p

σ−1(l)

σ−1(l)
= 0 if l �= σ(k) and

(gXkg−1)ui
σ (k) = gXku

i+pk

k = g(ζ i+pku
i+pk

k ) = ζ i+pku
i+pk−pk

σ(k)

= ζ pk (ζ iui
σ (k)) = ζ pkXσ(k)u

i
σ (k) .

Hence we obtain Lemma 5.6. �
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LEMMA 5.7. For any w ∈ NWGL(V )
(c), there exist σ ∈ Sr and (p1, p2, . . . , pr ) ∈

(Zm)r such that w|c = Ad(g(p1, p2, . . . , pr ; σ))|c.
PROOF. Take g ∈ P(B) so that Ad(g)|t = w. Then it is easy to see that g ·Bc = Bc and

g · B0 = B0. Since w normalizes c, for each 1 ≤ k ≤ r , there exist ci ∈ C (1 ≤ i ≤ r) such
that w · Xk = Ad(g)Xk = ∑r

i=1 ciXi . The matrix expression of w · Xk with respect to the
basis B is diagonal and the number of non-zero entries is just m. We know that only one ci is
non-zero. Thus there exist σ ∈ Sr and ak ∈ C× such that Ad(g)Xk = akXσ(k). By comparing
the eigenvalues, we have ak ∈ 〈ζ 〉. Therefore, there exists pk ∈ Zm such that Ad(g) · Xk =
ζ pkXσ(k) = Ad(g(p1, p2, . . . , pr ; σ)) · Xk . Hence w|c = Ad(g(p1, p2, . . . , pr ; σ))|c. �

Following Shephard and Todd [ST], let us denote by G(m, 1, r) the group of the mono-
mial matrices of size r × r whose non-zero entries are contained in 〈ζ 〉.

PROPOSITION 5.8. The homomorphism ρ : Wc → GL(c) defined by w �→ w|c is
injective and the image coincides with the Weyl group W(G0, c). As a consequence, we have
W(G0, c) � Wc � G(m, 1, r).

PROOF. The injectivity of ρ is trivial. By Theorem 5.3 and Lemma 5.7, we have

W(G0, c) = ρ(NWGL(V )
(c)) = ρ(Wc) � Wc .

By Lemma 5.6, Wc is isomorphic to G(m, 1, r). �

(5.3) Cartan subspaces and Weyl groups of Θ-representations of type (BCD-I). Let
(G, θ) a Θ-group of order m of type (BCD-I) defined by an (ε, ω)-space (V , ( , ), S) with
m-automorphism. We use the notations of (4.3). To construct Cartan subspaces, we first give
the following lemma, the proof of which is similar to that of Lemma 3.1.

LEMMA 5.9. For i, j ∈ Zm, it holds (V i, V j ) �= {0} if and only if i + j = ω in Zm.
For such i and j , ( , )|V i+V j is non-degenerate.

REMARK 5.10. The cases for which there exists i ∈ Zm such that i = ω − i (i.e.,
( , )|V i is non-degenerate) are just the following:

(i) (ε, ω) = (1, 0) and i = 0 or i = m/2 in Case I (m: even).
(ii) ω = 0 and i = 0 or ω = 1 and i = (m + 1)/2 in Case II (m: odd).

(iii) (ε, ω) = (−1, 0) and i = 0 or i = m/2 in Case III (m: even).

Applying the normalization algorithms of symmetric or alternating bilinear forms to
( , )|V i+V ω−i , we have the following.

LEMMA 5.11. (i) In Case I, for each j ∈ Zm, there exist linearly independent vec-
tors v

j

1 , v
j

2 , . . . , v
j
r in V j such that

(vi
p, v

j
q ) = δp,qδj,ω−i (−1)i (i, j ∈ Zm, 1 ≤ p, q ≤ r) .

In this case, we put Uj := 〈vj
1 , v

j
2 , . . . , v

j
r 〉C and U := ⊕

j∈Zm
Uj .
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(ii) In Cases II and III, for each j ∈ Zm, there exist linearly independent vectors
v

j

1 , v
j

2 , . . . , v
j
r , w

j

1 , w
j

2 , . . . , w
j
r in V j such that

(vi
p,w

j
q) = δp,qδj,ω−i (i, j ∈ Zm, 1 ≤ p, q ≤ r) ,

(vi
p, v

j
q ) = (wi

p,w
j
q) = 0 (i, j ∈ Zm, 1 ≤ p, q ≤ r) .

In this case, we put Uj := 〈vj

1 , v
j

2 , . . . , v
j
r , w

j

1 , w
j

2 , . . . , w
j
r 〉C and U := ⊕

j∈Zm
Uj .

Let U be the subspace of V defined in Lemma 5.11. Then clearly ( , )|U is non-
degenerate and we have the orthogonal decomposition V = U⊥U⊥. Based on the above
basis of U , we define Xk ∈ gl(V ) by

Xkv
j
p = δk,pv

j+1
k (1 ≤ k, p ≤ r, j ∈ Zm), Xk|U⊥ = 0

for Case I, and

Xkv
j
p = δk,pv

j+1
k , −Xkw

j
p = δk,pw

j+1
k (1 ≤ k, p ≤ r, j ∈ Zm), Xk|U⊥ = 0

for Cases II and III.
As in (5.2), Xk is contained in g̃1 and semisimple. We define a subspace c of g̃1 by

c = 〈X1,X2, . . . , Xr 〉C . Then we can verify the following.

LEMMA 5.12. (i) Xk ∈ g1 and c ⊂ g1.
(ii) In Case I, for αk ∈ C (1 ≤ k ≤ r), the set of eigenvalues of

∑r
k=1 αkXk ∈ c is the

same as that in Theorem 3.5, (i, 1) with q = r .
(iii) In Cases II and III, for αk ∈ C (1 ≤ k ≤ r), the set of eigenvalues of

∑r
k=1 αkXk ∈

c is the same as that in Theorem 3.5, (ii, 1) with q = r .

By Lemma 5.12, Theorem 3.5, (i, 2) and (ii, 2) are proved.
As in the proof of Lemma 5.4, (ii), we can show the following proposition by using

Corollary 4.11.

PROPOSITION 5.13. c is a Cartan subspace of the Θ-representation (G0, g1) of type
(BCD-I).

We give a basis B of V as below. By using the basis B, we define a Cartan subalgebra t

of gl(V ) and the Weyl group WGL(V ) of GL(V ) as in (5.1). We use the identification (5.2).
Case I. We put

u
j
k =

∑
i∈Zm

(ζ−j )ivi
k (1 ≤ k ≤ r, j ∈ Zm), Bc = {uj

k ; 1 ≤ k ≤ r, j ∈ Zm} .

Then Bc is a basis of U . By taking any basis B0 of U⊥, we obtain a basis B = Bc ∪ B0 of V .
For σ ∈ Sr and (p1, p2, . . . , pr ) ∈ (Zm)r (1 ≤ k ≤ r), we define g(p1, p2, . . . , pr ; σ) ∈

P(B) and a subgroup Wc of WGL(V ) as in Definition 5.5.
Cases II and III. We put

u
j
k =

∑
i∈Zm

(ζ−j )ivi
k, u

j
k =

∑
i∈Zm

(ζ−j )iwi
k (1 ≤ k ≤ r, j ∈ Zm) ,
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Bc = {uj

k, u
j

k ; 1 ≤ k ≤ r, j ∈ Zm} .

Then Bc is a basis of U . By taking any basis B0 of U⊥, we obtain a basis B = Bc ∪ B0 of V .
We easily see the following.

LEMMA 5.14. Xku
j
p = δk,pζ ju

j

k and −Xku
j
p = δk,pζ ju

j

k .

REMARK 5.15. (i) In Case II, since m is odd, we have 〈ζ 〉∪(−〈ζ 〉) = 〈ξ〉. Hence the
non-zero eigenvalues of Xk are 1, ξ, ξ2, . . . , ξ2m−1 each of which appears with multiplicity
one.

(ii) In Case III, since m is even, we have 〈ζ 〉 ∪ (−〈ζ 〉) = 〈ζ 〉. Hence the non-zero
eigenvalues of Xk are 1, ζ, ζ 2, . . . , ζm−1 each of which appears with multiplicity two.

DEFINITION 5.16. In Case III, for σ ∈ Sr and (p1, p2, . . . , pr ) ∈ (Zm)r , define
g = g(p1, p2, . . . , pr ; σ) ∈ P(B) by (a) gu

j
k = u

j−pk

σ(k) , gu
j
k = u

j−pk

σ(k) , and (b) gv = v for any
v ∈ B0.

Define a subgroup Wc of WGL(V ) by

Wc := {Ad(g(p1, p2, . . . , pr ; σ))|t ; σ ∈ Sr , (p1, p2, . . . , pr ) ∈ (Zm)r } .

In Case II, by Remark 5.15, the non-zero eigenvalues of Xk are 1, ξ, ξ2, . . . , ξ2m−1 each
of which appears with multiplicity one. Let yi

k (i ∈ Z2m) be the unique eigenvector of Xk

contained in Bc having eigenvalue ξ i . Clearly we have Bc = {yi
k ; 1 ≤ k ≤ r, i ∈ Z2m}.

DEFINITION 5.17. In Case II, for σ ∈ Sr and (p1, p2, . . . , pr ) ∈ (Z2m)r , define
g = g(p1, p2, . . . , pr ; σ) ∈ P(B) by (a) gy

j

k = y
j−pk

σ(k) , and (b) gv = v for any v ∈ B0.
Define a subgroup Wc of WGL(V ) by

Wc := {Ad(g(p1, p2, . . . , pr ; σ))|t ; σ ∈ Sr , (p1, p2, . . . , pr ) ∈ (Z2m)r } .

For these three cases, statements similar to Lemma 5.6 also hold as follows.

LEMMA 5.18. (i) In Cases I and III, we have Ad(g(p1, p2, . . . , pr ; σ))Xk =
ζ pkXσ(k) (1 ≤ k ≤ r) for σ ∈ Sr and (p1, p2, . . . , pr ) ∈ (Zm)r .

(ii) In Case II, we have Ad(g(p1, p2, . . . , pr ; σ))Xk = ξpkXσ(k) (1 ≤ k ≤ r) for
σ ∈ Sr and (p1, p2, . . . , pr ) ∈ (Z2m)r .

Then statements similar to Lemma 5.7 also hold for these cases and Theorem 5.3 implies
the following.

PROPOSITION 5.19. The homomorphism ρ : Wc → GL(c), ρ(w) = w|c (w ∈ Wc) is
injective and the image coincides with the Weyl group W(G0, c). As a consequence, we have

W(G0, c) � G(m, 1, r) (r = min{dim V j ; j ∈ Zm}) in Case I,
W(G0, c) � G(2m, 1, r) (r = min{[dim V j /2]; j ∈ Zm}) in Case II,
W(G0, c) � G(m, 1, r) (r = min{[dim V j/2]; j ∈ Zm}) in Case III.

(5.4) Cartan subspaces and Weyl groups of Θ-representations of type (A-O). Let
(G, θ) be a Θ-group of order 2m of type (A-O) defined by a vector space (V , 〈 , 〉) with
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(ω,m)-bilinear form. We use the notations of (4.3). The proof of the following lemma is
similar to that of Lemma 3.6 and we omit it.

LEMMA 5.20. For i, j ∈ Zm, it holds 〈V i, V j 〉 �= {0} if and only if i + j = ω in Zm.
For such i and j , 〈 , 〉|V i+V j is non-degenerate.

REMARK 5.21. The cases for which there exists i ∈ Zm such that i = ω − i (i.e.,
〈 , 〉|V i is non-degenerate) are just the following:

(i) i = 0 in Case I. In this case, 〈 , 〉|V 0 is symmetric.
(ii) ω = 0 and i = 0 or i = m/2 in Case II (m is even). In this case, 〈 , 〉|V 0 is

symmetric and 〈 , 〉|V m/2 is alternating.
(iii) i = (m + 1)/2 in Case III (m is odd). In this case, 〈 , 〉|V (m+1)/2 is alternating.

We easily see the following:
(a) For u ∈ V i and v ∈ V ω−i (i ∈ Zm), 〈u, v〉 = ξ−ωζ i〈v, u〉.
(b) In Case I, −ξ = ζ (m+1)/2, (−ξ)−1 = ζ (m−1)/2 and ζ−i (−ξ)i = (−ξ)−i (i ∈ Zm).

Then normalization algorithms of non-degenerate bilinear forms 〈 , 〉|V i+V ω−i imply the fol-
lowing.

LEMMA 5.22. (i) In Case I, for each j ∈ Zm, there exist linearly independent vec-
tors v

j

1 , v
j

2 , . . . , v
j
r in V j such that

〈vi
p, v

j
q 〉 = δp,qδ−i,j (−ξ)i (i, j ∈ Zm, 1 ≤ p, q ≤ r) .

In this case, we put Uj := 〈vj

1 , v
j

2 , . . . , v
j
r 〉C and U := ⊕

j∈Zm
Uj .

(ii) In Cases II and III, for each j ∈ Zm, there exist linearly independent vectors
v

j

1 , v
j

2 , . . . , v
j
r , w

j

1 , w
j

2 , . . . , w
j
r in V j such that

〈vi
p,w

j
q 〉 = δp,qδj,ω−i (i, j ∈ Zm, 1 ≤ p, q ≤ r) ,

〈vi
p, v

j
q 〉 = 〈wi

p,w
j
q 〉 = 0 (i, j ∈ Zm, 1 ≤ p, q ≤ r) .

In these cases, we put Uj := 〈vj

1 , v
j

2 , . . . , v
j
r , w

j

1 , w
j

2 , . . . , w
j
r 〉C and U := ⊕

j∈Zm
Uj .

Let U be the subspace of V defined in Lemma 5.22. Then clearly 〈 , 〉|U is non-
degenerate and we have the orthogonal decomposition V = U⊥U⊥, where U⊥ = {v ∈
V ; 〈U, v〉 = {0}}. Here we easily see that 〈U, v〉 = 〈v,U〉 since U is S-stable.

Based on the above basis of U , we define Xk ∈ gl(V ) by
Xkv

j
p = δk,pv

j+1
k (1 ≤ k, p ≤ r , j ∈ Zm), Xk|U⊥ = 0 in Case I, and

Xkv
j
p = δk,pv

j+1
k , −ξXkw

j
p = δk,pw

j+1
k (1 ≤ k, p ≤ r , j ∈ Zm), Xk|U⊥ = 0 in Cases II

and III.
As in (5.2), Xk is contained in g̃1 and semisimple. We define a subspace c of g̃1 by c =
〈X1,X2, . . . , Xr 〉C . Then we can verify the following.

LEMMA 5.23. (i) Xk ∈ g1 and c ⊂ g1.
(ii) In Case I, for αk ∈ C (1 ≤ k ≤ r), the set of eigenvalues of

∑r
k=1 αkXk ∈ c is the

same as that in Theorem 3.10, (i, 1) with q = r .
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(iii) In Cases II and III, for αk ∈C (1 ≤ k ≤ r), the set of eigenvalues of
∑r

k=1 αkXk ∈
c is the same as that in Theorem 3.10, (ii, 1) with q = r .

By Lemma 5.23, Theorem 3.10, (i, 2) and (ii, 2) are proved.
As in the proof of Lemma 5.4, (ii), we can show the following proposition by using

Corollary 4.11.

PROPOSITION 5.24. c is a Cartan subspace of the Θ-representation (G0, g1) of type
(A-O).

Now let us determine the Weyl group W(G0, c). We give a basis B of V as below. By
using the basis B, we define a Cartan subalgebra t of gl(V ) and the Weyl group WGL(V ) of
GL(V ) as in (5.1). We use the identification (5.2).

Case I. As in the case of (A-I), we put

u
j
k =

∑
i∈Zm

(ζ−j )ivi
k (1 ≤ k ≤ r, j ∈ Zm), Bc = {uj

k ; 1 ≤ k ≤ r, j ∈ Zm} .

Then Bc is a basis of U . By taking any basis of B0 of U⊥, we obtain a basis B = Bc ∪ B0 of
V .

For σ ∈ Sr and (p1, p2, . . . , pr ) ∈ (Zm)r (1 ≤ k ≤ r), define g(p1, p2, . . . , pr ; σ) ∈
P(B) and a subgroup Wc of WGL(V ) as in Definition 5.5.

Cases II and III. We put

u
j

k =
∑
i∈Zm

(ζ−j )ivi
k, u

j

k =
∑
i∈Zm

(ζ−j )iwi
k (1 ≤ k ≤ r, j ∈ Zm) ,

Bc = {uj
k, u

j
k; 1 ≤ k ≤ r, j ∈ Zm} .

Then Bc is a basis of U . By taking any basis of B0 of U⊥, we obtain a basis B = Bc ∪ B0 of
V . We easily see the following.

LEMMA 5.25. Xku
j
p = δk,pζ ju

j
k and −ξXku

j
p = δk,pζ ju

j
k .

REMARK 5.26. (i) In Case II, since m is even, we have 〈ζ 〉 ∪ (−ξ−1〈ζ 〉) = 〈ξ〉.
Hence the non-zero eigenvalues of Xk are 1, ξ, ξ2, . . . , ξ2m−1 each of which appears with
multiplicity one.

(ii) In Case III, since m is odd, we have 〈ζ 〉 ∪ (−ξ−1〈ζ 〉) = 〈ζ 〉. Hence the non-zero
eigenvalues of Xk are 1, ζ, ζ 2, . . . , ζm−1 each of which appears with multiplicity two.

In Case III, for σ ∈ Sr and (p1, p2, . . . , pr ) ∈ (Zm)r , define g(p1, p2, . . . , pr ; σ) ∈
P(B) and a subgroup Wc of WGL(V ) as in Definition 5.16.

In Case II, by Remark 5.26, the non-zero eigenvalues of Xk are 1, ξ, ξ2, . . . , ξ2m−1 each
of which appears with multiplicity one. Let yi

k (i ∈ Z2m) be the unique eigenvector of Xk

contained in Bc having eigenvalue ξ i . Clearly we have Bc = {yi
k; 1 ≤ k ≤ r, i ∈ Z2m}. In

this case, for σ ∈ Sr and (p1, p2, . . . , pr ) ∈ (Z2m)r , define g(p1, p2, . . . , pr ; σ) ∈ P(B)

and a subgroup Wc of WGL(V ) as in Definition 5.17.
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For these three cases, statements similar to Lemma 5.6 also hold as follows.

LEMMA 5.27. (i) In Cases I and III, we have Ad(g(p1, p2, . . . , pr ; σ))Xk =
ζ pkXσ(k) (1 ≤ k ≤ r) for σ ∈ Sr and (p1, p2, . . . , pr ) ∈ (Zm)r .

(ii) In Case II, we have Ad(g(p1, p2, . . . , pr ; σ))Xk = ξpkXσ(k) (1 ≤ k ≤ r) for
σ ∈ Sr and (p1, p2, . . . , pr ) ∈ (Z2m)r .

Then statements similar to Lemma 5.7 also hold for these cases and Theorem 5.3 implies
the following.

PROPOSITION 5.28. The homomorphism ρ : Wc → GL(c), ρ(w) = w|c (w ∈ Wc) is
injective and the image coincides with the Weyl group W(G0, c). As a consequence, we have

W(G0, c) � G(m, 1, r) (r = min{dim V j ; j ∈ Zm}) in Case I,
W(G0, c) � G(2m, 1, r) (r = min{[dim V j /2]; j ∈ Zm}) in Case II,
W(G0, c) � G(m, 1, r) (r = min{[dim V j/2]; j ∈ Zm}) in Case III.
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[Ke] G. KEMPKEN, Eine Darstellung des Köchers Ãk , Bonner Math. Schriften 137 (1982), 1–159.
[KrP] H. KRAFT AND C. PROCESI, On the geometry of conjugacy classes in classical groups, Comment. Math.

Helv. 57 (1982), 539–602.
[L] D. LUNA, Adhérences d’orbite et invariants, Invent. Math. 29 (1975), 231–238.
[O1] T. OHTA, The closures of nilpotent orbits in the classical symmetric pairs and their singularities, Tohoku

Math. J. 43 (1991), 161–211.
[O2] T. OHTA, Nilpotent orbits of Z4-graded Lie algebra and geometry of moment maps associated to the dual

pair (U(p, q), U(r, s)), Publ. Res. Inst. Math. Sci. 41 (2005), 723–756.
[O3] T. OHTA, An inclusion between sets of orbits and surjectivity of the restriction map of rings of invariants,

Hokkaido Math. J. 37 (2008), 437–454.
[Pa] D. I. PANYUSHEV, On invariant theory of θ -groups, J. Algebra 283 (2005), 655–670.
[PoV] V. L. POPOV AND E. V. VINBERG, Invariant Theory, Encyclopaedia of Mathematical Sciences, vol. 55,

Algebraic Geometry IV (Russian), 137–314, 135, Itogi Nauki i Tekhniki, Akad. Nark SSSR, Vsesoyuz.
Inst. Nauchn. i Tekn. Inform., Moscow, 1989.

[ST] G. C. SHEPHARD AND A. J. TODD, Finite unitary reflection groups, Canadian. J. Math. 6 (1954), 274–304.
[V] E. V. VINBERG, The Weyl group of a graded Lie algebra, Math. USSR-Izv. 10 (1976), 463–495.

DEPARTMENT OF MATHEMATICS

TOKYO DENKI UNIVERSITY

KANDA-NISIKI-CHO, CHIYODA-KU

TOKYO 101–8457
JAPAN

E-mail address: ohta@cck.dendai.ac.jp


