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Abstract. We study the spectrum of a linear Oseen-type operator which arises from
equations of motion of a viscous incompressible fluid in the exterior of a rotating compact
body. We prove that the essential spectrum consists of an infinite set of overlapping para-
bolic regions in the left half-plane of the complex plane. The full spectrum coincides with the
essential and continuous spectrum if the operator is considered in the whole 3D space. Our
approach is based on the Fourier transform in the whole space and the transfer of the results to
the exterior domain.

1. Introduction and main results. Suppose that B is a compact body in R3 which is
rotating about the x1-axis with a constant angular velocity ω > 0. Denote byΩ(t) the exterior
of B at time t and assume that Ω(t) is a domain with boundary of class C1,1. Put ω := ωe1,
where e1 is the unit vector oriented in the direction of the x1-axis.

The flow of a viscous incompressible fluid in the exterior of the body B can be described
by the Navier-Stokes system

∂tu− ν�u+ (u · ∇)u+ ∇p = f ,

∇ · u = 0

in the space-time region {(x, t) ∈ R3 ×I ; t ∈ I, x ∈ Ω(t)}, where I is a time interval. The
disadvantage of this description is the variability of the spatial domainΩ(t). Therefore, many
authors use a time-dependent transformation to the Cartesian coordinates, x ′ ≡ (x ′

1, x
′
2, x

′
3),

connected with the rotating body and defined by x ′ = O(ωt)x, where

O(φ) =
 1 0 0

0 cosφ sinφ
0 − sin φ cosφ

 .(1.1)

If we also put

u(x, t)=OT (ωt)u′(x′, t) = OT (ωt)u′(O(ωt)x, t) ,

p(x, t)= p′(x′, t) = p′(O(ωt)x, t) ,

f (x, t)=OT (ωt)f ′(x′, t) = OT (ωt)f ′(O(ωt)x, t) ,
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then the functions u′ and p′ satisfy the system

∂tu
′ − ν�′u′ − (ω × x ′) · ∇′u′ + ω × u′ + (u′ · ∇′)u′ + ∇′p′ = f ′,

∇′ · u′ = 0
(1.2)

inΩ(0)×I, whereΩ(0) is t-independent. (Here,�′ and ∇′ denote the operators, acting in the
variable x′.) Among a series of results on qualitative properties of the system (1.2) and related
linear problems, let us mention Hishida [21], [22], [23], Galdi [16], [17], Farwig, Hishida,
Müller [8], Farwig [4], [5], Farwig, Hishida [6], [7], Galdi, Kyed [18], [19], Geissert, Heck,
Hieber [20], Farwig, Neustupa [13], [14], Farwig, Nečasová, Neustupa [11], [12], Farwig,
Krbec, Nečasová [9], [10].

If u(x, t) tends to the constant velocity γ e1 for |x| → ∞, then u′(x′, t) → γ e1 for
|x′| → ∞ because the transformation does not affect the vector e1. In this case, it is ad-
vantageous to write u′ = v′ + γ e1 and to deal with a new system for the unknown function
v′:

∂tv
′ − ν�′v′ − (ω × x ′) · ∇′v′ + ω × v′ + γ ∂ ′

1v
′ + (v′ · ∇′)v′ + ∇′p′ = f ′

∇′ · v′ = 0
(1.3)

in Ω(0)× I.
In order to have a simple notation, we will further denote Ω := Ω(0). Moreover, since

we will work only in the coordinates x′, we omit the primes and we denote the new coordinate
system by x instead of x ′. By analogy, we also omit the primes in the notation of functions.

Similarly, as the properties of the steady linear Stokes system (respectively the so called
Stokes operator) play an important role in the qualitative theory of the Navier-Stokes equa-
tions, the qualitative analysis of the system (1.3) is based on properties of the steady linear
Oseen-type problem

ν�v + (ω × x) · ∇v − ω × v − γ ∂1v − ∇p = f in Ω ,

∇ · v = 0 in Ω ,

v = 0 on ∂Ω .

(1.4)

This problem can be written in the form of one operator equation Aωγ v = f , where Aωγ is the
Oseen-type operator

Aωγ v = Pqν�v + Pq [(ω × x) · ∇v − ω × v − γ ∂1v](1.5)

with the domain

D(Aωγ ) := {v ∈ W 2,q(Ω)3 ∩W 1,q
0 (Ω)3 ∩ Lqσ (Ω) ; (ω × x) · ∇v ∈ Lq(Ω)3}(1.6)

in the function space Lqσ (Ω), 1 < q < ∞; this function space as well as the Helmholtz
projection Pq in Lq(Ω)3 will be defined below. We shall further treat the domainD(Aωγ ) as a
Banach space with the norm

‖v‖D(Aωγ ) := ‖v‖2,q + ‖(ω × x) · ∇v‖q .(1.7)
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Let us note that especially the presence of the term (ω×x) ·∇v changes substantially the
character of the operator Aωγ , in comparison with the Stokes operator A0

0 or with the Oseen

operator A0
γ . For instance, while the operators A0

0 andA0
γ generate analytic semigroups in the

space Lqσ (Ω), the operator Aωγ generates only a C0-semigroup (see Hishida [22] when γ = 0,
q = 2, Geissert, Heck, Hieber [20] when γ = 0, 1 < q < ∞, and Shibata [28] when γ 	= 0,
1 < q < ∞).

The information on the spectrum of the linear operator Aωγ plays a fundamental role in
studies of (1.4) and (1.3). The cases q = 2 and γ = 0 or γ 	= 0 were treated in our papers
[13], [14], and the case 1 < q < ∞, γ = 0 was studied in our paper [11], [12], (together
with Š. Nečasová). In this paper, we consider the case 1 < q < ∞ and γ 	= 0 and we study
the spectrum of the operator Aωγ . The main difference, in comparison with [13], [14], is that

L
q
σ (Ω) (with general 1 < q( 	= 2) < ∞) is not a Hilbert space and the Fourier expansion with

respect to the angular variable (in an appropriate cylindrical coordinate system, whose axis is
the x1-axis), which was the main tool used in [13], [14], cannot be effectively applied now.
Thus, our approach is based on the Fourier transform in the whole space and on a transfer
of the results to the exterior domain. We have already used the same idea in the papers [11],
[12] in the case γ = 0. The case γ 	= 0, discussed in this paper, however, brings new effects
which strongly influence the shape of the spectrum. Without loss of generality, we assume
that γ > 0.

Concerning recent results in this field, we mention the papers [9], [10] where weighted
Lq -estimates for stationary solutions of the linear whole space problem in the Stokes as well
as Oseen case are derived. Shibata [28] proved that the Oseen operator Aωγ generates a C0-
semigroup satisfying the usual Lq -Lr -estimates. Moreover, he found detailed estimates of the
“localized” resolvent near and on the imaginary axis. Similar results for the Stokes case are
known from Hishida, Shibata [24].

We shall use the usual function spaces and norms:
• The norm in Lq(Ω)3 is denoted by ‖ . ‖q = ‖ . ‖q;Ω .

• W
1,q
0 (Ω) is the subspace of the Sobolev space W 1,q(Ω) consisting of functions van-

ishing on ∂Ω in the sense of traces.
• The norm in Wk,q(Ω)3, k ∈ N , is denoted by ‖ . ‖k,q = ‖ . ‖k,q;Ω .
• C∞

0,σ (Ω) denotes the linear space of all divergence-free vector fields from C∞
0 (Ω)

3.

• L
q
σ (Ω) is the closure of C∞

0,σ (Ω) in Lq(Ω)3 and coincides with the space of all

divergence-free (in the sense of distributions) vector fields u ∈ Lq(Ω)3 such that u · n = 0
on ∂Ω in the sense of traces ([15], pp. 111–115); here n is the outer normal vector on ∂Ω .

• Pq denotes the projection of Lq(Ω)3 onto Lqσ (Ω), associated with the Helmholtz
decomposition

Lq(Ω)3 = Lqσ (Ω)⊕ {∇p ∈ Lq(Ω)3 ; p ∈ W 1,q
loc (Ω)} .

Let us recall definitions and basic properties from spectral theory of linear operators.
Assume that X is a Banach space with the norm ‖ . ‖, X∗ is its dual and T is a closed linear
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operator in X. We denote by D(T ) the domain and by R(T ) the range of T and we assume
that D(T ) is dense in X. This guarantees that the adjoint operator T ∗ exists.

• nul (T ) and def (T ) denote the nullity and the deficiency of the operator T , respec-
tively. If R(T ) is closed then nul (T ) = def (T ∗) and def (T ) = nul (T ∗) (see e.g. Kato [25,
p. 234]).

• nul′ (T ) and def ′ (T ) := nul′ (T ∗) denote the approximate nullity and the approximate
deficiency of T , respectively. We recall that nul′ (T ) is the maximum integer m (m = +∞
being permitted) with the property that to each ε > 0 there exists an m-dimensional linear
manifold Mε in D(T ) such that ‖T v‖ < ε for all v ∈ Mε, ‖v‖ = 1. Note that nul (T ) ≤
nul′ (T ) and def (T ) ≤ def ′ (T ) and the equalities hold if R(T ) is closed. On the other hand,
if R(T ) is not closed then nul ′ (T ) = def′ (T ) = ∞. The identity nul′ (T ) = ∞ is equivalent
to the existence of a non-compact sequence {un} on the unit sphere in X such that T un → 0
for n → ∞ (see [25, p. 233]).

• We say that T is a Fredholm operator if its range R(T ) is closed in X and both the
numbers nul (T ) and def (T ) are finite.

• The operator T is called semi-Fredholm if the range R(T ) is closed in X and at least
one of the numbers nul (T ) and def (T ) is finite. Consequently, T is semi-Fredholm if and
only if at least one of the numbers nul′ (T ) and def ′ (T ) is finite.

• We denote by ρ(T ) the resolvent set of T , by σ(T ) = C \ ρ(T ) the spectrum of
T and by σess(T ) the essential spectrum of T . Recall that ρ(T ) is the set of all λ ∈ C

such that R(T − λI) = X and the operator T − λI has a bounded inverse in X. Thus,
nul (T − λI) = nul′ (T − λI) = def (T − λI) = def ′ (T − λI) = 0 for λ ∈ ρ(T ). Moreover,
σess(T ) = {λ ∈ C; T − λI is not semi-Fredholm}. Both σ(T ) and σess(T ) are closed subsets
of C and σess(T ) ⊂ σ(T ).

• Let us also mention that σ(T ) = σp(T ) ∪ σc(T ) ∪ σr(T ), where the sets σp(T ), σc(T )

and σr(T ) are called the point spectrum, the continuous spectrum and the residual spectrum
of T , respectively. They are mutually disjoint and they are defined in this way:

(a) σp(T ) := {λ ∈ C ; nul (T − λI) > 0}.
(b) σc(T ) is the set of λ ∈ C such that nul (T − λI) = 0, R(T − λI) is dense in

X, but R(T − λI) 	= X. In this case, R(T − λI) is not closed in X, which implies that
def (T − λI) = def ′ (T − λI) = nul′ (T − λI) = ∞.

(c) σr(T ) is the set of λ ∈ C such that nul (T − λI) = 0 and the range R(T − λI) is
not dense in X.

Obviously, σc(T ) ⊂ σess(T ). There are no generally valid relations between σp(T ), σr(T )

on one hand and σess(T ) on the other hand. However, any point on the boundary of σ(T )
belongs to σess(T ) unless it is an isolated point of σ(T ) (see [25, p. 244]).

• The so-called approximate point spectrum σap(T ) of T consists of all points λ ∈ C

such that there exists a sequence {un} in D(T ) such that ‖un‖ = 1 and (T − λI)un → 0
as n → ∞. Obviously, nul′ (T − λI) > 0 for λ ∈ σap(T ), which implies that λ ∈ σ(T ),
and σp(T ) ⊂ σap(T ). Finally, if λ ∈ σc(T ) then nul′ (T − λI) = ∞, which also implies that
there exists a sequence {un} with the properties required in the definition of σap(T ). Hence
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λ ∈ σap(T ). We have thus shown that σp(T ) ∪ σc(T ) ⊂ σap(T ) ⊂ σ(T ) and σap(T ) ∪
σr(T ) = σ(T ). We note that the approximate spectrum has been introduced for the sake of
completeness, but will not be used in this paper.

The main theorems of this paper concern the concrete operator Aωγ in the space Lqσ (Ω):

THEOREM 1.1. Let 1 < q < ∞ and Ω = R3. Then
(i) σ(Aωγ ) = σc(A

ω
γ ) = σess(A

ω
γ ) = Λωγ , where

Λωγ := {λ = α + iβ + ikω ∈ C ; α, β ∈ R, k ∈ Z, α ≤ −νβ2/γ 2}.
(ii) If q = 2 then Aωγ is a normal operator in Lqσ (R3) (= L2

σ (R
3)).

THEOREM 1.2. Let 1 < q < ∞ and Ω ⊂ R3 be an exterior domain with boundary
of class C1,1. Then the spectrum of Aωγ lies in the left complex half plane {λ ∈ C ; Re λ ≤
0} and consists of the essential spectrum σess(A

ω
γ ) = Λωγ and possibly a set Γ of isolated

eigenvalues λ ∈ C�Λωγ with Re λ < 0 and finite algebraic multiplicity, which can cluster only
at points of σess(A

ω
γ ). The set Γ of such isolated eigenvalues is independent of q ∈ (1,∞).

The set Λωγ is a union of infinitely many equally shifted filled parabolas in the left half-
plane of C (see Figure 1). Theorem 1.1 is proved in Section 3. The proof of Theorem 1.2 is
given in Section 4.

The question whether the identities of Theorem 1.1 (i) also hold in the case when Ω
is an exterior domain in R3 is open. The reason consists in the application of the Fourier
transform, which is a useful tool in R3 but cannot be used in exterior domains. Moreover, it
is open whether the set Γ of isolated eigenvalues is empty or non-empty.

FIGURE 1. The shape of set Λωγ in the complex domain C.
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2. Preliminary results. The domain D(Aωγ ) of the operator Aωγ is dense in Lqσ (Ω),

because C∞
0,σ (Ω) ⊂ D(Aωγ ) and C∞

0,σ (Ω) is dense in Lqσ (Ω). Hence the adjoint operator

(Aωγ )
∗ exists as a linear operator in Lq

′
σ (Ω), where q ′ = q/(q − 1). The next lemma brings

more information on both the operators Aωγ and (Aωγ )
∗.

LEMMA 2.1. The operator Aωγ is closed in Lqσ (Ω) and generates a C0-semigroup in

L
q
σ (Ω). Its adjoint operator is

(Aωγ )
∗v = Pq ′ν�v + Pq ′ [−(ω × x) · ∇v + ω × v + γ ∂1v](2.1)

with domain

D((Aωγ )
∗) = {v ∈ W 2,q ′

(Ω)3 ∩W 1,q ′
0 (Ω)3 ∩ Lq ′

σ (Ω) ; (ω × x) · ∇v ∈ Lq ′
(Ω)3} .(2.2)

It is a closed operator in Lq
′
σ (Ω) and generates a C0-semigroup in Lq

′
σ (Ω).

PROOF. The fact that Aωγ is a generator of a C0-semigroup in Lqσ (Ω) follows from [28,

Theorem 1.1]. It also implies that Aωγ is a closed operator in Lqσ (Ω) and that R(Aωγ − ζ I) =
L
q
σ (Ω) for all ζ > 0 sufficiently large. Let us denote by T ωγ the operator on the right hand

side of (2.1) with the domain given by (2.2):

D(T ωγ ) = {v ∈ W 2,q ′
(Ω)3 ∩W 1,q ′

0 (Ω)3 ∩ Lq ′
σ (Ω) ; (ω × x) · ∇v ∈ Lq ′

(Ω)3} .
By analogy withAωγ , the operator T ωγ is closed in Lq

′
σ (Ω) andR(T ωγ −ζ I) = L

q ′
σ (Ω) if ζ > 0

is sufficiently large. It is easy to verify that the operators Aωγ and T ωγ are adjoint to each other
in the sense of Kato [25, p. 167]; hence T ωγ ⊂ (Aωγ )

∗. In order to show that T ωγ = (Aωγ )
∗,

we need to verify that T ωγ is the maximal operator adjoint to Aωγ . Suppose that v ∈ D((Aωγ )∗)
and put f = (ζ I − (Aωγ )

∗)v. Since f ∈ R(T ωγ − ζ I), there exists w ∈ D(T ωγ ) such that
f = (T ωγ − ζ I)w. Hence ((Aωγ )

∗ − ζ I)v = (T ωγ − ζ I)w. Multiplying both sides of this
identity by u ∈ D(Aωγ ) and integrating in Ω , we arrive at∫

Ω

v · (Aωγ − ζ I)udx =
∫
Ω

w · (Aωγ − ζ I)udx .

Since this holds for all u ∈ D(Aωγ ), we get v = w ∈ D(T ωγ ); thus (Aωγ )
∗ = T ωγ . As for Aωγ ,

we conclude that (Aωγ )
∗ generates a C0-semigroup in Lq

′
σ (Ω) and is closed. �

LEMMA 2.2. There exist constants c1 > 0 and c2 > 0 such that, if v ∈ D(Aωγ ) and

f ∈ Lqσ (Ω) satisfy the equation Aωγ v = f , then

‖v‖2,q + ‖(ω × x) · ∇v‖q ≤ c1 ‖f ‖q + c2 ‖v‖q .(2.3)

PROOF. If Ω = R3 then (2.3) follows from [4, Theorem 1.1] and an interpolation
argument. Now consider an exterior domain Ω ⊂ R3 of class C1,1. Let v ∈ D(Aωγ ) and

f ∈ Lqσ (Ω) satisfy the equation Aωγ v = f . Then there exists a pressure function p such that

∇p = ν�v + (ω × x) · ∇v − ω × v − γ ∂1v − f ∈ Lq(Ω)3 .
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For simplicity, we assume that in the following all pressure functions have a vanishing mean
on ΩR = Ω ∩ BR(0), i.e.,

∫
ΩR
p dx = 0, where R > 0 is chosen such that R3

� BR−1(0) ⊂
Ω . Let η ∈ C∞

0 (R
3) denote a cut-off function with values in [0, 1] such that

η(x) =
{

0 for |x| ≤ R − 1 ,
1 for |x| ≥ R .

Then (ηv, ηp) can be considered as a solution of the whole space problem

ν�u+ (ω × x) · ∇u− ω × u− γ ∂1u− ∇p̃ = f 1 , ∇ · u = g1 in R3 ,

where

f 1 = ηf + 2ν∇η · ∇v + νv�η + ((ω × x) · ∇η)v − γ (∂1η)v − p∇η , g1 = v · ∇η .
Note that f 1 coincides with ηf up to perturbation terms with support in supp (∇η) ⊂ ΩR .
Similarly, supp g1 ⊂ ΩR . By [4, Theorem 1.1] there exists a solution (u, p̃) satisfying the
estimate

‖∇2u‖q + ‖(ω × x) · ∇u− ω × u‖q + ‖∇p̃‖q ≤ c(‖f ‖q + ‖v‖1,q;ΩR + ‖p‖q;ΩR) .
Moreover, by the uniqueness assertion in [4, Theorem 1.1], (ηv, ηp) satisfies the same esti-
mate so that we get the inequality

‖∇2(ηv)‖q + ‖(ω × x) · ∇(ηv)‖q + ‖∇(ηp)‖q
≤ c (‖f ‖q + ‖v‖q + ‖v‖1,q;ΩR + ‖p‖q;ΩR) .

(2.4)

Next we consider ((1 − η)v, (1 − η)p) as a solution of the Stokes problem

ν�u− ∇p̃ = f 2 , divu = g2 in ΩR , u = 0 on ∂ΩR ,

where g2 = −v · ∇η and

f 2 = (1 − η) [f − (ω × x) · ∇v + ω × v + γ ∂1v] − 2ν ∇η · ∇v − ν v�η + p∇η .
Hence classical a priori estimates for the Stokes system in the bounded domain ΩR and the
precise form of f 2 imply that

‖∇2((1 − η)v)‖q;ΩR + ‖∇(1 − η)p‖q;ΩR ≤ c(‖f ‖q + ‖v‖1,q;ΩR + ‖p‖q;ΩR) .(2.5)

Summing (2.4) and (2.5) and using an interpolation estimate for ∇v, we obtain the estimate

‖∇2v‖q + ‖(ω × x) · ∇v‖q + ‖∇p‖q ≤ c(‖f ‖q + ‖v‖q + ‖p‖q;ΩR)(2.6)

with a constant c > 0 independent of f , v, p.
Now we will prove (2.3) by contradiction, using (2.6). Suppose that, for every n ∈ N ,

there exist vn ∈ D(Aωγ ) and pn with ∇pn ∈ Lq(Ω)3 such that

1 = ‖∇2vn‖q + ‖(ω × x) · ∇vn‖q + ‖∇pn‖q ≥ n(‖f n‖q + ‖vn‖q )(2.7)

where f n = Aωγ vn. Then we find a subsequence of (vn, pn), again denoted by (vn, pn), and

v ∈ D(Aωγ ) and p with ∇p ∈ Lq(Ω)3 such that in the weak sense

∇2vn ⇀ ∇2v , (ω × x) · ∇vn ⇀ (ω × x) · ∇v , ∇pn ⇀ ∇p in Lq(Ω) ,(2.8)
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and in the strong sense

f n → 0 , vn → 0 in Lq(Ω) , pn → p in Lq(ΩR) ,
∫
ΩR

p dx = 0 ,(2.9)

as n → ∞, and

ν�v + (ω × x) · ∇v − ω × v − γ ∂1v − ∇p = 0 , div v = 0 in Ω , v = 0 on ∂Ω .

By (2.8), (2.9) we conclude that v = 0 and ∇p = 0 in Ω . Since the limit function p was
chosen with

∫
ΩR
p dx = 0, we have p = 0 in Ω . Using now (2.6) with vn, pn, f n instead

of v, p, f , we observe that the left-hand side equals one, while the right-hand side tends to
zero as n → ∞. This is the contradiction to the assumption that (2.3) was wrong. �

Let us further denote by D0(A
ω
γ ) the subspace of D(Aωγ ) which contains only functions

that have a compact support in Ω .

LEMMA 2.3. D0(A
ω
γ ) is a core of the operator Aωγ , i.e., the graph of the restriction of

the operator Aωγ to D0(A
ω
γ ) is dense in the graph of Aωγ in the norm of Lqσ (Ω)× L

q
σ (Ω).

PROOF. Let v ∈ D(Aωγ ) and f = Aωγ v. We will show that [v, Aωγ v] can be approxi-
mated by a sequence of elements [vn,Aωγ vn] where vn ∈ D0(A

ω
γ ), n ∈ N .

Let η ∈ C∞
0 (R

3) be radially symmetric, with values in [0, 1], such that

η(x) =
{

1 for |x| ≤ 1,

0 for 2 ≤ |x| .
Denote K1 := {x ∈ R3 ; 1 < |x| < 2} and, more generally, for r > 0, let Kr := {x ∈
R3; r < |x| < 2r}. Due to Bogovskij [2], there exists a bounded linear operator B :
Lq(K1) → W

1,q
0 (K1)

3 such that div Bf = f for all f ∈ Lq(K1) satisfying
∫
K1
f dx = 0.

The operator B is bounded from W
1,q
0 (K1) to W 2,q

0 (K1)
3 as well.

Let n ∈ N be so large that R3
� Bn(0) ⊂ Ω . Put vn(x) := η(x/n) v(x) − V n(x) with

the correction term V n(x) being equal to Un(x/n), where

Un(y) =
{

B[∇η(y) · v(ny)] for y ∈ K1 ,

0 for y ∈ R3
�K1 .

The function vn is divergence-free, it coincides with v in Ω ∩ Bn(0) and its support is a
subset of the closure of Ω ∩ B2n(0). Due to the continuity of the operator B from Lq(K1) to
W

1,q
0 (K1)

3 and fromW
1,q
0 (K1) to W 2,q

0 (K1)
3, the function Un satisfies the estimates

‖∇Un‖q;K1 ≤ C ‖∇η · v(n ·)‖q;K1 ≤ C ‖v(n ·)‖q;K1 = C n−3/q ‖v‖q;Kn ,
‖∇2Un‖q;K1 ≤ C ‖∇(∇η · v(n ·))‖q;K1 ≤ C ‖v(n ·)‖q;K1 + C ‖∇v(n ·)‖q;K1

= C n−3/q ‖v‖q;Kn + C n1−3/q ‖∇v‖q;Kn .
This means that

‖∇V n‖q;Kn = n−1+3/q ‖∇Un‖q;K1 ≤ C

n
‖v‖q;Kn ,
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‖∇2V n‖q;Kn = n−2+3/q ‖∇2Un‖q;K1 ≤ C

n2 ‖v‖q;Kn + C

n
‖∇v‖q;Kn .

Using also the fact that V n(x) = 0 for |x| = n, we derive that

‖V n‖q;Kn ≤ Cn ‖∇V n‖q;Kn ≤ C ‖v‖q;Kn .
All generic constants C are independent of n. Thus, ‖V n‖2,q → 0 as n → ∞. The same
result also holds on the ‖ . ‖2,q -norm of the difference η(x/n) v(x)− v(x). Consequently,

vn → v in W 2,q(Ω)3 for n → ∞ .(2.10)

Furthermore, since (ω × x) · ∇η(x/n) = 0, we have

‖Aωγ v − Aωγ v
n‖q;Ω

≤ C (‖v − vn‖2,q;Ω + ‖(ω × x) · ∇v − (ω × x) · ∇vn‖q;Ω)
≤ C (‖v − vn‖2,q;Ω + ‖(ω × x) · (1 − η(x/n))∇v‖q;Ω + ‖(ω × x) · ∇V n‖q;Ω)
≤ C (‖v − vn‖2,q;Ω + ‖(ω × x) · ∇v‖q;Ω�Bn(0) + n ‖∇V n‖q;Ω)
→ 0 for n → ∞ .

(2.11)

We can now observe from (2.10) and (2.11) that

[vn,Aωγ vn] → [v, Aωγ v] in Lqσ (Ω)× Lqσ (Ω)

as n → ∞. The proof is completed. �

3. The case Ω = R3. If Ω = R3, 1 < q < ∞ and v ∈ D(Aωγ ), then the terms ν�v,

(ω × x) · ∇v − ω × v and γ ∂1v belong to Lqσ (R3). Hence the projection Pq in (1.5) can be
omitted so that

Aωγ v = ν�v + (ω × x) · ∇v − ω × v − γ ∂1v .(3.1)

By analogy, the adjoint operator, as an operator in Lq
′
σ (R

3), can be simplified to

(Aωγ )
∗v = ν�v − (ω × x) · ∇v + ω × v + γ ∂1v .(3.2)

The next lemma provides an information on solutions of the resolvent equation

Aωγ v − λv = f(3.3)

for f ∈ Lqσ (R3). Recall the definition of the set Λωγ from Theorem 1.1.

LEMMA 3.1. Suppose that λ ∈ C � Λωγ . There exists a constant c3 = c3(λ, q) > 0

such that if f ∈ Lqσ (R3) and v ∈ D(Aωγ ) satisfy the resolvent equation (3.3) then

‖v‖q ≤ c3 ‖f ‖q .(3.4)

PROOF. The linear space D0(A
ω
γ ) is a core of Aωγ − λI due to Lemma 2.3. Thus, it is

sufficient to prove (3.4) only for v ∈ D0(A
ω
γ ).

Equation (3.3) can be written in the form

ν�v + (ω × x) · ∇v − ω × v − γ ∂1v − λv = f .(3.5)
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Due to the geometry of the problem, it is reasonable to use the cylindrical coordinates (x1, r, ϕ)

in R3 with the axis being the x1-axis; then r2 = x2
2 + x2

3 . The term (ω × x) · ∇v in (3.5),
which equals ω(−x3 ∂2v + x2 ∂3v), can be simplified to

(ω × x) · ∇v = ω∂ϕv .(3.6)

We shall denote by F the Fourier transform, by F−1 its inverse, by ̂ Fourier images of
functions, by ξ = (ξ1, ξ2, ξ3) their Cartesian Fourier variables, and we put s = |ξ |. Applying
F to (3.5), we obtain

(λ+ iγ ξ1 + νs2 )̂v − ω∂φ v̂ + ω × v̂ = −f̂ .(3.7)

Here ∂φ v̂ denotes the angular derivative

∂φ v̂ = (e1 × ξ) · ∇v̂ ≡ −ξ3
∂ v̂

∂ξ2
+ ξ2

∂ v̂

∂ξ3

when using cylindrical coordinates (ξ1, ρ, φ) in the space of the Fourier variables. The equa-
tion div v = 0 (following from the fact that v ∈ D(Aωγ )) leads to the condition iξ · v̂ = 0.
Now v̂ can be considered to be a solution of the first order ordinary differential equation (3.7)
with respect to the angular variable φ. Writing v̂ in the form

v̂(ρ, φ, ξ1) = O(−φ)ŵ(ρ, φ, ξ1) ,

where O is the matrix from (1.1), one verifies that

ω∂φ v̂ = O(−φ)ω∂φŵ + ω × [O(−φ)ŵ] .
Hence (3.7) is equivalent to the equation

−ω∂φŵ + (λ+ iγ ξ1 + νs2)ŵ = −O(φ) f̂ ,(3.8)

or using the definition

a(ξ) = λ+ iγ ξ1 + νs2 , s = |ξ | ,
to the inhomogeneous ordinary first order linear differential equation with respect to φ

ω∂φŵ − a(ξ)ŵ = O(φ)f̂ .

Its solution ŵ satisfies

ŵ(ξ1, ρ, φ + 2π)

= e2π a(ξξξ)/ω ŵ(ξ1, ρ, φ)+ 1

ω

∫ 2π

0
e(2π−t )a(ξξξ)/ω O(t + φ) f̂ (ξ1, ρ, t + φ)dt .

Since ŵ is 2π-periodic in the variable φ, we have

ŵ(ξ1, ρ, φ) = 1

ω

∫ 2π

0

e(2π−t )a(ξξξ)/ω

1 − e2π a(ξξξ)/ω
O(t + φ) f̂ (ξ1, ρ, t + φ)dt(3.9)

and consequently

v̂(ξ1, ρ, φ) = 1

ω

∫ 2π

0

e−ta(ξξξ)/ω

e−2π a(ξξξ)/ω − 1
O(t) f̂ (ξ1, ρ, t + φ)dt .(3.10)
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Returning to the Cartesian variables ξ = (ξ1, ξ2, ξ3) in (3.10), we obtain

v̂(ξ) = 1

ω

∫ 2π

0
Ψ (λ, ξ , t) O(t) f̂ (O(−t)ξ)dt

= 1

ω

∫ 2π

0
Ψ (λ, ξ , t)O(t)F[f (O(−t) · )](ξ)dt

(3.11)

where

Ψ (λ, ξ , t) = e−ta(ξξξ)/ω

e−2π a(ξξξ)/ω − 1
.

In order to complete the proof, we shall need the next lemma. �

LEMMA 3.2. If λ 	∈ Λωγ then there exists a positive constant c4 depending only on γ ,
ω and on the position of λ in C �Λωγ such that

|e−2π (λ+iγ ξ1+νs2)/ω − 1| ≥ c4 for all ξ ∈ R3 .(3.12)

PROOF. The modulus of e−2π a(ξ )/ω − 1 is bounded below by a positive constant de-
pending only on λ, γ and ω (i.e., independent of ξ ) if the distance dλ(ξ , k) of the complex
number −2πa(ξ)/ω from 2π ik (for k ∈ Z) is bounded below by another positive constant,
independent of ξ and k. Let λ = α + iβ and ρ2 = ξ2

2 + ξ2
3 so that

d2
λ(ξ , k)=

4π2

ω2 |α + iβ + iγ ξ1 + νξ2
1 + νρ2 + ikω|2

= 4π2

ω2
(α + νξ2

1 + νρ2)2 + 4π2

ω2
(β + γ ξ1 + kω)2 .

Assume that minξ∈R3 d2
λ(ξ , k) = 0 for some fixed k ∈ Z; the minimum exists because

lim|ξ |→∞ d2
λ(ξ , k) = ∞. Then ξ1 = −(β + kω)/γ and

α = −νρ2 − ν

γ 2
(β + kω)2 ≤ − ν

γ 2
(β + kω)2 ,

but this inequality contradicts with λ = α + iβ 	∈ Λωγ . Hence

Dλ(k) := min
ξ∈R3

dλ(ξ , k) > 0

for every k ∈ Z. Moreover, the sequence {Dλ(k)}k∈Z does not converge to zero as k → +∞
or k → −∞, because this would imply the existence of ξ (k) ∈ R3 such that dλ(ξ (k), k) → 0
as k → +∞ or k → −∞. Consequently β + γ ξ1(k) + kω → 0, |ξ1(k)| → ∞ and
α + νξ1(k)

2 + νρ(k)2 → ∞, which is in contradiction with dλ(ξ (k), k) → 0. Thus Lemma
3.2 is proved. �

CONTINUATION OF THE PROOF OF LEMMA 3.1. Lemma 3.2 implies that, for fixed
λ ∈ C � Λωγ , the modulus of Ψ (λ, ξ , t) is bounded uniformly with respect to t ∈ (0, 2π)

and ξ ∈ R3. Further, if i ∈ {2, 3} and j ∈ {1, 2, 3}, then

∂Ψ

∂ξi
= 2νξi

ω

−t e−ta(ξξξ)/ω(e−2πa(ξξξ)/ω − 1)+ 2πe−(2π+t )a(ξξξ)/ω

[e−2πa(ξξξ)/ω − 1]2
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and |ξi | |∂Ψ/∂ξi| can be estimated as follows:

|ξi |
∣∣∣∣∂Ψ∂ξi

∣∣∣∣ ≤
∣∣∣∣2ν s2

ω

t e−ta(ξξξ)/ω + (2π − t) e−(2π+t )a(ξξξ)/ω

[e−2π a(ξξξ)/ω − 1]2

∣∣∣∣
≤C(λ)

[
s2 t

ω
e−νs2 t/ω + s2 2π + t

ω
e−νs2 (2π+t )/ω

]
.

We observe that the right-hand side is less than or equal to a constant independent of ξ and t .
We can similarly estimate |ξj | |∂Ψ/∂ξ1| and all other terms of the form

|ξ1|κ1 |ξ2|κ2 |ξ3|κ3

∣∣∣∣ ∂κ1+κ2+κ3Ψ

∂ξ
κ1
1 ∂ξ

κ2
2 ∂ξ

κ3
3

∣∣∣∣ , κ1, κ2, κ3 ∈ {0, 1} .

Applying the inverse Fourier transform to (3.11), we arrive at the formula

v(x) := 1

ω

∫ 2π

0
O(t) F−1[Ψ(λ, ξ , t) F[f (O(−t) · )](ξ)](x)dt .

Using Lizorkin’s multiplier theorem (see e.g. [15, p. 375]) and the estimates of Ψ and its
derivatives discussed above, we derive the inequality∥∥∥F−1

[
Ψ (λ, ξ , t) F[f (O(−t) · )](ξ)

] ∥∥∥
q

≤ c5 ‖f ‖q , t ∈ [0, 2π] ,(3.13)

where c5 = c5(λ, q). Then (3.11) and (3.13) imply that there exists c3 > 0, independent of f
and v, such that v satisfies the estimate (3.4). �

LEMMA 3.3. Suppose that λ ∈ C �Λωγ . Then λ ∈ ρ(Aωγ ).
PROOF. The estimates (2.3) and (3.4) in Lemmas 2.2 and 3.1 imply that the range of

Aωγ − λI is closed in Lqσ (R3) and that the operator is injective. By similar arguments, the

same result does hold for its adjoint, (Aωγ )
∗ − λI , on the dual space Lq

′
σ (R

3) of Lqσ (R3).

Since (Aωγ )
∗ − λI is injective, we conclude that R(Aωγ − λI) = L

q
σ (R

3). This proves that
λ ∈ ρ(Aωγ ). �

LEMMA 3.4. Let 1 < q < ∞. Then σp(A
ω
γ ) = ∅.

PROOF. Let λ = α + iβ ∈ Λωγ , α ≤ 0, β ∈ R, and let v ∈ D(Aωγ ) satisfy the equation
Aωγ v − λv = 0. Applying the Fourier transform, we arrive at the identity

ω∂φ v̂ − (λ+ iγ ξ1 + ν |ξ |2) v̂ − ω × v̂ = 0 .

(We are using the same notation as in the proof of Lemma 3.1.) First we consider the simpler
case when 1 < q ≤ 2, in which v̂ is a function from Lq

′
(R3)3. Denoting ŵ(ρ, φ, ξ1) =

O(−φ)T v̂(ρ, φ, ξ1), we arrive, by analogy with (3.8), at the equation

ω∂φŵ − (λ+ iγ ξ1 + νs2)ŵ = 0 , s = |ξ | .(3.14)

Solving explicitly this ordinary differential equation, we obtain

ŵ(ρ, φ + 2π, ξ1) = ŵ(ρ, φ, ξ1)e2π (λ+iγ ξ1+νs2) .
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Since ŵ is 2π-periodic in the variable φ, we get the impossible condition α+ νs2 = 0 for a.a.
ξ ∈ R3 unless ŵ = 0. Hence v̂ = 0 a.e. in R3 and also v = 0 in Lqσ (R3).

In the general case q > 2 let us again fix λ ∈ Λωγ , λ = α+iβ+ikω where α ≤ −νβ2/γ 2,

k ∈ Z. Consider v ∈ D(Aωγ ) and ŵ(ρ, φ, ξ1) = O(φ) v̂(ρ, φ, ξ1) as above. Since the
coefficients of O(φ) are either constant or cosφ = ξ2/ρ or sin φ = ξ3/ρ, the function w
(the inverse Fourier transform of ŵ) is defined by an application of 2D-Riesz transforms to v.
Hence w ∈ Lq(R3)3.

First we determine the support of tempered distributions ŵ solving (3.14). �

ASSERTION 3.1. Let ŵ ∈ S(R3)3 be a solution of (3.14). Then

supp ŵ ⊂ D := {ξ ∈ R3 ; α + νs2 = 0, β + γ ξ1 ∈ ωZ} .
PROOF OF ASSERTION 3.1. Given ψ ∈ C∞

0 (R
3

�D)3, we solve the equation

−ω∂φΨ − a(ξ)Ψ = ψ(3.15)

where a(ξ) = λ+ iγ ξ1 + νs2, s = |ξ |. Obviously, (3.15) yields the solution

Ψ (φ) = e−a(ξξξ)φ/ω
(
Ψ 0 − 1

ω

∫ φ

0
ea(ξξξ)φ

′/ωψ(φ′) dφ′
)

when omitting the variables ρ, ξ1 in Ψ and ψ . Since Ψ is 2π-periodic in φ, the initial value
Ψ 0 must satisfy the condition

(e−2πa(ξξξ)/ω − 1)Ψ 0 = 1

ω
e−2πa(ξξξ)/ω

∫ 2π

0
ea(ξξξ)φ

′/ωψ(φ′)dφ′ .

This equation is uniquely solvable for the unknown Ψ 0 if

2πa(ξ)/ω /∈ 2π iZ ⇔ λ+ iγ ξ1 + νs2 	= kiω for all k ∈ Z ⇔ ξ /∈ D .
For ξ /∈ D, we get the unique solution of (3.15)

Ψ (φ) = 1

ω

1

1 − e2πa(ξξξ)/ω

∫ 2π

0
ea(ξξξ)φ

′/ωψ(φ′ + φ)dφ′ ,

in view of (3.10) with ω replaced by −ω. Since suppψ ⊂ R3
� D, we obtain that Ψ ∈

C∞
0 (R

3
�D)3.

Now we use (3.14) to get that for all ψ ∈ C∞
0 (R

3
�D)3

〈ŵ,ψ〉 = 〈ŵ,−ω∂φΨ − a(ξ)Ψ 〉 = 〈ω∂φŵ − (λ+ iγ ξ1 + νs2)ŵ ,Ψ 〉 = 0 .

This identity proves that supp ŵ ⊂ D. �

CONTINUATION OF THE PROOF OF LEMMA 3.4. The set D can be written as the
union of finitely many disjoint sets of type

Dk := {ξ ∈ R3 ; α + νs2 = 0, β + γ ξ1 = ωk} , k ∈ Z ;
each non-void set Dk defines a circle in R3 parallel to the ξ2ξ3-plane with center (ξ (k)1 , 0, 0)

where ξ(k)1 = (ωk − β)/γ . At least the set D0 is non-void since λ ∈ Λωγ . Using a suitable

partition of unity with respect to the variable ξ1, we may write ŵ ∈ S ′(R3)3, a solution of
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(3.14), as a finite linear combination of tempered distributions ŵk with supp ŵk ⊂ Dk. Since
w is in Lq(R3)3, wk is also in Lq(R3)3 for each k. Moreover, since w is in C∞(R3)3 by
elliptic regularity theory, wk is also in C∞(R3)3. We shall further need the assertion:

ASSERTION 3.2. Let h ∈ S ′(R3) ∩ C∞(R3) satisfy supp ĥ ⊂ {0} × R2. Then h is a
polynomial with respect to the variable x1.

PROOF OF ASSERTION 3.2. Given h ∈ S ′(R3), we find N ∈ N and a constant c > 0
such that

|〈̂h,ψ〉| ≤ c

∥∥∥(1 + | . |)N
∑

0≤|µ|≤N
|∂µψ|

∥∥∥∞

for all test functions ψ ∈ S(R3); here µ ∈ N3 denotes multi-indices and ‖·‖∞ the supremum
norm for functions on R3. Let η ∈ C∞

0 (R) be a cut-off function such that η(ξ1) = 1 for ξ1 in
a neighborhood of 0, and let ηε(ξ1) = η(ξ1/ε) for ε > 0. Note that ‖∂m1 ηε‖∞ ≤ cmε

−m for
all m ∈ N . Since supp ĥ ⊂ {0} × R2, we get that 〈̂h,ψ〉 = 〈̂h, ηεψ〉 for all ε > 0. Hence,
with a constant c > 0 independent of ε ∈ (0, 1),

|〈ξN+1
1 ĥ, ψ〉| = |〈̂h, ξN+1

1 ηεψ〉| ≤ cε

∥∥∥(1 + | . |)N
∑

0≤|µ|≤N
|∂µψ|

∥∥∥∞ .

Consequently, ξN+1
1 ĥ = 0. Now we conclude that ∂N+1

1 h = 0 and that h ∈ C∞(R3) is a
polynomial with respect to the variable x1 of order at most N . �

COMPLETION OF THE PROOF OF LEMMA 3.4. To complete the proof of Lemma 3.4,
let v ∈ D(Aωγ ) satisfy the equation Aωγ v − λv = 0. By the above arguments, it suffices to

show that each wk in the partition of w vanishes. Here wk ∈ Lq(R3)3 ∩ C∞(R3)3 has the
property supp ŵk ⊂ Dk , i.e., supp ŵk ⊂ {ξ(k)1 } × R2 with ξ(k)1 = (ωk − β)/γ . Then the

function x �→ eix1ξ
(k)
1 wk(x), which satisfies the assumptions of Assertion 3.2, is a polynomial

with respect to the variable x1. Since this function is contained in Lq(R3)3, it must vanish
identically. Now we proved that w = 0 and also v = 0. �

LEMMA 3.5. Let 1 < q < ∞. Then σr(A
ω
γ ) = ∅.

PROOF. Lemma 3.4 and duality arguments yield the assertion. �

LEMMA 3.6. Let 1 < q < ∞. Then

σ(Aωγ ) = σc(A
ω
γ ) = σess(A

ω
γ ) = Λωγ .

PROOF. Lemmas 3.3 through 3.5 imply that σ(Aωγ ) = σc(A
ω
γ ) ⊂ Λωγ . Thus, we need to

show the opposite inclusion, i.e., Λωγ ⊂ σc(A
ω
γ ).

Suppose at first that λ ∈ (Λωγ )
◦, the interior of Λωγ . It means that there exist α, β ∈ R

and k ∈ Z such that λ = α + iβ + ikω and α < −νβ2/γ 2. The number α can be written in
the form α = α1 + α2 where α1 = −νβ2/γ 2 and α2 < 0. Assume that k 	= 0. The procedure
in the case k = 0 would be analogous.
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We shall explicitly define a sequence of functions {vn} in D(Aωγ ) such that ‖vn‖q = 1
and ‖(Aωγ − λI)vn‖q → 0 as n → ∞. It will imply that nul′ (Aωγ − λI) > 0.

Let us denote by vn1 , vnr and vnϕ the cylindrical components of vn. Put

vn1 (x1, r, ϕ) := 0 ,

vnr (x1, r, ϕ) := κn U
n(x1) V

n(r) eikϕ ,

vnϕ(x1, r, ϕ) := − 1

ik
∂r [r vnr (x1, r, ϕ)] = − 1

ik
κn U

n(x1)

[
V n(r)+ r

dV n(r)

dr

]
eikϕ .

Here the function Un has the form

Un(x1) := ηn1(x1) Y (x1) , where Y (x1) = eiax1, a = −β
γ
,

and where ηn1 is an infinitely differentiable function on (−∞,+∞) such that 0 ≤ ηn1 ≤ 1,

ηn1(x1) =
{

0 for x1 ≤ −n− n2 and n+ n2 ≤ x1 ,

1 for − n2 ≤ x1 ≤ n2 .

The identity α1 = −νβ2/γ 2 guarantees that the characteristic equation νζ 2−γ ζ−(α1+iβ) =
0, corresponding to the equation (3.16) below, has the root ζ1 = ia. Thus, the function Y is a
bounded non-trivial solution of the ordinary differential equation

ν Y ′′(x1)− γ Y ′(x1)− (α1 + iβ) Y (x1) = 0(3.16)

in the interval (−∞,+∞). The function V n is supposed to have the form

V n(r) := ηn2 (r) eibr , b =
√

−α2

ν
,

where ηn2 is an infinitely differentiable function on [0,+∞) such that 0 ≤ ηn2 ≤ 1 and

ηn2(r) =
{

0 for 0 ≤ r ≤ n and 3n+ n2 ≤ r ,

1 for 2n ≤ r ≤ 2n+ n2 .

Both the functions ηn1 and ηn2 can be chosen so that their derivatives are of the order 1/n. The
definition of V n guarantees that it satisfies

ν
d2

dr2 V
n(r)− α2 V

n(r) = 0(3.17)

for 2n < r < 2n+ n2. Finally, the constant κn is chosen so that ‖vn‖q = 1.
One can easily check that vn satisfies the condition of incompressibility

∇ · vn ≡ ∂1v
n
1 + 1

r
∂r (rv

n
r )+ 1

r
∂ϕv

n
ϕ = 0 .

The support of vn is a subset of

Sn := {x = [x1, r, ϕ] ∈ R3 ; |x1| ≤ n+ n2, n ≤ r ≤ 3n+ n2, 0 ≤ ϕ < 2π} .(3.18)
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Considering the norm of vn, we observe that for large n the decisive contribution comes from
the integral of |vnϕ |q , namely of its part |(−1/ik)κn Un r (dV n/dr) eikϕ|q , on the region

Sn0 := {x = [x1, r, ϕ] ∈ R3; |x1| < n2, 2n < r < 2n+ n2, 0 < ϕ < 2π} .
The integrals of all other parts on other regions are of a lower order in n. Calculating the
integral of |(−1/ik) κn Un r (dV n/dr) eikϕ|q on the domain Sn0 , we obtain∫ n2

−n2

∫ 2n+n2

2n

∫ 2π

0

∣∣∣∣κnik Un(x1) r
dV n(r)

dr

∣∣∣∣q2rdϕdrdx1

= 2π
κ
q
n

|k|q
∫ n2

−n2
|Un(x1)|q dx1

∫ 2n+n2

2n
rq+1

∣∣∣∣dV n(r)

dr

∣∣∣∣q dr

= 2π
κ
q
n

|k|q 2n2 bq

q + 2
((2n+ n2)q+2 − (2n)q+2) .

Here we have used the equalities ηn1(x1) = ηn2(r) = 1, hence |Un(x1)| = |V n(r)| = 1 for
(x1, r, ϕ) ∈ Sn0 . Thus, there exist n0 ∈ N and positive constants c6 and c7 (independent of n)
such that

c6

n2+6/q
≤ κn ≤ c7

n2+6/q
for all n ∈ N , with n ≥ n0 .(3.19)

We can naturally use the form (3.1) of the operator Aωγ . Moreover, if we identify v with

the triplet of its cylindrical coordinates, i.e., v � [v1, vr , vϕ ]T , then we can verify that

Aωγ v = ν�v + ω∂ϕv − γ ∂1v

(see [14]). Hence

(Aωγ − λI)vn = (ν�+ ω∂ϕ − γ ∂1 − λI)


0

κn U
n(x1) V

n(r)eikϕ

− 1

ik
κnU

n(x1)

[
V n(r)+ r

dV n(r)

dr

]
eikϕ

 .
Calculating now the norm of (Aωγ − λI)vn in Lqσ (R3), we observe that the contributions

coming from R3
� Sn0 tend to zero as n → ∞ because they represent q-roots of integrals of

functions bounded byCκqn rq on Sn�Sn0 . Due to (3.19), this contribution is of the order n−1/q .
Concerning the integral on Sn0 , the decisive part again comes from (ν�+ω∂ϕ −γ ∂1 −λI)vnϕ ,

namely from (ν� + ω∂ϕ − γ ∂1 − λI) applied to the term (−1/ik) κn Un r (dV n/dr) eikϕ

because of the factor r inside this term. By the equality λ = α1 + α2 + iβ + ikω and (3.16)
and (3.17), we have

(ν�+ ω∂ϕ − γ ∂1 − λI)

(
κn

ik
Un(x1) r

dV n(r)

dr
eikϕ

)
= κn

ik

(
ν∂2

1 + ν∂2
r + ν

r
∂r + ν

r2 ∂
2
ϕ + ω ∂ϕ − γ ∂1 − λI

)(
Un(x1) r

dV n(r)

dr
eikϕ

)



AN OSEEN OPERATOR MODELLING FLUID FLOW 303

= κn

ik
Un(x1)

(
ν

d2

dr2
+ ν

r

d

dr
− α2I

) [
r

dV n(r)

dr

]
eikϕ

+ κn

ik
(νY ′′(x1)− γ Y ′(x1)− [α1 + iβ] Y (x1))

[
r

dV n(r)

dr

]
eikϕ

− κn

ik

νk2

r2
Un(x1) r

dV n(r)

dr
eikϕ

= κn

ik

{
Un(x1) r

d

dr

[
ν

d2V n(r)

dr2 − α2 V
n(r)

]
+ Un(x1) 2ν

d2V n(r)

dr2

+ Un(x1)
ν

r

d

dr

[
r

dV n(r)

dr

]
− κn

ik
Un(x1)

νk2

r

dV n(r)

dr

}
eikϕ

= νκn

ik

(
−3b2 + ib

r
− k2 ib

r

)
ei(ax1+br) eikϕ ,

where, in the last step, we used the simple forms of the functions Un and V n on Sn0 , i.e.,
Un(x1) = eiax1 and V n(r) = eibr . Hence[∫ n2

−n2

∫ 2n+n2

2n

∫ 2π

0

∣∣∣∣(ν�+ ω∂ϕ − γ ∂1 − λI)

(
κn

ik
Un(x1) r

dV n(r)

dr
eikϕ

)∣∣∣∣q r dϕdrdx1

]1/q

≤ C(ν, k, b)κn

[∫ n2

−n2

∫ 2n+n2

2n
r drdx1

]1/q

= C(ν, k, b) κn{2n2[(2n+ n2)2 − (2n)2]}1/q .

The last term tends to zero as n → ∞ by (3.19). In this way, we are led to the convergence
‖(Aωγ − λI)vn‖q → 0 as n → ∞.

We have proved that nul ′ (Aωγ − λI) > 0. Hence nul (Aωγ − λI) 	= nul′ (Aωγ − λI). It

means that the range R(Aωγ − λI) is not closed in Lqσ (R3). Consequently, nul′ (Aωγ − λI) =
def ′ (Aωγ −λI) = +∞ and λ ∈ σess(A

ω
γ ). Since σess(A

ω
γ ) is closed,Λωγ is a subset of σess(A

ω
γ ).

By Lemmas 3.4 and 3.5, we have the inclusion Λωγ ⊂ σc(A
ω
γ ). �

If q = 2, then Lqσ (R3) ≡ L2
σ (R

3) is a Hilbert space and it is natural to ask whether the
operator Aωγ is normal. The answer is given by the next lemma.

LEMMA 3.7. Let q = 2. Then Aωγ is a normal operator in L2
σ (R

3).

PROOF. Using the cylindrical coordinates (x1, r, ϕ) as in the proof of Lemma 3.1, we
can express the operators Aωγ and (Aωγ )

∗ in accordance with (3.1), (3.2) and (3.6) as

Aωγ v = ν�v + ω∂ϕv − ω × v − γ ∂1v ,

(Aωγ )
∗v = ν�v − ω∂ϕv + ω × v + γ ∂1v ,

where D(Aωγ ) = D((Aωγ )
∗). We need to show that Aωγ (A

ω
γ )

∗ = (Aωγ )
∗Aωγ , i.e.,

(a) D(Aωγ (A
ω
γ )

∗) = D((Aωγ )
∗Aωγ ),
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(b) Aωγ (A
ω
γ )

∗u = (Aωγ )
∗Aωγ u for all u ∈ D((Aωγ )∗Aωγ ).

Let us begin with part (a). Suppose that u ∈ D(Aωγ (A
ω
γ )

∗), i.e., u ∈ D((Aωγ )
∗) and

(Aωγ )
∗u ∈ D(Aωγ ). In order to show that u ∈ D((Aωγ )

∗Aωγ ), we treat the scalar product

(Aωγ u, A
ω
γ v)2 of Aωγu and Aωγ v in L2

σ (R
3) for v ∈ D(Aωγ ) as follows:

(Aωγ u, A
ω
γ v)2 = ((Aωγ )

∗u, Aωγ v)2 + 2 (ω∂ϕu− ω × u− γ ∂1u, A
ω
γ v)2

= ((Aωγ )
∗u, Aωγ v)2 + 2(ω∂ϕu− ω × u− γ ∂1u, ν�v)2(3.20)

+2(ω∂ϕu− ω × u− γ ∂1u, ω∂ϕv − ω × v − γ ∂1v)2 .

Let us first assume that v has a compact support. Then (∂ϕu,�v)2 = −(�u, ∂ϕv)2 and

(−ω × u− γ ∂1u, ν�v)2 = (ν�u, ω × v + γ ∂1v)2 .

Substituting these identities into (3.20), we obtain

(Aωγu, A
ω
γ v)2 = ((Aωγ )

∗u, Aωγ v)2 − 2 (ν�u, ω∂ϕv − ω × v − γ ∂1v)2

+ 2(ω∂ϕu− ω × u− γ ∂1u, ω∂ϕv − ω × v − γ ∂1v)2

= ((Aωγ )
∗u, Aωγ v)2 + 2((Aωγ )

∗u, −ω∂ϕv + ω × v + γ ∂1v)2

= ((Aωγ )
∗u, (Aωγ )∗v)2 = (Aωγ (A

ω
γ )

∗u, v)2 .

(3.21)

In fact, (3.21) holds for all v ∈ D(Aωγ ) because by Lemma 2.3 the set D0(A
ω
γ ) = {v ∈

D(Aωγ ) ; v has a compact support in R3} is a core of Aωγ . Now, (3.21) shows that for fixed

u, (Aωγ u, A
ω
γ v)2 can be extended to a continuous linear functional of v ∈ L2

σ (R
3). Thus,

u ∈ D((Aωγ )∗Aωγ ).
We have proved the inclusionD(Aωγ (A

ω
γ )

∗) ⊂ D((Aωγ )
∗Aωγ ). The opposite inclusion can

be proved in the same way.
Concerning part (b), (3.21) implies that

((Aωγ )
∗Aωγu, v)2 = (Aωγ (A

ω
γ )

∗u, v)2
for all v ∈ D(Aωγ ) and even for all v ∈ L2

σ (R
3) by the density of D(Aωγ ) in L2

σ (R
3). Hence

the operators Aωγ and (Aωγ )
∗ commute. �

Theorem 1.2 resumes the results of Lemmas 3.3 through 3.7.

4. The case of an exterior domainΩ . In this section, we assume thatΩ ⊂ R3 is an
exterior domain, different from R3, with boundary of class C1,1.

LEMMA 4.1. The inclusionΛωγ ⊂ σess(A
ω
γ ) holds.

PROOF. We prove in almost the same way as in the proof of Lemma 3.6 that if λ ∈
(Λωγ )

◦ then nul′ (Aωγ − λI) > 0. Unfortunately, since an analogue to Lemma 3.4 is not
available, we cannot deduce directly from this inequality that λ ∈ σess(A

ω
γ ) as in the proof of

Lemma 3.6. However, we will use that supp vn ⊂ Sn (see (3.18)). Thus, there exists n0 ∈ N
so large that vn belongs to the domain of Aωγ (as an operator in Lqσ (Ω)) for n ≥ n0. We

observe that any subsequence {Skn} of {Sn} has the intersection property
⋂∞
n=1 S

kn = ∅. It
implies that the sequence {vn}n≥n0 is not compact in Lqσ (Ω). Consequently, nul′ (Aωγ −λI) =
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∞. We can prove in the same way that nul′ ((Aωγ )∗ − λI) = ∞. Hence def ′ (Aωγ − λI) = ∞,
and the operator Aωγ − λI is not semi-Fredholm. Thus, λ ∈ σess(A

ω
γ ). The inclusion Λωγ ⊂

σess(A
ω
γ ) now follows from the closedness of σess(A

ω
γ ). �

LEMMA 4.2. The inclusion σess(A
ω
γ ) ⊂ Λωγ holds.

PROOF. Let λ ∈ σess(A
ω
γ ). Then nul′ (Aωγ − λI) = ∞. This information enables us

to construct, by mathematical induction, a sequence {un} in D(Aωγ ) satisfying ‖un‖q = 1,
‖(Aωγ − λI)un‖q → 0 as n → ∞ and

dist(un;Ln−1) = 1(4.1)

for all n ∈ N , where Ln−1 denotes the linear hull of the functions u1, . . . , un−1: Suppose that
we have already constructed u1, . . . , uk satisfying ‖(Aωγ − λI)uj‖q ≤ 1/j for j = 1, . . . , k
and (4.1) for all n = 1, . . . , k. To εk+1 = 1/(k+ 1) there exists an infinite dimensional linear
manifold Mk+1 in D(Aωγ ) such that ‖(Aωγ − λI)u‖q ≤ εk+1 for all u ∈ Mk+1. Then due to

[25, Lemma IV.2.3], we find uk+1 ∈ Mk+1 such that ‖uk+1‖q = 1 and dist(uk+1;Lk) = 1.
The sequence {un} satisfies

‖(Aωγ − λI)un‖q ≤ 1

n
for all n ∈ N .(4.2)

Denote f n := (Aωγ − λI)un. Lemma 2.2 yields the estimates

‖un‖2,q + ‖(ω × x) · ∇un‖q ≤ c1 ‖f n‖q + (c2 + c1 |λ|)‖un‖q
≤ c1 + (c2 + c1 |λ|) := c8

(4.3)

with a constant c8 > 0 independent of n ∈ N . Furthermore, there exists ∇pn ∈ Lq(Ω)3 such
that

ν�un + (ω × x) · ∇un − ω × un − γ ∂1v
n − λun − ∇pn = f n(4.4)

in Ω and that by (4.3) ‖∇pn‖q ≤ c8 . The sequence {un} is bounded in the space D(Aωγ ).
Hence there exists a subsequence again denoted by {un} which is weakly convergent in
D(Aωγ ). This subsequence naturally preserves the property (4.2).

Put vn := (un+1 −un)/δn where δn = ‖un+1 −un‖q . Then {vn} is a sequence in the unit
sphere in Lqσ (Ω). It converges weakly to zero inD(Aωγ ) because (un+1 −un) ⇀ 0 in Lqσ (Ω)

as n → ∞ and by (4.1) δn ≥ 1. Hence {vn} converges strongly to 0 inW 1,q(Ω ∩BR(0))3 for
each R > 0. Note that the function vn satisfies the equation

ν�vn + (ω × x) · ∇vn−ω × vn − γ ∂1v
n − λvn − 1

δn
∇(pn+1 − pn)

= 1

δn
(f n+1 − f n)

(4.5)

in Ω . This equation, together with the information on the weak convergence of {vn} to zero
in D(Aωγ ), implies that the sequence {∇(pn+1 − pn)} weakly converges to zero in Lq(Ω)3.
Thus, the functions pn, which are given uniquely up to an additive constant, can be chosen so
that pn+1 − pn → 0 strongly in Lq(Ω ∩ BR(0)) for each R > 0.
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The sequence {vn} does not contain any subsequence, convergent in Lqσ (Ω). Indeed,
assume that {vkn} is a convergent subsequence of {vn} in Lqσ (Ω). This subsequence has the
same weak limit as {vn}, hence vkn ⇀ 0 in Lqσ (Ω) as n → ∞. Then even vkn → 0 in Lqσ (Ω)
as n → ∞. However, this is impossible because ‖vkn‖q = 1.

Suppose that R > 0 is so large that the domain {x ∈ R3 ; |x| > R} is a subset of Ω . Let
η be an infinitely differentiable cut-off function in Ω , with values in [0, 1], such that

η(x) =
{

0 for |x| ≤ R ,

1 for R + 1 ≤ |x| .
Put KR := {x ∈ R3 ; R < |x| < R + 1} and let B : W 1,q

0 (KR) �→ W
2,q
0 (KR)

3 be
the Bogovskij operator (see the proof of Lemma 2.3). Then V n := B(∇η · vn) belongs
to W 2,q

0 (KR)
3. If we extend it by zero to Ω � KR , it can be considered as an element of

W
2,q
0 (Ω)3. Due to the continuity of the operator B and the strong convergence of {vn} to 0

in W 1,q(Ω ∩ BR+1(0))3, we get that V n → 0 in W 2,q
0 (Ω)3.

Now we define wn(x) := η(x) vn(x)−V n(x). The function wn belongs toD(Aωγ ) and,
due to (4.5), satisfies the equation

ν�wn + (ω × x) · ∇wn − ω ×wn − γ ∂1w
n − λwn − 1

δn
∇[η(pn+1 − pn)](4.6)

= η

δn
(f n+1 − f n)− 1

δn
∇η(pn+1 − pn)+ ν (�η) vn + 2ν ∇η · ∇vn − ν�V n + λV n

+ (ω × x) · (∇η⊗ vn)− (ω × x) · ∇V n + ω × V n − γ (∂1η)v
n + γ ∂1V

n .

The right-hand side converges strongly to zero in Lq(Ω)3 as n → ∞; this follows from
the strong convergence of {vn} to zero in W 1,q (Ω ∩ BR+1(0))3, the strong convergence of
{pn+1 − pn} to zero in Lq(Ω ∩ BR+1(0)), from the information on the support of ∇η and
from the strong convergence of {V n} to zero in W 2,q(Ω)3. Hence

‖(Aωγ − λI)wn‖q → 0 as n → ∞ .(4.7)

Moreover, given ε > 0, there exists n0 ∈ N such that if n ∈ N , n ≥ n0, then

‖wn‖q ≤
(∫

|x|<R+1
|ηvn − V n|q dx

)1/q

+
(∫

R+1<|x|
|vn|q dx

)1/q

≤ ε + 1 ,

‖wn‖q ≥
(∫

R+1<|x|
|vn|qdx

)1/q

≥
(∫

Ω

|vn|qdx

)1/q

−
(∫

|x|<R+1
|vn|qdx

)1/q

≥ 1 − ε .

Let us now normalize the sequence {wn} by dividing each of the functions wn by its norm in
L
q
σ (Ω). In order to preserve a simple notation, we denote the normalized functions again by
wn. If we finally put wn(x) = 0 for x ∈ R3

�Ω , we obtain a non-compact sequence in the
unit sphere in Lqσ (R3), satisfying (4.7) with ‖ . ‖q being the norm in Lqσ (R3). Let us denote,
for a while, by (Aωγ )R3 the operator Aωγ , considered in Lqσ (R3). The existence of the sequence
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{wn} with the above properties implies that nul′ ((Aωγ )R3 − λI) = ∞. Hence λ 	∈ ρ((Aωγ )R3),
which, due to Theorem 1.1, yields λ ∈ Λωγ . �

LEMMA 4.3. Let λ ∈ C � Λωγ . Then either λ ∈ σp(A
ω
γ ) for all 1 < q < ∞ or

λ ∈ ρ(Aωγ ) for all 1 < q < ∞. Moreover, λ ∈ ρ(Aωγ ) when Re λ ≥ 0.

PROOF. Assume that 1 < q < ∞ and that λ ∈ C � Λωγ is an eigenvalue of (Aωγ )Ω,q
with nonzero eigenfunction v ∈ D((Aωγ )Ω,q)), where (Aωγ )Ω,q denotes the operator Aωγ on

L
q
σ (Ω). Let p with ∇p ∈ Lq(Ω)3 be a corresponding pressure function. Using the cut-off

function η, the set KR and Bogovskij’s operator B : W 1,q
0 (KR) �→ W

2,q
0 (KR)

3 from the
proof of Lemma 4.2, we get that w1 := ηv − V (where V = B(∇η · v) in KR , V = 0 in
R3

�KR) solves the equation

ν�w1 + (ω × x) · ∇w1 − ω ×w1 − γ ∂1w1 − λw1 − ∇(ηp)
= f := −∇η p + ν (�η) v + 2ν ∇η · ∇v − ν�V + λV(4.8)

+ (ω × x) · (∇η⊗ v)− (ω × x) · ∇V + ω × V − γ (∂1η)v + γ ∂1V

in R3 (cf. (4.6)).
First assume that q ≥ 3. Due to the boundedness of the operator B from W

2,q
0 (KR)

to W 3,q
0 (KR)

3 (see e.g. [15, p. 130]), the restriction of the vector field V to KR belongs to

W
3,q
0 (KR)

3. From this, we deduce that f ∈ W 1,q(KR). Hence, by Sobolev’s embedding
theorem, f ∈ Ls(KR)

3 for 1 < s < ∞. Since f is supported in KR , we have that f ∈
Ls(R3)3 for 1 < s < ∞. Now we may apply Theorem 1.1 (with s instead of q) to the whole
space problem (4.8) and conclude thatw1 ∈ D((Aωγ )R3,s ) ⊂ W 2,s (R3) and ∇(ηp) ∈ Ls(R3)3

because λ ∈ C�Λωγ belongs to the resolvent set of (Aωγ )R3,s . Similarly, we derive thatw2 :=
(1 − η)v + V , the solution of a problem analogous to (4.8) in the bounded domain ΩR+1 :=
Ω ∩ BR+1(0), satisfies w2 ∈ W 2,s (ΩR+1). Consequently, v ≡ w1 + w2 ∈ D((Aωγ )Ω,s) and
λ is an eigenvalue of (Aωγ )Ω,s .

If 1 < q < 3 then we obtain the same result for 1 < s < 3q/(3−q). However, repeating
finitely many times the same argument, we can extend the result to all 1 < s < ∞.

Finally, when s = 2, a variational argument implies that Re λ < 0 for all λ ∈ σ(Aωγ )

(cf. [14, Theorem 1.1]). �

Now Theorem 1.2 is completely proved.

REMARK 4.1. If q = 2 then the interesting question occurs whether Aωγ is a normal

operator in L2
σ (Ω). We have proved in our previous papers [13] and [14] that

(a) if γ = 0 and the domain Ω is axially symmetric with respect to the x1-axis then
Aωγ is normal,

(b) if γ 	= 0 or the domainΩ is not axially symmetric then Aωγ is not normal.
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