SHESTAKOV-UMIRBAEV REDUCTIONS AND NAGATA'S CONJECTURE ON A POLYNOMIAL AUTOMORPHISM

Dedicated to the memory of Professor Masayoshi Nagata

Shigeru Kuroda

(Received October 9, 2008, revised October 13, 2009)

Abstract

In 2003, Shestakov-Umirbaev solved Nagata's conjecture on an automorphism of a polynomial ring. In the present paper, we reconstruct their theory by using the "generalized Shestakov-Umirbaev inequality", which was recently given by the author. As a consequence, we obtain a more precise tameness criterion for polynomial automorphisms. In particular, we deduce that no tame automorphism of a polynomial ring admits a reduction of type IV.

1. Introduction. Let k be a field, n a natural number, and $k[\mathbf{x}]=k\left[x_{1}, \ldots, x_{n}\right]$ the polynomial ring in n variables over k. In the present paper, we discuss the structure of the automorphism group Aut $k[\mathbf{x}]$ of $k[\mathbf{x}]$ over k. Let $F: k[\mathbf{x}] \rightarrow k[\mathbf{x}]$ be an endomorphism of $k[\mathbf{x}]$ over k. We identify F with the n-tuple $\left(f_{1}, \ldots, f_{n}\right)$ of elements of $k[\mathbf{x}]$, where $f_{i}=$ $F\left(x_{i}\right)$ for each i. Then, F is an automorphism of $k[\mathbf{x}]$ if and only if the k-algebra $k[\mathbf{x}]$ is generated by f_{1}, \ldots, f_{n}. Note that the sum $\operatorname{deg} F:=\sum_{i=1}^{n} \operatorname{deg} f_{i}$ of the total degrees of f_{1}, \ldots, f_{n} is at least n whenever F is an automorphism. An automorphism F is said to be affine if $\operatorname{deg} F=n$, in which case there exist $\left(a_{i, j}\right)_{i, j} \in G L_{n}(k)$ and $\left(b_{i}\right)_{i} \in k^{n}$ such that $f_{i}=$ $\sum_{j=1}^{n} a_{i, j} x_{j}+b_{i}$ for each i. We say that F is elementary if there exist $l \in\{1, \ldots, n\}$ and $\phi \in$ $k\left[x_{1}, \ldots, x_{l-1}, x_{l+1}, \ldots, x_{n}\right]$ such that $f_{l}=x_{l}+\phi$ and $f_{i}=x_{i}$ for each $i \neq l$. The subgroup $\mathrm{T}_{k} k[\mathbf{x}]$ of $\mathrm{Aut}_{k} k[\mathbf{x}]$ generated by affine automorphisms and elementary automorphisms is called the tame subgroup, and elements of $\mathrm{T}_{k} k[\mathbf{x}]$ are called tame automorphisms.

It is a fundamental question in polynomial ring theory whether $\mathrm{T}_{k} k[\mathbf{x}]=\operatorname{Aut}_{k} k[\mathbf{x}]$ holds for each n. The equality is obvious if $n=1$. It also holds true if $n=2$, which was shown by Jung [4] in 1942 when k is a field of characteristic zero, and by van der Kulk [5] in 1953 when k is an arbitrary field. This is a consequence of the result that every automorphism but an affine automorphism of $k[\mathbf{x}]$ admits an elementary reduction if $n=2$. Here, we say that F admits an elementary reduction if $\operatorname{deg} F \circ E<\operatorname{deg} F$ for some elementary automorphism E, that is, there exist $l \in\{1, \ldots, n\}$ and $\phi \in k\left[f_{1}, \ldots, f_{l-1}, f_{l+1}, \ldots, f_{n}\right]$ such that $\operatorname{deg}\left(f_{l}+\phi\right)<$ $\operatorname{deg} f_{l}$. In the case of $n=2$, it follows from the result that, for each $F \in \operatorname{Aut}_{k} k[\mathbf{x}]$ with

[^0]$\operatorname{deg} F>2$, there exist elementary automorphisms E_{1}, \ldots, E_{r} for some $r \in N$ such that
$$
\operatorname{deg} F>\operatorname{deg} F \circ E_{1}>\cdots>\operatorname{deg} F \circ E_{1} \circ \cdots \circ E_{r}=2
$$

This implies that F is tame.
When $n=3$, the structure of Aut $_{k} k[\mathbf{x}]$ becomes far more difficult. In 1972, Nagata [8] conjectured that the automorphism

$$
\begin{equation*}
F=\left(x_{1}-2\left(x_{1} x_{3}+x_{2}^{2}\right) x_{2}-\left(x_{1} x_{3}+x_{2}^{2}\right)^{2} x_{3}, \quad x_{2}+\left(x_{1} x_{3}+x_{2}^{2}\right) x_{3}, x_{3}\right) \tag{1.1}
\end{equation*}
$$

is not tame. This famous conjecture was finally solved in the affirmative by ShestakovUmirbaev [10] in 2003 for a field k of characteristic zero. Therefore, $\mathrm{T}_{k} k[\mathbf{x}]$ is not equal to $\mathrm{Aut}_{k} k[\mathbf{x}]$ if $n=3$. We note that the question remains open for $n \geq 4$.

Shestakov-Umirbaev [10] showed that, if $\operatorname{deg} F>3$ for $F \in \mathrm{~T}_{k} k[\mathbf{x}]$, then F admits an elementary reduction, or there exists a sequence of elementary automorphisms E_{1}, \ldots, E_{r} such that $\operatorname{deg} F \circ E_{1} \circ \cdots \circ E_{r}<\operatorname{deg} F$, where $r \in\{2,3,4\}$. In the latter case, F satisfies some special conditions, and is said to admit a reduction of type I, II, III or IV according to the conditions. Nagata's automorphism is not affine, and does not admit neither an elementary reduction nor any one of the four types of reductions. Therefore, Shestakov-Umirbaev concluded that Nagata's automorphism is not tame. We note that there exist tame automorphisms which admit reductions of type I (see [1], [7] and [10]). However, it is not known whether there exist automorphisms admitting reductions of the other types.

To prove the criterion above, Shestakov-Umirbaev [9, Theorem 3] showed an inequality concerning the total degrees of polynomials, which was used as a crucial tool. This inequality was recently generalized by the author [6]. The purpose of this paper is to reconstruct the Shestakov-Umirbaev theory using the generalized inequality. As a consequence, we obtain a more precise tameness criterion for polynomial automorphisms. In particular, we deduce that no tame automorphism of $k[\mathbf{x}]$ admits a reduction of type IV (Theorem 7.1).

The main theorem (Theorem 2.1) is formulated in Section 2 using the notion of the weighted degree of a differential form. In Section 3, we derive some consequences of the generalized Shestakov-Umirbaev inequality. In Section 4, we investigate properties of "Shestakov-Umirbaev reductions", which is roughly speaking a generalization and refinement of the notions of reductions of types I, II and III. In Section 5, we prove some technical propositions which form the core of the proof of the main theorem. The main theorem is proved in Section 6 with the aid of the results in Sections 3, 4 and 5. In Section 7, we discuss relations with the original theory of Shestakov-Umirbaev. We conclude this paper with some remarks and an appendix.
2. Main result. In what follows, we assume that the field k is of characteristic zero. Let Γ be a finitely generated totally ordered \boldsymbol{Z}-module, and $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$ an n-tuple of elements of Γ with $w_{i}>0$ for $i=1, \ldots, n$. Since a finitely generated totally ordered \boldsymbol{Z} module is necessarily free, we sometimes regard Γ as a \boldsymbol{Z}-submodule of $\boldsymbol{Q} \otimes_{\mathbf{Z}} \Gamma$. We define the \mathbf{w}-weighted grading $k[\mathbf{x}]=\bigoplus_{\gamma \in \Gamma} k[\mathbf{x}]_{\gamma}$ by setting $k[\mathbf{x}]_{\gamma}$ to be the k-vector subspace of $k[\mathbf{x}]$ generated by monomials $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ with $\sum_{i=1}^{n} a_{i} w_{i}=\gamma$ for each $\gamma \in \Gamma$. For
$f \in k[\mathbf{x}] \backslash\{0\}$, we define the \mathbf{w}-degree $\operatorname{deg}_{\mathbf{w}} f$ of f to be the maximum among $\gamma \in \Gamma$ with $f_{\gamma} \neq 0$, where $f_{\gamma} \in k[\mathbf{x}]_{\gamma}$ for each γ such that $f=\sum_{\gamma \in \Gamma} f_{\gamma}$. We define $f^{\mathbf{w}}=f_{\delta}$, where $\delta=\operatorname{deg}_{\mathbf{w}} f$. In case $f=0$, we set $\operatorname{deg}_{\mathbf{w}} f=-\infty$, i.e., a symbol which is less than any element of Γ. For example, if $\Gamma=\mathbf{Z}$ and $w_{i}=1$ for $i=1, \ldots, n$, then the \mathbf{w}-degree is the same as the total degree. For each k-vector subspace V of $k[\mathbf{x}]$, we define $V^{\mathbf{w}}$ to be the k-vector subspace of $k[\mathbf{x}]$ generated by $\left\{f^{\mathbf{w}} ; f \in V \backslash\{0\}\right\}$. For each l-tuple $F=\left(f_{1}, \ldots, f_{l}\right)$ of elements of $k[\mathbf{x}]$ for $l \in N$, we define $\operatorname{deg}_{\mathbf{w}} F=\sum_{i=1}^{l} \operatorname{deg}_{\mathbf{w}} f_{i}$. For each $\sigma \in \mathfrak{S}_{l}$, we define $F_{\sigma}=\left(f_{\sigma(1)}, \ldots, f_{\sigma(l)}\right)$, where \mathfrak{S}_{l} is the symmetric group of $\{1, \ldots, l\}$. The identity permutation is denoted by id. For distinct $i_{1}, \ldots, i_{r} \in\{1, \ldots, l\}$, the cyclic permutation with $i_{1} \mapsto i_{2}, i_{2} \mapsto i_{3}, \ldots, i_{r} \mapsto i_{1}$ is denoted by $\left(i_{1}, \ldots, i_{r}\right)$.

The \mathbf{w}-degree of a differential form was defined by the author [6]. Let $\Omega_{k[\mathbf{x}] / k}$ be the module of differentials of $k[\mathbf{x}]$ over k, and $\bigwedge^{l} \Omega_{k[\mathbf{x}] / k}$ the l-th exterior power of the $k[\mathbf{x}]-$ module $\Omega_{k[\mathbf{x}] / k}$ for $l \in N$. Then, we may uniquely express each $\omega \in \bigwedge^{l} \Omega_{k[\mathbf{x}] / k}$ as

$$
\omega=\sum_{1 \leq i_{1}<\cdots<i_{l} \leq n} f_{i_{1}, \ldots, i_{l}} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{l}},
$$

where $f_{i_{1}, \ldots, i_{l}} \in k[\mathbf{x}]$ for each i_{1}, \ldots, i_{l}. Here, $d f$ denotes the differential of f for each $f \in k[\mathbf{x}]$. We define the \mathbf{w}-degree of ω by

$$
\operatorname{deg}_{\mathbf{w}} \omega=\max \left\{\operatorname{deg}_{\mathbf{w}} f_{i_{1}, \ldots, i_{l}} x_{i_{1}} \cdots x_{i_{l}} ; 1 \leq i_{1}<\cdots<i_{l} \leq n\right\} .
$$

By the assumption that $\omega_{i}>0$ for $i=1, \ldots, n$, it follows that

$$
\begin{equation*}
\operatorname{deg}_{\mathbf{w}} \omega \geq \min \left\{w_{i_{1}}+\cdots+w_{i_{l}} ; 1 \leq i_{1}<\cdots<i_{l} \leq n\right\}>0 \tag{2.1}
\end{equation*}
$$

if $\omega \neq 0$. For each $f \in k[\mathbf{x}] \backslash k$, we have

$$
\begin{equation*}
\operatorname{deg}_{\mathbf{w}} d f=\max \left\{\operatorname{deg}_{\mathbf{w}} f_{x_{i}} x_{i} ; i=1, \ldots, n\right\}=\operatorname{deg}_{\mathbf{w}} f \tag{2.2}
\end{equation*}
$$

since $d f=\sum_{i=1}^{n} f_{x_{i}} d x_{i}$. Here, $f_{x_{i}}$ denotes the partial derivative of f in x_{i} for each $f \in$ $k[\mathbf{x}]$ and $i \in\{1, \ldots, n\}$. We remark that $d f_{1} \wedge \cdots \wedge d f_{l} \neq 0$ if and only if f_{1}, \ldots, f_{l} are algebraically independent over k for $f_{1}, \ldots, f_{l} \in k[\mathbf{x}]$ (cf. [3, Proposition 1.2.9]). By definition, it follows that

$$
\begin{equation*}
\operatorname{deg}_{\mathbf{w}} d f_{1} \wedge \cdots \wedge d f_{l} \leq \sum_{i=1}^{l} \operatorname{deg}_{\mathbf{w}} d f_{i}=\sum_{i=1}^{l} \operatorname{deg}_{\mathbf{w}} f_{i} \tag{2.3}
\end{equation*}
$$

In (2.3), the equality holds if and only if $f_{1}^{\mathbf{w}}, \ldots, f_{l}^{\mathbf{w}}$ are algebraically independent over k. Actually, we can write $d f_{1} \wedge \cdots \wedge d f_{l}=d f_{1}^{\mathbf{w}} \wedge \cdots \wedge d f_{l}^{\mathbf{w}}+\eta$, where $\eta \in \bigwedge^{l} \Omega_{k[\mathbf{x}] / k}$ with $\operatorname{deg}_{\mathbf{w}} \eta<\sum_{i=1}^{l} \operatorname{deg}_{\mathbf{w}} d f_{i}$, and $\operatorname{deg}_{\mathbf{w}} d f_{1}^{\mathbf{w}} \wedge \cdots \wedge d f_{l}^{\mathbf{w}}=\sum_{i=1}^{l} \operatorname{deg}_{\mathbf{w}} d f_{i}$ if $d f_{1}^{\mathbf{w}} \wedge \cdots \wedge d f_{l}^{\mathbf{w}} \neq 0$. Therefore, if $f_{1}, \ldots, f_{n} \in k[\mathbf{x}]$ are algebraically independent over k, then

$$
\begin{equation*}
\sum_{i=1}^{n} \operatorname{deg}_{\mathbf{w}} f_{i}=\sum_{i=1}^{n} \operatorname{deg}_{\mathbf{w}} d f_{i} \geq \operatorname{deg}_{\mathbf{w}} d f_{1} \wedge \cdots \wedge d f_{n} \geq \sum_{i=1}^{n} w_{i}=:|\mathbf{w}| \tag{2.4}
\end{equation*}
$$

by (2.1), (2.2) and (2.3). As will be shown in Lemma 6.1(i), F is tame if $\operatorname{deg}_{\mathbf{w}} F=|\mathbf{w}|$ for $F \in \operatorname{Aut}_{k} k[\mathbf{x}]$.

Now, assume that $n \geq 3$, and let \mathcal{T} be the set of triples $F=\left(f_{1}, f_{2}, f_{3}\right)$ of elements of $k[\mathbf{x}]$ such that f_{1}, f_{2} and f_{3} are algebraically independent over k. We identify each $F \in \mathcal{T}$ with the injective homomorphism $F: k[\mathbf{y}] \rightarrow k[\mathbf{x}]$ of k-algebras defined by $F\left(y_{i}\right)=f_{i}$ for $i=1,2,3$, where $k[\mathbf{y}]=k\left[y_{1}, y_{2}, y_{3}\right]$ is the polynomial ring in three variables over k. In the case where $n=3$, we identify $k[\mathbf{y}]$ with $k[\mathbf{x}]$ by the identification $y_{i}=x_{i}$ for each i. Let \mathcal{E}_{i} denote the set of elementary automorphisms E of $k[\mathbf{y}]$ such that $E\left(y_{j}\right)=y_{j}$ for each $j \neq i$ for $i \in\{1,2,3\}$, and set $\mathcal{E}=\bigcup_{i=1}^{3} \mathcal{E}_{i}$. We say that $F \in \mathcal{T}$ admits an elementary reduction for the weight \mathbf{w} if $\operatorname{deg}_{\mathbf{w}} F \circ E<\operatorname{deg}_{\mathbf{w}} F$ for some $E \in \mathcal{E}$, and call $F \circ E$ an elementary reduction of F for the weight \mathbf{w}.

Let $F=\left(f_{1}, f_{2}, f_{3}\right)$ and $G=\left(g_{1}, g_{2}, g_{3}\right)$ be elements of \mathcal{T}. We say that the pair (F, G) satisfies the Shestakov-Umirbaev condition for the weight \mathbf{w} if the following conditions hold: (SU1) $g_{1}=f_{1}+a f_{3}^{2}+c f_{3}$ and $g_{2}=f_{2}+b f_{3}$ for some $a, b, c \in k$, and $g_{3}-f_{3}$ belongs to $k\left[g_{1}, g_{2}\right]$,
(SU2) $\quad \operatorname{deg}_{\mathbf{w}} f_{1} \leq \operatorname{deg}_{\mathbf{w}} g_{1}$ and $\operatorname{deg}_{\mathbf{w}} f_{2}=\operatorname{deg}_{\mathbf{w}} g_{2}$,
(SU3) $\quad\left(g_{1}^{\mathbf{W}}\right)^{2} \approx\left(g_{2}^{\mathbf{W}}\right)^{s}$ for some odd number $s \geq 3$,
(SU4) $\operatorname{deg}_{\mathbf{w}} f_{3} \leq \operatorname{deg}_{\mathbf{w}} g_{1}$, and $f_{3}^{\mathbf{w}}$ does not belong to $k\left[g_{1}^{\mathbf{w}}, g_{2}^{\mathbf{w}}\right]$,
(SU5) $\operatorname{deg}_{\mathbf{w}} g_{3}<\operatorname{deg}_{\mathbf{w}} f_{3}$,
(SU6) $\operatorname{deg}_{\mathbf{w}} g_{3}<\operatorname{deg}_{\mathbf{w}} g_{1}-\operatorname{deg}_{\mathbf{w}} g_{2}+\operatorname{deg}_{\mathbf{w}} d g_{1} \wedge d g_{2}$.
Here, $h_{1} \approx h_{2}$ (resp. $h_{1} \not \approx h_{2}$) denotes that h_{1} and h_{2} are linearly dependent (resp. linearly independent) over k for $h_{1}, h_{2} \in k[\mathbf{x}] \backslash\{0\}$. We say that $F \in \mathcal{T}$ admits a ShestakovUmirbaev reduction for the weight \mathbf{w} if there exist $G \in \mathcal{T}$ and $\sigma \in \mathfrak{S}_{3}$ such that (F_{σ}, G_{σ}) satisfies the Shestakov-Umirbaev condition, and call this G a Shestakov-Umirbaev reduction of F for the weight \mathbf{w}. As will be discussed in Section $4, F$ and G have various properties when (F, G) satisfies the Shestakov-Umirbaev condition. For example, it follows from (SU1) through (SU6) that $\operatorname{deg}_{\mathbf{w}} G<\operatorname{deg}_{\mathbf{w}} F$ (Property (P6)).

Here is the main theorem.
THEOREM 2.1. Assume that $n=3$, and $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}\right)$ is a triple of elements of Γ with $w_{i}>0$ for $i=1,2$, 3. If $\operatorname{deg}_{\mathbf{w}} F>|\mathbf{w}|$ for a tame automorphism F of $k[\mathbf{x}]$, then F admits an elementary reduction for the weight \mathbf{w} or a Shestakov-Umirbaev reduction for the weight \mathbf{w}.

In the case where $n=3$ and $\Gamma=\boldsymbol{Z}$, the condition that F admits a Shestakov-Umirbaev reduction for the weight $\mathbf{w}=(1,1,1)$ implies that F admits an elementary reduction or a reduction of one of the types I, II and III (Proposition 7.2). In view of this, the reader who is familiar with the theory of Shestakov-Umirbaev may notice that no tame automorphism of $k[\mathbf{x}]$ admits a reduction of type IV (Theorem 7.1). In fact, if F admits a reduction of type IV, then there exists an elementary automorphism E such that $F \circ E$ admits a reduction of type IV, but does not admit an elementary reduction nor any of the reductions of types I, II and III (cf. Appendix). In Section 7, however, we prove this result more directly.

We remark that F admits an elementary reduction for the weight \mathbf{w} if and only if $f_{i}^{\mathbf{w}}$ belongs to $k\left[f_{j}, f_{l}\right]^{\mathbf{w}}$ for some $i \in\{1,2,3\}$, where $j, l \in\{1,2,3\} \backslash\{i\}$ with $j<l$. In the case
where $\operatorname{deg}_{\mathbf{w}} f_{1}, \operatorname{deg}_{\mathbf{w}} f_{2}$ and $\operatorname{deg}_{\mathbf{w}} f_{3}$ are pairwise linearly independent over \boldsymbol{Z}, this condition implies that $\operatorname{deg}_{\mathbf{w}} f_{i}$ belongs to the subsemigroup of Γ generated by $\operatorname{deg}_{\mathbf{w}} f_{j}$ and $\operatorname{deg}_{\mathbf{w}} f_{l}$. Indeed, each $\phi \in k\left[f_{j}, f_{l}\right] \backslash\{0\}$ is a linear combination of $f_{j}^{p} f_{l}^{q}$ for $(p, q) \in\left(\boldsymbol{Z}_{\geq 0}\right)^{2}$ over k, in which $\operatorname{deg}_{\mathbf{w}} f_{j}^{p} f_{l}^{q} \neq \operatorname{deg}_{\mathbf{w}} f_{j}^{p^{\prime}} f_{l}^{q^{\prime}}$ if and only if $(p, q) \neq\left(p^{\prime}, q^{\prime}\right)$. Here, $\boldsymbol{Z}_{\geq 0}$ denotes the set of nonnegative integers. Hence, $\operatorname{deg}_{\mathbf{w}} \phi=\operatorname{deg}_{\mathbf{w}} f_{j}^{p} f_{l}^{q}=p \operatorname{deg}_{\mathbf{w}} f_{i}+q \operatorname{deg}_{\mathbf{w}} f_{l}$ for some $p, q \in \mathbf{Z}_{\geq 0}$.

Note that $\delta:=(1 / 2) \operatorname{deg}_{\mathbf{w}} f_{2}=(1 / 2) \operatorname{deg}_{\mathbf{w}} g_{2}$ belongs to Γ by (SU2) and (SU3). As will be shown in Section 4, (SU1) through (SU6) imply that $\delta<\operatorname{deg}_{\mathbf{w}} f_{i} \leq s \delta$ for each $i \in\{1,2,3\}$ (Property (P7)). Since $\delta>0$, it follows that $\operatorname{deg}_{\mathbf{w}} f_{i}<s \operatorname{deg}_{\mathbf{w}} f_{j}$ for each $i, j \in\{1,2,3\}$. Therefore, if F admits a Shestakov-Umirbaev reduction for the weight \mathbf{w}, then F satisfies the following conditions:
(i) One of $(1 / 2) \operatorname{deg}_{\mathbf{w}} f_{1},(1 / 2) \operatorname{deg}_{\mathbf{w}} f_{2}$ and $(1 / 2) \operatorname{deg}_{\mathbf{w}} f_{3}$ belongs to Γ.
(ii) For each $i, j \in\{1,2,3\}$, there exists $l \in N$ such that $\operatorname{deg}_{\mathbf{w}} f_{i}<l \operatorname{deg}_{\mathrm{w}} f_{j}$.

Now, we deduce that Nagata's automorphism is not tame by means of Theorem 2.1. Let $\Gamma=\boldsymbol{Z}^{3}$ equipped with the lexicographic order, i.e., the ordering defined by $a \leq b$ for $a, b \in \boldsymbol{Z}^{3}$ if the first nonzero component of $b-a$ is positive, and let $\mathbf{w}=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$, where \mathbf{e}_{i} is the i-th standard unit vector of \boldsymbol{R}^{3} for each i. Then, we have

$$
\operatorname{deg}_{\mathbf{w}} f_{1}=(2,0,3), \quad \operatorname{deg}_{\mathbf{w}} f_{2}=(1,0,2), \quad \operatorname{deg}_{\mathbf{w}} f_{3}=(0,0,1) .
$$

Hence, $\operatorname{deg}_{\mathbf{w}} F=(3,0,6)>(1,1,1)=|\mathbf{w}|$. The three vectors above are pairwise linearly independent over \boldsymbol{Z}, while any one of them is not contained in the subsemigroup of \boldsymbol{Z}^{3} generated by the other two vectors. Hence, F does not admit an elementary reduction for the weight \mathbf{w}. Since ($1 / 2$) $\operatorname{deg}_{\mathbf{w}} f_{i}$ does not belong to \boldsymbol{Z}^{3} for each $i \in\{1,2,3\}$, we know that F does not admit a Shestakov-Umirbaev reduction for the weight \mathbf{w}. By the definition of the lexicographic order, $l \operatorname{deg}_{\mathbf{w}} f_{3}=(0,0, l)$ is less than $\operatorname{deg}_{\mathbf{w}} f_{i}$ for $i=1,2$ for any $l \in N$, which also implies that F does not admit a Shestakov-Umirbaev reduction for the weight \mathbf{w}. Therefore, we have the following corollary to Theorem 2.1.

Corollary 2.2. Nagata's automorphism defined in (1.1) is not tame.

We define the rank of \mathbf{w} as the rank of the \boldsymbol{Z}-submodule of Γ generated by w_{1}, \ldots, w_{n}. If rank $\mathbf{w}=n$, then the dimension of the k-vector space $k[\mathbf{x}]_{\gamma}$ is at most one for each γ. Consequently, $\operatorname{deg}_{\mathbf{w}} f=\operatorname{deg}_{\mathbf{w}} g$ if and only if $f^{\mathbf{w}} \approx g^{\mathbf{w}}$ for each $f, g \in k[\mathbf{x}] \backslash\{0\}$. In such a case, the assertion of Theorem 2.1 can be proved more easily than the general case. In fact, a few steps can be skipped in the proof. We note that $\mathbf{w}=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ has the maximal rank three, and therefore it suffices to prove the assertion of Theorem 2.1 in this special case to conclude that Nagata's automorphism is not tame.
3. Inequalities. In this section, we derive some consequences from the generalized Shestakov-Umirbaev inequality [6, Theorem 2.1]. In what follows, we denote " $\operatorname{deg}_{\mathbf{w}}$ " by "deg" for the sake of simplicity. Let g be a nonzero element of $k[\mathbf{x}]$, and $\Phi=\sum_{i} \phi_{i} y^{i}$ a nonzero polynomial in a variable y over $k[\mathbf{x}]$, where $\phi_{i} \in k[\mathbf{x}]$ for each $i \in \boldsymbol{Z}_{\geq 0}$. We define
$\operatorname{deg}_{\mathbf{w}}^{g} \Phi$ to be the maximum among $\operatorname{deg} \phi_{i} g^{i}$ for $i \in \boldsymbol{Z}_{\geq 0}$. Then, $\operatorname{deg}_{\mathbf{w}}^{g} \Phi$ is not less than the \mathbf{w}-degree of $\Phi(g):=\sum_{i} \phi_{i} g^{i}$ in general. On the other hand, $\operatorname{deg}_{\mathbf{w}}^{g} \Phi^{(i)}=\operatorname{deg} \Phi^{(i)}(g)$ holds for sufficiently large i, where $\Phi^{(i)}$ denotes the i-th order derivative of Φ in y. We define $m_{\mathbf{w}}^{g}(\Phi)$ to be the minimal $i \in \mathbf{Z}_{\geq 0}$ such that $\operatorname{deg}_{\mathbf{w}}^{g} \Phi^{(i)}=\operatorname{deg} \Phi^{(i)}(g)$.

In the notation above, the generalized Shestakov-Umirbaev inequality is stated as follows. This inequality plays an important role in our theory, yet the proof is quite simple and short.

THEOREM 3.1 ([6, Theorem 2.1]). Assume that $f_{1}, \ldots, f_{r} \in k[\mathbf{x}]$ are algebraically independent over k, where $1 \leq r \leq n$. Then,

$$
\operatorname{deg} \Phi(g) \geq \operatorname{deg}_{\mathbf{w}}^{g} \Phi+m_{\mathbf{w}}^{g}(\Phi)(\operatorname{deg} \omega \wedge d g-\operatorname{deg} \omega-\operatorname{deg} g)
$$

holds for each $\Phi \in k\left[f_{1}, \ldots, f_{r}\right][y] \backslash\{0\}$ and $g \in k[\mathbf{x}] \backslash\{0\}$, where $\omega=d f_{1} \wedge \cdots \wedge d f_{r}$.
Here is a remark (see [6, Section 3] for detail). Define $\Phi^{\mathbf{w}, g}=\sum_{i \in I} \phi_{i}^{\mathbf{w}} y^{i}$ for each $\Phi \in k[\mathbf{x}][y]$, where I is the set of $i \in \mathbf{Z}_{\geq 0}$ such that $\operatorname{deg} \phi_{i} g^{i}=\operatorname{deg}_{\mathbf{w}}^{g} \Phi$. Then, $\left(\Phi^{(i)}\right)^{\mathbf{w}, g}=$ $\left(\Phi^{\mathbf{w}, g}\right)^{(i)}$ holds for each i. Moreover, $\operatorname{deg}_{\mathbf{w}}^{g} \Phi=\operatorname{deg} \Phi(g)$ if and only if $\Phi^{\mathbf{w}, g}\left(g^{\mathbf{w}}\right) \neq 0$. Hence, $m_{\mathbf{w}}^{g}(\Phi)$ is equal to the minimal $i \in \mathbf{Z}_{\geq 0}$ such that $\left(\Phi^{\mathbf{w}, g}\right)^{(i)}\left(g^{\mathbf{w}}\right) \neq 0$. Since k is of characteristic zero, this implies that $g^{\mathbf{w}}$ is a multiple roof of $\Phi^{\mathbf{w}, g}$ of order $m_{\mathbf{w}}^{g}(\Phi)$.

Now, let $S=\{f, g\}$ be a subset of $k[\mathbf{x}]$ such that f and g are algebraically independent over k, and ϕ a nonzero element of $k[S]$. We can uniquely express $\phi=\sum_{i, j} c_{i, j} f^{i} g^{j}$, where $c_{i, j} \in k$ for each $i, j \in \boldsymbol{Z}_{\geq 0}$. We define $\operatorname{deg}^{S} \phi$ to be the maximum among deg $f^{i} g^{j}$ for $i, j \in Z_{\geq 0}$ with $c_{i, j} \neq 0$. We will frequently use the fact that, if $\phi^{\mathbf{w}}$ does not belong to $k\left[f^{\mathbf{w}}, g^{\mathbf{w}}\right]$, or if $\operatorname{deg} \phi<\operatorname{deg} f$ and ϕ does not belong to $k[g]$, then $\operatorname{deg} \phi<\operatorname{deg}^{S} \phi$.

The following lemma is a consequence of Theorem 3.1. The statement (i) is an analogue of Shestakov-Umirbaev [10, Corollary 1], while the statement (ii) is essentially new.

Lemma 3.2. Let $S=\{f, g\}$ be as above, and ϕ a nonzero element of $k[S]$ such that $\operatorname{deg} \phi<\operatorname{deg}^{S} \phi$. Then, there exist $p, q \in \boldsymbol{N}$ with $\operatorname{gcd}(p, q)=1$ such that $\left(g^{\mathbf{w}}\right)^{p} \approx\left(f^{\mathbf{w}}\right)^{q}$. Furthermore, the following assertions hold:
(i) $\operatorname{deg} \phi \geq q \operatorname{deg} f+\operatorname{deg} d f \wedge d g-\operatorname{deg} f-\operatorname{deg} g$.
(ii) Let h be an element of $k[\mathbf{x}]$ such that f, g and h are algebraically independent over k. If $\operatorname{deg}(h+\phi)<\operatorname{deg} h$, then

$$
\operatorname{deg}(h+\phi) \geq q \operatorname{deg} f+\operatorname{deg} d f \wedge d g \wedge d h-\operatorname{deg} d f \wedge d h-\operatorname{deg} g .
$$

Proof. Let $\Phi=\sum_{i, j} c_{i, j} f^{i} y^{j}$ be an element of $k[f][y]$ such that $\Phi(g)=\phi$, where $c_{i, j} \in k$ for each $i, j \in \boldsymbol{Z}_{\geq 0}$, and let J be the set of $(i, j) \in\left(\boldsymbol{Z}_{\geq 0}\right)^{2}$ such that $c_{i, j} \neq 0$ and $\operatorname{deg} f^{i} g^{j}=\operatorname{deg}^{S} \phi$. Then, we have $\operatorname{deg}_{\mathbf{w}}^{g} \Phi=\operatorname{deg}^{S} \phi$ and

$$
\Phi^{\mathbf{w}, g}=\sum_{(i, j) \in J} c_{i, j}\left(f^{\mathbf{w}}\right)^{i} y^{j}
$$

Since $\operatorname{deg} \phi<\operatorname{deg}^{S} \phi$ by assumption, we get $\operatorname{deg} \Phi(g)<\operatorname{deg}_{\mathbf{w}}^{g} \Phi$. Hence, $m_{\mathbf{w}}^{g}(\Phi) \geq 1$ and $\Phi^{\mathbf{w}, g}\left(g^{\mathbf{w}}\right)=0$ as mentioned. In particular, J contains at least two elements, say (i, j) and
$\left(i^{\prime}, j^{\prime}\right)$, since $\Phi^{\mathbf{w}, g} \neq 0, g^{\mathbf{w}} \neq 0$ and $\Phi^{\mathbf{w}, g}\left(g^{\mathbf{w}}\right)=0$. Then, $\left(i-i^{\prime}\right) \operatorname{deg} f=\left(j^{\prime}-j\right) \operatorname{deg} g$. Since $\operatorname{deg} f>0$ and $\operatorname{deg} g>0$, this implies that $q \operatorname{deg} f=p \operatorname{deg} g$ for some $p, q \in N$ with $\operatorname{gcd}(p, q)=1$. For each $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right) \in J$, there exists $l \in \boldsymbol{Z}$ such that $i_{2}-i_{1}=-q l$ and $j_{2}-j_{1}=p l$. Hence, we can find $\left(i_{0}, j_{0}\right) \in J$ and $m \in N$ such that J is contained in $\left\{\left(i_{0}-q l, j_{0}+p l\right) ; l=0, \ldots, m\right\}$, and $\left(i_{0}-q m, j_{0}+p m\right)$ belongs to J. Note that $q m \leq i_{0}$. Putting $c_{l}^{\prime}=c_{i_{0}-q l, j_{0}+p l}$ for each l, we get

$$
\Phi^{\mathbf{w}, g}=\left(f^{\mathbf{w}}\right)^{i_{0}} y^{j_{0}} \sum_{l=0}^{m} c_{l}^{\prime}\left(f^{\mathbf{w}}\right)^{-q l} y^{p l}=c_{m}^{\prime}\left(f^{\mathbf{w}}\right)^{i_{0}} y^{j_{0}} \prod_{l=1}^{m}\left(\left(f^{\mathbf{w}}\right)^{-q} y^{p}-\alpha_{l}\right),
$$

where $\alpha_{1}, \ldots, \alpha_{m}$ are the roots of the equation $\sum_{l=0}^{m} c_{l}^{\prime} y^{l}=0$ in an algebraic closure of k. Since $\Phi^{\mathbf{w}, g}\left(g^{\mathbf{w}}\right)=0$, we get $\left(f^{\mathbf{w}}\right)^{-q}\left(g^{\mathbf{w}}\right)^{p}=\alpha_{l}$ for some l. Then, α_{l} belongs to $k \backslash\{0\}$, because $f^{\mathbf{w}}$ and $g^{\mathbf{w}}$ are in $k[\mathbf{x}] \backslash\{0\}$. Therefore, $\left(g^{\mathbf{w}}\right)^{p} \approx\left(f^{\mathbf{w}}\right)^{q}$. This proves the first assertion. By the expression above, we know that $\Phi^{\mathbf{w}, g}$ cannot have a multiple root of order greater than m. Hence, $m_{\mathrm{w}}^{g}(\Phi) \leq m$. Thus, it follows that

$$
\begin{equation*}
\operatorname{deg}_{\mathbf{w}}^{g} \Phi=\operatorname{deg}^{S} \phi=\operatorname{deg} f^{i_{0}} g^{j_{0}} \geq i_{0} \operatorname{deg} f \geq q m \operatorname{deg} f \geq q m_{\mathbf{w}}^{g}(\Phi) \operatorname{deg} f . \tag{3.1}
\end{equation*}
$$

By Theorem 3.1, together with (2.2) and (3.1), we get

$$
\begin{aligned}
& \operatorname{deg} \phi=\operatorname{deg} \Phi(g) \geq \operatorname{deg}_{\mathbf{w}}^{g} \Phi+m_{\mathbf{w}}^{g}(\Phi)(\operatorname{deg} d f \wedge d g-\operatorname{deg} f-\operatorname{deg} g) \\
& \quad \geq q m_{\mathbf{w}}^{g}(\Phi) \operatorname{deg} f+m_{\mathbf{w}}^{g}(\Phi)(\operatorname{deg} d f \wedge d g-\operatorname{deg} f-\operatorname{deg} g) \geq m_{\mathbf{w}}^{g}(\Phi) M,
\end{aligned}
$$

where $M=q \operatorname{deg} f+\operatorname{deg} d f \wedge d g-\operatorname{deg} f-\operatorname{deg} g$. Since $m_{\mathbf{w}}^{g}(\Phi) \geq 1$, the assertion (i) follows from the inequality above if $M>0$. If $M \leq 0$, then (i) is clear, since $\operatorname{deg} \phi \geq 0$.

To show (ii), consider the polynomial $\Psi:=h+\Phi$ in y over $k[f, h]$. Recall that $\operatorname{deg} \phi<$ $\operatorname{deg}^{S} \phi=\operatorname{deg}_{\mathrm{w}}^{g} \Phi$. By the assumption that $\operatorname{deg}(h+\phi)<\operatorname{deg} h$, we get $\operatorname{deg} \phi=\operatorname{deg} h$. Hence, $\operatorname{deg} h<\operatorname{deg}_{\mathbf{w}}^{g} \Phi$. Thus, we have $\operatorname{deg}_{\mathbf{w}}^{g} \Psi=\operatorname{deg}_{\mathbf{w}}^{g} \Phi$ and $\Psi^{\mathbf{w}, g}=\Phi^{\mathbf{w}, g}$, and so $m_{\mathrm{w}}^{g}(\Psi)=m_{\mathrm{w}}^{g}(\Phi)$. Therefore, $\operatorname{deg}_{\mathbf{w}}^{g} \Psi \geq q m_{\mathrm{w}}^{g}(\Psi) \operatorname{deg} f$ by (3.1). By Theorem 3.1, we obtain

$$
\begin{aligned}
& \operatorname{deg}(h+\phi)=\operatorname{deg} \Psi(g) \\
& \quad \geq \operatorname{deg}_{\mathbf{w}}^{g} \Psi+m_{\mathbf{W}}^{g}(\Psi) M^{\prime} \geq q m_{\mathbf{W}}^{g}(\Psi) \operatorname{deg} f+m_{\mathbf{w}}^{g}(\Psi) M^{\prime} \geq m_{\mathbf{w}}^{g}(\Psi)\left(q \operatorname{deg} f+M^{\prime}\right),
\end{aligned}
$$

where $M^{\prime}=\operatorname{deg} d f \wedge d h \wedge d g-\operatorname{deg} d f \wedge d h-\operatorname{deg} g$. Since $m_{\mathbf{w}}^{g}(\Psi)=m_{\mathbf{w}}^{g}(\Phi) \geq 1$, the inequality above implies the inequality in (ii).

Let p and q be natural numbers such that $\operatorname{gcd}(p, q)=1$ and $2 \leq p<q$. The following assertions are checked easily.
(1) $p q-p-q>0$.
(2) If $p q-p-q \leq q$, then $p=2$ and $q \geq 3$ is an odd number.
(3) If $p q-p-q \leq p$, then $p=2$ and $q=3$.

Lemma 3.3. Let f, g, ϕ and p, q be as in Lemma 3.2.
(i) Assume that $f^{\mathbf{w}}$ does not belong to $k\left[g^{\mathbf{w}}\right]$, and $g^{\mathbf{w}}$ does not belong to $k\left[f^{\mathbf{w}}\right]$. Then, $\operatorname{deg} \phi>\operatorname{deg} d f \wedge d g$.
(ii) Assume that $\operatorname{deg} f<\operatorname{deg} g$, $\operatorname{deg} \phi \leq \operatorname{deg} g$, and $g^{\mathbf{w}}$ does not belong to $k\left[f^{\mathbf{w}}\right]$. Then, $p=2, q \geq 3$ is an odd number, $\delta:=(1 / 2) \operatorname{deg} f$ belongs to Γ, and
(3.2) $\quad \operatorname{deg} \phi \geq(q-2) \delta+\operatorname{deg} d f \wedge d g, \quad \operatorname{deg} d \phi \wedge d f \geq q \delta+\operatorname{deg} d f \wedge d g$.

If $\operatorname{deg} \phi \leq \operatorname{deg} f$, then $q=3$.
Proof. Since $p \operatorname{deg} g=q \operatorname{deg} f$ and $\operatorname{gcd}(p, q)=1$, it follows that $\delta:=(1 / p) \operatorname{deg} f$ belongs to Γ. By Lemma 3.2(i), we have
(3.3) $\operatorname{deg} \phi \geq p \operatorname{deg} g+\operatorname{deg} d f \wedge d g-\operatorname{deg} f-\operatorname{deg} g=(p q-p-q) \delta+\operatorname{deg} d f \wedge d g$.

Since $\left(g^{\mathbf{w}}\right)^{p} \approx\left(f^{\mathbf{w}}\right)^{q}$ and $\operatorname{gcd}(p, q)=1$, the assumptions of (i) imply $2 \leq p<q$ or $2 \leq q<p$. Hence, $p q-p-q>0$ as claimed above. Therefore, $\operatorname{deg} \phi>\operatorname{deg} d f \wedge d g$ by (3.3), proving (i).

If the assumptions of (ii) are satisfied, we have $2 \leq p<q$, since $g^{\mathbf{w}}$ does not belong to $k\left[f^{\mathbf{w}}\right]$. Since $\operatorname{deg} \phi \leq \operatorname{deg} g=q \delta$ by assumption, (3.3) yields $p q-p-q<q$. Thus, $p=2$, and $q \geq 3$ is an odd number by the claim. By substituting $p=2$, we obtain from (3.3) the first inequality of (3.2). To show the second inequality of (3.2), consider $\Phi \in k[f][y]$ defined in the proof of Lemma 3.2. Recall that $m_{\mathbf{w}}^{g}(\Phi) \geq 1$, and $p m_{\mathbf{w}}^{g}(\Phi) \operatorname{deg} g=q m_{\mathbf{w}}^{g}(\Phi) \operatorname{deg} f \leq$ $\operatorname{deg}_{\mathbf{w}}^{g} \Phi$ by (3.1). By definition, $\operatorname{deg}_{\mathbf{w}}^{g} \Phi^{(1)}=\operatorname{deg}_{\mathbf{w}}^{g} \Phi-\operatorname{deg} g$ and $m_{\mathbf{w}}^{g}\left(\Phi^{(1)}\right)=m_{\mathbf{w}}^{g}(\Phi)-1$. Since $p=2$ and $\operatorname{deg} f<\operatorname{deg} g$, it follows from Theorem 2.1 that

$$
\begin{aligned}
\operatorname{deg} \Phi^{(1)}(g) & \geq \operatorname{deg}_{\mathbf{w}}^{g} \Phi^{(1)}+m_{\mathbf{w}}^{g}\left(\Phi^{(1)}\right) M^{\prime \prime} \\
& =\operatorname{deg}_{\mathbf{w}}^{g} \Phi-\operatorname{deg} g+\left(m_{\mathbf{w}}^{g}(\Phi)-1\right) M^{\prime \prime} \\
& \geq 2 m_{\mathbf{w}}^{g}(\Phi) \operatorname{deg} g-\operatorname{deg} g+\left(m_{\mathbf{w}}^{g}(\Phi)-1\right) M^{\prime \prime} \\
& =\left(m_{\mathbf{w}}^{g}(\Phi)-1\right)(\operatorname{deg} d f \wedge d g-\operatorname{deg} f+\operatorname{deg} g)+\operatorname{deg} g \\
& \geq \operatorname{deg} g=q \delta,
\end{aligned}
$$

where $M^{\prime \prime}=\operatorname{deg} d f \wedge d g-\operatorname{deg} f-\operatorname{deg} g$. Since $d \phi=\left(\sum_{i, j} c_{i, j} i f^{i-1} g^{j}\right) d f+\Phi^{(1)}(g) d g$, we have $d \phi \wedge d f=\Phi^{(1)}(g) d g \wedge d f$. Therefore,

$$
\operatorname{deg} d \phi \wedge d f=\operatorname{deg} \Phi^{(1)}(g)+\operatorname{deg} d f \wedge d g \geq q \delta+\operatorname{deg} d f \wedge d g
$$

This proves the second inequality of (3.2). If $\operatorname{deg} \phi \leq \operatorname{deg} f$, then $p q-p-q<p$ by (3.3), since $\operatorname{deg} f=p \delta$. Hence, $q=3$ as claimed above.

The following remark is useful. Assume that $f, g, h \in k[\mathbf{x}]$ and $\phi \in k[S]$ satisfy the following (i) through (iv), where $S=\{f, g\}$:
(i) f and g are algebraically independent over k,
(ii) $\operatorname{deg} f<\operatorname{deg} g$ and $\operatorname{deg} h<\operatorname{deg} g$,
(iii) $g^{\mathbf{w}}$ and $h^{\mathbf{w}}$ do not belong to $k\left[f^{\mathbf{w}}\right]$,
(iv) $\operatorname{deg}(h+\phi)<\operatorname{deg} h$.

Then, we claim that $\operatorname{deg} \phi<\operatorname{deg}^{S} \phi$, and that f, g and ϕ satisfy the assumptions of Lemma 3.3(ii). In fact, $\phi^{\mathbf{w}} \approx h^{\mathbf{w}}$ by (iv), and $h^{\mathbf{w}}$ does not belong to $k\left[f^{\mathbf{w}}, g^{\mathbf{w}}\right]$, since $h^{\mathbf{w}}$ does not belong to $k\left[f^{\mathbf{w}}\right]$ by (iii), and $\operatorname{deg} h<\operatorname{deg} g$ by (ii). Hence, $\phi^{\mathbf{w}}$ does not belong to $k\left[f^{\mathbf{w}}, g^{\mathbf{w}}\right]$.

Because ϕ is an element of $k[f, g]$, we get $\operatorname{deg} \phi<\operatorname{deg}^{S} \phi$. By (ii) and (iii), it follows that $\operatorname{deg} f<\operatorname{deg} g$, $\operatorname{deg} \phi=\operatorname{deg} h<\operatorname{deg} g$, and $g^{\mathbf{w}}$ does not belong to $k\left[f^{\mathbf{w}}\right]$. Thus, f, g and ϕ satisfy the required conditions. Therefore, the conclusion of Lemma 3.3(ii) holds in this situation.

The following theorem is a generalization of Shestakov-Umirbaev [9, Lemma 5].
Theorem 3.4 ([6, Theorem 5.2]). For any $\eta_{1}, \ldots, \eta_{l} \in \Omega_{k[\mathbf{x}] / k}$ with $l \geq 2$, there exist $1 \leq i_{1}<i_{2} \leq l$ such that

$$
\operatorname{deg} \eta_{i_{1}}+\operatorname{deg} \tilde{\eta}_{i_{1}}=\operatorname{deg} \eta_{i_{2}}+\operatorname{deg} \tilde{\eta}_{i_{2}} \geq \operatorname{deg} \eta_{i}+\operatorname{deg} \tilde{\eta}_{i}
$$

for $i=1, \ldots, l$, where $\tilde{\eta}_{i}=\eta_{1} \wedge \cdots \wedge \eta_{i-1} \wedge \eta_{i+1} \wedge \cdots \wedge \eta_{l}$ for each i.
Using Theorem 3.4, we prove a lemma needed later. Assume that $k_{1}, k_{2}, k_{3} \in k[\mathbf{x}]$ are algebraically independent over k, and $k_{1}^{\prime}:=k_{1}+a k_{3}^{2}+c k_{3}+\psi$ and $k_{2}^{\prime}:=k_{2}+\phi$ satisfy the following conditions for some $a, c \in k, \psi \in k\left[k_{2}\right]$ and $\phi \in k\left[k_{3}\right]$:
(a) $\operatorname{deg} k_{2}^{\prime}<\operatorname{deg} k_{1}^{\prime}$,
(b) $\operatorname{deg} k_{1}^{\prime}-\operatorname{deg} k_{2}^{\prime}<\operatorname{deg} k_{3}$,
(c) $\operatorname{deg} \psi<\operatorname{deg} k_{1}^{\prime}-\operatorname{deg} k_{2}^{\prime}+\operatorname{deg} k_{2}$,
(d) $\operatorname{deg} k_{3}+\operatorname{deg} d k_{1}^{\prime} \wedge d k_{2}^{\prime}<\operatorname{deg} k_{1}^{\prime}+\operatorname{deg} d k_{2}^{\prime} \wedge d k_{3}$.

LEMMA 3.5. Under the assumption above, we have

$$
\begin{equation*}
\operatorname{deg} d k_{1} \wedge d k_{3}=\operatorname{deg} k_{1}^{\prime}-\operatorname{deg} k_{2}^{\prime}+\operatorname{deg} d k_{2} \wedge d k_{3} \tag{3.4}
\end{equation*}
$$

If furthermore $\phi=b k_{3}+d$ for some $b, d \in k$, then the following assertions hold:
(i) If $a \neq 0$ and $\operatorname{deg} d k_{1}^{\prime} \wedge d k_{2}^{\prime}<\operatorname{deg} k_{3}$, then

$$
\operatorname{deg} d k_{1} \wedge d k_{2}=\operatorname{deg} k_{3}+\operatorname{deg} d k_{2} \wedge d k_{3}
$$

(ii) Assume that $\operatorname{deg} d k_{1}^{\prime} \wedge d k_{2}^{\prime}<\operatorname{deg} d k_{2} \wedge d k_{3}$. Then,

$$
\operatorname{deg} d k_{1} \wedge d k_{2}= \begin{cases}\operatorname{deg} k_{3}+\operatorname{deg} d k_{2} \wedge d k_{3} & \text { if } a \neq 0 \\ \operatorname{deg} d k_{1} \wedge d k_{3} & \text { if } a=0 \text { and } b \neq 0 \\ \operatorname{deg} d k_{2} \wedge d k_{3} & \text { if } a=b=0 \text { and } c \neq 0 \\ \operatorname{deg} d k_{1}^{\prime} \wedge d k_{2}^{\prime} & \text { if } a=b=c=0\end{cases}
$$

(iii) Assume that ψ belongs to k. Set $k_{1}^{\prime \prime}=k_{1}+a^{\prime} k_{3}^{2}+c^{\prime} k_{3}+\psi^{\prime}$ and $k_{2}^{\prime \prime}=k_{2}+b^{\prime} k_{3}+d^{\prime}$ for $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, \psi^{\prime} \in k$. If $\operatorname{deg} d k_{1}^{\prime} \wedge d k_{2}^{\prime}$ and $\operatorname{deg} d k_{1}^{\prime \prime} \wedge d k_{2}^{\prime \prime}$ are less than $\operatorname{deg} d k_{2} \wedge d k_{3}$, then $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=(a, b, c)$.

Proof. Put $\eta_{1}=d k_{1}^{\prime}, \eta_{2}=d k_{2}^{\prime}$ and $\eta_{3}=d k_{3}$. Then, $\operatorname{deg} \eta_{3}+\operatorname{deg} \tilde{\eta}_{3}<\operatorname{deg} \eta_{1}+\operatorname{deg} \tilde{\eta}_{1}$ by (d), since $\operatorname{deg} d k_{i}^{\prime}=\operatorname{deg} k_{i}^{\prime}$ for $i=1,2$ and $\operatorname{deg} d k_{3}=\operatorname{deg} k_{3}$ by (2.2). Hence, we have $\operatorname{deg} \eta_{1}+\operatorname{deg} \tilde{\eta}_{1}=\operatorname{deg} \eta_{2}+\operatorname{deg} \tilde{\eta}_{2}$ by Theorem 3.4. Since ϕ is an element of $k\left[k_{3}\right]$, we get $d \phi \wedge d k_{3}=0$. Hence, $d k_{2}^{\prime} \wedge d k_{3}=d\left(k_{2}+\phi\right) \wedge d k_{3}=d k_{2} \wedge d k_{3}$. Thus, we obtain

$$
\begin{aligned}
\operatorname{deg} d k_{1}^{\prime} \wedge d k_{3}=\operatorname{deg} \tilde{\eta}_{2} & =\operatorname{deg} \eta_{1}-\operatorname{deg} \eta_{2}+\operatorname{deg} \tilde{\eta}_{1} \\
& =\operatorname{deg} k_{1}^{\prime}-\operatorname{deg} k_{2}^{\prime}+\operatorname{deg} d k_{2}^{\prime} \wedge d k_{3} \\
& =\operatorname{deg} k_{1}^{\prime}-\operatorname{deg} k_{2}^{\prime}+\operatorname{deg} d k_{2} \wedge d k_{3}
\end{aligned}
$$

We show that $\operatorname{deg} d k_{1}^{\prime} \wedge d k_{3}=\operatorname{deg} d k_{1} \wedge d k_{3}$, which implies (3.4). Set $\psi_{1}=\Psi^{(1)}\left(k_{2}\right)$, where Ψ is an element of $k[y]$ satisfying $\Psi\left(k_{2}\right)=\psi$. Then, $\operatorname{deg} \psi_{1} \leq \operatorname{deg} \psi-\operatorname{deg} k_{2}$, and so $\operatorname{deg} \psi_{1}<\operatorname{deg} k_{1}^{\prime}-\operatorname{deg} k_{2}^{\prime}$ by (c). Hence,

$$
\begin{align*}
\operatorname{deg} \psi_{1} d k_{2} \wedge d k_{3} & =\operatorname{deg} \psi_{1}+\operatorname{deg} d k_{2} \wedge d k_{3} \\
& <\operatorname{deg} k_{1}^{\prime}-\operatorname{deg} k_{2}^{\prime}+\operatorname{deg} d k_{2} \wedge d k_{3}=\operatorname{deg} d k_{1}^{\prime} \wedge d k_{3} \tag{3.6}
\end{align*}
$$

by (3.5). Since $d \psi=\psi_{1} d k_{2}$, it follows that

$$
\begin{aligned}
d k_{1}^{\prime} \wedge d k_{3} & =d k_{1} \wedge d k_{3}+2 a k_{3} d k_{3} \wedge d k_{3}+c d k_{3} \wedge d k_{3}+d \psi \wedge d k_{3} \\
& =d k_{1} \wedge d k_{3}+\psi_{1} d k_{2} \wedge d k_{3}
\end{aligned}
$$

This equality and (3.6) imply $\operatorname{deg} d k_{1} \wedge d k_{3}=\operatorname{deg} d k_{1}^{\prime} \wedge d k_{3}$. This proves (3.4).
Next, assume that $\phi=b k_{3}+d$ for some $b, d \in k$. Then, we have

$$
\begin{align*}
d k_{1} \wedge d k_{2}= & d k_{1}^{\prime} \wedge d k_{2}^{\prime}+2 a k_{3} d k_{2} \wedge d k_{3} \tag{3.7}\\
& -b\left(d k_{1} \wedge d k_{3}+\psi_{1} d k_{2} \wedge d k_{3}\right)+c d k_{2} \wedge d k_{3}
\end{align*}
$$

By (b), (a) and (3.6), it follows that

$$
\begin{aligned}
\operatorname{deg} k_{3} d k_{2} \wedge d k_{3}=\operatorname{deg} k_{3}+\operatorname{deg} d k_{2} \wedge d k_{3} & >\operatorname{deg} k_{1}^{\prime}-\operatorname{deg} k_{2}^{\prime}+\operatorname{deg} d k_{2} \wedge d k_{3} \\
& >\max \left\{\operatorname{deg} d k_{2} \wedge d k_{3}, \operatorname{deg} \psi_{1} d k_{2} \wedge d k_{3}\right\}
\end{aligned}
$$

Since the right-hand side of the first inequality is equal to $\operatorname{deg} d k_{1} \wedge d k_{3}$ by (3.4), we get

$$
\begin{equation*}
\operatorname{deg} k_{3} d k_{2} \wedge d k_{3}>\operatorname{deg} d k_{1} \wedge d k_{3}>\max \left\{\operatorname{deg} d k_{2} \wedge d k_{3}, \operatorname{deg} \psi_{1} d k_{2} \wedge d k_{3}\right\} \tag{3.8}
\end{equation*}
$$

In view of (3.8), the assertions (i) and (ii) easily follow from (3.7).
Finally, we verify (iii). A direct computation shows that

$$
\begin{aligned}
d k_{1}^{\prime \prime} \wedge d k_{2}^{\prime \prime}-d k_{1}^{\prime} \wedge d k_{2}^{\prime}= & 2\left(a-a^{\prime}\right) k_{3} d k_{2} \wedge d k_{3}-\left(b-b^{\prime}\right) d k_{1} \wedge d k_{3} \\
& +\left(c-c^{\prime}\right) d k_{2} \wedge d k_{3}
\end{aligned}
$$

By assumption, the \mathbf{w}-degree of the left-hand side of this equality is less than that of $d k_{2} \wedge d k_{3}$, while those of $k_{3} d k_{2} \wedge d k_{3}$ and $d k_{1} \wedge d k_{3}$ are greater than that of $d k_{2} \wedge d k_{3}$ by (3.8). Therefore, it follows that $a=a^{\prime}, b=b^{\prime}$ and $c=c^{\prime}$.
4. Shestakov-Umirbaev reductions. In this section, we study the properties of Shestakov-Umirbaev reductions. In what follows, unless otherwise stated, $F=\left(f_{1}, f_{2}, f_{3}\right)$ and $G=\left(g_{1}, g_{2}, g_{3}\right)$ denote elements of \mathcal{T}, and $S_{i}:=\left\{f_{1}, f_{2}, f_{3}\right\} \backslash\left\{f_{i}\right\}$ for each i. We say that the pair (F, G) satisfies the weak Shestakov-Umirbaev condition for the weight \mathbf{w} if (SU4), (SU5), (SU6) and the following three conditions hold:
(SU1') $g_{1}-f_{1}, g_{2}-f_{2}$ and $g_{3}-f_{3}$ belong to $k\left[f_{2}, f_{3}\right], k\left[f_{3}\right]$ and $k\left[g_{1}, g_{2}\right]$, respectively,
(SU2') $\quad \operatorname{deg} f_{i} \leq \operatorname{deg} g_{i}$ for $i=1,2$,
(SU3') $\quad \operatorname{deg} g_{2}<\operatorname{deg} g_{1}$, and $g_{1}^{\mathbf{w}}$ does not belong to $k\left[g_{2}^{\mathbf{w}}\right]$.
It is easy to see that (SU1), (SU2) and (SU3) imply (SU1'), (SU2') and (SU3'), respectively. Hence, if (F, G) satisfies the Shestakov-Umirbaev condition for the weight \mathbf{w}, then (F, G) satisfies the weak Shestakov-Umirbaev condition for the weight \mathbf{w}. We say that
$F \in \mathcal{T}$ admits a weak Shestakov-Umirbaev reduction for the weight \mathbf{w} if $\left(F_{\sigma}, G_{\sigma}\right)$ satisfies the weak Shestakov-Umirbaev condition for the weight \mathbf{w} for some $\sigma \in \mathfrak{S}_{3}$ and $G \in \mathcal{T}$, and call this G a weak Shestakov-Umirbaev reduction of F for the weight \mathbf{w}. The weight \mathbf{w} is fixed throughout, and so is not explicitly mentioned in what follows.

We show that F and G have the following properties (P1) through (P12) if (F, G) satisfies the weak Shestakov-Umirbaev condition:
(P1) $\quad\left(g_{1}^{\mathbf{w}}\right)^{2} \approx\left(g_{2}^{\mathbf{W}}\right)^{s}$ for some odd number $s \geq 3$, and so $\delta:=(1 / 2) \operatorname{deg} g_{2}$ belongs to Γ.
(P2) $\quad \operatorname{deg} f_{3} \geq(s-2) \delta+\operatorname{deg} d g_{1} \wedge d g_{2}$.
(P3) $\operatorname{deg} f_{2}=\operatorname{deg} g_{2}$.
(P4) If $\operatorname{deg} \phi \leq \operatorname{deg} g_{1}$ for $\phi \in k\left[S_{1}\right]$, then there exist $a^{\prime}, c^{\prime} \in k$ and $\psi^{\prime} \in k\left[f_{2}\right]$ with $\operatorname{deg} \psi^{\prime} \leq(s-1) \delta$ such that $\phi=a^{\prime} f_{3}^{2}+c^{\prime} f_{3}+\psi^{\prime}$.
(P5) If $\operatorname{deg} f_{1}<\operatorname{deg} g_{1}$, then $s=3, g_{1}^{\mathbf{w}} \approx\left(f_{3}^{\mathbf{W}}\right)^{2}$, $\operatorname{deg} f_{3}=(3 / 2) \delta$ and

$$
\operatorname{deg} f_{1} \geq \frac{5}{2} \delta+\operatorname{deg} d g_{1} \wedge d g_{2}
$$

(P6) $\operatorname{deg} G<\operatorname{deg} F$.
(P7) $\quad \operatorname{deg} f_{2}<\operatorname{deg} f_{1}, \operatorname{deg} f_{3} \leq \operatorname{deg} f_{1}$, and $\delta<\operatorname{deg} f_{i} \leq s \delta$ for $i=1,2,3$.
(P8) $f_{i}^{\mathbf{w}}$ does not belong to $k\left[f_{j}^{\mathbf{w}}\right]$ if $i \neq j$ and $(i, j) \neq(1,3)$. If $f_{1}^{\mathbf{w}}$ belongs to $k\left[f_{3}^{\mathbf{w}}\right]$, then $s=3, f_{1}^{\mathbf{w}} \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$ and $\operatorname{deg} f_{3}=(3 / 2) \delta$.
(P9) If $\operatorname{deg} \phi \leq \operatorname{deg} f_{2}$ for $\phi \in k\left[S_{2}\right]$, then there exist $b^{\prime}, d^{\prime} \in k$ such that $\phi=b^{\prime} f_{3}+d^{\prime}$.
(P10) Assume that $k\left[g_{1}, g_{2}\right] \neq k\left[S_{3}\right]$. If $\operatorname{deg} \phi \leq \operatorname{deg} f_{1}$ for $\phi \in k\left[S_{3}\right]$, then there exist $c^{\prime \prime} \in k$ and $\psi^{\prime \prime} \in k\left[f_{2}\right]$ with $\operatorname{deg} \psi^{\prime \prime} \leq \min \{(s-1) \delta, \operatorname{deg} \phi\}$ such that $\phi=c^{\prime \prime} f_{1}+\psi^{\prime \prime}$. If $\operatorname{deg} \phi<\operatorname{deg} f_{1}$, then $c^{\prime \prime}=0$.
(P11) There exist $a, b, c, d \in k$ and $\psi \in k\left[f_{2}\right]$ with $\operatorname{deg} \psi \leq(s-1) \delta$ such that $g_{1}=$ $f_{1}+a f_{3}^{2}+c f_{3}+\psi$ and $g_{2}=f_{2}+b f_{3}+d$. If $a \neq 0$ or $b \neq 0$, then $\operatorname{deg} f_{3} \leq \operatorname{deg} f_{2}$. If $\operatorname{deg} f_{3} \leq \operatorname{deg} f_{2}$, then $s=3$. Furthermore, if ψ belongs to k, then a, b and c are uniquely determined by F in the following sense: If (F, G^{\prime}) satisfies the weak Shestakov-Umirbaev condition for $G^{\prime}=\left(g_{1}^{\prime}, g_{2}^{\prime}, g_{3}^{\prime}\right) \in \mathcal{T}$, where $g_{1}^{\prime}=f_{1}+a^{\prime} f_{3}^{2}+c^{\prime} f_{3}+\psi^{\prime}$ and $g_{2}^{\prime}=f_{2}+b^{\prime} f_{3}+d^{\prime}$ with $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, \psi^{\prime} \in k$, then $a^{\prime}=a, b^{\prime}=b$ and $c^{\prime}=c$.
(P12) The following equalities and inequality hold:

$$
\begin{aligned}
& \operatorname{deg} d f_{1} \wedge d f_{2}= \begin{cases}\operatorname{deg} f_{3}+\operatorname{deg} d f_{2} \wedge d f_{3} & \text { if } a \neq 0 \\
\operatorname{deg} d f_{1} \wedge d f_{3} & \text { if } a=0 \text { and } b \neq 0 \\
\operatorname{deg} d f_{2} \wedge d f_{3} & \text { if } a=b=0 \text { and } c \neq 0 \\
\operatorname{deg} d g_{1} \wedge d g_{2} & \text { if } a=b=c=0\end{cases} \\
& \operatorname{deg} d f_{1} \wedge d f_{3}=(s-2) \delta+\operatorname{deg} d f_{2} \wedge d f_{3} \\
& \operatorname{deg} d f_{2} \wedge d f_{3} \geq s \delta+\operatorname{deg} d g_{1} \wedge d g_{2} .
\end{aligned}
$$

To show these properties, we set $\phi_{i}=g_{i}-f_{i}$ for $i=1,2,3$. Since $\operatorname{deg} g_{3}<\operatorname{deg} f_{3}$ by (SU5), we have $\phi_{3}^{\mathbf{w}}=-f_{3}^{\mathbf{w}}$ and $\operatorname{deg} \phi_{3}=\operatorname{deg} f_{3}$. Hence, $\operatorname{deg} \phi_{3} \leq \operatorname{deg} g_{1}$ and $\phi_{3}^{\mathbf{w}}$ does not belong to $k\left[g_{1}^{\mathbf{w}}, g_{2}^{\mathbf{w}}\right]$ by (SU4). Set $U=\left\{g_{1}, g_{2}\right\}$. Since ϕ_{3} is contained in $k[U]$ by (SU1'), it follows that $\operatorname{deg} \phi_{3}<\operatorname{deg}^{U} \phi_{3}$. In view of (SU3'), we know that the assumptions of

Lemma 3.3(ii) hold for $f=g_{2}, g=g_{1}$ and $\phi=\phi_{3}$. Therefore, there exists an odd number $s \geq 3$ such that $\left(g_{1}^{\mathbf{W}}\right)^{2} \approx\left(g_{2}^{\mathbf{W}}\right)^{s}$ and

$$
\begin{gather*}
\operatorname{deg} f_{3}=\operatorname{deg} \phi_{3} \geq(s-2) \delta+\operatorname{deg} d g_{1} \wedge d g_{2}, \tag{4.1}\\
\operatorname{deg} d g_{2} \wedge d \phi_{3} \geq s \delta+\operatorname{deg} d g_{1} \wedge d g_{2} \tag{4.2}
\end{gather*}
$$

where $\delta=(1 / 2) \operatorname{deg} g_{2}$. This proves (P1) and (P2).
We show that g_{2} is expressed as in (P11). By (SU1'), $\phi_{2}=g_{2}-f_{2}$ belongs to $k\left[f_{3}\right]$. Hence, $\phi_{2}=\sum_{i=0}^{p} b_{i} f_{3}^{i}$ for some $b_{0}, \ldots, b_{p} \in k$ with $b_{p} \neq 0$, where $p \in Z_{\geq 0}$. By (SU2'), $\operatorname{deg} \phi_{2} \leq \max \left\{\operatorname{deg} g_{2}, \operatorname{deg} f_{2}\right\}=\operatorname{deg} g_{2}=2 \delta$. By (4.1), we get deg $f_{3}>\delta$, since $s \geq 3$. Thus, we must have $p \leq 1$ and $\phi_{2}=b_{1} f_{3}+b_{0}$, for otherwise $\operatorname{deg} \phi_{2}=p \operatorname{deg} f_{3}>p \delta \geq 2 \delta$, a contradiction. Therefore, g_{2} is expressed as stated.

We show (P3) and the first assertion of (P8) for $(i, j)=(2,3),(3,2)$ by contradiction. Supposing that $\operatorname{deg} f_{2} \neq \operatorname{deg} g_{2}$, we have $\operatorname{deg} f_{2}<\operatorname{deg} g_{2}$ by (SU2'). Since $g_{2}=f_{2}+b f_{3}+d$ as shown above, it follows that $g_{2}^{\mathbf{w}}=b f_{3}^{\mathbf{w}}$ and $b \neq 0$. Hence, $f_{3}^{\mathbf{w}}$ belongs to $k\left[g_{1}^{\mathbf{w}}, g_{2}^{\mathbf{w}}\right]$, a contradiction to (SU4). Therefore, $\operatorname{deg} f_{2}=\operatorname{deg} g_{2}$, proving (P3). Next, we show that $f_{2}^{\mathbf{w}} \not \approx f_{3}^{\mathbf{w}}$. Supposing that $f_{2}^{\mathbf{w}} \approx f_{3}^{\mathbf{w}}$, we have $\operatorname{deg} f_{2}=\operatorname{deg} f_{3}$. Hence, $\operatorname{deg} g_{2}=\operatorname{deg} f_{3}$ by (P3). Thus, $g_{2}^{\mathbf{w}}=f_{2}^{\mathbf{w}}+b f_{3}^{\mathbf{w}}$. Since $f_{2}^{\mathbf{w}} \approx f_{3}^{\mathbf{w}}$, we get $g_{2}^{\mathbf{w}} \approx f_{3}^{\mathbf{w}}$. This contradicts (SU4). Therefore, $f_{2}^{\mathbf{w}} \not \approx f_{3}^{\mathbf{w}}$. Now, suppose that $f_{3}^{\mathbf{w}}$ belongs to $k\left[f_{2}^{\mathbf{w}}\right]$. Then, $f_{3}^{\mathbf{w}} \approx\left(f_{2}^{\mathbf{w}}\right)^{l}$ for some $l \geq 2$, since $f_{2}^{\mathbf{w}} \not \approx f_{3}^{\mathbf{w}}$. Hence, $\operatorname{deg} f_{2}<\operatorname{deg} f_{3}$. From $\operatorname{deg} f_{2}=\operatorname{deg} g_{2}=\operatorname{deg}\left(f_{2}+b f_{3}+d\right)$, we get $b=0$, and $f_{2}^{\mathbf{w}}=g_{2}^{\mathbf{w}}$. Since $f_{3}^{\mathbf{w}} \approx\left(f_{2}^{\mathbf{w}}\right)^{l}$, it follows that $f_{3}^{\mathbf{w}} \approx\left(g_{2}^{\mathbf{w}}\right)^{l}$, a contradiction to (SU4). Therefore, $f_{3}^{\mathbf{w}}$ does not belong to $k\left[f_{2}^{\mathbf{w}}\right]$. Suppose that $f_{2}^{\mathbf{w}}$ belongs to $k\left[f_{3}^{\mathbf{w}}\right]$. Then, $f_{2}^{\mathbf{w}} \approx\left(f_{3}^{\mathbf{w}}\right)^{l}$ for some $l \in \boldsymbol{N}$, where $l \geq 2$ as above. This is impossible, because $\operatorname{deg} f_{2}=2 \delta$ by (P3) and $\operatorname{deg} f_{3}>\delta$ by (4.1). Therefore, $f_{2}^{\mathbf{w}}$ does not belong to $k\left[f_{3}^{\mathbf{w}}\right]$.

Since $g_{2}-f_{2}$ is contained in $k\left[f_{3}\right]$ by (SU1'), it follows that $d f_{2} \wedge d f_{3}-d g_{2} \wedge d f_{3}=$ $d\left(f_{2}-g_{2}\right) \wedge d f_{3}=0$. Moreover, $d f_{3}=d g_{3}-d \phi_{3}$. Hence,

$$
\begin{equation*}
d f_{2} \wedge d f_{3}=d g_{2} \wedge d f_{3}=d g_{2} \wedge d g_{3}-d g_{2} \wedge d \phi_{3} \tag{4.3}
\end{equation*}
$$

By (2.3), (SU6), (P1) and (4.2), we get

$$
\begin{aligned}
\operatorname{deg} d g_{2} \wedge d g_{3} \leq \operatorname{deg} g_{2}+\operatorname{deg} g_{3} & <\operatorname{deg} g_{1}+\operatorname{deg} d g_{1} \wedge d g_{2} \\
& =s \delta+\operatorname{deg} d g_{1} \wedge d g_{2} \leq \operatorname{deg} d g_{2} \wedge d \phi_{3}
\end{aligned}
$$

Then, it follows from (4.3) that $\operatorname{deg} d f_{2} \wedge d f_{3}=\operatorname{deg} d g_{2} \wedge d \phi_{3}$. Therefore, we obtain

$$
\begin{equation*}
\operatorname{deg} d f_{2} \wedge d f_{3} \geq s \delta+\operatorname{deg} d g_{1} \wedge d g_{2} \tag{4.4}
\end{equation*}
$$

by (4.2). This proves the last inequality of (P12).
The following lemma is useful in proving (P4), (P9), (P10) and (P11).
Lemma 4.1. Assume that $\operatorname{deg} f_{2}=2 \delta$ and $(s-2) \delta<\operatorname{deg} f_{3} \leq s \delta$ for some $\delta \in \Gamma$ and an odd number $s \geq 3$. Then, the following assertions hold:
(i) If $\operatorname{deg}^{S_{1}} \phi \leq s \delta$ for $\phi \in k\left[S_{1}\right]$, then there exist $a, c \in k$ and $\psi \in k\left[f_{2}\right]$ with $\operatorname{deg} \psi \leq$ $(s-1) \delta$ such that $\phi=a f_{3}^{2}+c f_{3}+\psi$. If $a \neq 0$, then $\operatorname{deg} f_{3}<\operatorname{deg} f_{2}$.
(ii) Assume that $\operatorname{deg} f_{1}>\operatorname{deg} f_{2}$. If $\operatorname{deg}^{S_{2}} \phi \leq \operatorname{deg} f_{2}$ for $\phi \in k\left[S_{2}\right]$, then there exist $b, d \in k$ such that $\phi=b f_{3}+d$.
(iii) Assume that $\operatorname{deg} f_{1} \leq s \delta$. If $\operatorname{deg}^{S_{3}} \phi \leq \operatorname{deg} f_{1}$ for $\phi \in k\left[S_{3}\right]$, then there exist $c^{\prime} \in k$ and $\psi^{\prime} \in k\left[f_{2}\right]$ with $\operatorname{deg} \psi^{\prime} \leq \min \left\{(s-1) \delta, \operatorname{deg}^{S_{3}} \phi\right\}$ such that $\phi=c^{\prime} f_{1}+\psi^{\prime} . \operatorname{If} \operatorname{deg}{ }^{S_{3}} \phi<\operatorname{deg} f_{1}$, then $c^{\prime}=0$.
(iv) If $\operatorname{deg} f_{3} \leq \operatorname{deg} f_{2}$, then $s=3$.

Proof. To show (i), write $\phi=\sum_{i, j} c_{i, j} f_{2}^{i} f_{3}^{j}$, where $c_{i, j} \in k$ for each $i, j \in \boldsymbol{Z}_{\geq 0}$. Since $\operatorname{deg}^{S_{1}} \phi \leq s \delta$ by assumption, $\operatorname{deg} f_{2}^{i} f_{3}^{j} \leq s \delta$ if $c_{i, j} \neq 0$ for $i, j \in \boldsymbol{Z}_{\geq 0}$. We verify that, if $\operatorname{deg} f_{2}^{i} f_{3}^{j} \leq s \delta$, then $i \leq(s-1) / 2$ and $j=0$, or $i=0$ and $j=1,2$. This shows that ϕ can be expressed as in (i). It follows that $\operatorname{deg} f_{2}^{i} f_{3}>2 i \delta+(s-2) \delta \geq s \delta$ if $i \geq 1$. If $i>(s-1) / 2$, then $2 i>s$, since s is an odd number. Hence, $\operatorname{deg} f_{2}^{i}=2 i \delta>s \delta$. If $j \geq 3$, then $\operatorname{deg} f_{3}^{j}>j(s-2) \delta \geq s \delta$, since $s \geq 3$. Thus, if $\operatorname{deg} f_{2}^{i} f_{3}^{j} \leq s \delta$, then (i, j) must be as stated above. Therefore, ϕ can be expressed as in (i). Assume that $a \neq 0$. Then, $\operatorname{deg} f_{3}^{2} \leq \operatorname{deg}^{S_{1}} \phi \leq s \delta$. Since $(s-2) \delta<\operatorname{deg} f_{3}$, we get $2(s-2)<s$. Thus, $s<4$, and hence $s=3$. Therefore, $\operatorname{deg} f_{3} \leq(s / 2) \delta=(3 / 2) \delta<2 \delta=\operatorname{deg} f_{2}$. This proves (i).

We can prove (ii) and (iii), similarly. Actually, if $\operatorname{deg} f_{1}>\operatorname{deg} f_{2}$ and if $\operatorname{deg} f_{1}^{i} f_{3}^{j} \leq$ $\operatorname{deg} f_{2}$ for $i, j \in \boldsymbol{Z}_{\geq 0}$, then $i=0$. Moreover, we have $j \leq 1$, since $\operatorname{deg} f_{3}^{2}>2(s-2) \delta \geq 2 \delta=$ $\operatorname{deg} f_{2}$. Therefore, $\phi=b f_{3}+d$ for some $b, d \in k$ in the case (ii). To show (iii), assume that $\operatorname{deg}^{S_{3}} \phi \leq \operatorname{deg} f_{1}$ for $\phi \in k\left[S_{3}\right]$. Clearly, $i=0$ or $(i, j)=(1,0)$ if $\operatorname{deg} f_{1}^{i} f_{2}^{j} \leq \operatorname{deg} f_{1}$, while $i=0$ if $\operatorname{deg} f_{1}^{i} f_{2}^{j}<\operatorname{deg} f_{1}$. Hence, $\phi=c^{\prime} f_{1}+\psi^{\prime}$ for some $c^{\prime} \in k$ and $\psi^{\prime} \in k\left[f_{2}\right]$ where $c^{\prime}=0$ if $\operatorname{deg}^{S_{3}} \phi<\operatorname{deg} f_{1}$. We note that $\operatorname{deg} \psi^{\prime} \leq \operatorname{deg}^{S_{3}} \phi$. Since deg ${ }^{S_{3}} \phi \leq \operatorname{deg} f_{1} \leq s \delta$ by assumption, it follows that deg $\psi^{\prime} \leq s \delta$. This implies that $\operatorname{deg} \psi^{\prime} \leq(s-1) \delta$, because s is an odd number, and $\operatorname{deg} \psi^{\prime}=\operatorname{deg} f_{2}^{l}=2 l \delta$ with $l \in \boldsymbol{Z}_{\geq 0}$ if $\psi^{\prime} \neq 0$. Therefore, we obtain $\operatorname{deg} \psi^{\prime} \leq \min \left\{(s-1) \delta, \operatorname{deg}^{S_{3}} \phi\right\}$.

The assertion (iv) follows from $(s-2) \delta<\operatorname{deg} f_{3} \leq \operatorname{deg} f_{2}=2 \delta$.
We show (P4) using Lemma 4.1(i). Since $\operatorname{deg} f_{2}=\operatorname{deg} g_{2}=2 \delta$ by (P3), and since $(s-2) \delta<\operatorname{deg} f_{3} \leq s \delta$ by (4.1) and (SU4), it suffices to check that deg ${ }^{S_{1}} \phi \leq s \delta$. Supposing the contrary, we have $\operatorname{deg} \phi<\operatorname{deg}^{S_{1}} \phi$, since $\operatorname{deg} \phi \leq \operatorname{deg} g_{1}=s \delta$ by the assumption of (P3). As shown above, $f_{i}^{\mathbf{w}}$ does not belong to $k\left[f_{j}^{\mathbf{w}}\right]$ for $(i, j)=(2,3),(3,2)$. Hence, $\operatorname{deg} \phi>$ $\operatorname{deg} d f_{2} \wedge d f_{3}$ by Lemma 3.3(i). Since $\operatorname{deg} d f_{2} \wedge d f_{3}>s \delta$ by (4.4), we get $\operatorname{deg} \phi>s \delta$, a contradiction. Thus, $\mathrm{deg}^{S_{1}} \phi \leq s \delta$, and thereby proving (P4).

We complete the proof of the former part of (P11). Since $\phi_{1}=g_{1}-f_{1}$ belongs to $k\left[S_{1}\right]$ by (SU1'), and since $\operatorname{deg} \phi_{1} \leq \max \left\{\operatorname{deg} g_{1}, \operatorname{deg} f_{1}\right\}=\operatorname{deg} g_{1}=s \delta$ by (SU2'), we know by (P4) that $g_{1}=f_{1}+\phi_{1}$ is expressed as in (P11). If $a \neq 0$, then $\operatorname{deg} f_{3}<\operatorname{deg} f_{2}$ by the last assertion of Lemma 4.1(i). Since $\operatorname{deg} f_{2}=\operatorname{deg} g_{2}$ and $g_{2}=f_{2}+b f_{3}+d$, we get $\operatorname{deg} f_{3} \leq \operatorname{deg} f_{2}$ if $b \neq 0$. By Lemma 4.1(iv), $\operatorname{deg} f_{3} \leq \operatorname{deg} f_{2}$ implies $s=3$. We have thus proved the former part of (P11).

We show that the conditions listed before Lemma 3.5 and the inequality $\operatorname{deg} d k_{1}^{\prime} \wedge d k_{2}^{\prime}<$ $\operatorname{deg} d k_{2} \wedge d k_{3}$ hold for $k_{i}=f_{i}$ for $i=1,2,3$ and $k_{i}^{\prime}=g_{i}$ for $i=1,2$. By the former part of
(P11), k_{1}^{\prime} and k_{2}^{\prime} are expressed in terms of k_{1}, k_{2} and k_{3} as required. Since $\operatorname{deg} g_{2}<\operatorname{deg} g_{1}$ by (SU3'), we get (a). Since $\operatorname{deg} g_{1}-\operatorname{deg} g_{2}=(s-2) \delta$, (b) follows from (4.1). By (P3), (c) is equivalent to $\operatorname{deg} \psi<\operatorname{deg} k_{1}^{\prime}$, which follows from $\operatorname{deg} \psi \leq(s-1) \delta<\operatorname{deg} g_{1}$. The rest of the conditions are due to (4.4), since $d f_{2} \wedge d f_{3}=d g_{2} \wedge d f_{3}$ as mentioned. Therefore, we obtain the estimation of $\operatorname{deg} d f_{1} \wedge d f_{2}$ described in (P12) from Lemma 3.5(ii). Owing to (3.4), we have

$$
\begin{equation*}
\operatorname{deg} d f_{1} \wedge d f_{3}=(s-2) \delta+\operatorname{deg} d f_{2} \wedge d f_{3} \tag{4.5}
\end{equation*}
$$

the second equality of (P12). The uniqueness of a, b and c claimed in (P11) follows from Lemma 3.5(iii). This completes the proofs of (P11) and (P12).

Here, we remark that

$$
\begin{equation*}
\operatorname{deg} d f_{1} \wedge d f_{3} \geq 2(s-1) \delta+\operatorname{deg} d g_{1} \wedge d g_{2} \tag{4.6}
\end{equation*}
$$

follows from (4.4) and (4.5). Since $\operatorname{deg} f_{1}+\operatorname{deg} f_{3} \geq \operatorname{deg} d f_{1} \wedge d f_{3}$, we obtain that

$$
\begin{equation*}
\operatorname{deg} f_{1} \geq 2(s-1) \delta+\operatorname{deg} d g_{1} \wedge d g_{2}-\operatorname{deg} f_{3} \tag{4.7}
\end{equation*}
$$

Now, we show (P5). By the assumption of (P5), we have $\operatorname{deg} f_{1}<\operatorname{deg} g_{1}$. Hence, $g_{1}^{\mathbf{w}}=\left(f_{1}+\phi_{1}\right)^{\mathbf{w}}=\phi_{1}^{\mathbf{w}}$, and so $\operatorname{deg} \phi_{1}=s \delta$. Since $g_{1}^{\mathbf{w}} \not \approx f_{3}^{\mathbf{w}}$ by (SU4), we get $\phi_{1}^{\mathbf{w}} \not \approx f_{3}^{\mathbf{w}}$. By (P11), we have $\phi_{1}=a f_{3}^{2}+c f_{3}+\psi$, in which $\operatorname{deg} \psi \leq(s-1) \delta$. From this, it follows that $a \neq 0$, for otherwise $\phi_{1}^{\mathbf{w}}=c f_{3}^{\mathbf{w}}$, a contradiction. Hence, $s=3$ by (P11). Moreover, $\phi_{1}^{\mathbf{w}} \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$, and thus $g_{1}^{\mathbf{w}} \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$. Therefore, $\operatorname{deg} f_{3}=(1 / 2) \operatorname{deg} g_{1}=(3 / 2) \delta$. The last inequality of (P5) follows from (4.7).

We show (P6) and (P7) with the aid of (P5). If $\operatorname{deg} g_{1}=\operatorname{deg} f_{1}$, then (P6) is clear, since $\operatorname{deg} g_{2}=\operatorname{deg} f_{2}$ by (P3), and $\operatorname{deg} g_{3}<\operatorname{deg} f_{3}$ by (SU5). Assume that $\operatorname{deg} f_{1}<\operatorname{deg} g_{1}$. Then,

$$
\operatorname{deg} f_{1}+\operatorname{deg} f_{3}>\frac{5}{2} \delta+\operatorname{deg} d g_{1} \wedge d g_{2}+\frac{3}{2} \delta=4 \delta+\operatorname{deg} d g_{1} \wedge d g_{2}
$$

by (P5). On the other hand, since $\operatorname{deg} g_{2}=2 \delta$, and $\operatorname{deg} g_{1}=s \delta=3 \delta$ by (P5), it follows from (SU6) that

$$
\operatorname{deg} g_{1}+\operatorname{deg} g_{3}<\operatorname{deg} g_{1}+\operatorname{deg} g_{1}-\operatorname{deg} g_{2}+\operatorname{deg} d g_{1} \wedge d g_{2}=4 \delta+\operatorname{deg} d g_{1} \wedge d g_{2}
$$

Therefore, $\operatorname{deg} G<\operatorname{deg} F$ by (P3). This proves (P6). If $\operatorname{deg} f_{1}=\operatorname{deg} g_{1}$, then $\operatorname{deg} f_{2}<$ $\operatorname{deg} f_{1}$ by (SU3'), and $\operatorname{deg} f_{3} \leq \operatorname{deg} f_{1}$ by (SU4). If $\operatorname{deg} f_{1}<\operatorname{deg} g_{1}$, then $\operatorname{deg} f_{1}>(5 / 2) \delta$ and $\operatorname{deg} f_{3}=(3 / 2) \delta$ by (P5). Hence, $\operatorname{deg} f_{i}<\operatorname{deg} f_{1}$ for $i=2,3$. This proves the first two statements of (P7). The last statement of (P7) follows from the conditions that (5/2) $\delta<$ $\operatorname{deg} f_{1} \leq \operatorname{deg} g_{1}=s \delta, \operatorname{deg} f_{2}=2 \delta$ and $(s-2) \delta<\operatorname{deg} f_{3} \leq \operatorname{deg} g_{1}$.

Let us complete the proof of (P8). First, we show that $\operatorname{deg} f_{i} \neq l \operatorname{deg} f_{j}$ holds for any $l \in N$ for $(i, j)=(1,2),(2,1)$, which proves that $f_{i}^{\mathbf{w}}$ does not belong to $k\left[f_{j}^{\mathbf{w}}\right]$. In the case $\operatorname{deg} f_{1}=\operatorname{deg} g_{1}$, we have $2 \operatorname{deg} f_{1}=s \operatorname{deg} f_{2}$ by (P1) and (P3). Since $s \geq 3$ is an odd number, the assertion is true. In the case $\operatorname{deg} f_{1}<\operatorname{deg} g_{1}$, we have $(5 / 2) \delta<\operatorname{deg} f_{1}<3 \delta$ by (P5). Since $\operatorname{deg} f_{2}=2 \delta$, the assertion is readily verified. Thus, $f_{i}^{\mathbf{w}}$ does not belong to $k\left[f_{j}^{\mathbf{w}}\right]$ for $(i, j)=(1,2),(2,1)$. Next, suppose to the contrary that $f_{3}^{\mathbf{w}}$ belongs to $k\left[f_{1}^{\mathbf{w}}\right]$. Since $\operatorname{deg} f_{3} \leq \operatorname{deg} f_{1}$ by (P7), it follows that $f_{3}^{\mathbf{w}} \approx f_{1}^{\mathbf{w}}$. In view of (P5), we get $\operatorname{deg} f_{1}=\operatorname{deg} g_{1}$.

Hence, $g_{1}^{\mathbf{w}}=f_{1}^{\mathbf{w}}+c f_{3}^{\mathbf{w}}$. Consequently, we obtain $f_{3}^{\mathbf{w}} \approx g_{1}^{\mathbf{w}}$, a contradiction to (SU4). Therefore, $f_{3}^{\mathbf{w}}$ does not belong to $k\left[f_{1}^{\mathbf{w}}\right]$. Since the cases $(i, j)=(2,3),(3,2)$ are done, this completes the proof of the former part of (P8). For the latter part, assume that $f_{1}^{\mathbf{w}}$ belongs to $k\left[f_{3}^{\mathbf{w}}\right]$. Then, $f_{1}^{\mathbf{w}} \approx\left(f_{3}^{\mathbf{w}}\right)^{l}$ for some $l \in N$. Since $f_{3}^{\mathbf{w}}$ does not belong to $k\left[f_{1}^{\mathbf{w}}\right]$, it follows that $l \geq 2$. Then, we must have $s=3$ and $l=2$. In fact, if $s \geq 5$ or $l \geq 3$, then $s \leq l(s-2)$, and so

$$
\operatorname{deg} f_{1} \leq \operatorname{deg} g_{1}=s \delta \leq l(s-2) \delta<l \operatorname{deg} f_{3},
$$

which contradicts $f_{1}^{\mathbf{w}} \approx\left(f_{3}^{\mathbf{w}}\right)^{l}$. Thus, $f_{1}^{\mathbf{w}} \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$. If $\operatorname{deg} f_{3} \neq(3 / 2) \delta$, then $\operatorname{deg} f_{1}=\operatorname{deg} g_{1}$ by (P5), and hence

$$
\operatorname{deg} f_{3}=\frac{1}{2} \operatorname{deg} f_{1}=\frac{1}{2} \operatorname{deg} g_{1}=\frac{1}{2} s \delta=\frac{3}{2} \delta,
$$

a contradiction. Therefore, $\operatorname{deg} f_{3}=(3 / 2) \delta$. This completes the proof of (P8).
We show (P9) using Lemma 4.1(ii). Since $\operatorname{deg} f_{2}<\operatorname{deg} f_{1}$ by (P7), we verify that, if $\operatorname{deg} \phi \leq \operatorname{deg} f_{2}$ for $\phi \in k\left[S_{2}\right]$, then $\operatorname{deg}^{S_{2}} \phi \leq \operatorname{deg} f_{2}$. Supposing the contrary, we get $\operatorname{deg} \phi<\operatorname{deg}^{S_{2}} \phi$. By Lemma 3.2(i), there exist $p, q \in N$ with $\operatorname{gcd}(p, q)=1$ such that $\left(f_{3}^{\mathbf{w}}\right)^{p} \approx\left(f_{1}^{\mathbf{w}}\right)^{q}$ and

$$
\begin{align*}
2 \delta=\operatorname{deg} f_{2} \geq \operatorname{deg} \phi & \geq q \operatorname{deg} f_{1}+\operatorname{deg} d f_{1} \wedge d f_{3}-\operatorname{deg} f_{1}-\operatorname{deg} f_{3} \\
& \geq(q-1) \operatorname{deg} f_{1}-\operatorname{deg} f_{3}+2(s-1) \delta+\operatorname{deg} d g_{1} \wedge d g_{2} \tag{4.8}
\end{align*}
$$

where the last inequality is due to (4.6). Since $f_{3}^{\mathbf{w}}$ does not belong to $k\left[f_{1}^{\mathbf{w}}\right]$ by (P8), we have $p \geq 2$. If $\operatorname{deg} f_{1}<\operatorname{deg} g_{1}$, then $s=3$, $\operatorname{deg} f_{1}>(5 / 2) \delta$ and $\operatorname{deg} f_{3}=(3 / 2) \delta$ by (P5), and hence the right-hand side of (4.8) is greater than

$$
(q-1) \frac{5}{2} \delta-\frac{3}{2} \delta+4 \delta+\operatorname{deg} d g_{1} \wedge d g_{2}>\frac{5}{2} q \delta>2 \delta
$$

a contradiction. Thus, $\operatorname{deg} f_{1}=\operatorname{deg} g_{1}=s \delta$. Then, the right-hand side of (4.8) is at least

$$
(q-1) s \delta-\frac{q}{p} s \delta+2(s-1) \delta+\operatorname{deg} d g_{1} \wedge d g_{2}>\frac{q s}{p}(p-1) \delta+(s-2) \delta
$$

which is less than 2δ by (4.8). Hence, $s=3$ and $(3 q / p)(p-1)<1$. Since $p \geq 2$, it follows that $3 \leq 3 q<1+1 /(p-1) \leq 2$, a contradiction. Therefore, we conclude that $\operatorname{deg}^{S_{2}} \phi \leq \operatorname{deg} f_{2}$, and thereby proving (P9).

To show (P10), assume that $k\left[S_{3}\right] \neq k\left[g_{1}, g_{2}\right]$, and take $\phi \in k\left[S_{3}\right]$ such that $\operatorname{deg} \phi \leq$ $\operatorname{deg} f_{1}$. By virtue of Lemma 4.1(iii), it suffices to check that $\operatorname{deg} \phi=\operatorname{deg}^{S_{3}} \phi$. Supposing the contrary, we get $\operatorname{deg} \phi<\operatorname{deg}^{S_{3}} \phi$. By (P8), $f_{i}^{\mathbf{w}}$ does not belong to $k\left[f_{j}^{\mathbf{w}}\right]$ for $(i, j)=$ $(1,2),(2,1)$. Hence, $\operatorname{deg} \phi>\operatorname{deg} d f_{1} \wedge d f_{2}$ by Lemma 3.3(i). Since $k\left[S_{3}\right] \neq k\left[g_{1}, g_{2}\right]$, we must have $(a, b, c) \neq(0,0,0)$. Hence, $\operatorname{deg} d f_{1} \wedge d f_{2} \geq \operatorname{deg} d f_{2} \wedge d f_{3}>s \delta$ by (P12). Thus, $\operatorname{deg} \phi>s \delta$. This is a contradiction, because $\operatorname{deg} \phi \leq \operatorname{deg} f_{1}$ and $\operatorname{deg} f_{1} \leq \operatorname{deg} g_{1}=s \delta$. Therefore, $\operatorname{deg} \phi=\operatorname{deg}^{S_{3}} \phi$, and thereby (P 10) is proved.

We have thus proved the following theorem.
THEOREM 4.2. If (F, G) satisfies the weak Shestakov-Umirbaev condition for $F, G \in$ \mathcal{T}, then (P 1) through (P 12) hold for F and G.

The following proposition is a consequence of Theorem 4.2.
Proposition 4.3. (i) If (F, G) satisfies the weak Shestakov-Umirbaev condition for $F, G \in \mathcal{T}$, then there exist $E_{i} \in \mathcal{E}_{i}$ for $i=1,2$ with $\operatorname{deg} G \circ E_{1}=\operatorname{deg} G$ such that $\left(F, G \circ E_{1} \circ E_{2}\right)$ satisfies the Shestakov-Umirbaev condition.
(ii) For $F \in \mathcal{T}$, it follows that F admits a Shestakov-Umirbaev reduction if and only if F admits a weak Shestakov-Umirbaev reduction.

Proof. (i) Assume that g_{1} and g_{2} are expressed as in (P11). Take $\Psi \in k[y]$ such that $\Psi\left(f_{2}\right)=\psi$, and define $E_{i} \in \mathcal{E}_{i}$ for $i=1,2$ by $E_{1}\left(y_{1}\right)=y_{1}-\Psi\left(y_{2}-d\right)$ and $E_{2}\left(y_{2}\right)=y_{2}-d$. Then, $\left(E_{1} \circ E_{2}\right)\left(y_{i}\right)=E_{i}\left(y_{i}\right)$ for $i=1,2$. Set $G^{\prime}=G \circ E_{1} \circ E_{2}$ and $g_{i}^{\prime}=G^{\prime}\left(y_{i}\right)$ for each i. We show that (F, G^{\prime}) satisfies (SU1) through (SU6). By definition, $g_{2}^{\prime}=g_{2}-d=f_{2}+b f_{3}$. If $b=0$, then $\Psi\left(g_{2}-d\right)=\Psi\left(f_{2}\right)=\psi$. Hence, $g_{1}^{\prime}=g_{1}-\Psi\left(g_{2}-d\right)=f_{1}+a f_{3}^{2}+c f_{3}$. Assume that $b \neq 0$. Then, $s=3$ by (P11). Hence, $\operatorname{deg} \psi \leq(s-1) \delta=2 \delta$. Since ψ belongs to $k\left[f_{2}\right]$ and since $\operatorname{deg} f_{2}=2 \delta$ by (P3), we may write $\psi=e f_{2}+e^{\prime}$, where $e, e^{\prime} \in k$. Then, $\Psi=e y_{2}+e^{\prime}$, and so

$$
\begin{equation*}
g_{1}^{\prime}=g_{1}-\left(e\left(g_{2}-d\right)+e^{\prime}\right)=f_{1}+a f_{3}^{2}+(c-b e) f_{3} . \tag{4.9}
\end{equation*}
$$

Thus, g_{1}^{\prime} and g_{2}^{\prime} are expressed as in (SU1). From the construction of g_{1}^{\prime} and g_{2}^{\prime}, it follows that $k\left[g_{1}^{\prime}, g_{2}^{\prime}\right]=k\left[g_{1}, g_{2}\right]$. Since (F, G) satisfies (SU1') by assumption, $g_{3}^{\prime}-f_{3}=g_{3}-f_{3}$ belongs to $k\left[g_{1}, g_{2}\right]$, and hence belongs to $k\left[g_{1}^{\prime}, g_{2}^{\prime}\right]$. Therefore, $\left(F, G^{\prime}\right)$ satisfies (SU1). We remark that (F, G) satisfies (SU2) and (SU3) on account of (P3), (SU2'), and (P1), and satisfies (SU4) through (SU6) by the definition of the weak Shestakov-Umirbaev condition. From this, we can easily conclude that (F, G^{\prime}) satisfies (SU2) through (SU6) on the assumption that $d g_{1}^{\prime} \wedge d g_{2}^{\prime}=d g_{1} \wedge d g_{2}$ and $\left(g_{i}^{\prime}\right)^{\mathbf{w}}=g_{i}^{\mathbf{w}}$ for $i=1$, 2. So, we verify these equalities. Since $g_{2}^{\prime}=g_{2}-d$, we have $\left(g_{2}^{\prime}\right)^{\mathbf{w}}=g_{2}^{\mathbf{w}}$ and $d g_{2}^{\prime}=d g_{2}$. Since $d g_{1}^{\prime}=d g_{1}-\Psi^{(1)}\left(g_{2}-d\right) d g_{2}$, we get $d g_{1}^{\prime} \wedge d g_{2}^{\prime}=d g_{1} \wedge d g_{2}$. If $b=0$, then $g_{1}^{\prime}=g_{1}-\psi$. Since $\operatorname{deg} \psi \leq(s-1) \delta<s \delta=\operatorname{deg} g_{1}$, we have $\left(g_{1}^{\prime}\right)^{\mathbf{w}}=g_{1}^{\mathbf{w}}$. If $b \neq 0$, then $\operatorname{deg} f_{3} \leq \operatorname{deg} f_{2}$ by (P11), and so $\operatorname{deg} f_{3}<\operatorname{deg} g_{1}$ by (SU3') and (P3). Hence, $\left(g_{1}^{\prime}\right)^{\mathbf{w}}=\left(g_{1}-\psi-b e f_{3}\right)^{\mathbf{w}}=g_{1}^{\mathbf{w}}$. Thus, it holds that $d g_{1}^{\prime} \wedge d g_{2}^{\prime}=$ $d g_{1} \wedge d g_{2}$ and $\left(g_{i}^{\prime}\right)^{\mathbf{w}}=g_{i}^{\mathbf{w}}$ for $i=1,2$. Thereby, $\left(F, G^{\prime}\right)$ satisfies (SU2) through (SU6). Therefore, $\left(F, G^{\prime}\right)$ satisfies the Shestakov-Umirbaev condition. Since $G \circ E_{1}=\left(g_{1}^{\prime}, g_{2}, g_{3}\right)$ and $\operatorname{deg} g_{1}^{\prime}=\operatorname{deg} g_{1}$, we have $\operatorname{deg} G \circ E_{1}=\operatorname{deg} G$.
(ii) It is clear that F admits a weak Shestakov-Umirbaev reduction if F admits a ShestakovUmirbaev reduction. The converse follows from (i).

The following remark is readily verified. If (F, G) satisfies (SU2'), (SU3'), (SU4), (SU5) and (SU6), then so does $\left(F^{\prime}, G^{\prime}\right)$. Here, $F^{\prime}=\left(f_{1}^{\prime}, f_{2}^{\prime}, f_{3}^{\prime}\right)$ is an element of \mathcal{T} such that $\operatorname{deg} f_{i}^{\prime} \leq \operatorname{deg} f_{i}$ for $i=1,2$ and $\left(f_{3}^{\prime}\right)^{\mathbf{w}} \approx f_{3}^{\mathbf{W}}+h$ for some $h \in k\left[g_{1}^{\mathbf{w}}, g_{2}^{\mathbf{w}}\right]$, and $G^{\prime}=$ $\left(c_{1} g_{1}, c_{2} g_{2}, c_{3} g_{3}\right)$, where $c_{1}, c_{2}, c_{3} \in k \backslash\{0\}$. Note that $F^{\prime}:=F \circ E$ satisfies this condition for $E \in \mathcal{E}_{i}$ such that $\operatorname{deg} F \circ E \leq \operatorname{deg} F$ if $i \in\{1,2\}$, and $(F \circ E)\left(y_{3}\right)^{\mathbf{w}} \approx f_{3}^{\mathbf{w}}+h$ for some $h \in k\left[g_{1}^{\mathbf{w}}, g_{2}^{\mathbf{w}}\right]$ if $i=3$. Moreover, (F^{\prime}, G^{\prime}) satisfies (SU1') if the following conditions hold:
(i) $c_{1} g_{1}-f_{1}^{\prime}$ belongs to $k\left[f_{2}, f_{3}\right]$ if $i=1$ and $c_{2}=c_{3}=1$,
(ii) $c_{1} g_{1}-f_{1}$ and $c_{2} g_{2}-f_{2}^{\prime}$ respectively belong to $k\left[f_{2}^{\prime}, f_{3}\right]$ and $k\left[f_{3}\right]$ if $i=2$ and $c_{3}=1$,
(iii) $c_{1} g_{1}-f_{1}, c_{2} g_{2}-f_{2}$ and $c_{3} g_{3}-f_{3}^{\prime}$ respectively belong to $k\left[f_{2}, f_{3}^{\prime}\right], k\left[f_{3}^{\prime}\right]$ and $k\left[g_{1}, g_{2}\right]$ if $i=3$.

To end this section, we prove a proposition which will be used in the proof of Theorem 2.1. We note that the case (ii) does not arise if $\operatorname{rank} \mathbf{w}=n$, $\operatorname{since} \operatorname{deg} f_{j}=\operatorname{deg} f_{3}$ implies $f_{j}^{\mathbf{w}} \approx f_{3}^{\mathbf{w}}$ if rank $\mathbf{w}=n$, while $f_{j}^{\mathbf{w}} \not \not \not f_{3}^{\mathbf{w}}$ for $j=1,2$ by (P8).

Proposition 4.4. Assume that (F, G) satisfies the weak Shestakov-Umirbaev condition. If $\operatorname{deg} F \circ E \leq \operatorname{deg} F$ for $E \in \mathcal{E}$, then the following assertions hold for $F^{\prime}:=F \circ E$, where $i \in\{1,2,3\}$.
(i) If $i=1$ or $i=2$, or if $i=3, k\left[f_{1}, f_{2}\right] \neq k\left[g_{1}, g_{2}\right]$ and $\operatorname{deg} f_{j} \neq \operatorname{deg} f_{3}$ for $j=1,2$, then $\left(F^{\prime}, G\right)$ satisfies the weak Shestakov-Umirbaev condition.
(ii) If $i=3, k\left[f_{1}, f_{2}\right] \neq k\left[g_{1}, g_{2}\right]$ and $\operatorname{deg} f_{j}=\operatorname{deg} f_{3}$ for some $j \in\{1,2\}$, then there exists $u \in k \backslash\{0\}$ such that $\left(F^{\prime}, G^{\prime}\right)$ or $\left(F_{\tau}^{\prime}, G^{\prime \prime}\right)$ satisfies the weak Shestakov-Umirbaev condition. Here, $G^{\prime}=\left(g_{1}^{\prime}, g_{2}^{\prime}, u g_{3}\right)$ and $G^{\prime \prime}=\left(g_{1}^{\prime}, g_{2}^{\prime},-u g_{3}\right)$ with $g_{j}^{\prime}=u^{-1} g_{j}$ and $g_{l}^{\prime}=g_{l}$ for $l \in\{1,2\} \backslash\{j\}$, and $\tau=(j, 3)$.

Proof. Set $f_{i}^{\prime}=F^{\prime}\left(y_{i}\right)$ and $\phi_{i}=f_{i}^{\prime}-f_{i}$. Then, $\operatorname{deg} f_{i}^{\prime} \leq \operatorname{deg} f_{i}$, since $\operatorname{deg} F^{\prime} \leq$ $\operatorname{deg} F$ by assumption. Hence, $\operatorname{deg} \phi_{i} \leq \max \left\{\operatorname{deg} f_{i}^{\prime}, \operatorname{deg} f_{i}\right\} \leq \operatorname{deg} f_{i}$. We note that ϕ_{i} belongs to $k\left[S_{i}\right]$. Besides, $g_{1}-f_{1}, g_{2}-f_{2}$ and $g_{3}-f_{3}$ belong to $k\left[f_{2}, f_{3}\right]$, $\left[f_{3}\right]$ and $k\left[g_{1}, g_{2}\right]$ by (SU1'), respectively, since (F, G) satisfies the weak Shestakov-Umirbaev condition.
(i) First, assume that $i \in\{1,2\}$, or $i=3$ and ϕ_{3} is contained in k. Since $\operatorname{deg} F^{\prime} \leq$ $\operatorname{deg} F$, we know by the remark above that (F^{\prime}, G) satisfies (SU2'), (SU3'), (SU4), (SU5) and (SU6) if $i \in\{1,2\}$. If $i=3$, then $\left(f_{3}^{\prime}\right)^{\mathbf{w}}=f_{3}^{\mathbf{w}}$, since $f_{3}^{\prime}-f_{3}=\phi_{3}$ belongs to k by assumption. Hence, $\left(F^{\prime}, G\right)$ satisfies the five conditions similarly. We check that (F^{\prime}, G) satisfies (SU1'). If $i=1$, then $g_{1}-f_{1}^{\prime}=\left(g_{1}-f_{1}\right)-\phi_{1}$ belongs to $k\left[S_{1}\right]$, since so do $g_{1}-f_{1}$ and ϕ_{1}. If $i=2$, then ϕ_{2} belongs to $k\left[f_{3}\right]$ by (P9), because ϕ_{2} is an element of $k\left[S_{2}\right]$ such that $\operatorname{deg} \phi_{2} \leq \operatorname{deg} f_{2}$. Hence, $k\left[f_{2}^{\prime}, f_{3}\right]=k\left[f_{2}, f_{3}\right]$, to which $g_{1}-f_{1}$ belongs. Moreover, $g_{2}-f_{2}^{\prime}=\left(g_{2}-f_{2}\right)-\phi_{2}$ belongs to $k\left[f_{3}\right]$, since so does $g_{2}-f_{2}$. If $i=3$, then ϕ_{3} is contained in k. Hence, $g_{1}-f_{1}$ and $g_{2}-f_{2}$ belong to $k\left[f_{2}, f_{3}^{\prime}\right]=k\left[f_{2}, f_{3}\right]$ and $k\left[f_{3}^{\prime}\right]=k\left[f_{3}\right]$, respectively. Moreover, $g_{3}-f_{3}^{\prime}=\left(g_{3}-f_{3}\right)-\phi_{3}$ belongs to $k\left[g_{1}, g_{2}\right]$, since so does $g_{3}-f_{3}$. Thus, $\left(F^{\prime}, G\right)$ satisfies (SU1 ${ }^{\prime}$) in each case. Therefore, $\left(F^{\prime}, G\right)$ satisfies the weak Shestakov-Umirbaev condition.

Next, assume that $i=3$ and ϕ_{3} is not contained in k. We show that $\left(f_{3}^{\prime}\right)^{\mathbf{w}}=f_{3}^{\mathbf{w}}+\alpha\left(g_{2}^{\mathbf{w}}\right)^{p}$ for some $\alpha \in k$ and $p \in N$, which implies that (G^{\prime}, F) satisfies (SU2'), (SU3'), (SU4), (SU5) and (SU6) by the remark. Since $f_{3}^{\prime}=f_{3}+\phi_{3}, \operatorname{deg} \phi_{3} \leq \operatorname{deg} f_{3}$, and $f_{3}^{\mathbf{w}}$ does not belong to $k\left[g_{2}^{\mathbf{w}}\right]$ by (SU4), it suffices to check that $\phi_{3}^{\mathbf{w}} \approx\left(g_{2}^{\mathbf{w}}\right)^{p}$ for some $p \in \boldsymbol{N}$. We establish that ϕ_{3} belongs to $k\left[f_{2}\right]$, and $f_{2}^{\mathbf{w}}=g_{2}^{\mathbf{w}}$. Since $\operatorname{deg} f_{1} \neq \operatorname{deg} f_{3}$ by assumption, we have $\operatorname{deg} f_{3}<\operatorname{deg} f_{1}$ by (P7). Hence, $\operatorname{deg} \phi_{3}<\operatorname{deg} f_{1}$. Since $k\left[f_{1}, f_{2}\right] \neq k\left[g_{1}, g_{2}\right]$ by assumption, it follows from (P10) that ϕ_{3} belongs to $k\left[f_{2}\right]$. Since ϕ_{3} is not contained in k, we get $\operatorname{deg} f_{2} \leq \operatorname{deg} \phi_{3}$. Hence, $\operatorname{deg} f_{2} \leq \operatorname{deg} f_{3}$. Since $\operatorname{deg} f_{2} \neq \operatorname{deg} f_{3}$ by assumption, we get $\operatorname{deg} f_{2}<\operatorname{deg} f_{3}$. By (P11), it follows that $b=0$, where we write $g_{2}=f_{2}+b f_{3}+d$. Hence, $g_{2}=f_{2}+d$, and so $g_{2}^{\mathbf{w}}=f_{2}^{\mathbf{w}}$. Thus, we have proved that $\left(f_{3}^{\prime}\right)^{\mathbf{w}}=f_{3}^{\mathbf{w}}+\alpha\left(g_{2}^{\mathbf{w}}\right)^{p}$ for some $\alpha \in k$ and $p \in N$, and thereby proved that $\left(G^{\prime}, F\right)$ satisfies the five conditions.

As for (SU1'), $g_{2}-f_{2}=d$ clearly belongs to $k\left[f_{3}^{\prime}\right]$. Since ϕ_{3} is contained in $k\left[f_{2}\right]$, we know that $g_{1}-f_{1}$ and $g_{3}-f_{3}^{\prime}=\left(g_{3}-f_{3}\right)-\phi_{3}$ belong to $k\left[f_{2}, f_{3}^{\prime}\right]=k\left[f_{2}, f_{3}\right]$ and $k\left[g_{1}, g_{2}\right]=k\left[g_{1}, g_{2}, f_{2}\right]$, respectively. Thus, $\left(F^{\prime}, G\right)$ satisfies (SU1'), and therefore satisfies the weak Shestakov-Umirbaev condition.
(ii) By (P7), $\operatorname{deg} f_{2}<\operatorname{deg} f_{1}=\operatorname{deg} f_{3}$ if $j=1$, and $\operatorname{deg} f_{3}=\operatorname{deg} f_{2}<\operatorname{deg} f_{1}$ if $j=2$. In view of (P5), $\operatorname{deg} f_{1}=\operatorname{deg} g_{1}$ in either case. Furthermore, if $j=1$, then we can write $g_{1}=f_{1}+c f_{3}+\psi$ and $g_{2}=f_{2}+d$ by (P11), since $a=b=0$ if $\operatorname{deg} f_{2}<\operatorname{deg} f_{3}$. We claim that $g_{j}=f_{j}+\alpha f_{3}+\psi^{1}$ and $\phi_{3}=\beta f_{j}+\psi^{2}$ for some $\alpha, \beta \in k$, and $\psi^{p} \in k\left[f_{2}\right]$ for $p=1,2$ such that $\operatorname{deg} \psi^{p}<\operatorname{deg} f_{1}$ if $j=1$, and $\operatorname{deg} \psi^{p} \leq 0$ if $j=2$. In fact, g_{1} has such an expression if $j=1$ as mentioned, since $\operatorname{deg} \psi \leq(s-1) \delta<s \delta=\operatorname{deg} g_{1}=\operatorname{deg} f_{1}$. If $j=1$, then $\operatorname{deg} \phi_{3} \leq \operatorname{deg} f_{3}=\operatorname{deg} f_{1}$. Hence, it follows from (P10) that ϕ_{3} is expressed as claimed. If $j=2$, then $\operatorname{deg} \phi_{3} \leq \operatorname{deg} f_{3}<\operatorname{deg} f_{1}$, and so ϕ_{3} belongs to $k\left[f_{2}\right]$ by (P10). Since $\operatorname{deg} f_{2}=\operatorname{deg} f_{3}$ and $\operatorname{deg} \phi_{3} \leq \operatorname{deg} f_{3}$, we have $\phi_{3}=\beta f_{2}+\psi^{2}$ for some $\beta, \psi^{2} \in k$. The expression of g_{2} is due to (P 11). Therefore, g_{j} and ϕ_{3} have expressions as claimed. Observe that $\operatorname{deg} \psi^{p}<\operatorname{deg} f_{j}$ for $p=1,2$. Moreover, $\operatorname{deg} f_{j}=\operatorname{deg} f_{3}$, while $f_{j}^{\mathbf{w}} \not \approx f_{3}^{\mathbf{w}}$ by (P8). Thus, we have

$$
\begin{equation*}
g_{j}^{\mathbf{w}}=f_{j}^{\mathbf{w}}+\alpha f_{3}^{\mathbf{w}}, \quad\left(f_{3}^{\prime}\right)^{\mathbf{w}}=\left(f_{3}+\phi_{3}\right)^{\mathbf{w}}=f_{3}^{\mathbf{w}}+\beta f_{j}^{\mathbf{w}}=(1-\alpha \beta) f_{3}^{\mathbf{w}}+\beta g_{j}^{\mathbf{w}} \tag{4.10}
\end{equation*}
$$

First, assume that $\alpha \beta \neq 1$. We show that (F^{\prime}, G^{\prime}) satisfies the weak Shestakov-Umirbaev condition for $u=1-\alpha \beta$. From the second equality of (4.10), we get $\left(f_{3}^{\prime}\right)^{\mathbf{w}} \approx f_{3}^{\mathbf{w}}+u^{-1} \beta g_{j}^{\mathbf{w}}$. Hence, (F^{\prime}, G^{\prime}) satisfies (SU2'), (SU3'), (SU4), (SU5) and (SU6) as remarked. We check (SU1'). If $j=1$, then $g_{2}^{\prime}=g_{2}$, and $g_{2}^{\prime}-f_{2}=g_{2}-f_{2}=d$ belongs to $k\left[f_{3}^{\prime}\right]$. If $j=2$, then $f_{3}^{\prime}-f_{3}=\phi_{3}$ is contained in $k\left[f_{2}\right]$ by (P10) as mentioned. Hence, $k\left[f_{2}, f_{3}^{\prime}\right]=k\left[f_{2}, f_{3}\right]$, to which $g_{1}^{\prime}-f_{1}=g_{1}-f_{1}$ belongs. A direct computation shows that

$$
\begin{aligned}
g_{j}^{\prime}-f_{j} & =\frac{1}{u} g_{j}-f_{j}=\frac{1}{1-\alpha \beta}\left(f_{j}+\alpha f_{3}+\psi^{1}\right)-f_{j}=\frac{1}{1-\alpha \beta}\left(\alpha f_{3}^{\prime}+\psi^{1}-\alpha \psi^{2}\right), \\
u g_{3}-f_{3}^{\prime} & =(1-\alpha \beta) g_{3}-\left(f_{3}+\beta f_{j}+\psi^{2}\right)=(1-\alpha \beta)\left(g_{3}-f_{3}\right)-\beta g_{j}+\beta \psi^{1}-\psi^{2} .
\end{aligned}
$$

By the first expression, $g_{j}^{\prime}-f_{j}$ belongs to $k\left[f_{2}, f_{3}^{\prime}\right]$ if $j=1$, and to $k\left[f_{3}^{\prime}\right]$ if $j=2$, since ψ^{1} and ψ^{2} belong to $k\left[f_{2}\right]$ if $j=1$, and to k if $j=2$. We show that $u g_{3}-f_{3}^{\prime}$ belongs to $k\left[g_{1}, g_{2}\right]$. Since $g_{3}-f_{3}$ and g_{j} belong to $k\left[g_{1}, g_{2}\right]$, it suffices to check that ψ^{1} and ψ^{2} belong to $k\left[g_{1}, g_{2}\right]$. This is obvious if $j=2$. If $j=1$, then $g_{2}=f_{2}+d$. Hence, $k\left[g_{2}\right]=k\left[f_{2}\right]$, to which ψ^{1} and ψ^{2} belong. Thus, $u g_{3}-f_{3}^{\prime}$ belongs to $k\left[g_{1}, g_{2}\right]$. This proves that (F^{\prime}, G^{\prime}) satisfies (SU1'), Therefore, (F^{\prime}, G^{\prime}) satisfies the weak Shestakov-Umirbaev condition.

Next, assume that $\alpha \beta=1$. We show that ($F_{\tau}^{\prime}, G^{\prime \prime}$) satisfies the weak ShestakovUmirbaev condition for $u=\alpha$. Write $F_{\tau}^{\prime}=\left(h_{1}, h_{2}, h_{3}\right)$. Then, $\operatorname{deg} h_{j}=\operatorname{deg} f_{3}^{\prime} \leq$ $\operatorname{deg} f_{3}=\operatorname{deg} f_{j}$ and $\operatorname{deg} h_{l}=\operatorname{deg} f_{l}$ for $l \in\{1,2\} \backslash\{j\}$. By the first equality of (4.10), we get $h_{3}^{\mathbf{w}}=f_{j}^{\mathbf{w}}=-\alpha f_{3}^{\mathbf{w}}+g_{j}^{\mathbf{w}}$ since $\beta^{-1}=\alpha$. Hence, ($F_{\tau}^{\prime}, G^{\prime \prime}$) satisfies (SU2'), (SU3'), (SU4), (SU5) and (SU6) by the remark. We check (SU1'). As in the case of $\alpha \beta \neq 1$ above, $g_{2}^{\prime \prime}-h_{2}=g_{2}-f_{2}=d$ belongs to $k\left[h_{3}\right]$ if $j=1$, and $g_{1}^{\prime \prime}-h_{1}=g_{1}-f_{1}$ belongs to $k\left[h_{2}, h_{3}\right]=k\left[f_{3}^{\prime}, f_{2}\right]=k\left[f_{2}, f_{3}\right]$ if $j=2$. A direct computation shows that

$$
\begin{aligned}
g_{j}^{\prime \prime}-h_{j} & =\frac{1}{\alpha} g_{j}-f_{3}^{\prime}=\frac{1}{\alpha}\left(f_{j}+\alpha f_{3}+\psi^{1}\right)-\left(f_{3}+\beta f_{j}+\psi^{2}\right)=\frac{1}{\alpha} \psi^{1}-\psi^{2}, \\
-u g_{3}-h_{3} & =-\alpha g_{3}-f_{j}=-\alpha\left(g_{3}-f_{3}\right)-\alpha f_{3}-f_{j}=-\alpha\left(g_{3}-f_{3}\right)-g_{j}+\psi^{1} .
\end{aligned}
$$

By the first expression, $g_{j}^{\prime \prime}-h_{j}$ belongs to $k\left[h_{2}, h_{3}\right]=k\left[f_{2}, f_{1}\right]$ if $j=1$, and to $k\left[h_{3}\right]$ if $j=2$. As in the case of $\alpha \beta \neq 1$ above, $-u g_{3}-h_{3}$ belongs to $k\left[g_{1}, g_{2}\right]$ by the second expression. Thus, $\left(F^{\prime}, G\right)$ satisfies (SU1'). Therefore, $\left(F^{\prime}, G\right)$ satisfies the weak ShestakovUmirbaev condition.
5. Analysis of reductions. In this section, we prove some technical propositions which will be needed in the proof of Theorem 2.1. First, we show a useful lemma.

Lemma 5.1. Assume that $\left(F_{\sigma}, G\right)$ satisfies the weak Shestakov-Umirbaev condition for some $\sigma \in \mathfrak{S}_{3}$. Then, the following assertions hold:
(i) If $\operatorname{deg} f_{i}<\operatorname{deg} f_{1}$ for $i=2,3$, then $\sigma(1)=1$.
(ii) If $\left(F_{\sigma}, G\right)$ satisfies the Shestakov-Umirbaev condition, and if $\sigma(1)=1$ and $\operatorname{deg} d f_{1} \wedge d f_{2}<\operatorname{deg} f_{1}$, then $\sigma=\operatorname{id}$ and $\left(f_{1}, f_{2}\right)=\left(g_{1}, g_{2}\right)$.
(iii) If $\operatorname{deg} f_{3}<\operatorname{deg} f_{2}<\operatorname{deg} f_{1}$ and $2 \operatorname{deg} f_{1}<3 \operatorname{deg} f_{2}$, then either $3 \operatorname{deg} f_{2}=4 \operatorname{deg} f_{3}$, or $2 \operatorname{deg} f_{1}=s \operatorname{deg} f_{3}$ for some odd number $s \geq 3$.
(iv) If $\operatorname{deg} d f_{2} \wedge d f_{3}<\operatorname{deg} d f_{1} \wedge d f_{3}<\operatorname{deg} d f_{1} \wedge d f_{2}$, then one of the following holds:
(1) $\sigma=\operatorname{id}$ and $2 \operatorname{deg} g_{1}=3 \operatorname{deg} f_{2}$.
(2) $\quad \sigma=(1,2,3)$ and $2 \operatorname{deg} f_{2}=s \operatorname{deg} f_{3}$ for some odd number $s \geq 3$.

Proof. (i) By (P7), we have $\operatorname{deg} f_{\sigma(i)} \leq \operatorname{deg} f_{\sigma(1)}$ for $i=2$, 3. Hence, $\sigma(1)=1$ if $\operatorname{deg} f_{i}<\operatorname{deg} f_{1}$ for $i=2,3$.
(ii) Since $\sigma(1)=1$ by assumption, we have

$$
\begin{aligned}
\operatorname{deg} f_{1} & =\operatorname{deg} f_{\sigma(1)} \leq \operatorname{deg} g_{1} \\
& =s \delta<\operatorname{deg} d f_{\sigma(2)} \wedge d f_{\sigma(3)}<\operatorname{deg} d f_{\sigma(1)} \wedge d f_{\sigma(3)}=\operatorname{deg} d f_{1} \wedge d f_{\sigma(3)}
\end{aligned}
$$

by (SU2') and the last two conditions of (P12). Since $\operatorname{deg} d f_{1} \wedge d f_{2}<\operatorname{deg} f_{1}$ by assumption, we get $\sigma(3) \neq 2$. Hence, $\sigma(3)=3$, and so $\sigma=$ id. Because $(F, G)=\left(F_{\sigma}, G\right)$ satisfies the Shestakov-Umirbaev condition by assumption, we may write g_{1} and g_{2} as in (SU1). It follows from the inequality above that the \mathbf{w}-degrees of $d f_{1} \wedge d f_{3}$ and $d f_{2} \wedge d f_{3}$ are greater than $\operatorname{deg} f_{1}$, and hence greater than $\operatorname{deg} d f_{1} \wedge d f_{2}$. This implies that $a=b=c=0$ by the first equality of (P12). Therefore, we obtain $\left(f_{1}, f_{2}\right)=\left(g_{1}, g_{2}\right)$.
(iii) Since $\operatorname{deg} f_{i}<\operatorname{deg} f_{1}$ for $i=2,3$ by assumption, we have $\sigma(1)=1$ by (i). Hence, $\sigma=\mathrm{id}$ or $\sigma=(2,3)$. First, assume that $\sigma=\mathrm{id}$. Then, $\operatorname{deg} f_{2}=\operatorname{deg} g_{2}=2 \delta$ by (P3). Since $2 \operatorname{deg} f_{1}<3 \operatorname{deg} f_{2}$ by assumption, we have $\operatorname{deg} f_{1}<(3 / 2) \operatorname{deg} f_{2}=3 \delta \leq s \delta=$ $\operatorname{deg} g_{1}$. Hence, $\operatorname{deg} f_{3}=(3 / 2) \delta$ by (P5). Therefore, we obtain $3 \operatorname{deg} f_{2}=6 \delta=4 \operatorname{deg} f_{3}$. Next, assume that $\sigma=(2,3)$. Then,

$$
\frac{3}{2} \delta<2 \delta=\operatorname{deg} f_{\sigma(2)}=\operatorname{deg} f_{3}<\operatorname{deg} f_{2}=\operatorname{deg} f_{\sigma(3)}
$$

Hence, $\operatorname{deg} f_{1}=\operatorname{deg} g_{1}$ in view of (P5). By (P1), we have $2 \operatorname{deg} g_{1}=s \operatorname{deg} g_{2}$ for some odd number $s \geq 3$. By (P3), $\operatorname{deg} g_{2}=\operatorname{deg} f_{\sigma(2)}=\operatorname{deg} f_{3}$. Therefore, $2 \operatorname{deg} f_{1}=s \operatorname{deg} f_{3}$.
(iv) Set $\gamma_{i}=\operatorname{deg} d f_{p} \wedge d f_{q}$ for each i, where $p, q \in \boldsymbol{N} \backslash\{i\}$ with $1 \leq p<q \leq 3$. In view of the first equality of (P12), we know that there exist four possibilities for $\gamma_{\sigma(3)}=$ $\operatorname{deg} d f_{\sigma(1)} \wedge d f_{\sigma(2)}$. Since $\gamma_{1}<\gamma_{2}<\gamma_{3}$ by assumption, we have $\gamma_{\sigma(3)} \neq \gamma_{\sigma(i)}$ for $i=$ 1,2. Hence, the second and the third cases do not arise. Accordingly, $\gamma_{\sigma(3)}$ must be either $\operatorname{deg} f_{\sigma(3)}+\gamma_{\sigma(1)}$ or $\operatorname{deg} d g_{1} \wedge d g_{2}$, where $a \neq 0$ or $a=b=c=0$, respectively. In the former case, $\gamma_{\sigma(2)}=(s-2) \delta+\gamma_{\sigma(1)}<\operatorname{deg} f_{\sigma(3)}+\gamma_{\sigma(1)}=\gamma_{\sigma(3)}$ by the second equality of (P12) and (P2). Hence, $\gamma_{\sigma(1)}<\gamma_{\sigma(2)}<\gamma_{\sigma(3)}$. Thus, we get $\sigma=$ id. Since $a \neq 0$, we have $s=3$ by (P11). Therefore, $2 \operatorname{deg} g_{1}=3 \operatorname{deg} g_{2}=3 \operatorname{deg} f_{2}$ by (P1) and (P3). In the latter case, $\gamma_{\sigma(3)}=\operatorname{deg} d g_{1} \wedge d g_{2}<\gamma_{\sigma(1)}<\gamma_{\sigma(2)}$ by the last two conditions of (P12). Hence, we get $\sigma=(1,2,3)$. Since $a=0$, we have $\operatorname{deg} f_{2}=\operatorname{deg} f_{\sigma(1)}=\operatorname{deg} g_{1}$ in view of (P5). By (P3), $\operatorname{deg} f_{3}=\operatorname{deg} f_{\sigma(2)}=\operatorname{deg} g_{2}$. Therefore, $2 \operatorname{deg} f_{2}=s \operatorname{deg} f_{3}$ for some odd number $s \geq 3$ by (P1).

From Lemma 5.1(i) and (ii), we get the following proposition.
Proposition 5.2. Assume that

$$
\begin{equation*}
\operatorname{deg} f_{i}<\operatorname{deg} f_{1} \quad(i=2,3) \quad \text { and } \quad \operatorname{deg} d f_{1} \wedge d f_{2}<\operatorname{deg} f_{1} . \tag{5.1}
\end{equation*}
$$

If $\left(F_{\sigma}, G\right)$ satisfies the Shestakov-Umirbaev condition for some $\sigma \in \mathfrak{S}_{3}$ and $G \in \mathcal{T}$, then there exists $E \in \mathcal{E}_{3}$ such that $F \circ E=G$.

Proof. Since $\operatorname{deg} f_{i}<\operatorname{deg} f_{1}$ for $i=2$, 3 , we have $\sigma(1)=1$ by Lemma 5.1(i). Since $\operatorname{deg} d f_{1} \wedge d f_{2}<\operatorname{deg} f_{1}$, we get $\sigma=\operatorname{id}$ and $\left(f_{1}, f_{2}\right)=\left(g_{1}, g_{2}\right)$ by Lemma 5.1(ii). Then, (SU1) implies that $G=F \circ E$ for some $E \in \mathcal{E} 3$.

In the rest of this section, we assume that f_{3}^{w} does not belong to $k\left[f_{2}^{\mathrm{w}}\right]$, and

$$
\begin{equation*}
\operatorname{deg} f_{1}=s \delta, \quad \operatorname{deg} f_{2}=2 \delta, \quad(s-2) \delta<\operatorname{deg} f_{3}<s \delta \tag{5.2}
\end{equation*}
$$

for some odd number $s \geq 3$ and $\delta \in \Gamma$. Under the assumption, $f_{2}^{\mathbf{w}}$ does not belong to $k\left[f_{3}^{\mathbf{W}}\right]$, because $f_{2}^{\mathbf{w}} \not \approx f_{3}^{\mathbf{w}}$ and $\operatorname{deg} f_{2}=2 \delta \leq 2(s-2) \delta<\operatorname{deg} f_{3}^{2}$. Furthermore, $f_{1}^{\mathbf{w}}$ belongs to $k\left[f_{3}^{\mathbf{w}}\right]$ if and only if $f_{1}^{\mathbf{w}} \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$, in which case $s=3$. In fact, if $f_{1}^{\mathbf{w}}$ belongs to $k\left[f_{3}^{\mathbf{w}}\right]$, then $f_{1}^{\mathbf{w}} \approx\left(f_{3}^{\mathbf{w}}\right)^{l}$ for some $l \in \boldsymbol{N}$. Since $\operatorname{deg} f_{3}<\operatorname{deg} f_{1}$ by assumption, we have $l \geq 2$. If $l \geq 3$ or $s \geq 5$, then $\operatorname{deg} f_{1}=s \delta \leq l(s-2) \delta<l \operatorname{deg} f_{3}$, a contradiction. Thus, $l=2$ and $s=3$. If $f_{1}^{\mathbf{w}} \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$, then $f_{1}^{\mathbf{w}}$ clearly belongs to $k\left[f_{3}^{\mathbf{w}}\right]$.

Under the assumption above, the following two propositions hold.

Proposition 5.3. Assume that

$$
\begin{equation*}
\operatorname{deg} d f_{1} \wedge d f_{2} \leq \operatorname{deg} f_{3}-(s-2) \delta+\varepsilon \tag{5.3}
\end{equation*}
$$

where $\varepsilon:=\operatorname{deg} d f_{1} \wedge d f_{2} \wedge d f_{3}>0$. If $f_{2}^{\mathbf{w}}$ belongs to $k\left[S_{2}\right]^{\mathbf{w}}$, then $f_{1}^{\mathbf{w}} \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$.
Proof. By assumption, there exists $\phi_{2} \in k\left[S_{2}\right]$ such that $\phi_{2}^{\mathbf{w}}=f_{2}^{\mathbf{w}}$. As mentioned after (5.2), $f_{2}^{\mathbf{w}}$ does not belong to $k\left[f_{3}^{\mathbf{w}}\right]$. Since $\operatorname{deg} f_{2}<\operatorname{deg} f_{1}$ by (5.2), $f_{2}^{\mathbf{w}}$ does not
belong to $k\left[f_{1}^{\mathbf{w}}, f_{3}^{\mathbf{w}}\right] \backslash k\left[f_{3}^{\mathbf{w}}\right]$. Thus, $f_{2}^{\mathbf{w}}$ does not belong to $k\left[f_{1}^{\mathbf{w}}, f_{3}^{\mathbf{w}}\right]$, and hence neither does ϕ_{2}^{w}. Therefore, we have $\operatorname{deg} \phi_{2}<\operatorname{deg}^{S_{2}} \phi_{2}$. By Lemma 3.2(ii), there exist $p, q \in \boldsymbol{N}$ with $\operatorname{gcd}(p, q)=1$ such that $\left(f_{1}^{\mathbf{w}}\right)^{p} \approx\left(f_{3}^{\mathbf{w}}\right)^{q}$ and

$$
\begin{align*}
2 \delta=\operatorname{deg} f_{2}>\operatorname{deg}\left(f_{2}-\phi_{2}\right) & \geq p \operatorname{deg} f_{1}+\varepsilon-\operatorname{deg} d f_{1} \wedge d f_{2}-\operatorname{deg} f_{3} \\
& \geq p \operatorname{deg} f_{1}-\left(\operatorname{deg} f_{3}-(s-2) \delta\right)-\operatorname{deg} f_{3} \\
& =\left(s\left(p+1-\frac{2 p}{q}\right)-2\right) \delta . \tag{5.4}
\end{align*}
$$

Here, we use (5.3) for the last inequality, and $\operatorname{deg} f_{3}=(p / q) \operatorname{deg} f_{1}$ and $\operatorname{deg} f_{1}=s \delta$ for the last equality. Now, suppose to the contrary that $f_{1}^{\mathbf{w}} \not \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$. Then, the assumptions of Lemma 3.3(ii) hold for $f=f_{3}$ and $g=f_{1}$. In fact, $f_{1}^{\mathbf{w}}$ does not belong to $k\left[f_{3}^{\mathbf{w}}\right]$ if $f_{1}^{\mathbf{w}} \not \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$ as remarked after (5.2). By (5.2), it follows that $\operatorname{deg} f_{3}<\operatorname{deg} f_{1}$ and $\operatorname{deg} \phi_{2}=$ $\operatorname{deg} f_{2}<\operatorname{deg} f_{1}$. Thus, we may conclude by Lemma 3.3(ii) that $p=2$, and $q \geq 3$ is an odd number. Consequently, the right-hand side of (5.4) is at least $(3(2+1-2 \cdot 2 / 3)-2) \delta=3 \delta$, a contradiction. Therefore, we must have $f_{1}^{\mathbf{w}} \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$ if $f_{2}^{\mathbf{w}}$ belongs to $k\left[S_{2}\right]^{\mathbf{w}}$.

The following proposition forms the core of the proof of Theorem 2.1.

Proposition 5.4. Assume that

$$
\begin{equation*}
\operatorname{deg} d f_{1} \wedge d f_{2}<\operatorname{deg} f_{3}-(s-2) \delta+\min \{\delta, \varepsilon\} \tag{5.5}
\end{equation*}
$$

If there exists $\phi_{1} \in k\left[S_{1}\right]$ such that $\operatorname{deg} f_{1}^{\prime}<\operatorname{deg} f_{1}$, then either $f_{1}^{\mathbf{w}} \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$, or $\left(f_{2}^{\mathbf{w}}\right)^{2} \approx$ $\left(f_{3}^{\mathbf{w}}\right)^{3}$ and F^{\prime} does not admit a Shestakov-Umirbaev reduction, where $f_{1}^{\prime}=f_{1}+\phi_{1}$ and $F^{\prime}=\left(f_{1}^{\prime}, f_{2}, f_{3}\right)$. Assume further that $\left(f_{1}^{\prime}\right)^{\mathbf{w}}$ does not belong to $k\left[S_{1}\right]^{\mathbf{w}}$. Then, the following assertions hold:
(1) $f_{i}^{\mathbf{w}}$ does not belong to $k\left[S_{i}^{\prime}\right]^{\mathbf{w}}$ for $i=2,3$, where $S_{i}^{\prime}=\left\{f_{1}^{\prime}, f_{2}, f_{3}\right\} \backslash\left\{f_{i}\right\}$. Hence, F^{\prime} does not admit an elementary reduction.
(2) If $f_{1}^{\mathbf{w}} \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$ and $\left(F_{\sigma}^{\prime}, G\right)$ satisfies the weak Shestakov-Umirbaev condition for some $\sigma \in \mathfrak{S}_{3}$ and $G \in \mathcal{T}$, then $\sigma=\mathrm{id}$ and (F, G) satisfies the weak Shestakov-Umirbaev condition.

Proof. To begin with, we show that $\operatorname{deg} \phi_{1}<\operatorname{deg}^{S_{1}} \phi_{1}$ if $f_{1}^{\mathbf{w}} \not \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$. Since ϕ_{1} is an element of $k\left[S_{1}\right]$, we check that $\phi_{1}^{\mathbf{w}}$ does not belong to $k\left[f_{2}^{\mathbf{w}}, f_{3}^{\mathbf{w}}\right]$. By the assumption that $\operatorname{deg}\left(f_{1}+\phi_{1}\right)<\operatorname{deg} f_{1}$, we have $\phi_{1}^{\mathbf{w}} \approx f_{1}^{\mathbf{w}}$. Since $\operatorname{deg} f_{1}=(s / 2) \operatorname{deg} f_{2}$ for an odd number s by (5.2), $f_{1}^{\mathbf{w}}$ does not belong to $k\left[f_{2}^{\mathbf{w}}\right]$. Since $f_{1}^{\mathbf{w}} \not \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$ by assumption, $f_{1}^{\mathbf{w}}$ does not belong to $k\left[f_{3}^{\mathbf{w}}\right]$ as mentioned after (5.2). By (5.2), it follows that

$$
\operatorname{deg} f_{1}=2 \delta+(s-2) \delta<\operatorname{deg} f_{2}+\operatorname{deg} f_{3}
$$

Hence, $f_{1}^{\mathbf{w}}$ does not belong to $k\left[f_{2}^{\mathbf{w}}, f_{3}^{\mathbf{w}}\right] \backslash\left(k\left[f_{2}^{\mathbf{w}}\right] \cup k\left[f_{3}^{\mathbf{w}}\right]\right)$. Thus, $f_{1}^{\mathbf{w}}$ does not belong to $k\left[f_{2}^{\mathbf{w}}, f_{3}^{\mathbf{w}}\right]$, and hence neither does $\phi_{3}^{\mathbf{w}}$. Therefore, $\operatorname{deg} \phi_{1}<\operatorname{deg}^{S_{1}} \phi_{1}$ if $f_{1}^{\mathbf{w}} \not \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$.

First, we show that $\left(f_{2}^{\mathrm{w}}\right)^{2} \approx\left(f_{3}^{\mathrm{w}}\right)^{3}$ and F^{\prime} does not admit a Shestakov-Umirbaev reduction in the case where $\operatorname{deg} \phi_{1}<\operatorname{deg}^{S_{1}} \phi_{1}$. Then, we obtain the first part of the proposition as
a consequence, since $\operatorname{deg} \phi_{1}<\operatorname{deg}^{S_{1}} \phi_{1}$ if $f_{1}^{\mathbf{W}} \not \approx\left(f_{3}^{\mathbf{W}}\right)^{2}$ as shown above. By Lemma 3.2(ii), there exist $p, q \in N$ with $\operatorname{gcd}(p, q)=1$ such that $\left(f_{3}^{\mathbf{W}}\right)^{p} \approx\left(f_{2}^{\mathbf{w}}\right)^{q}$ and

$$
\begin{align*}
s \delta=\operatorname{deg} f_{1}>\operatorname{deg}\left(f_{1}+\phi_{1}\right) & \geq q \operatorname{deg} f_{2}+\varepsilon-\operatorname{deg} d f_{1} \wedge d f_{2}-\operatorname{deg} f_{3} \\
& >q \operatorname{deg} f_{2}-\left(\operatorname{deg} f_{3}-(s-2) \delta\right)-\operatorname{deg} f_{3} \\
& =\left(q\left(2-\frac{4}{p}\right)+s-2\right) \delta, \tag{5.6}
\end{align*}
$$

where we use (5.5) for the last inequality, and $\operatorname{deg} f_{3}=(q / p) \operatorname{deg} f_{2}$ and $\operatorname{deg} f_{2}=2 \delta$ for the last equality. Recall that we are assuming that $f_{3}^{\mathbf{w}}$ does not belong to $k\left[f_{2}^{\mathbf{w}}\right]$, while $f_{2}^{\mathbf{w}}$ does not belong to $k\left[f_{3}^{\mathbf{w}}\right]$ as mentioned after (5.2). Hence, we have $p \geq 2$ and $q \geq 2$. We show that $p=3$ and $q=2$ by contradiction. Supposing that $p=2$, we have $\operatorname{deg} f_{3}=$ $(q / 2) \operatorname{deg} f_{2}=q \delta$. Hence, $(s-2) \delta<q \delta<s \delta$ by (5.2), and so $q=s-1$. Since $p=2$ and s is an odd number, we get $\operatorname{gcd}(p, q)=2$, a contradiction. If $p \geq 4$, then the right-hand side of (5.6) would be at least $(q+s-2) \delta \geq s \delta$ since $q \geq 2$. This is a contradiction. Thus, we get $p=3$. If $q \geq 3$, then the right-hand side of (5.6) would be at least $s \delta$, a contradiction. Hence, we have $q=2$. Therefore, we obtain $\left(f_{3}^{\mathbf{w}}\right)^{3} \approx\left(f_{2}^{\mathbf{w}}\right)^{2}$. From this, we know that $\operatorname{deg} f_{3}=(2 / 3) \operatorname{deg} f_{2}=(4 / 3) \delta$. Since $\operatorname{deg} f_{3}>(s-2) \delta$ by (5.2), it follows that $s=3$. Consequently, the right-hand side of (5.6) is equal to $(7 / 3) \delta$. Thus, we get

$$
\begin{equation*}
\operatorname{deg} f_{3}=\frac{4}{3} \delta<\operatorname{deg} f_{2}=2 \delta<\frac{7}{3} \delta<\operatorname{deg} f_{1}^{\prime}<3 \delta \tag{5.7}
\end{equation*}
$$

It follows that $2 \operatorname{deg} f_{1}^{\prime}<6 \delta=3 \operatorname{deg} f_{2}$. Then, by Lemma 5.1(iii), we can conclude that F^{\prime} does not admit a weak Shestakov-Umirbaev reduction, since

$$
\begin{aligned}
& 3 \operatorname{deg} f_{2}=6 \delta \neq \frac{16}{3} \delta=4 \operatorname{deg} f_{3}, \\
& 3 \operatorname{deg} f_{3}=4 \delta<\frac{14}{3} \delta<2 \operatorname{deg} f_{1}^{\prime}<6 \delta<\frac{20}{3} \delta=5 \operatorname{deg} f_{3} .
\end{aligned}
$$

Therefore, F^{\prime} does not admit a Shestakov-Umirbaev reduction.
In this situation, assume further that $\left(f_{1}^{\prime}\right)^{\mathbf{w}}$ does not belong to $k\left[S_{1}\right]^{\mathbf{w}}$. We show that $f_{i}^{\mathbf{w}}$ does not belong to $k\left[S_{i}^{\prime}\right]$ for $i=2,3$ by contradiction. Suppose that there exists $\phi_{i} \in k\left[S_{i}^{\prime}\right]$ such that $\phi_{i}^{\mathbf{w}}=f_{i}^{\mathbf{w}}$ for some $i \in\{2,3\}$. Then, the conditions (i) through (iv) after Lemma 3.3 are fulfilled for $f=f_{j}, g=f_{1}^{\prime}, h=f_{i}$ and $\phi=\phi_{i}$, where $j \in\{2,3\} \backslash\{i\}$. Actually, $f_{1}^{\prime}=f_{1}+\phi_{1}, f_{2}$ and f_{3} are algebraically independent over k, since so are f_{1}, f_{2} and f_{3}, and ϕ_{1} is an element of $k\left[S_{1}\right]$. Moreover, $\operatorname{deg} f_{l}<\operatorname{deg} f_{1}^{\prime}$ for $l=2,3$ by (5.7), and $f_{i}^{\mathbf{w}}$ does not belong to $k\left[f_{j}^{\mathbf{w}}\right]$ by assumption, since (i, j) is $(2,3)$ or $(3,2)$. By assumption, $\left(f_{1}^{\prime}\right)^{\mathbf{w}}$ does not belong to $k\left[S_{1}\right]^{\mathbf{w}}$, and hence does not belong to $k\left[f_{j}^{\mathbf{w}}\right]$. By the choice of ϕ_{i}, we have $\operatorname{deg}\left(f_{i}-\phi_{i}\right)<\operatorname{deg} f_{i}$. Thus, (i) through (iv) are satisfied. By Lemma 3.3(ii) and the remark following it, we may conclude that $\left(\left(f_{1}^{\prime}\right)^{\mathbf{w}}\right)^{2} \approx\left(f_{j}^{\mathbf{w}}\right)^{q}$ for some odd number $q \geq 3$. Hence, $\operatorname{deg} f_{1}^{\prime}=(q / 2) \operatorname{deg} f_{j}$ is equal to $(2 q / 3) \delta$ if $j=3$, and $q \delta$ if $j=2$. Since no odd number $q \geq 3$ satisfies $7 / 3<2 q / 3<3$ or $7 / 3<q<3$, we get a contradiction by (5.7). Therefore, $f_{i}^{\mathbf{w}}$ does not belong to $k\left[S_{i}^{\prime}\right]^{\mathbf{w}}$ for $i=2$, 3 . Since $\left(f_{1}^{\prime}\right)^{\mathbf{w}}$ does not belong
to $k\left[S_{1}\right]^{\mathbf{w}}$, it follows that F^{\prime} does not admit an elementary reduction. This proves (1) in the case where $\operatorname{deg} \phi_{1}<\operatorname{deg}^{S_{1}} \phi_{1}$. The assumption of (2) does not hold in this situation, since $\operatorname{deg} f_{1}=3 \delta \neq(8 / 3) \delta=\operatorname{deg} f_{3}^{2}$ by (5.7).

Next, we show (1) and (2) in the case where $\operatorname{deg} \phi_{1}=\operatorname{deg}^{S_{1}} \phi_{1}$ and $\left(f_{1}^{\prime}\right)^{\mathbf{w}}$ does not belong to $k\left[S_{1}\right]^{\mathbf{w}}$. By the remark in the first paragraph, we know that $f_{1}^{\mathbf{w}} \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$ if $\operatorname{deg} \phi_{1}=$ $\operatorname{deg}^{S_{1}} \phi_{1}$. As mentioned after (5.2), $f_{1}^{\mathbf{w}} \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$ implies $s=3$. Hence, $\operatorname{deg} f_{1}=s \delta=3 \delta$, and so $\operatorname{deg} f_{3}=(1 / 2) \operatorname{deg} f_{1}=(3 / 2) \delta$. Since $\operatorname{deg}^{S_{1}} \phi_{1}=\operatorname{deg} \phi_{1}$ and $\operatorname{deg} \phi_{1}=\operatorname{deg} f_{1}$, we have $\operatorname{deg}^{S_{1}} \phi_{1}=3 \delta$. By Lemma 4.1(i), we may write $\phi_{1}=a f_{3}^{2}+c f_{3}+\psi$, where $a, c \in k$ and $\psi \in k\left[f_{2}\right]$ with $\operatorname{deg} \psi \leq(3-1) \delta=2 \delta$. Since $\operatorname{deg} f_{2}=2 \delta$, we get $\psi=e f_{2}+e^{\prime}$ for some $e, e^{\prime} \in k$. Note that a is not zero, for otherwise $\operatorname{deg} \phi_{1} \leq \max \left\{\operatorname{deg} f_{3}, \operatorname{deg} \psi\right\}<\operatorname{deg} f_{1}$, a contradiction. We claim that the conditions (a) through (d) before Lemma 3.5 hold for $k_{i}=f_{i}$ for $i=1,2,3$ and $k_{i}^{\prime}=k_{i}$ for $i=1,2$. In fact, (a), (b), (c) follow from $\operatorname{deg} k_{1}=\operatorname{deg} k_{1}^{\prime}=3 \delta$, $\operatorname{deg} k_{2}=\operatorname{deg} k_{2}^{\prime}=2 \delta$ and $\operatorname{deg} k_{3}=(3 / 2) \delta$. The left-hand side of (d) is less than 3δ, since $\operatorname{deg} d f_{1} \wedge d f_{2}<\operatorname{deg} f_{3}=(3 / 2) \delta$ by (5.5) with $s=3$. Because the right-hand side of (d) is greater than $\operatorname{deg} k_{1}=3 \delta$, we know that (d) holds true. Therefore, by (3.4), we obtain

$$
\begin{equation*}
\operatorname{deg} d f_{1} \wedge d f_{3}=\operatorname{deg} f_{1}-\operatorname{deg} f_{2}+\operatorname{deg} d f_{2} \wedge d f_{3}=\delta+\operatorname{deg} d f_{2} \wedge d f_{3} \tag{5.8}
\end{equation*}
$$

Hence, $\operatorname{deg} d f_{2} \wedge d f_{3}<\operatorname{deg} d f_{1} \wedge d f_{3}$. Since $d \phi_{1} \wedge d f_{3}=d \psi \wedge d f_{3}=e d f_{2} \wedge d f_{3}$, we have $d f_{1}^{\prime} \wedge d f_{3}=d f_{1} \wedge d f_{3}+e d f_{2} \wedge d f_{3}$. Thus, $\operatorname{deg} d f_{1}^{\prime} \wedge d f_{3}=\operatorname{deg} d f_{1} \wedge d f_{3}$, and so

$$
\begin{equation*}
\operatorname{deg} d f_{1}^{\prime} \wedge d f_{3}=\delta+\operatorname{deg} d f_{2} \wedge d f_{3} \tag{5.9}
\end{equation*}
$$

by (5.8). For the same reason as above, the conditions (a) through (d) before Lemma 3.5 hold for $k_{1}=f_{1}^{\prime}, k_{i}=f_{i}$ for $i=2,3, k_{1}^{\prime}=f_{1}=k_{1}-a k_{3}^{2}-c k_{3}-\psi$ and $k_{2}^{\prime}=k_{2}$, for k_{1} is not involved in the conditions. Since $a \neq 0$ and $\operatorname{deg} d f_{1} \wedge d f_{2}<\operatorname{deg} f_{3}$, we know by Lemma 3.5(i) that

$$
\begin{equation*}
\operatorname{deg} d f_{1}^{\prime} \wedge d f_{2}=\operatorname{deg} f_{3}+\operatorname{deg} d f_{2} \wedge d f_{3}=\frac{3}{2} \delta+\operatorname{deg} d f_{2} \wedge d f_{3} \tag{5.10}
\end{equation*}
$$

Set $\Phi=f_{1}+a y^{2}+c y+e f_{2}+e^{\prime}$. Then, $\operatorname{deg}_{\mathbf{w}}^{f_{3}} \Phi=\operatorname{deg} f_{1}$, while $\operatorname{deg} \Phi\left(f_{3}\right)=\operatorname{deg} f_{1}^{\prime}<$ $\operatorname{deg} f_{1}$. Since $\Phi^{(1)}=2 a y+c$ and $a \neq 0$, we have $\operatorname{deg}_{\mathrm{w}}^{f_{3}} \Phi^{(1)}=\operatorname{deg} f_{3}=\operatorname{deg} \Phi^{(1)}\left(f_{3}\right)$. Hence, $m_{\mathbf{w}}^{f_{3}}(\Phi)=1$. By Theorem 3.1, it follows that

$$
\begin{align*}
\operatorname{deg} f_{1}^{\prime}=\operatorname{deg} \Phi\left(f_{3}\right) & \geq \operatorname{deg}_{\mathbf{w}}^{f_{3}} \Phi+m_{\mathbf{w}}^{f_{3}}(\Phi)\left(\varepsilon-\operatorname{deg} d f_{1} \wedge d f_{2}-\operatorname{deg} f_{3}\right) \\
& =\operatorname{deg} f_{1}+\varepsilon-\operatorname{deg} d f_{1} \wedge d f_{2}-\operatorname{deg} f_{3} \tag{5.11}\\
& >\operatorname{deg} f_{1}-2 \operatorname{deg} f_{3}+(s-2) \delta=\delta,
\end{align*}
$$

where the last inequality is due to (5.5). With the aid of (5.11), we show the following:

$$
\text { (i) }\left(f_{1}^{\prime}\right)^{\mathbf{w}} \notin k\left[f_{2}^{\mathbf{w}}, f_{3}^{\mathbf{w}}\right] . \text { (ii) } f_{2}^{\mathbf{w}} \notin k\left[\left(f_{1}^{\prime}\right)^{\mathbf{w}}, f_{3}^{\mathbf{w}}\right] . \quad \text { (iii) } f_{3}^{\mathbf{w}} \notin k\left[\left(f_{1}^{\prime}\right)^{\mathbf{w}}, f_{2}^{\mathbf{w}}\right] \text {. }
$$

Since $k\left[f_{2}^{\mathbf{w}}, f_{3}^{\mathbf{w}}\right]$ is contained in $k\left[S_{1}\right]^{\mathbf{w}}$, (i) follows from the assumption that $\left(f_{1}^{\prime}\right)^{\mathbf{w}}$ does not belong to $k\left[S_{1}\right]^{\mathbf{w}}$. In particular, $f_{2}^{\mathbf{w}} \not \approx\left(f_{1}^{\prime}\right)^{\mathbf{w}}$. By (5.11), $\operatorname{deg} f_{2}=2 \delta<\operatorname{deg}\left(f_{1}^{\prime}\right)^{2}$. Hence, $f_{2}^{\mathbf{w}}$ does not belong to $k\left[\left(f_{1}^{\prime}\right)^{\mathbf{w}}\right]$. Since $\operatorname{deg} f_{3}=(3 / 2) \delta<\operatorname{deg} f_{2}<3 \delta=\operatorname{deg} f_{3}^{2}$, it follows that $f_{2}^{\mathbf{w}}$ does not belong to $k\left[f_{3}^{\mathbf{w}}\right]$. By (5.11), $\operatorname{deg} f_{2}<\delta+(3 / 2) \delta<\operatorname{deg} f_{1}^{\prime} f_{3}$, and so $f_{2}^{\mathbf{w}}$ does
not belong to $k\left[\left(f_{1}^{\prime}\right)^{\mathbf{w}}, f_{3}^{\mathbf{w}}\right] \backslash\left(k\left[\left(f_{1}^{\prime}\right)^{\mathbf{w}}\right] \cup k\left[f_{3}^{\mathbf{w}}\right]\right)$. Thus, $f_{2}^{\mathbf{w}}$ does not belong to $k\left[\left(f_{1}^{\prime}\right)^{\mathbf{w}}, f_{3}^{\mathbf{w}}\right]$, proving (ii). It follows that $f_{3}^{\mathbf{w}} \not \not \not\left(_{1}^{\prime}\right)^{\mathbf{w}}$ by (i), and $\operatorname{deg} f_{3}<2 \delta<\operatorname{deg}\left(f_{1}^{\prime}\right)^{2}$ by (5.11). Hence, $f_{3}^{\mathbf{w}}$ does not belong to $k\left[\left(f_{1}^{\prime}\right)^{\mathbf{w}}\right]$. Since $\operatorname{deg} f_{3}<\operatorname{deg} f_{2}$, we get that $f_{3}^{\mathbf{w}}$ does not belong to $k\left[\left(f_{1}^{\prime}\right)^{\mathbf{w}}, f_{2}^{\mathbf{w}}\right] \backslash k\left[\left(f_{1}^{\prime}\right)^{\mathbf{w}}\right]$. This proves (iii).

Now, we show that $f_{2}^{\mathbf{w}}$ does not belong to $k\left[S_{2}^{\prime}\right]^{\mathbf{w}}$ by contradiction. Supposing the contrary, there exists $\phi_{2} \in k\left[S_{2}^{\prime}\right]$ such that $\phi_{2}^{\mathbf{w}}=f_{2}^{\mathbf{w}}$. Then, $\phi_{2}^{\mathbf{w}}$ does not belong to $k\left[\left(f_{1}^{\prime}\right)^{\mathbf{w}}, f_{3}^{\mathbf{w}}\right]$ by (ii). Hence, $\operatorname{deg} \phi_{2}<\operatorname{deg}^{S_{2}^{\prime}} \phi_{2}$. By Lemma 3.2(i), there exist $p, q \in N$ with $\operatorname{gcd}(p, q)=1$ for which $\left(\left(f_{1}^{\prime}\right)^{\mathbf{w}}\right)^{q} \approx\left(f_{3}^{\mathbf{w}}\right)^{p}$ and

$$
\begin{align*}
2 \delta=\operatorname{deg} f_{2}=\operatorname{deg} \phi_{2} & \geq p q \gamma+\operatorname{deg} d f_{1}^{\prime} \wedge d f_{3}-p \gamma-q \gamma \\
& =p q \gamma+\delta+\operatorname{deg} d f_{2} \wedge d f_{3}-p \gamma-q \gamma, \tag{5.12}
\end{align*}
$$

where $\gamma \in \Gamma$ such that $\operatorname{deg} f_{1}^{\prime}=p \gamma$ and $\operatorname{deg} f_{3}=q \gamma$, and the last equality is due to (5.9). From (5.12), it follows that $(p q-p-q) \gamma<\delta$. Since $\operatorname{deg} f_{1}^{\prime}>\delta$ by (5.11), and since $\operatorname{deg} f_{3}=(3 / 2) \delta>\delta$, we have $\delta<\min \left\{\operatorname{deg} f_{1}^{\prime}, \operatorname{deg} f_{3}\right\}=\min \{p, q\} \gamma$. Hence, $p q-$ $p-q<\min \{p, q\}$. By (iii) and (i), $f_{3}^{\mathbf{w}}$ and $\left(f_{1}^{\prime}\right)^{\mathbf{w}}$ do not belong to $k\left[\left(f_{1}^{\prime}\right)^{\mathbf{w}}\right]$ and $k\left[f_{3}^{\mathbf{w}}\right]$, respectively. As $\operatorname{gcd}(p, q)=1$, we get $2 \leq p<q$ or $2 \leq q<p$. It follows from the claim before Lemma 3.3 that $(p, q)=(2,3)$ or $(p, q)=(3,2)$. If $(p, q)=(2,3)$, then $3 \delta<3 \operatorname{deg} f_{1}^{\prime}=2 \operatorname{deg} f_{3}=3 \delta$ by (5.11), a contradiction. Thus, $(p, q)=(3,2)$. Then, $\operatorname{deg} f_{1}^{\prime}=(3 / 2) \operatorname{deg} f_{3}=(9 / 4) \delta$ and $\gamma=(1 / 2) \operatorname{deg} f_{3}=(3 / 4) \delta$, and so

$$
\begin{equation*}
\operatorname{deg} d f_{2} \wedge d f_{3} \leq 2 \delta-p q \gamma-\delta+p \gamma+q \gamma=2 \delta-6 \gamma-\delta+3 \gamma+2 \gamma=\frac{1}{4} \delta \tag{5.13}
\end{equation*}
$$

by (5.12). By Lemma 3.2(ii) and (5.13), we get

$$
\operatorname{deg}\left(f_{2}-\phi_{2}\right) \geq 3 \operatorname{deg} f_{3}+\varepsilon-\operatorname{deg} d f_{2} \wedge d f_{3}-\operatorname{deg} f_{1}^{\prime}>\frac{9}{2} \delta-\frac{1}{4} \delta-\frac{9}{4} \delta=2 \delta
$$

However, since $\phi_{2}^{\mathbf{w}}=f_{2}^{\mathbf{w}}$, we have $\operatorname{deg}\left(f_{2}-\phi_{2}\right)<\operatorname{deg} f_{2}=2 \delta$, a contradiction. Therefore, $f_{2}^{\mathbf{w}}$ does not belong to $k\left[S_{2}^{\prime}\right]^{\mathbf{w}}$.

Similarly, suppose to the contrary that there exists $\phi_{3} \in k\left[S_{3}^{\prime}\right]$ such that $\phi_{3}^{\mathbf{w}} \approx f_{3}^{\mathbf{w}}$. Then, $\phi_{3}^{\mathbf{w}}$ does not belong to $k\left[\left(f_{1}^{\prime}\right)^{\mathbf{w}}, f_{2}^{\mathbf{w}}\right]$ by (iii). Hence, $\operatorname{deg} \phi_{3}<\operatorname{deg}^{S_{3}^{\prime}} \phi_{3}$. By (i) and (ii), $\left(f_{1}^{\prime}\right)^{\mathbf{w}}$ and $f_{2}^{\mathbf{w}}$ do not belong to $k\left[f_{2}^{\mathbf{w}}\right]$ and $k\left[\left(f_{1}^{\prime}\right)^{\mathbf{w}}\right]$, respectively. Thus,

$$
\operatorname{deg} d f_{1}^{\prime} \wedge d f_{2}<\operatorname{deg} \phi_{3}=\operatorname{deg} f_{3}=\frac{3}{2} \delta
$$

by Lemma 3.3(i). This contradicts (5.10). Therefore, $f_{3}^{\mathbf{w}}$ does not belong to $k\left[S_{3}^{\prime}\right]^{\mathbf{w}}$. This completes the proof of (1).

Finally, we show (2). Assume that $\left(F_{\sigma}^{\prime}, G\right)$ satisfies the weak Shestakov-Umirbaev condition for some $\sigma \in \mathfrak{S}_{3}$ and $G \in \mathcal{T}$. By (5.9) and (5.10), we have

$$
\operatorname{deg} d f_{2} \wedge d f_{3}<\operatorname{deg} d f_{1}^{\prime} \wedge d f_{3}<\operatorname{deg} d f_{1}^{\prime} \wedge d f_{2}
$$

In addition, $2 \operatorname{deg} f_{2}=4 \delta \neq(3 / 2) r \delta=r \operatorname{deg} f_{3}$ for any odd number $r \geq 3$. Hence, we get $\sigma=\mathrm{id}$ and $2 \operatorname{deg} g_{1}=3 \operatorname{deg} f_{2}$ by Lemma 5.1(iv). Thus, $\left(F^{\prime}, G\right)$ satisfies the weak Shestakov-Umirbaev condition, and $\operatorname{deg} g_{1}=(3 / 2) \operatorname{deg} f_{2}=\operatorname{deg} f_{1}$. Then, it is immediate
that (F, G) satisfies (SU2'), (SU3'), (SU4), (SU5) and (SU6). As for (SU1'), we have only to check that $g_{1}-f_{1}$ belongs to $k\left[f_{2}, f_{3}\right]$. Since $\left(F^{\prime}, G\right)$ satisfies the weak Shestakov-Umirbaev condition, $g_{1}-f_{1}^{\prime}$ belongs to $k\left[f_{2}, f_{3}\right]$ by (SU1'). Hence, $g_{1}-f_{1}=\left(g_{1}-f_{1}^{\prime}\right)+\phi_{1}$ belongs to $k\left[f_{2}, f_{3}\right]$, since so does ϕ_{1}. Thus, (F, G) satisfies (SU1'). Therefore, (F, G) satisfies the weak Shestakov-Umirbaev condition. This completes the proof of (2).

We note that (5.11) is the key estimation which guarantees that no tame automorphism admits a reduction of type IV.
6. Proof of Theorem 2.1. We begin with the following lemma.

Lemma 6.1. (i) If $\operatorname{deg} F=|\mathbf{w}|$ for $F \in \mathrm{Aut}_{k} k[\mathbf{x}]$, then F is tame.
(ii) $\quad \Sigma:=\left\{a_{1} w_{1}+\cdots+a_{n} w_{n} ; a_{1}, \ldots, a_{n} \in \mathbf{Z}_{\geq 0}\right\}$ is a well-ordered subset of Γ.

Proof. (i) We may assume that $w_{1} \leq \cdots \leq w_{n}$ and $\operatorname{deg} f_{1} \leq \cdots \leq \operatorname{deg} f_{n}$ by changing the indices of w_{1}, \ldots, w_{n} and f_{1}, \ldots, f_{n} if necessary. Write $f_{i}=b_{i}+\sum_{j=1}^{n} a_{i, j} x_{j}+f_{i}^{\prime}$ for each i, where $b_{i}, a_{i, j} \in k$ for each j, and f_{i}^{\prime} is an element of the ideal Q of $k[\mathbf{x}]$ generated by all the quadratic monomials. Clearly, F is tame if and only if so is $F \circ G^{\prime}$ or $G^{\prime} \circ F$ for some $G^{\prime} \in \mathrm{T}_{k} k[\mathbf{x}]$. Since $\operatorname{deg} F \circ G=\operatorname{deg} F$ for $G=\left(x_{1}-b_{1}, \ldots, x_{n}-b_{n}\right)$, we may assume that $b_{i}=0$ for each i by replacing F by $F \circ G$. Note that $\operatorname{det}\left(a_{i, j}\right)_{i, j}$ is equal to the Jacobian of F, so $\left(a_{i, j}\right)_{i, j}$ is invertible. Let H be an affine automorphism of $k[\mathbf{x}]$ defined by $H\left(x_{i}\right)=\sum_{j=1}^{n} a_{i, j} x_{j}$ for each i. Then, $\operatorname{deg} H\left(x_{i}\right) \leq \operatorname{deg} f_{i}$ for each i since $f_{i}=H\left(x_{i}\right)+f_{i}^{\prime}$. We claim that $\operatorname{deg} f_{i}=w_{i}$ for each i. In fact, if not, we can find i such that $\operatorname{deg} f_{i}<w_{i}$ since $\operatorname{deg} F=|\mathbf{w}|$ by assumption. Then, $\operatorname{deg} H\left(x_{j}\right) \leq \operatorname{deg} f_{j} \leq \operatorname{deg} f_{i}<w_{i}$ for $j \leq i$, while $\operatorname{deg} x_{l}=w_{l} \geq w_{i}$ for $l \geq i$ by assumption. Hence, $H\left(x_{j}\right)$ is contained in the $(i-1)$-dimensional k-vector space $\bigoplus_{l=1}^{i-1} k x_{l}$ for $j=1, \ldots, i$. This contradicts that $H\left(x_{1}\right), \ldots, H\left(x_{i}\right)$ are linearly independent over k. Thus, we get deg $f_{i}=w_{i}$, and hence $\operatorname{deg} H\left(x_{i}\right) \leq w_{i}$ for each i. We show that deg $H^{-1}\left(x_{i}\right) \leq w_{i}$ for each i. Let m be the maximal number for which $w_{m}=w_{i}$. Then, $H\left(x_{j}\right)$ belongs to $\bigoplus_{l=1}^{m} k x_{l}$ for $j=1, \ldots, m$. Hence, H induces an automorphism of $\bigoplus_{l=1}^{m} k x_{l}$. Thus, $H^{-1}\left(x_{i}\right)$ belongs to $\bigoplus_{l=1}^{m} k x_{l}$. Therefore, $\operatorname{deg} H^{-1}\left(x_{i}\right) \leq w_{m}=w_{i}=\operatorname{deg} x_{i}$. This implies that $\operatorname{deg} H^{-1}(g) \leq \operatorname{deg} g$ holds for each $g \in k[\mathbf{x}]$. Consequently,

$$
|\mathbf{w}| \leq \operatorname{deg} H^{-1} \circ F=\sum_{i=1}^{n} \operatorname{deg} H^{-1}\left(f_{i}\right) \leq \sum_{i=1}^{n} \operatorname{deg} f_{i}=\operatorname{deg} F=|\mathbf{w}| .
$$

Therefore, $\operatorname{deg} H^{-1} \circ F=|\mathbf{w}|$, and so we may replace F by $H^{-1} \circ F$. It follows that $f_{i}=$ $x_{i}+f_{i}^{\prime \prime}$ for each i, where $f_{i}^{\prime \prime}=H^{-1}\left(f_{i}^{\prime}\right) \in Q$. We show that $f_{i}^{\prime \prime}$ belongs to $k\left[x_{1}, \ldots, x_{i-1}\right]$ for every i by contradiction. Suppose that there appears in $f_{i}^{\prime \prime}$ a monomial $x_{a_{1}} \cdots x_{a_{n}}$, where $a_{1}, \ldots, a_{n} \in\{1, \ldots, n\}$ with $a_{1} \geq i$. Since $x_{a_{1}} \cdots x_{a_{n}}$ belongs to Q, we have $n \geq 2$. Hence,

$$
w_{i}=\operatorname{deg} f_{i} \geq \operatorname{deg} f_{i}^{\prime \prime} \geq \operatorname{deg} x_{a_{1}} \cdots x_{a_{n}}=\sum_{i=1}^{n} w_{a_{i}}>w_{a_{1}} \geq w_{i}
$$

a contradiction. Thus, $f_{i}^{\prime \prime}$ belongs to $k\left[x_{1}, \ldots, x_{i-1}\right]$ for each i. This means that F is triangular. Here, we say that $\left(h_{1}, \ldots, h_{n}\right) \in \operatorname{Aut}_{k} k[\mathbf{x}]$ is triangular if there exists $\sigma \in \mathbb{S}_{n}$ such that $h_{\sigma(i)}=x_{\sigma(i)}+\phi_{i}$ for some $\phi_{i} \in k\left[x_{\sigma(1)}, \ldots, x_{\sigma(i-1)}\right]$ for $i=1, \ldots, n$. Since a triangular automorphism is tame, we conclude that F is tame.
(ii) We show that each nonempty subset S of Σ has the minimum element. As mentioned, we may regard $\Gamma=\boldsymbol{Z}^{r}$ for some $r \in N$. Let $k\left[\mathbf{y}, \mathbf{y}^{-1}\right]$ be the Laurent polynomial ring in y_{1}, \ldots, y_{r} over k, and R the k-subalgebra of $k\left[\mathbf{y}, \mathbf{y}^{-1}\right]$ generated by $\mathbf{y}^{w_{i}}$ for $i=1, \ldots, n$, where $\mathbf{y}^{\alpha}=y_{1}^{\alpha_{1}} \cdots y_{r}^{\alpha_{r}}$ for each $\alpha=\left(\alpha_{1}, \ldots, \alpha_{r}\right)$. Then, R is Noetherian, and contains \mathbf{y}^{α} for each $\alpha \in \Sigma$. Consider the ideal I of R generated by $\left\{\mathbf{y}^{\alpha} ; \alpha \in S\right\}$. Since R is Noetherian, there exists a finite subset S^{\prime} of S with minimum element μ such that I is generated by $\left\{\mathbf{y}^{\alpha} ; \alpha \in S^{\prime}\right\}$. Then, μ becomes the minimum element of S. In fact, for each $\alpha \in S$, there exist $\beta \in S^{\prime}$ and $\gamma \in \Sigma$ such that $\mathbf{y}^{\alpha}=\mathbf{y}^{\beta} \mathbf{y}^{\gamma}$. Then, $\beta \geq \mu, \gamma \geq 0$ and $\alpha=\beta+\gamma$. Hence, $\alpha \geq \beta \geq \mu$. Thus, μ is the minimum element of S. Therefore, Σ is a well-ordered subset of Γ.

In the rest of the paper, we assume that $n=3$, and identify $k[\mathbf{y}]$ with $k[\mathbf{x}]$. Let \mathcal{A} be the set of $F \in \operatorname{Aut}_{k} k[\mathbf{x}]$ for which there exists $G_{i} \in \operatorname{Aut}_{k} k[\mathbf{x}]$ for $i=1, \ldots, l$ with $G_{1}=F$ and $\operatorname{deg} G_{l}=|\mathbf{w}|$ such that G_{i+1} is an elementary reduction or a weak Shestakov-Umirbaev reduction of G_{i} for $i=1, \ldots, l-1$, where $l \in N$. Then, each element of \mathcal{A} is tame, since G_{l} is tame if $\operatorname{deg} G_{l}=|\mathbf{w}|$ by Lemma 6.1(i), and G_{i} is tame if and only if so is G_{i+1} for each i. Hence, \mathcal{A} is contained in $\mathrm{T}_{k} k[\mathbf{x}]$. By definition, if $\operatorname{deg} F>|\mathbf{w}|$ for $F \in \mathcal{A}$, then F admits an elementary reduction or a weak Shestakov-Umirbaev reduction. By Proposition 4.3(ii), F admits a weak Shestakov-Umirbaev reduction if and only if F admits a Shestakov-Umirbaev reduction. Thus, if $\operatorname{deg} F>|\mathbf{w}|$ for $F \in \mathcal{A}$, then F admits an elementary reduction or a Shestakov-Umirbaev reduction. The goal of this section is to establish that $\mathcal{A}=\mathrm{T}_{k} k[\mathbf{x}]$, which implies Theorem 2.1 immediately.

We remark that, if F belongs to \mathcal{A}, then so do F_{σ} and $F \circ H$, where $\sigma \in \mathfrak{S}_{3}$ and $H=\left(c_{1} x_{1}, c_{2} x_{2}, c_{3} x_{3}\right)$ with $c_{1}, c_{2}, c_{3} \in k \backslash\{0\}$. If $\operatorname{deg} F=|\mathbf{w}|$ or if there exists $G \in \mathcal{A}$ such that G is an elementary reduction or a weak Shestakov-Umirbaev reduction of F, then F belongs to \mathcal{A}.

The following is a key proposition.
Proposition 6.2. If $\operatorname{deg} F \circ E \leq \operatorname{deg} F$ for $F \in \mathcal{A}$ and $E \in \mathcal{E}$, then $F \circ E$ belongs to \mathcal{A}.

Note that, if $\operatorname{deg} F \circ E>\operatorname{deg} F$ for $F \in \mathcal{A}$ and $E \in \mathcal{E}$, then $F \circ E$ belongs to \mathcal{A}. Actually, $(F \circ E) \circ E^{-1}=F$ is an elementary reduction of $F \circ E$.

We deduce from Proposition 6.2 that $\mathrm{T}_{k} k[\mathbf{x}]$ is contained in \mathcal{A}. Take any $F \in \mathrm{~T}_{k} k[\mathbf{x}]$. Then, we can express $F=H \circ E_{1} \circ \cdots \circ E_{l}$, where $H=\left(c_{1} x_{1}, c_{2} x_{2}, c_{3} x_{3}\right)$ with $c_{1}, c_{2}, c_{3} \in$ $k \backslash\{0\}, l \in Z_{\geq 0}$, and $E_{i} \in \mathcal{E}$ for $i=1, \ldots, l$. We show that F belongs to \mathcal{A} by induction on l. The assertion is true if $l=0$, i.e., $F=H$, since $\operatorname{deg} H=|\mathbf{w}|$. Assume that $l>0$. By induction assumption, $F^{\prime}:=H \circ E_{1} \circ \cdots \circ E_{l-1}$ belongs to \mathcal{A}. Then, $F=F^{\prime} \circ E_{l}$ belongs
to \mathcal{A} by Proposition 6.2 and the note following it. Therefore, $\mathrm{T}_{k} k[\mathbf{x}]$ is contained in \mathcal{A} on the assumption that Proposition 6.2 is true.

The following proposition is necessary to prove Proposition 6.2.
Proposition 6.3. Assume that $F=\left(f_{1}, f_{2}, f_{3}\right) \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\operatorname{deg} f_{1}=s \delta, \quad \operatorname{deg} f_{2}=2 \delta, \quad(s-2) \delta+\operatorname{deg} d f_{1} \wedge d f_{2} \leq \operatorname{deg} f_{3}<s \delta \tag{6.1}
\end{equation*}
$$

for some odd number $s \geq 3$ and $\delta \in \Gamma$, and that $f_{3}^{\mathbf{w}}$ does not belong to $k\left[f_{2}^{\mathbf{w}}\right]$. Then, there exists $E \in \mathcal{E}_{3}$ such that $\operatorname{deg} F \circ E<\operatorname{deg} F$ and $F \circ E$ belongs to \mathcal{A}.

We note that (6.1) implies (5.1), (5.2), (5.3) and (5.5). Furthermore, $f_{1}^{\mathbf{w}}$ and $f_{2}^{\mathbf{w}}$ are algebraically dependent over k in this situation, for otherwise

$$
\operatorname{deg} d f_{1} \wedge d f_{2}=\operatorname{deg} f_{1}+\operatorname{deg} f_{2}=(s+2) \delta
$$

as mentioned after (2.3), which contradicts the last inequality of (6.1).
We establish Propositions 6.2 and 6.3 simultaneously by induction on $\operatorname{deg} F$. Since Σ is well-ordered by Lemma 6.1(ii), so is the subset $\Delta:=\{\operatorname{deg} H ; H \in \mathcal{A}\}$, where $\min \Delta=|\mathbf{w}|$. Assume that $F \in \mathcal{A}$ satisfies $\operatorname{deg} F=|\mathbf{w}|$. If $\operatorname{deg} F \circ E \leq \operatorname{deg} F$ for $E \in \mathcal{E}$, then $\operatorname{deg} F \circ E=$ $|\mathbf{w}|$, since $\operatorname{deg} F \circ E \geq|\mathbf{w}|$ by (2.4). Hence, $F \circ E$ belongs to \mathcal{A}. Thus, the statement of Proposition 6.2 holds for $F \in \mathcal{A}$ with $\operatorname{deg} F=|\mathbf{w}|$. Note that $f_{1}^{\mathbf{w}}, f_{2}^{\mathbf{w}}$ and $f_{3}^{\mathbf{w}}$ are algebraically independent over k if $\operatorname{deg} F=|\mathbf{w}|$, for otherwise $\operatorname{deg} d f_{1} \wedge d f_{2} \wedge d f_{3}<\sum_{i=1}^{3} \operatorname{deg} f_{i}=|\mathbf{w}|$, a contradiction. Therefore, the assumption of Proposition 6.3 is not fulfilled.

Let μ be an element of Δ such that $\mu>|\mathbf{w}|$, and assume that the statement of Proposition 6.2 holds for each $F \in \mathcal{A}$ with $\operatorname{deg} F<\mu$. For $F \in \operatorname{Aut}_{k} k[\mathbf{x}]$, we define I_{F} to be the set of $i \in\{1,2,3\}$ for which there exists $E \in \mathcal{E}_{i}$ such that $\operatorname{deg} F \circ E<\operatorname{deg} F$ and $F \circ E$ belongs to \mathcal{A}. Note that, if $\operatorname{deg} F>|\mathbf{w}|$ for $F \in \mathcal{A}$, then either $I_{F} \neq \emptyset$, or $\left(F_{\sigma}, G\right)$ satisfies the weak Shestakov-Umirbaev condition for some $\sigma \in \mathfrak{S}_{3}$ and $G \in \mathcal{A}$.

Claim 1. Let F be an element of \mathcal{A} such that $\operatorname{deg} F=\mu$.
(i) If E is an element of \mathcal{E}_{i} for some $i \in I_{F}$, then $F \circ E$ belongs to \mathcal{A}.
(ii) If there exist $E^{\prime}, E^{\prime \prime} \in \mathcal{E}$ and $E_{i} \in \mathcal{\mathcal { E } _ { i }}$ with $\operatorname{deg} F \circ E_{i}<\operatorname{deg} F$ for some $i \in I_{F}$ such that $E \circ E^{\prime}=E_{i} \circ E^{\prime \prime}$ for $E \in \mathcal{E}$, then $F \circ E$ belongs to \mathcal{A}.
(iii) For a triangular automorphism H of $k[\mathbf{x}]$, we define $E_{i} \in \mathcal{E}_{i}$ by $E_{i}\left(x_{i}\right)=H\left(x_{i}\right)$ for each i. If $\operatorname{deg}(F \circ H)\left(x_{i}\right)<\operatorname{deg} f_{i}$, or equivalently $\operatorname{deg} F \circ E_{i}<\operatorname{deg} F$, for some $i \in I_{F}$, then $F \circ E_{j}$ belongs to \mathcal{A} for $j=1,2,3$.
(iv) If $I_{F} \backslash\{i\} \neq \emptyset$ and $f_{j}^{\mathbf{w}}$ belongs to $k\left[f_{i}^{\mathbf{w}}\right]$ for some $i, j \in\{1,2,3\}$ with $i \neq j$, then j belongs to I_{F}.
(v) If (F, G) satisfies the weak Shestakov-Umirbaev condition for some $G \in \mathcal{A}$, then there exists $G^{\prime} \in \mathcal{A}$ such that $\left(F, G^{\prime}\right)$ satisfies the Shestakov-Umirbaev condition.

Proof. (i) Since i is an element of I_{F}, there exists $E_{i} \in \mathcal{E}_{i}$ such that $\operatorname{deg} F \circ E_{i}<$ $\operatorname{deg} F$ and $F \circ E_{i}$ belongs to \mathcal{A}. Then, we have $\operatorname{deg} F \circ E_{i}<\mu$, since $\operatorname{deg} F=\mu$ by assumption. For each $E \in \mathcal{E}_{i}$, it follows that $E^{\prime}:=E_{i}^{-1} \circ E$ is an element of \mathcal{E}_{i}. Hence, $F \circ E=\left(F \circ E_{i}\right) \circ E^{\prime}$ belongs to \mathcal{A} by the induction assumption of Proposition 6.2.
(ii) We may assume that E is contained in \mathcal{E}_{j} for some $j \neq i$ by (i), and $\operatorname{deg} F \circ E \leq$ $\operatorname{deg} F$ by the note after Proposition 6.2. Then, E^{\prime} and $E^{\prime \prime}$ belong to \mathcal{E}_{i} and \mathcal{E}_{j}, respectively, since $E \circ E^{\prime}=E_{i} \circ E^{\prime \prime}$ by assumption. Hence, $\left(E_{i} \circ E^{\prime \prime}\right)\left(x_{j}\right)=\left(E \circ E^{\prime}\right)\left(x_{j}\right)=E\left(x_{j}\right)$, and $\left(E_{i} \circ E^{\prime \prime}\right)\left(x_{l}\right)=E_{i}\left(x_{l}\right)$ for $l \neq j$. Since $\operatorname{deg} F \circ E_{i}<\operatorname{deg} F$ and $\operatorname{deg} F \circ E \leq \operatorname{deg} F$, we have

$$
\operatorname{deg}\left(F \circ E_{i} \circ E^{\prime \prime}\right)\left(x_{l}\right)= \begin{cases}\operatorname{deg}\left(F \circ E_{i}\right)\left(x_{i}\right)<\operatorname{deg} f_{i} & \text { if } l=i \\ \operatorname{deg}(F \circ E)\left(x_{j}\right) \leq \operatorname{deg} f_{j} & \text { if } l=j \\ \operatorname{deg}\left(F \circ E_{i}\right)\left(x_{l}\right)=\operatorname{deg} f_{l} & \text { otherwise }\end{cases}
$$

Thus, $\operatorname{deg} F \circ E_{i} \circ E^{\prime \prime}<\operatorname{deg} F$. Note that $F \circ E_{i} \circ E^{\prime \prime}$ belongs to \mathcal{A} by the induction assumption of Proposition 6.2, since $\operatorname{deg} F \circ E_{i}<\operatorname{deg} F=\mu$, and $F \circ E_{i}$ belongs to \mathcal{A} by (i). Therefore, $\left(F \circ E_{i} \circ E^{\prime \prime}\right) \circ\left(E^{\prime}\right)^{-1}$ belongs to \mathcal{A} for the same reason. This shows that $F \circ E$ belongs to \mathcal{A}, since $F \circ E_{i} \circ E^{\prime \prime} \circ\left(E^{\prime}\right)^{-1}=F \circ E \circ E^{\prime} \circ\left(E^{\prime}\right)^{-1}=F \circ E$.
(iii) Without loss of generality, we may assume that $i \neq j$ by (i). We may also assume that $H\left(x_{l}\right)=x_{l}+\phi_{l}$ for each l, where $\phi_{l} \in k\left[x_{1}, \ldots, x_{l-1}\right]$. Then, $E_{p} \circ E^{\prime}=E_{q} \circ E_{p}$ holds for each $p<q$, where $E^{\prime} \in \mathcal{E}_{q}$ such that $E^{\prime}\left(x_{q}\right)=x_{q}+E_{p}^{-1}\left(\phi_{q}\right)$. In view of this, we can find $E^{\prime}, E^{\prime \prime} \in \mathcal{E}$ such that $E_{j} \circ E^{\prime}=E_{i} \circ E^{\prime \prime}$. By assumption, we have $\operatorname{deg} F \circ E_{i}<\operatorname{deg} F$, and i is an element of I_{F}. Hence, we conclude that $F \circ E_{j}$ belongs to \mathcal{A} by (ii).
(iv) Since $I_{F} \backslash\{i\} \neq \emptyset$ by assumption, we can find $l \in I_{F} \backslash\{i\}$ and $E_{l} \in \mathcal{E}_{l}$ such that $\operatorname{deg} F \circ E_{l}<\operatorname{deg} F$. Clearly, we may assume that $j \neq l$. Since $f_{j}^{\mathbf{w}}$ belongs to $k\left[f_{i}^{\mathbf{w}}\right]$ by assumption, there exist $c \in k \backslash\{0\}$ and $r \in N$ such that $f_{j}^{\mathbf{w}}=c\left(f_{i}^{\mathbf{w}}\right)^{r}$. Then, we can define a triangular automorphism H of $k[\mathbf{x}]$ by $H\left(x_{i}\right)=x_{i}, H\left(x_{j}\right)=x_{j}-c x_{i}^{r}$ and $H\left(x_{l}\right)=E_{l}\left(x_{l}\right)$. Define $E_{j} \in \mathcal{E}_{j}$ by $E_{j}\left(x_{j}\right)=H\left(x_{j}\right)$. Since $\operatorname{deg} F \circ E_{l}<\operatorname{deg} F$ for $l \in I_{F}$, it follows from (iii) that $F \circ E_{j}$ belongs to \mathcal{A}. Moreover, since $\operatorname{deg}\left(f_{j}-c f_{i}^{r}\right)<\operatorname{deg} f_{j}$, we have $\operatorname{deg} F \circ E_{j}<\operatorname{deg} F$. Therefore, j belongs to I_{F}.
(v) Since (F, G) satisfies the Shestakov-Umirbaev condition by assumption, there exists $E_{i} \in \mathcal{\mathcal { E } _ { i }}$ for $i=1,2$ such that $\operatorname{deg} G \circ E_{1}=\operatorname{deg} G$, and $\left(F, G^{\prime}\right)$ satisfies the ShestakovUmirbaev condition by Proposition 4.3(i), where $G^{\prime}=G \circ E_{1} \circ E_{2}$. We show that G^{\prime} belongs to \mathcal{A}. Since G is an element of \mathcal{A}, and since $\operatorname{deg} G<\operatorname{deg} F=\mu$ by (P6), it follows that $G \circ E_{1}$ belongs to \mathcal{A} by the induction assumption of Proposition 6.2. Then, $\left(G \circ E_{1}\right) \circ E_{2}$ belongs to \mathcal{A} for the same reason, since $\operatorname{deg} G \circ E_{1}=\operatorname{deg} G<\mu$. Therefore, the assertion holds for $G^{\prime}=G \circ E_{1} \circ E_{2}$.

Now, we show that the statement of Proposition 6.3 holds for each $F \in \mathcal{A}$ with $\operatorname{deg} F=$ μ. Since $\mu>|\mathbf{w}|$, we have $\operatorname{deg} F>|\mathbf{w}|$. Hence, $I_{F} \neq \emptyset$ or $\left(F_{\sigma}, G\right)$ satisfies the weak Shestakov-Umirbaev condition for some $\sigma \in \mathfrak{S}_{3}$ and $G \in \mathcal{A}$ as noted. The conclusion of Proposition 6.3 is obvious if I_{F} contains 3. If I_{F} contains 2, then $\operatorname{deg} F \circ E_{2}<\operatorname{deg} F$ for some $E_{2} \in \mathcal{E}_{2}$. Hence, $f_{2}^{\mathbf{w}}$ belongs to $k\left[S_{2}\right]^{\mathbf{w}}$. Then, we get $f_{1}^{\mathbf{w}} \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$ by Proposition 5.3. Here, we remind that the assumption of Proposition 6.3 implies (5.1), (5.2), (5.3) and (5.5). Thus, $f_{1}^{\mathbf{w}}$ belongs to $k\left[f_{3}^{\mathbf{w}}\right]$. Since $I_{F} \backslash\{3\} \neq \emptyset$, this implies that I_{F} contains 1 by Claim 1(iv). So, assume that I_{F} contains 1. Then, there exists $E_{1} \in \mathcal{E}_{1}$ such that $\operatorname{deg} F^{\prime}<\operatorname{deg} F$ and F^{\prime} belongs to \mathcal{A}, where $F^{\prime}=F \circ E_{1}$. Clearly, $F^{\prime}\left(x_{1}\right)=f_{1}+\phi_{1}$ for some $\phi_{1} \in k\left[S_{1}\right]$ and $\operatorname{deg} F^{\prime}\left(x_{1}\right)<\operatorname{deg} f_{1}$. On account of Claim 1(i), we may assume that $F^{\prime}\left(x_{1}\right)^{\mathbf{w}}$ does not
belong to $k\left[S_{1}\right]^{\mathbf{w}}$ by replacing E_{1} if necessary. Then, F and F^{\prime} satisfy all the assumptions of Proposition 5.4. By the first part of this proposition, we may conclude that either $f_{1}^{\mathbf{w}} \approx\left(f_{3}^{\mathbf{W}}\right)^{2}$, or $\left(f_{2}^{\mathbf{W}}\right)^{2} \approx\left(f_{3}^{\mathbf{W}}\right)^{3}$ and F^{\prime} does not admit a Shestakov-Umirbaev reduction. We show that F^{\prime} admits a Shestakov-Umirbaev reduction, and hence the latter case is impossible. Observe that $f_{2}^{\mathbf{w}}$ and $f_{3}^{\mathbf{w}}$ are algebraically dependent over k in either case, since so are $f_{1}^{\mathbf{w}}$ and $f_{2}^{\mathbf{w}}$ due to (6.1). This implies that $\operatorname{deg} F^{\prime}>|\mathbf{w}|$ by (2.4). Since F^{\prime} is an element of \mathcal{A}, it follows that $I_{F^{\prime}} \neq \emptyset$ or $\left(F_{\sigma^{\prime}}^{\prime}, G^{\prime}\right)$ satisfies the weak Shestakov-Umirbaev condition for some $\sigma^{\prime} \in \mathfrak{S}_{3}$ and $G^{\prime} \in \mathcal{A}$. By Proposition 5.4(1), F^{\prime} does not admit an elementary reduction. Hence, $I_{F^{\prime}}=\emptyset$. Thus, $\left(F_{\sigma^{\prime}}^{\prime}, G^{\prime}\right)$ satisfies the weak Shestakov-Umirbaev condition for some $\sigma^{\prime} \in \mathfrak{S}_{3}$ and $G^{\prime} \in \mathcal{A}$. Accordingly, F^{\prime} admits a weak Shestakov-Umirbaev reduction. Therefore, F^{\prime} admits a Shestakov-Umirbaev reduction by Proposition 4.3(ii). As a result, we get $f_{1}^{\mathbf{w}} \approx$ $\left(f_{3}^{\mathrm{w}}\right)^{2}$. Then, it follows from Proposition 5.4(2) that $\sigma^{\prime}=\mathrm{id}$ and $\left(F, G^{\prime}\right)$ satisfies the weak Shestakov-Umirbaev condition. So, we are reduced to the case where $\left(F_{\sigma}, G\right)$ satisfies the weak Shestakov-Umirbaev condition for some $\sigma \in \mathfrak{S}_{3}$ and $G \in \mathcal{A}$. By Claim 1(iv), we may assume that $\left(F_{\sigma}, G\right)$ satisfies the Shestakov-Umirbaev condition by replacing G if necessary. Then, there exists $E \in \mathcal{E}_{3}$ such that $F \circ E=G$ by Proposition 5.2. Since $\operatorname{deg} G<\operatorname{deg} F$ by (P6), and since G is an element of \mathcal{A}, it follows that $\operatorname{deg} F \circ E<\operatorname{deg} F$, and $F \circ E$ belongs to \mathcal{A}. Thus, we arrive at the conclusion of Proposition 6.3. Therefore, we have proved the assertion of Proposition 6.3 in the case where $\operatorname{deg} F=\mu$ on the assumption that the assertion of Proposition 6.2 is true if $\operatorname{deg} F<\mu$.

To complete the induction, we next show the assertion of Proposition 6.2 in the case where $\operatorname{deg} F=\mu$ on the assumption that the assertions of Propositions 6.2 and 6.3 are true if $\operatorname{deg} F<\mu$ and $\operatorname{deg} F \leq \mu$, respectively. First, assume that $I_{F}=\emptyset$. Then, $\left(F_{\sigma}, G\right)$ satisfies the weak Shestakov-Umirbaev condition for some $\sigma \in \mathfrak{S}_{3}$ and $G \in \mathcal{A}$. Without loss of generality, we may assume that $\sigma=\mathrm{id}$. By Claim 1(iv), we may also assume that (F, G) satisfies the Shestakov-Umirbaev condition by replacing G if necessary. Since $I_{F}=\emptyset$, it follows that F does not admit an elementary reduction. In view of (SU1), this implies that $\left(f_{1}, f_{2}\right) \neq\left(g_{1}, g_{2}\right)$ and $k\left[f_{1}, f_{2}\right] \neq k\left[g_{1}, g_{2}\right]$. Then, we know by the following claim that $F \circ E$ belongs to \mathcal{A} for $E \in \mathcal{E}$ if $\operatorname{deg} F \circ E \leq \operatorname{deg} F$.

Claim 2. Assume that (F, G) satisfies the weak Shestakov-Umirbaev condition for some $G \in \mathcal{A}$, and $E \in \mathcal{E}_{i}$ satisfies $\operatorname{deg} F \circ E \leq \operatorname{deg} F$, where $i \in\{1,2,3\}$. If $i=1$ or $i=2$, or if $i=3$ and $k\left[f_{1}, f_{2}\right] \neq k\left[g_{1}, g_{2}\right]$, then $F \circ E$ belongs to \mathcal{A}.

Proof. In the notation of Proposition 4.4, one of the pairs $(F \circ E, G),\left(F \circ E, G^{\prime}\right)$ and $\left((F \circ E)_{\tau}, G^{\prime \prime}\right)$ satisfies the weak Shestakov-Umirbaev condition. Since G belongs to \mathcal{A}, so do G^{\prime} and $G^{\prime \prime}$. Hence, in each case, $F \circ E$ admits a weak Shestakov-Umirbaev reduction to an element of \mathcal{A}. Therefore, $F \circ E$ belongs to \mathcal{A}.

Therefore, the assertion of Proposition 6.2 is true if $\operatorname{deg} F=\mu$ and $I_{F}=\emptyset$.
Next, assume that $I_{F} \neq \emptyset$, say I_{F} contains 3. We have to check that $F \circ E_{i}$ belongs to \mathcal{A} for any $E_{i} \in \mathcal{E}_{i}$ with $\operatorname{deg} F \circ E_{i} \leq \operatorname{deg} F$ for each $i \in\{1,2,3\}$. By Claim 1(i), this is clear if $i=3$. Since the cases $i=1$ and $i=2$ are similar, we only consider the case where $i=1$.

Since we assume that I_{F} contains 3, there exists $E_{3} \in \mathcal{E}_{3}$ such that $G:=F \circ E_{3}$ belongs to \mathcal{A} and $\operatorname{deg} G<\operatorname{deg} F$. By Claim 1(i), we may assume that $g_{3}^{\mathbf{w}}$ does not belong to $k\left[S_{3}\right]^{\mathbf{w}}$ by replacing E_{3} if necessary. Set $\phi_{i}=F\left(E_{i}\left(x_{i}\right)-x_{i}\right)$ for $i=1,3$. Then, ϕ_{i} belongs to $k\left[S_{i}\right]$ for $i=1,3$, and $g_{3}=f_{3}+\phi_{3}$. Since $\operatorname{deg} F \circ E_{1} \leq \operatorname{deg} F$ and $\operatorname{deg} G<\operatorname{deg} F$, we have $\operatorname{deg} \phi_{1} \leq \operatorname{deg} f_{1}, \phi_{3}^{\mathbf{w}}=-f_{3}^{\mathbf{w}}$ and $\operatorname{deg} g_{3}<\operatorname{deg} f_{3}$.

Claim 3. $F \circ E_{1}$ belongs to \mathcal{A} if one of the following conditions holds:

(i) $E_{1}\left(x_{1}\right)-x_{1}$ belongs to $k\left[x_{2}\right]$, or equivalently, ϕ_{1} belongs to $k\left[f_{2}\right]$.
(ii) f_{1}^{w} or f_{3}^{w} belongs to $k\left[f_{2}^{\mathrm{w}}\right]$.
(iii) $f_{3}^{\mathbf{w}} \approx f_{1}^{\mathbf{w}}+c\left(f_{2}^{\mathbf{w}}\right)^{p}$ for some $c \in k$ and $p \in N$.

Proof. (i) If $E_{1}\left(x_{1}\right)-x_{1}$ belongs to $k\left[x_{2}\right]$, then we can define a triangular automorphism H of $k[\mathbf{x}]$ by $H\left(x_{2}\right)=x_{2}$ and $H\left(x_{i}\right)=E_{i}\left(x_{i}\right)$ for $i=1,3$. Since $\operatorname{deg} F \circ E_{3}<\operatorname{deg} F$ and 3 is contained in I_{F}, it follows from Claim 1(iii) that $F \circ E_{1}$ belongs to \mathcal{A}.
(ii) If $f_{3}^{\mathbf{w}}$ belongs to $k\left[f_{2}^{\mathbf{w}}\right]$, then $\operatorname{deg}\left(f_{3}-c f_{2}^{r}\right)<\operatorname{deg} f_{3}$ for some $c \in k \backslash\{0\}$ and $r \in N$. Define a triangular automorphism H of $k[\mathbf{x}]$ by $H\left(x_{2}\right)=x_{2}, H\left(x_{3}\right)=x_{3}-c x_{2}^{r}$ and $H\left(x_{1}\right)=E_{1}\left(x_{1}\right)$. Since $\operatorname{deg}(F \circ H)\left(x_{3}\right)<\operatorname{deg} f_{3}$ and 3 is contained in I_{F}, it follows from Claim 1(iii) that $F \circ E_{1}$ belongs to \mathcal{A}. If $f_{1}^{\mathbf{w}}$ belongs to $k\left[f_{2}^{\mathbf{w}}\right]$, then I_{F} contains 1 by Claim 1(iv), since $I_{F} \backslash\{2\} \neq \emptyset$. Therefore, $F \circ E_{1}$ belongs to \mathcal{A} by Claim 1(i).
(iii) By assumption, there exists $c^{\prime} \in k \backslash\{0\}$ such that $\operatorname{deg} f^{\prime}<\operatorname{deg} f_{3}$, where $f^{\prime}=$ $f_{3}+c^{\prime}\left(f_{1}+c f_{2}^{p}\right)$. Define $E_{1}^{\prime}, E_{1}^{\prime \prime} \in \mathcal{E}_{1}$ and $E_{3}^{\prime} \in \mathcal{E}_{3}$ by $E_{1}^{\prime}\left(x_{1}\right)=x_{1}+c x_{2}^{p}-\left(1 / c^{\prime}\right) x_{3}$, $E_{1}^{\prime \prime}\left(x_{1}\right)=\left(c^{\prime}\right)^{-1}\left(x_{3}+c^{\prime}\left(x_{1}+c x_{2}^{p}\right)\right)$ and $E_{3}^{\prime}\left(x_{3}\right)=x_{3}+c^{\prime}\left(x_{1}+c x_{2}^{p}\right)$. Then, we have $\operatorname{deg} F \circ E_{3}^{\prime}<\operatorname{deg} F$, because $\left(F \circ E_{3}^{\prime}\right)\left(x_{3}\right)=f^{\prime}$. Since 3 is contained in I_{F} by assumption, $F \circ E_{3}^{\prime}$ belongs to \mathcal{A} by Claim 1(i). Hence, $F^{\prime}:=\left(F \circ E_{3}^{\prime}\right) \circ E_{1}^{\prime}$ belongs to \mathcal{A} by the induction assumption of Proposition 6.2. Since $F^{\prime}=\left(-\left(1 / c^{\prime}\right) f_{3}, f_{2}, f^{\prime}\right)$, this implies that $F \circ E_{1}^{\prime \prime}=\left(\left(1 / c^{\prime}\right) f^{\prime}, f_{2}, f_{3}\right)$ belongs to \mathcal{A}. By assumption, it follows that $\operatorname{deg} f_{3}=\operatorname{deg} f_{1}$. Hence, $\operatorname{deg} F \circ E_{1}^{\prime \prime}<\operatorname{deg} F$. Thus, 1 belongs to I_{F}. Therefore, $F \circ E_{1}$ belongs to \mathcal{A} by Claim 1(i).

In the case where 2 belongs to I_{F} besides 3 , the statement of Claim 3 is true if we interchange f_{2} and f_{3}. Hence, we obtain the following claim.

Claim 4. Assume that 2 is contained in I_{F}. If ϕ_{1} belongs to $k\left[f_{3}\right]$, or if $f_{1}^{\mathbf{w}}$ or $f_{2}^{\mathbf{w}}$ belongs to $k\left[f_{3}^{\mathrm{w}}\right]$, then $F \circ E_{1}$ belongs to \mathcal{A}.

Now, there exist five cases to be considered as follows:
(1) $\operatorname{deg} f_{1}=\operatorname{deg} f_{2}=\operatorname{deg} f_{3}$,
(2) $\operatorname{deg} f_{1}<\operatorname{deg} f_{2}=\operatorname{deg} f_{3}$,
(3) $\operatorname{deg} f_{3}<\operatorname{deg} f_{1}=\operatorname{deg} f_{2}$,
(4) $\operatorname{deg} f_{2}<\operatorname{deg} f_{3}=\operatorname{deg} f_{1}$,
(5) $\operatorname{deg} f_{l}<\operatorname{deg} f_{m}$ for each $l \in\{1,2,3\} \backslash\{m\}$ for some $m \in\{1,2,3\}$.

Here, we remark that the cases (1) through (4) can be excluded from consideration in the case where rank $\mathbf{w}=3$. In fact, $\operatorname{deg} f_{i}=\operatorname{deg} f_{j}$ implies $f_{i}^{\mathbf{w}} \approx f_{j}^{\mathbf{w}}$ for each i and j if rank $\mathbf{w}=3$. Hence, it immediately follows from Claim 3(ii) and (iii) that $F \circ E_{1}$ belongs to \mathcal{A} in the
cases (1) through (4). For this reason, Claim 5 and the statement (I) of Claim 6 below are not necessary when considering \mathbf{w} with rank $\mathbf{w}=3$.

Claim 5. $\quad F \circ E_{1}$ belongs to \mathcal{A} if one of the following holds:

(i) $f_{1}^{\mathbf{w}}$ and $f_{2}^{\mathbf{w}}$ are algebraically independent over k.
(ii) F satisfies one of (1), (2) and (3).

Proof. By Claim 3(i), we may assume that ϕ_{1} belongs to $k\left[f_{2}, f_{3}\right] \backslash k\left[f_{2}\right]$. Then, it follows that, if $\operatorname{deg} f_{1}<\operatorname{deg} f_{3}$, then $f_{2}^{\mathbf{w}}$ and $f_{3}^{\mathbf{w}}$ are algebraically dependent over k. In fact, since $\operatorname{deg} \phi_{1} \leq \operatorname{deg} f_{1}<\operatorname{deg} f_{3}$, and since ϕ_{1} belongs to $k\left[f_{2}, f_{3}\right] \backslash k\left[f_{2}\right]$, we have $\operatorname{deg} \phi_{1}<\operatorname{deg}^{S_{1}} \phi_{1}$. Hence, $\left(f_{2}^{\mathbf{W}}\right)^{p} \approx\left(f_{3}^{\mathbf{W}}\right)^{q}$ for some $p, q \in \boldsymbol{N}$ by Lemma 3.2.
(i) Recall that $f_{3}^{\mathbf{w}} \approx \phi_{3}^{\mathbf{w}}$ and ϕ_{3} is an element of $k\left[S_{3}\right]$. Hence, $f_{3}^{\mathbf{w}}$ belongs to $k\left[S_{3}\right]^{\mathbf{w}}$. Since $f_{1}^{\mathbf{w}}$ and $f_{2}^{\mathbf{w}}$ are algebraically independent over k, we have $k\left[S_{3}\right]^{\mathbf{w}}=k\left[f_{1}^{\mathbf{w}}, f_{2}^{\mathbf{w}}\right]$. Thus, f_{3}^{w} is a polynomial in $f_{1}^{\mathbf{w}}$ and $f_{2}^{\mathbf{w}}$ over k. By Claim 3(ii), we may assume that $f_{3}^{\mathbf{w}}$ does not belong to $k\left[f_{2}^{\mathbf{w}}\right]$. Then, it follows that $\operatorname{deg} f_{1} \leq \operatorname{deg} f_{3}$. We show that $\operatorname{deg} f_{1}=\operatorname{deg} f_{3}$ by contradiction. Supposing deg $f_{1}<\operatorname{deg} f_{3}$, we get that $f_{2}^{\mathbf{w}}$ and $f_{3}^{\mathbf{w}}$ are algebraically dependent over k as remarked above. Since $f_{3}^{\mathbf{w}}$ is an element of $k\left[f_{1}^{\mathbf{w}}, f_{2}^{\mathbf{w}}\right] \backslash k\left[f_{2}^{\mathbf{w}}\right]$, it follows that $f_{1}^{\mathbf{w}}$ and $f_{2}^{\mathbf{w}}$ are algebraically dependent over k, a contradiction. Thus, $\operatorname{deg} f_{1}=\operatorname{deg} f_{3}$. This implies that $f_{3}^{\mathbf{W}} \approx f_{1}^{\mathbf{W}}+c\left(f_{2}^{\mathbf{w}}\right)^{p}$ for some $c \in k$ and $p \in N$. Therefore, $F \circ E_{1}$ belongs to \mathcal{A} by Claim 3(iii).
(ii) By (i), we may assume that $f_{1}^{\mathbf{w}}$ and $f_{2}^{\mathbf{w}}$ are algebraically dependent over k. Then, $f_{1}^{\mathbf{w}} \approx f_{2}^{\mathbf{w}}$ follows from $\operatorname{deg} f_{1}=\operatorname{deg} f_{2}$ in the cases (1) and (3). If (2), it follows from $\operatorname{deg} f_{1}<\operatorname{deg} f_{3}$ that $f_{2}^{\mathbf{w}}$ and $f_{3}^{\mathbf{w}}$ are algebraically dependent over k as remarked above. Then, $f_{2}^{\mathbf{w}} \approx f_{3}^{\mathbf{w}}$ follows from $\operatorname{deg} f_{3}=\operatorname{deg} f_{2}$. By Claim 3(ii), $F \circ E_{1}$ belongs to \mathcal{A} in every case.

Let us complete the proof of Proposition 6.2 by contradiction. Suppose to the contrary that $F \circ E_{1}$ does not belong to \mathcal{A}. Then, the conditions (i), (ii) and (iii) of Claim 3 and (i) and (ii) of Claim 5 cannot be satisfied. In particular, F satisfies (4) or (5). Furthermore, $f_{1}^{\mathbf{w}}$ and f_{3}^{w} must be algebraically independent over k if (4). We show that, if F satisfies (5) for $m=2$, and if $f_{2}^{\mathbf{w}}$ does not belong to $k\left[f_{1}^{\mathbf{w}}\right]$, then $f_{3}^{\mathbf{w}}$ does not belong to $k\left[f_{1}^{\mathbf{w}}\right]$. Supposing the contrary, we have $f_{3}^{\mathbf{w}} \approx\left(f_{1}^{\mathbf{w}}\right)^{p}$ for some $p \in N$. Then, we have $p \geq 2$ in view of Claim 3(iii). Hence, $\operatorname{deg} f_{1}<\operatorname{deg} f_{3}$. We verify that $f=f_{3}, g=f_{2}$ and $\phi=\phi_{1}$ satisfy the assumptions of Lemma 3.3(ii) with $\operatorname{deg} \phi<\operatorname{deg} f$. Recall that ϕ_{1} is an element of $k\left[f_{2}, f_{3}\right]$ such that $\operatorname{deg} \phi_{1} \leq \operatorname{deg} f_{1}$. Since $\operatorname{deg} f_{1}<\operatorname{deg} f_{3}$, we have $\operatorname{deg} \phi_{1}<\operatorname{deg} f_{3}$. On account of Claim 3(i), ϕ_{1} cannot belong to $k\left[f_{2}\right]$. Thus, it follows that $\operatorname{deg} \phi_{1}<\operatorname{deg}^{S_{1}} \phi_{1}$. By assumption, $f_{2}^{\mathbf{w}}$ does not belong to $k\left[f_{1}^{\mathbf{w}}\right]$. Since $f_{3}^{\mathbf{w}} \approx\left(f_{1}^{\mathbf{w}}\right)^{p}$, it follows that $f_{2}^{\mathbf{w}}$ does not belong to $k\left[f_{3}^{\mathbf{w}}\right]$. By the condition (5) for $m=2$, we have $\operatorname{deg} f_{3}<\operatorname{deg} f_{2}$. Thus, the assumptions of Lemma 3.3(ii) are satisfied, and so we conclude that

$$
\operatorname{deg} \phi_{1} \geq(3-2) \frac{1}{2} \operatorname{deg} f_{3}+\operatorname{deg} d f_{2} \wedge d f_{3}>\frac{1}{2} \operatorname{deg} f_{3}=\frac{p}{2} \operatorname{deg} f_{1} \geq \operatorname{deg} f_{1}
$$

This contradicts that $\operatorname{deg} \phi_{1} \leq \operatorname{deg} f_{1}$. Therefore, $f_{3}^{\mathbf{w}}$ does not belong to $k\left[f_{1}^{\mathbf{w}}\right]$ if F satisfies (5) for $m=2$, and $f_{2}^{\mathbf{w}}$ does not belong to $k\left[f_{1}^{\mathbf{w}}\right]$.

Claim 6. If $F \circ E_{1}$ does not belong to \mathcal{A}, then one of the following holds:
(I) $\operatorname{deg} f_{2}<\operatorname{deg} f_{1}, \operatorname{deg} f_{1}=\operatorname{deg} f_{3}, f_{1}^{\mathbf{w}} \not \approx f_{3}^{\mathbf{w}}$, and $f_{1}^{\mathbf{w}}$ and $f_{3}^{\mathbf{w}}$ do not belong to $k\left[f_{2}^{\mathbf{w}}\right]$ and $k\left[f_{1}^{\mathbf{w}}, f_{2}^{\mathbf{w}}\right]$, respectively.
(II) $\operatorname{deg} f_{i}<\operatorname{deg} f_{j}, \operatorname{deg} f_{3}<\operatorname{deg} f_{j}$, and $f_{j}^{\mathbf{w}}$ and $f_{3}^{\mathbf{w}}$ do not belong to $k\left[f_{i}^{\mathbf{w}}\right]$ for some $(i, j) \in\{(1,2),(2,1)\}$.
(III) $\operatorname{deg} f_{1}<\operatorname{deg} f_{j}, \operatorname{deg} f_{i}<\operatorname{deg} f_{j}, f_{1}^{\mathbf{w}}$ and $f_{j}^{\mathbf{w}}$ do not belong to $k\left[f_{i}^{\mathbf{w}}\right]$, and ϕ_{1} belongs to $k\left[S_{1}\right] \backslash k\left[f_{i}\right]$ for some $(i, j) \in\{(2,3),(3,2)\}$.

Proof. We show that F satisfies (I) in the case (4), where $\operatorname{deg} f_{2}<\operatorname{deg} f_{1}$ and $\operatorname{deg} f_{1}=\operatorname{deg} f_{3}$. On account of Claim 3(ii) and (iii), $f_{l}^{\mathbf{w}}$ does not belong to $k\left[f_{2}^{\mathbf{w}}\right]$ for $l=1,3$, and $f_{3}^{\mathbf{w}} \not \approx f_{1}^{\mathbf{w}}$. We show that $f_{3}^{\mathbf{w}}$ does not belong to $k\left[f_{1}^{\mathbf{w}}, f_{2}^{\mathbf{w}}\right]$ by contradiction. Supposing the contrary, we have $f_{3}^{\mathbf{W}}=a f_{1}^{\mathbf{W}}+b\left(f_{2}^{\mathbf{w}}\right)^{p}$ for some $a, b \in k$ with $(a, b) \neq(0,0)$ and $p \geq 2$, since $\operatorname{deg} f_{3}=\operatorname{deg} f_{1}$ and $\operatorname{deg} f_{1}>\operatorname{deg} f_{2}$. If $a=0$ or $b=0$, then $f_{3}^{\mathbf{w}}$ belongs to $k\left[f_{2}^{\mathbf{W}}\right]$ or $f_{3}^{\mathbf{w}} \approx f_{1}^{\mathbf{w}}$, a contradiction. Hence, $a \neq 0$ and $b \neq 0$. It follows that $\operatorname{deg} f_{1}^{\mathbf{w}}=\operatorname{deg}\left(f_{2}^{\mathbf{w}}\right)^{p}$. Owing to Claim 5(i), $f_{1}^{\mathbf{w}}$ and $f_{2}^{\mathbf{w}}$ must be algebraically dependent over k. Thus, $f_{1}^{\mathbf{w}} \approx\left(f_{2}^{\mathbf{w}}\right)^{p}$, and so $f_{1}^{\mathbf{w}}$ belongs to $k\left[f_{2}^{\mathbf{w}}\right]$, a contradiction. Therefore, $f_{3}^{\mathbf{w}}$ does not belong to $k\left[f_{1}^{\mathbf{w}}, f_{2}^{\mathbf{w}}\right]$. This proves that F satisfies (I) in the case (4).

We show that F satisfies (II) or (III) in the case (5). Since the conditions (i), (ii) and (iii) of Claim 3 are not satisfied by supposition, (II) holds for $(i, j)=(2,1)$ if $m=1$, and (III) holds for $(i, j)=(2,3)$ if $m=3$. Assume that $m=2$. As shown before this claim, if $f_{2}^{\mathbf{w}}$ does not belong to $k\left[f_{1}^{\mathbf{W}}\right]$, then neither does $f_{3}^{\mathbf{w}}$. Hence, (II) holds for $(i, j)=(1,2)$. If $f_{2}^{\mathbf{w}}$ belongs to $k\left[f_{1}^{\mathrm{w}}\right]$, then I_{F} contains 2 by Claim 1 (iv) since $I_{F} \backslash\{1\} \neq \emptyset$. By Claim 4, we know that ϕ_{1} belongs to $k\left[S_{1}\right] \backslash k\left[f_{3}\right]$, and $f_{1}^{\mathbf{w}}$ and $f_{2}^{\mathbf{w}}$ do not belong to $k\left[f_{3}^{\mathbf{w}}\right]$. Therefore, (III) holds for $(i, j)=(3,2)$.

We consider the cases (I) and (II) together. Recall that $\phi_{3}^{\mathbf{w}} \approx f_{3}^{\mathbf{w}}, \operatorname{deg} g_{3}<\operatorname{deg} f_{3}, g_{3}^{\mathbf{w}}$ does not belong to $k\left[S_{3}\right]^{\mathbf{w}}$, and $G=\left(f_{1}, f_{2}, g_{3}\right)$ belongs to \mathcal{A}. We establish the inequality

$$
\begin{equation*}
\operatorname{deg} g_{3}<\operatorname{deg} f_{j}-\operatorname{deg} f_{i}+\operatorname{deg} d f_{1} \wedge d f_{2} \tag{6.2}
\end{equation*}
$$

by contradiction, where we set $(i, j)=(2,1)$ in the case (I). When (I), $f_{3}^{\mathbf{w}}$ does not belong to $k\left[f_{1}^{\mathbf{w}}, f_{2}^{\mathbf{w}}\right]$, and hence neither does $\phi_{3}^{\mathbf{w}}$. The same holds true in the case (II) because $k\left[f_{1}^{\mathbf{w}}, f_{2}^{\mathbf{w}}\right]=k\left[f_{i}^{\mathbf{w}}, f_{j}^{\mathbf{w}}\right], \operatorname{deg} f_{3}<\operatorname{deg} f_{j}$ and $f_{3}^{\mathbf{w}}$ does not belong to $k\left[f_{i}^{\mathbf{w}}\right]$. Since ϕ_{3} is an element of $k\left[S_{3}\right]$, it follows that $\operatorname{deg} \phi_{3}<\operatorname{deg}^{S_{3}} \phi_{3}$ in both cases. We show that $G^{\prime}:=\left(f_{j}, f_{i}, g_{3}\right)$ satisfies the assumptions of Proposition 6.3. Clearly, G^{\prime} is an element of \mathcal{A}, since so is G by assumption. By the conditions in (I) and (II), we know $\operatorname{deg} f_{i}<\operatorname{deg} f_{j}$, $\operatorname{deg} \phi_{3}=\operatorname{deg} f_{3} \leq \operatorname{deg} f_{j}$, and that $f_{j}^{\mathbf{w}}$ does not belong to $k\left[f_{i}^{\mathbf{w}}\right]$. Hence, it follows from Lemma 3.3(ii) that $\operatorname{deg} f_{i}=2 \delta$ and $\operatorname{deg} f_{j}=s \delta$ for some $\delta \in \Gamma$ and an odd number $s \geq 3$. Since (6.2) is supposed to be false, we get

$$
(s-2) \delta+\operatorname{deg} d f_{1} \wedge d f_{2}=\operatorname{deg} f_{j}-\operatorname{deg} f_{i}+\operatorname{deg} d f_{1} \wedge d f_{2}
$$

$$
\leq \operatorname{deg} g_{3}<\operatorname{deg} f_{3} \leq \operatorname{deg} f_{j}=s \delta
$$

Since $k\left[S_{3}\right]^{\mathbf{w}}$ does not contain $g_{3}^{\mathbf{w}}$, neither does $k\left[f_{i}\right]^{\mathbf{w}}$. Thus, G^{\prime} satisfies the assumptions of Proposition 6.3. Because $\operatorname{deg} G^{\prime}<\operatorname{deg} F=\mu$, we may conclude that there exists $E_{3}^{\prime} \in \mathcal{E}_{3}$ such that $\operatorname{deg} G^{\prime} \circ E_{3}^{\prime}<\operatorname{deg} G^{\prime}$ by induction assumption. This contradicts that $g_{3}^{\mathbf{w}}$ does not belong to $k\left[S_{3}\right]^{\mathrm{w}}$, thereby proves that (6.2) is true. We show that (F^{\prime}, G^{\prime}) satisfies the weak Shestakov-Umirbaev condition, where $F^{\prime}=\left(f_{j}, f_{i}, f_{3}\right)$. The first two conditions of (SU1'), and (SU2') are obvious. The last condition of (SU1'), and (SU5) follow from the construction of g_{3}. (SU3') and the first condition of (SU4) are included in (I) and (II). As mentioned after (6.2), $f_{3}^{\mathbf{w}}$ does not belong to $k\left[f_{1}^{\mathbf{w}}, f_{2}^{\mathbf{w}}\right]$, which is the last condition of (SU4). (SU6) is due to (6.2). Thus, (F^{\prime}, G^{\prime}) satisfies the weak Shestakov-Umirbaev condition. It follows from Claim 2 that $F^{\prime} \circ E$ belongs to \mathcal{A} for each $E \in \mathcal{E}_{l}$ for $l=1,2$ if $\operatorname{deg} F^{\prime} \circ E \leq \operatorname{deg} F^{\prime}$. In particular, $\left(F \circ E_{1}\right) \circ H=F^{\prime} \circ\left(H \circ E_{1} \circ H\right)$ belongs to \mathcal{A}, where $H=\left(x_{j}, x_{i}, x_{3}\right)$. Actually, $H \circ E_{1} \circ H$ belongs to \mathcal{E}_{j}, and

$$
\operatorname{deg} F^{\prime} \circ H \circ E_{1} \circ H=\operatorname{deg} F \circ E_{1} \circ H=\operatorname{deg} F \circ E_{1} \leq \operatorname{deg} F=\operatorname{deg} F^{\prime} .
$$

This implies that $F \circ E_{1}$ belongs to \mathcal{A}. Therefore, we are led to a contradiction.
Finally, we derive a contradiction in the case (III). It follows that $\operatorname{deg} \phi_{1}<\operatorname{deg}^{S_{1}} \phi_{1}$, since ϕ_{1} is an element of $k\left[f_{i}, f_{j}\right] \backslash k\left[f_{i}\right]$ with $\operatorname{deg} \phi_{1} \leq \operatorname{deg} f_{1}<\operatorname{deg} f_{j}$. Since $\operatorname{deg} f_{i}<$ $\operatorname{deg} f_{j}$, and since $f_{j}^{\mathbf{w}}$ does not belong to $k\left[f_{i}^{\mathbf{w}}\right]$, we know that f_{i}, f_{j} and ϕ_{1} satisfy the assumptions of Lemma 3.3(ii). Hence, there exist $\delta \in \Gamma$ and an odd number $s \geq 3$ such that $\operatorname{deg} f_{i}=2 \delta, \operatorname{deg} f_{j}=s \delta$ and

$$
(s-2) \delta+\operatorname{deg} d f_{2} \wedge d f_{3}=(s-2) \delta+\operatorname{deg} d f_{i} \wedge d f_{j} \leq \operatorname{deg} \phi_{1} \leq \operatorname{deg} f_{1}<\operatorname{deg} f_{j}=s \delta
$$

Thus, F_{τ} satisfies (6.1) for $\tau \in \mathfrak{S}_{3}$ with $\tau(1)=j, \tau(2)=i$ and $\tau(3)=1$. Note that F_{τ} is an element of \mathcal{A} with $\operatorname{deg} F_{\tau}=\mu$ since so is F. As $f_{1}^{\mathbf{w}}$ does not belong to $k\left[f_{i}^{\mathbf{w}}\right]$, the assumptions of Proposition 6.3 are fulfilled for F_{τ}. Hence, by induction assumption, we conclude that $\operatorname{deg} F_{\tau} \circ E_{3}^{\prime}<\operatorname{deg} F_{\tau}$ and $F_{\tau} \circ E_{3}^{\prime}$ belongs to \mathcal{A} for some $E_{3}^{\prime} \in \mathcal{E}_{3}$. Thus, $I_{F_{\tau}}$ contains 3, and so I_{F} contains 1. Therefore, $F \circ E_{1}$ belongs to \mathcal{A} by Claim 1(i), a contradiction.

This proves that the statement of Proposition 6.2 holds for each $F \in \mathcal{A}$ with $\operatorname{deg} F=\mu$. Thus, the proofs of Propositions 6.2 and 6.3 are completed by induction. Thereby, we have completed the proof Theorem 2.1.
7. Relations with the theory of Shestakov-Umirbaev. In this section, we discuss relations with the original theory of Shestakov-Umirbaev. Throughout this section, we assume that $\Gamma=\boldsymbol{Z}$ and $\mathbf{w}=(1,1,1)$. Hence, $\operatorname{deg} F \geq|\mathbf{w}|=3$ for each $F \in \operatorname{Aut}_{k} k[\mathbf{x}]$. First, we recall the notions of reductions of types I, II, III and IV defined by Shestakov-Umirbaev [10, Definitions 1, 2, 3 and 4].

Let $F=\left(f_{1}, f_{2}, f_{3}\right)$ be an element of Aut $k[\mathbf{x}]$ such that $\operatorname{deg} f_{1}=2 l$ and $\operatorname{deg} f_{2}=s l$ for some $l \in N$ and an odd number $s \geq 3$.
(1) F is said to admit a reduction of type I if $2 l<\operatorname{deg} f_{3} \leq s l, f_{3}^{\mathbf{w}}$ does not belong to $k\left[f_{1}^{\mathbf{w}}, f_{2}^{\mathbf{w}}\right]$, and there exists $\alpha \in k \backslash\{0\}$ for which $g_{1}:=f_{1}$ and $g_{2}:=f_{2}-\alpha f_{3}$ satisfy the following conditions:
(i) $\operatorname{deg} g_{2}=s l$, and $g_{1}^{\mathbf{w}}$ and $g_{2}^{\mathbf{w}}$ are algebraically dependent over k.
(ii) $\operatorname{deg} g_{3}<\operatorname{deg} f_{3}$ and $\operatorname{deg} d g_{1} \wedge d g_{3}<s l+\operatorname{deg} d g_{1} \wedge d g_{2}$ for some $\phi \in k\left[g_{1}, g_{2}\right]$, where $g_{3}=f_{3}+\phi$.
(2) F is said to admit a reduction of type II if $s=3,(3 / 2) l<\operatorname{deg} f_{3} \leq 2 l, f_{1}^{\mathbf{w}} \not \approx f_{3}^{\mathbf{w}}$, and there exist $\alpha, \beta \in k$ with $(\alpha, \beta) \neq(0,0)$ for which $g_{1}:=f_{1}-\alpha f_{3}$ and $g_{2}:=f_{2}-\beta f_{3}$ satisfy the following conditions:
(iii) $\operatorname{deg} g_{1}=2 l, \operatorname{deg} g_{2}=3 l$, and $g_{1}^{\mathbf{w}}$ and $g_{2}^{\mathbf{w}}$ are algebraically dependent over k.
(iv) $\operatorname{deg} g_{3}<\operatorname{deg} f_{3}$ and $\operatorname{deg} d g_{1} \wedge d g_{3}<3 l+\operatorname{deg} d g_{1} \wedge d g_{2}$ for some $\phi \in k\left[g_{1}, g_{2}\right]$, where $g_{3}=f_{3}+\phi$.

Next, let $F=\left(f_{1}, f_{2}, f_{3}\right)$ be an element of Aut $k[\mathbf{x}]$ such that $\operatorname{deg} f_{1}=2 l$, and either $\operatorname{deg} f_{2}=3 l$ and $l<\operatorname{deg} f_{3} \leq(3 / 2) l$, or $(5 / 2) l<\operatorname{deg} f_{2} \leq 3 l$ and $\operatorname{deg} f_{3}=(3 / 2) l$ for some $l \in N$. Assume that there exist $\alpha, \beta, \gamma \in k$ such that $g_{1}:=f_{1}-\beta f_{3}$ and $g_{2}:=f_{2}-\gamma f_{3}-\alpha f_{3}^{2}$ satisfy the following conditions:
(v) $\operatorname{deg} g_{1}=2 l, \operatorname{deg} g_{2}=3 l$, and $g_{1}^{\mathbf{w}}$ and $g_{2}^{\mathbf{w}}$ are algebraically dependent over k.
(vi) $\operatorname{deg} g_{3} \leq(3 / 2) l$ and $\operatorname{deg} d g_{1} \wedge d g_{3}<3 l+\operatorname{deg} d g_{1} \wedge d g_{2}$ for some $\sigma \in k \backslash\{0\}$ and $g \in k\left[g_{1}, g_{2}\right] \backslash k$, where $g_{3}=\sigma f_{3}+g$.
(3) F is said to admit a reduction of type III if we can choose $\alpha, \beta, \gamma, \sigma$ and g so that $(\alpha, \beta, \gamma) \neq(0,0,0)$ and $\operatorname{deg} g_{3}<l+\operatorname{deg} d g_{1} \wedge d g_{2}$.
(4) F is said to admit a reduction of type IV if we can choose $\alpha, \beta, \gamma, \sigma$ and g so that $\operatorname{deg}\left(g_{2}-\mu g_{3}^{2}\right) \leq 2 l$ for some $\mu \in k \backslash\{0\}$.

We also say that F admits a reduction of type I (resp. II, III and IV) if F_{σ} satisfies (1) (resp. (2), (3) and (4)) for some $\sigma \in \mathfrak{S}_{3}$.

Here, we note that the conditions (i), (iii) and (v) are equivalent to the condition that g_{1}, g_{2} is a "two-reduced pair", since the conditions on $\operatorname{deg} g_{1}$ and $\operatorname{deg} g_{2}$ imply $g_{1}^{\mathbf{w}} \notin k\left[g_{2}^{\mathbf{w}}\right]$ and $g_{2}^{\mathbf{w}} \notin k\left[g_{1}^{\mathbf{w}}\right]$. Although Shestakov-Umirbaev [10] considered the "Poisson bracket" $[f, g]$ instead of $d f \wedge d g$ for $f, g \in k[\mathbf{x}]$, the degrees of $[f, g]$ and $d f \wedge d g$ are defined in the same way.

The following theorem is a consequence of Theorem 2.1 and Proposition 5.4.

THEOREM 7.1. No tame automorphism of $k[\mathbf{x}]$ admits a reduction of type IV.

Proof. Suppose to the contrary that F satisfies (4) for some $F \in \mathrm{~T}_{k} k[\mathbf{x}]$. Then, g_{1} and g_{2} appearing in the condition satisfy $\operatorname{deg} g_{1}=2 l$ and $\operatorname{deg} g_{2}=3 l$. Moreover, since $\operatorname{deg}\left(g_{2}-\mu g_{3}^{2}\right) \leq 2 l<(5 / 2) l<\operatorname{deg} g_{2}$ for some $\mu \in k \backslash\{0\}$, we have $g_{2}^{\mathbf{w}} \approx\left(g_{3}^{\mathbf{w}}\right)^{2}$. Hence, $\operatorname{deg} g_{3}=(3 / 2) l$. Since F belongs to $\mathrm{T}_{k} k[\mathbf{x}]$, so does $H:=\left(g_{2}, g_{1}, g_{3}\right)$. We show that H satisfies the assumptions of Proposition 5.4 for $s=3$ and $\delta=l$. The degrees of g_{2}, g_{1} and g_{3} satisfy (5.2), and $g_{3}^{\mathbf{w}}$ does not belong to $k\left[g_{1}^{\mathbf{W}}\right]$ since $\operatorname{deg} g_{3}<\operatorname{deg} g_{1}$. We verify that $\operatorname{deg} d g_{1} \wedge d g_{2} \leq(1 / 2) l$, which gives (5.5) that

$$
\operatorname{deg} d g_{1} \wedge d g_{2} \leq \frac{1}{2} l<\frac{3}{2} l-l+1 \leq \operatorname{deg} g_{3}-(3-2) l+\min \{l, \varepsilon\},
$$

since $\varepsilon=\operatorname{deg} d g_{1} \wedge d g_{2} \wedge d g_{3}=3$ and $l \geq 1$. By definition, g is an element of $k\left[g_{1}, g_{2}\right] \backslash k$ such that $\operatorname{deg} g \leq \max \left\{\operatorname{deg} f_{3}, \operatorname{deg} g_{3}\right\}=(3 / 2) l<\operatorname{deg} g_{i}$ for $i=1,2$. Hence, $g^{\mathbf{w}}$ does not
belong to $k\left[g_{1}^{\mathbf{w}}, g_{2}^{\mathbf{w}}\right]$, and so $\operatorname{deg} g<\operatorname{deg}^{U} g$, where $U=\left\{g_{1}, g_{2}\right\}$. Since $\operatorname{deg} g_{1}=2 l$ and $\operatorname{deg} g_{2}=3 l$, it follows that $\operatorname{deg} g_{1}<\operatorname{deg} g_{2}$ and $g_{2}^{\mathbf{w}}$ does not belong to $k\left[g_{1}^{\mathbf{w}}\right]$. Thus,

$$
\operatorname{deg} g \geq(3-2) l+\operatorname{deg} d g_{1} \wedge d g_{2}=l+\operatorname{deg} d g_{1} \wedge d g_{2}
$$

by Lemma 3.3(ii). Since $\operatorname{deg} g \leq(3 / 2) l$, we conclude that $\operatorname{deg} d g_{1} \wedge d g_{2} \leq(1 / 2) l$. Therefore, H satisfies the assumptions of Proposition 5.4. Take $\phi_{2} \in k\left[g_{1}, g_{3}\right]$ so that $\left(g_{2}^{\prime}\right)^{\mathbf{w}}$ does not belong to $k\left[g_{1}, g_{3}\right]^{\mathbf{w}}$, where $g_{2}^{\prime}=g_{2}+\phi_{2}$. Then, $\operatorname{deg} g_{2}^{\prime} \leq 2 l$ since $\operatorname{deg}\left(g_{2}-\mu g_{3}^{2}\right) \leq 2 l$. By Proposition 5.4(1), $H^{\prime}:=\left(g_{2}^{\prime}, g_{1}, g_{3}\right)$ does not admit an elementary reduction. Since H belongs to $\mathrm{T}_{k} k[\mathbf{x}]$, so does H^{\prime}. Furthermore, $\operatorname{deg} H^{\prime}>3$, because $\operatorname{deg} g_{i}>l \geq 1$ for $i=1,3$. Thus, H^{\prime} admits a Shestakov-Umirbaev reduction by Theorem 2.1. Hence, there exist $\sigma \in \mathfrak{S}_{3}$ and $K \in \operatorname{Aut}_{k} k[\mathbf{x}]$ such that $\left(H_{\sigma}^{\prime}, K\right)$ satisfies the Shestakov-Umirbaev condition. Since $g_{2}^{\mathbf{W}} \approx\left(g_{3}^{\mathbf{W}}\right)^{2}$ as mentioned, we know that $\sigma=$ id by Proposition 5.4(2). Hence, $\left(H^{\prime}, K\right)$ satisfies the Shestakov-Umirbaev condition. Consequently, we get $\operatorname{deg} g_{1}<\operatorname{deg} g_{2}^{\prime}$ by (P7). This contradicts that deg $g_{1}=2 l$ and $\operatorname{deg} g_{2}^{\prime} \leq 2 l$. Therefore, F does not admit a reduction of type IV.

To conclude that Nagata's automorphism is not tame, Shestakov-Umirbaev [10, Theorem 1] showed that, if $\operatorname{deg} F>3$ for $F \in \mathrm{~T}_{k} k[\mathbf{x}]$, then F admits an elementary reduction or a reduction of one of the types I, II, III and IV. With the aid of the following proposition, the criterion of Shestakov-Umirbaev is derived from Theorem 2.1.

Proposition 7.2. Assume that (F, G) satisfies the Shestakov-Umirbaev condition for $F, G \in \operatorname{Aut}_{k} k[\mathbf{x}]$. If $\left(f_{1}, f_{2}\right)=\left(g_{1}, g_{2}\right)$, then F admits an elementary reduction. If $\left(f_{1}, f_{2}\right) \neq\left(g_{1}, g_{2}\right)$, then F admits a reduction of one of the types I, II and III.

Proof. The first assertion follows from (SU1) and (SU5). We show the last assertion. By (SU1), we may write $g_{1}=f_{1}+a f_{3}^{2}+c f_{3}, g_{2}=f_{2}+b f_{3}$ and $g_{3}=f_{3}+\phi$, where $a, b, c \in k$ and $\phi \in k\left[g_{1}, g_{2}\right]$. Since $\left(f_{1}, f_{2}\right) \neq\left(g_{1}, g_{2}\right)$ by assumption, we have $(a, b, c) \neq(0,0,0)$. By (SU3), there exist $l \in N$ and an odd number $s \geq 3$ such that $\operatorname{deg} g_{1}=s l$ and $\operatorname{deg} g_{2}=2 l$. Then, it follows that $l<\operatorname{deg} f_{3} \leq s l$ by (P7). Put $\tau=(1,2)$. We show that F_{τ} satisfies (1) for $\alpha=-c$ if $2 l<\operatorname{deg} f_{3} \leq s l$, (2) for $(\alpha, \beta)=(-b,-c)$ if $(3 / 2) l<\operatorname{deg} f_{3} \leq 2 l$, and (3) for $(\alpha, \beta, \gamma)=(-a,-b,-c), \sigma=1$ and $g=\phi$ if $l<\operatorname{deg} f_{3} \leq(3 / 2) l$.

Note that deg $f_{2}=2 l$ by (SU2), and that deg $f_{1}=s l$ if $\operatorname{deg} f_{3} \neq(3 / 2) l$, and (5/2) $l<$ $\operatorname{deg} f_{1} \leq 3 l$ otherwise by (P5). Moreover, $s=3$ if $\operatorname{deg} f_{3} \leq 2 l$ by (P11). From this, we see that the conditions on the degrees of f_{1} and f_{2} are satisfied in every case. It follows that $a=b=0$ if $2 l<\operatorname{deg} f_{3} \leq s l$ by (P11), and $a=0$ if (3/2) $l<\operatorname{deg} f_{3} \leq 2 l$, since $\operatorname{deg} f_{3}^{2}>3 l=\operatorname{deg} g_{1}$. Hence, $g_{2}=f_{2}$ and $g_{1}=f_{1}-\alpha f_{3}$ for $\alpha=-c$ if $2 l<\operatorname{deg} f_{3} \leq s l$, $g_{2}=f_{2}-\alpha f_{3}$ and $g_{1}=f_{1}-\beta f_{3}$ for $(\alpha, \beta)=(-b,-c)$ if $(3 / 2) l<\operatorname{deg} f_{3} \leq 2 l$, and $g_{2}=f_{2}-\beta f_{3}$ and $g_{1}=f_{1}-\gamma f_{3}-\alpha f_{3}^{2}$ for $(\alpha, \beta, \gamma)=(-a,-b,-c)$ if $l<\operatorname{deg} f_{3} \leq(3 / 2) l$, in which $\alpha \neq 0,(\alpha, \beta) \neq(0,0)$, and $(\alpha, \beta, \gamma) \neq(0,0,0)$, respectively. Besides, $g=\phi$ in (iv) cannot be an element of k, since $\operatorname{deg} g_{3}<\operatorname{deg} f_{3}$ by (SU5). So, we verify that (i) through (vi) are satisfied for g_{2}, g_{1} and g_{3}. As mentioned, we have $\operatorname{deg} g_{2}=2 l$ and $\operatorname{deg} g_{1}=s l$, where $s=3$ if $\operatorname{deg} f_{3} \leq 2 l$. By (SU3), $g_{2}^{\mathbf{w}}$ and $g_{1}^{\mathbf{w}}$ are algebraically dependent over k. Thus,
(i), (iii) and (v) are satisfied. The first conditions in (ii) and (iv) are the same as (SU5). If $\operatorname{deg} f_{3} \leq(3 / 2) l$, then $\operatorname{deg} g_{3}<\operatorname{deg} f_{3} \leq(3 / 2) l$ by (SU5), the first condition in (vi). The second conditions in (ii), (iv) and (vi) follow from (SU6), since

$$
\begin{aligned}
\operatorname{deg} d g_{2} \wedge d g_{3} & \leq \operatorname{deg} g_{2}+\operatorname{deg} g_{3}<\operatorname{deg} g_{2}+\left(\operatorname{deg} g_{1}-\operatorname{deg} g_{2}+\operatorname{deg} d g_{1} \wedge d g_{2}\right) \\
& =s l+\operatorname{deg} d g_{1} \wedge d g_{2}
\end{aligned}
$$

Therefore, (i) through (vi) are satisfied for g_{2}, g_{1} and g_{3}.
Let us check the other conditions. It follows from (P8) that $f_{2}^{\mathbf{w}} \not \approx f_{3}^{\mathbf{w}}$. Hence, F_{τ} satisfies (2) if $(3 / 2) l<\operatorname{deg} f_{3} \leq 2 l$. We have already shown that F_{τ} satisfies the assumption of (3) if $l<\operatorname{deg} f_{3} \leq(3 / 2) l$. Since the last condition in (3) is the same as (SU6), F_{τ} satisfies (3) in this case. We show that $f_{3}^{\mathbf{w}}$ does not belong to $k\left[f_{1}^{\mathbf{w}}, f_{2}^{\mathbf{w}}\right]$ as required in (1). By (P8), $f_{3}^{\mathbf{w}}$ does not belong to $k\left[f_{1}^{\mathbf{w}}\right]$ nor $k\left[f_{2}^{\mathbf{w}}\right]$. Since $\operatorname{deg} f_{3} \leq \operatorname{deg} f_{1}$ by (P7), we have $\operatorname{deg} f_{3}<\operatorname{deg} f_{1}+\operatorname{deg} f_{2}=\operatorname{deg} f_{1} f_{2}$. Hence, $f_{3}^{\mathbf{w}}$ does not belong to $k\left[f_{1}^{\mathbf{w}}, f_{2}^{\mathbf{w}}\right]$. This proves that F_{τ} satisfies (1) if $2 l<\operatorname{deg} f_{3} \leq s l$. Therefore, F admits a reduction of one of the types I, II and III if $\left(f_{1}, f_{2}\right) \neq\left(g_{1}, g_{2}\right)$.
8. Remarks. In closing, we make some remarks on Shestakov-Umirbaev reductions. As established in Section 6, for each $F \in \mathrm{~T}_{k} k[\mathbf{x}]$ with $\operatorname{deg}_{\mathbf{w}} F>|\mathbf{w}|$, there exists a sequence $\left(G_{i}\right)_{i=0}^{r}$ of elements of $\mathrm{T}_{k} k[\mathbf{x}]$ for some $r \in \boldsymbol{N}$ such that $G_{0}=F, \operatorname{deg} G_{r}=|\mathbf{w}|$, and G_{i+1} is an elementary reduction or a weak Shestakov-Umirbaev reduction of G_{i} for each i. We have a more precise result as follows.

Corollary 8.1. For each $F \in \mathrm{~T}_{k} k[\mathbf{x}]$ with $\operatorname{deg} F>|\mathbf{w}|$, there exists a sequence $\left(G_{i}\right)_{i=0}^{r}$ of elements of $\mathrm{T}_{k} k[\mathbf{x}]$ for some $r \in \boldsymbol{N}$ such that $G_{0}=F, \operatorname{deg} G_{r}=|\mathbf{w}|$, and G_{i+1} is an elementary reduction or a Shestakov-Umirbaev reduction of G_{i} for each i.

Proof. Let \mathcal{B} be the set of $F \in \mathrm{~T}_{k} k[\mathbf{x}]$ with $\operatorname{deg} F>|\mathbf{w}|$ for which there does not exist a sequence as claimed. Suppose to the contrary that \mathcal{B} is not empty. Then, we can find $F \in \mathcal{B}$ such that $\operatorname{deg} F=\min \{\operatorname{deg} H ; H \in \mathcal{B}\}>|\mathbf{w}|$, since Σ is a well-ordered set by Lemma 6.1(ii). Since F is tame, there exists $G \in \mathrm{~T}_{k} k[\mathbf{x}]$ which is an elementary reduction or a Shestakov-Umirbaev reduction of F by Theorem 2.1. Then, $\operatorname{deg} G<\operatorname{deg} F$ by (P6). Hence, G does not belong to \mathcal{B} by the minimality of $\operatorname{deg} F$. It follows from the definition of \mathcal{B} that $\operatorname{deg} G=|\mathbf{w}|$ or there exists a sequence as claimed for G. In either case, F cannot be an element of \mathcal{B}, a contradiction. Therefore, \mathcal{B} is empty.

For each $F \in \mathrm{~T}_{k} k[\mathbf{x}]$ with $\operatorname{deg} F>|\mathbf{w}|$ and a sequence $\mathcal{G}=\left(G_{i}\right)_{i=0}^{r}$ as in Corollary 8.1, we define $\mathrm{SU}_{\mathbf{w}}(F ; \mathcal{G})$ to be the number of $i \in\{1, \ldots, r\}$ such that G_{i+1} is a ShestakovUmirbaev reduction of G_{i}. We define the Shestakov-Umirbaev number $\mathrm{SU}_{\mathbf{w}}(F)$ for the weight \mathbf{w} to be the minimum among $\mathrm{SU}_{\mathbf{w}}(F ; \mathcal{G})$ for the sequences $\mathcal{G}=\left(G_{i}\right)_{i=0}^{r}$ as in Corollary 8.1. It may be an interesting question to ask whether $\mathrm{SU}_{\mathbf{w}}(F ; \mathcal{G})=\mathrm{SU}_{\mathbf{w}}(F)$ for any $F \in \mathrm{~T}_{k} k[\mathbf{x}]$ and $\mathcal{G}=\left(G_{i}\right)_{i=0}^{r}$.

When G_{i} admits a Shestakov-Umirbaev reduction, the possibilities for G_{i+1} are limited as described in the following propositions.

Proposition 8.2. If $\left(F, G^{1}\right)$ and $\left(F, G^{2}\right)$ satisfy the Shestakov-Umirbaev condition for $F, G^{1}, G^{2} \in \mathcal{T}$, then $g_{i}^{1}=g_{i}^{2}$ for $i=1,2$, and $g_{3}^{1}-g_{3}^{2}$ is contained in $k\left[g_{2}^{1}\right]$, where $G^{j}=\left(g_{1}^{j}, g_{2}^{j}, g_{3}^{j}\right)$ for $j=1,2$.

PROOF. By (SU1), there exist $a^{j}, b^{j}, c^{j} \in k$ such that $g_{1}^{j}=f_{1}+a^{j} f_{3}^{2}+c^{j} f_{3}$ and $g_{2}^{j}=$ $f_{2}+b^{j} f_{3}$ for $j=1,2$. By the last statement of (P11), it follows that $a^{1}=a^{2}, b^{1}=b^{2}$ and $c^{1}=c^{2}$. Hence, we have $g_{i}^{1}=g_{i}^{2}$ for $i=1$, 2. Put $\phi:=g_{3}^{1}-g_{3}^{2}=\left(g_{3}^{1}-f_{3}\right)+\left(f_{3}-g_{3}^{2}\right)$. Then, ϕ belongs to $k\left[g_{1}^{1}, g_{2}^{1}\right]=k\left[g_{1}^{2}, g_{2}^{2}\right]$, since so does $g_{3}^{j}-f_{3}$ for $j=1,2$ by (SU1). Suppose to the contrary that ϕ belongs to $k\left[g_{1}^{1}, g_{2}^{1}\right] \backslash k\left[g_{2}^{1}\right]$. Then, since $\operatorname{deg} \phi \leq \max \left\{\operatorname{deg} g_{3}^{1}, \operatorname{deg} g_{3}^{2}\right\}<$ $\operatorname{deg} f_{3} \leq \operatorname{deg} g_{1}^{1}$ by (SU5) and (SU4), we get $\operatorname{deg} \phi<\operatorname{deg}^{U} \phi$, where $U=\left\{g_{1}^{1}, g_{2}^{1}\right\}$. In view of (SU3), it follows from Lemma 3.2(i) that

$$
\operatorname{deg} \phi \geq 2 \operatorname{deg} g_{1}^{1}+\operatorname{deg} d g_{1}^{1} \wedge d g_{2}^{1}-\operatorname{deg} g_{1}^{1}-\operatorname{deg} g_{2}^{1}=\operatorname{deg} g_{1}^{1}-\operatorname{deg} g_{2}^{1}+\operatorname{deg} d g_{1}^{1} \wedge d g_{2}^{1}
$$

Since $\operatorname{deg} \phi \leq \max \left\{\operatorname{deg} g_{3}^{1}, \operatorname{deg} g_{3}^{2}\right\}$, this contradicts (SU6). Therefore, $g_{3}^{1}-g_{3}^{2}$ belongs to $k\left[g_{2}^{1}\right]$.

The following proposition gives a necessary condition on automorphisms to admit both an elementary reduction and a Shestakov-Umirbaev reduction simultaneously.

Proposition 8.3. Assume that (F, G) satisfies the Shestakov-Umirbaev condition for $F, G \in \mathcal{T}$. Then, $f_{i}^{\mathbf{w}}$ does not belong to $k\left[S_{i}\right]^{\mathbf{w}}$ for $i=1$ if $f_{1}^{\mathbf{w}} \not \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$, for $i=2$, and for $i=3$ if $\left(f_{1}, f_{2}\right) \neq\left(g_{1}, g_{2}\right)$.

Proof. In each case, we will find $h_{0}, h_{1} \in k\left[S_{i}\right]$ such that $k\left[h_{0}, h_{1}\right]=k\left[S_{i}\right], \gamma_{i}^{\prime}:=$ $\operatorname{deg} d h_{0} \wedge d h_{1}>s \delta, h_{j}^{\mathbf{w}}$ does not belong to $k\left[h_{l}^{\mathbf{w}}\right]$ for $(j, l)=(0,1),(1,0)$, and $f_{i}^{\mathbf{w}}$ does not belong to $k\left[h_{0}^{\mathbf{w}}, h_{1}^{\mathbf{w}}\right]$. Then, it follows that $f_{i}^{\mathbf{w}}$ does not belong to $k\left[S_{i}\right]^{\mathbf{w}}$. In fact, supposing that $f_{i}^{\mathbf{w}}=\phi^{\mathbf{w}}$ for some $\phi \in k\left[S_{i}\right]=k\left[h_{0}, h_{1}\right]$, we have $\operatorname{deg} \phi<\operatorname{deg}^{U} \phi$ for $U=\left\{h_{0}, h_{1}\right\}$, since $\phi^{\mathbf{w}}=f_{i}^{\mathbf{w}}$ does not belong to $k\left[h_{0}^{\mathbf{w}}, h_{1}^{\mathbf{w}}\right]$. Since $h_{j}^{\mathbf{w}}$ does not belong to $k\left[h_{l}^{\mathbf{w}}\right]$ for $(j, l)=$ $(0,1),(1,0)$, we get $\operatorname{deg} \phi>\gamma_{i}^{\prime}$ by Lemma 3.3(i). Thus, $\operatorname{deg} f_{i}=\operatorname{deg} \phi>\gamma_{i}^{\prime}>s \delta$. This contradicts (P7). Therefore, $f_{i}^{\mathbf{w}}$ does not belong to $k\left[S_{i}\right]^{\mathbf{w}}$ if such h_{0} and h_{1} exist.

We remark that $\gamma_{i}:=\operatorname{deg} f_{j} \wedge f_{l}>s \delta$ in each case, where $j, l \in\{1,2,3\} \backslash\{i\}$ with $j<l$. Actually, $\gamma_{1}>s \delta$ and $\gamma_{2} \geq \delta+\gamma_{1}>(s+1) \delta$ by the last two conditions of (P12). If $i=3$, then $\left(f_{1}, f_{2}\right) \neq\left(g_{1}, g_{2}\right)$ by assumption. Hence, the first condition of (P12) implies that γ_{3} is equal to one of $\operatorname{deg} f_{3}+\gamma_{1}, \gamma_{2}$ and γ_{1}, which are greater than $s \delta$.

We set $\left(h_{0}, h_{1}\right)=\left(f_{2}, f_{3}\right)$ if $i=1$, and $\left(h_{0}, h_{1}\right)=\left(f_{1}, f_{2}\right)$ if $i=3$. Then, $k\left[h_{0}, h_{1}\right]=$ $k\left[S_{i}\right]$ and $\gamma_{i}^{\prime}=\gamma_{i}>s \delta$ in either case. Moreover, $h_{j}^{\mathbf{w}}$ does not belong to $k\left[h_{l}^{\mathbf{w}}\right]$ for $(j, l)=$ $(0,1),(1,0)$ by (P8). We check that $f_{i}^{\mathbf{w}}$ does not belong to $k\left[h_{0}^{\mathbf{w}}, h_{1}^{\mathbf{W}}\right]$. This holds for $i=3$ because $f_{3}^{\mathbf{w}}$ does not belong to $k\left[f_{l}^{\mathbf{w}}\right]$ for $l=1,2$ by (P8), and we have $\operatorname{deg} f_{3} \leq \operatorname{deg} f_{1}<$ $\operatorname{deg} f_{1} f_{2}$ by (P7). Suppose to the contrary that $f_{1}^{\mathbf{w}}$ belongs to $k\left[f_{2}^{\mathbf{w}}, f_{3}^{\mathbf{w}}\right]$. Then, $f_{1}^{\mathbf{w}}$ must belong to $k\left[f_{2}^{\mathbf{w}}\right]$ or $k\left[f_{3}^{\mathbf{w}}\right]$, since

$$
\operatorname{deg} f_{1} \leq \operatorname{deg} g_{1}=s \delta=2 \delta+(s-2) \delta<\operatorname{deg} f_{2}+\operatorname{deg} f_{3}=\operatorname{deg} f_{2} f_{3}
$$

by (SU2) and (P2). It follows from (P8) that $f_{1}^{\mathbf{w}}$ does not belong to $k\left[f_{2}^{\mathbf{w}}\right]$, and so $f_{1}^{\mathbf{w}}$ belongs to $k\left[f_{3}^{\mathbf{w}}\right]$ and $f_{1}^{\mathbf{w}} \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$. This contradicts the assumption that $f_{1}^{\mathbf{w}} \not \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$. Thus, $f_{1}^{\mathbf{w}}$ does not belong to $k\left[h_{0}^{\mathbf{w}}, h_{1}^{\mathbf{w}}\right]$ if $i=1$. Therefore, h_{0} and h_{1} satisfy the required conditions, and thereby $f_{i}^{\mathbf{w}}$ does not belong to $k\left[S_{i}\right]^{\mathbf{w}}$ for $i=1,3$ as mentioned above.

In the case $i=2$, set $h_{0}=f_{3}$, and $h_{1}=f_{1}$ if $f_{1}^{\mathbf{w}} \not \approx\left(f_{3}^{\mathbf{W}}\right)^{2}$, while $h_{1}=f_{1}-c f_{3}^{2}$ otherwise, where $c \in k$ is such that $f_{1}^{\mathbf{w}}=c\left(f_{3}^{\mathbf{w}}\right)^{2}$. Then, $k\left[h_{0}, h_{1}\right]=k\left[S_{2}\right]$ and $\gamma_{2}^{\prime}=$ $\gamma_{2}>(s+1) \delta$. If $f_{1}^{\mathbf{w}} \not \nsim\left(f_{3}^{\mathbf{w}}\right)^{2}$, then $h_{1}=f_{1}$, and so $h_{j}^{\mathbf{w}}$ does not belong to $k\left[h_{l}^{\mathbf{w}}\right]$ for $(j, l)=(0,1),(1,0)$ by (P8). If $f_{1}^{\mathbf{w}} \approx\left(f_{3}^{\mathbf{w}}\right)^{2}$, then $f_{1}^{\mathbf{w}}$ belongs to $k\left[f_{3}^{\mathbf{w}}\right]$. By (P8), we get $s=3$ and $\operatorname{deg} h_{0}=\operatorname{deg} f_{3}=(3 / 2) \delta$. Since $\operatorname{deg} h_{0}+\operatorname{deg} h_{1} \geq \gamma_{2}^{\prime}>(s+1) \delta=4 \delta$ by (2.3), we have $\operatorname{deg} h_{1}>4 \delta-(3 / 2) \delta=(5 / 2) \delta>\operatorname{deg} h_{0}$. Hence, $h_{0}^{\mathbf{w}}$ does not belong to $k\left[h_{1}^{\mathbf{w}}\right]$. It follows that $(5 / 2) \delta<\operatorname{deg} h_{1}=\operatorname{deg}\left(f_{1}-c f_{3}^{2}\right)<\operatorname{deg} f_{3}^{2}=3 \delta$. Since $5 / 2<(3 / 2) l<3$ does not hold for any $l \in \boldsymbol{N}$, we conclude that $h_{1}^{\mathbf{w}}$ does not belong to $k\left[h_{0}^{\mathbf{w}}\right]$. For both $h_{1}=f_{1}$ and $h_{1}=f_{1}-c f_{3}^{2}$, it holds that $\operatorname{deg} f_{2}=2 \delta<\operatorname{deg} h_{1}$. Hence, $f_{2}^{\mathbf{w}}$ does not belong to $k\left[h_{0}^{\mathrm{w}}, h_{1}^{\mathrm{W}}\right] \backslash k\left[h_{0}^{\mathrm{w}}\right]$. By (P8), f_{2}^{w} does not belong to $k\left[h_{0}^{\mathrm{w}}\right]=k\left[f_{3}^{\mathrm{w}}\right]$. Thus, f_{2}^{w} does not belong to $k\left[h_{0}^{\mathbf{w}}, h_{1}^{\mathbf{w}}\right]$. Therefore, h_{0} and h_{1} satisfy the required conditions, thereby $f_{2}^{\mathbf{w}}$ does not belong to $k\left[S_{2}\right]^{\mathrm{w}}$.

Appendix: Reductions of types I, II, III and IV. In this appendix, we explain that the following results are implicit in the theory of Shestakov-Umirbaev [10]:
(A) If $F \in$ Aut $_{k} k[\mathbf{x}]$ admits a reduction of one of the types I, II, III and IV, then F admits none of the reductions of the other three types.
(B) If $F \in \operatorname{Aut}_{k} k[\mathbf{x}]$ admits a reduction of type IV, then there exists an elementary automorphism E such that $F \circ E$ admits a reduction of type IV, but does not admit an elementary reduction.

From (A) and (B), it follows that, if there exists a tame automorphism admitting a reduction of type IV, then there exists a tame automorphism which is not affine and does not admit an elementary reduction nor any one of the reductions of types I, II and III. Actually, an automorphism admitting a reduction of type IV is not affine, and admits none of the reductions of types I, II and III by (A). Theorem 2.1, together with Proposition 7.2, implies that each tame automorphism but an affine automorphism admits an elementary reduction or a reduction of one of the types I, II and III. Thus, we obtain another proof of Theorem 7.1 that no tame automorphism admits a reduction of type IV.

First, we show (A). Recall the definitions of reductions of types I through IV (see the conditions (1) through (4) listed in Section 7). If F satisfies (1), then $\operatorname{deg} f_{1}<\operatorname{deg} f_{3} \leq$ $\operatorname{deg} f_{2}$. Moreover, (1) implies that $\operatorname{deg} d f_{1} \wedge d f_{2}=\operatorname{deg} d f_{1} \wedge d f_{3}$ (cf. [10, Proposition 1 (1)]). If F satisfies one of (2), (3) and (4), then $\operatorname{deg} f_{3} \leq \operatorname{deg} f_{1}<\operatorname{deg} f_{2}$, where $\operatorname{deg} f_{3}=\operatorname{deg} f_{1}$ holds only in the case (2). Moreover, it follows that

$$
\begin{equation*}
\operatorname{deg} d f_{1} \wedge d f_{3}=\operatorname{deg} d g_{1} \wedge d g_{2}+3 l, \quad \operatorname{deg} d f_{2} \wedge d f_{3}=\operatorname{deg} d f_{1} \wedge d f_{3}+l \tag{8.1}
\end{equation*}
$$

in these cases (cf. [10, Equations (6) and (7)]).

Now, suppose that F satisfies one of (2), (3) and (4), but admits a reduction of type I, i.e., F_{τ} satisfies (1) for some $\tau \in \mathfrak{S}_{3}$. Then, $\operatorname{deg} d f_{\tau(1)} \wedge d f_{\tau(2)}=\operatorname{deg} d f_{\tau(1)} \wedge d f_{\tau(3)}$ as mentioned. It follows from the condition on the degrees of f_{1}, f_{2} and f_{3} that $\tau=(1,3)$. Hence, $\operatorname{deg} d f_{3} \wedge d f_{2}=\operatorname{deg} d f_{3} \wedge d f_{1}$, which contradicts the second equation of (8.1). If F satisfies (3) or (4), and admits a reduction of type II, then F satisfies (2) by the conditions on the degrees of f_{1}, f_{2} and f_{3}. This is impossible, because (3/2)l<deg f_{3} if (2), while $\operatorname{deg} f_{3} \leq(3 / 2) l$ if (3) or (4). Finally, we show that F does not admit reductions of types III and IV simultaneously. Suppose that F satisfies (4), and admits a reduction of type III. Then, F satisfies (3), since $\operatorname{deg} f_{3}<\operatorname{deg} f_{1}<\operatorname{deg} f_{2}$ in both cases. We remark that $\alpha, \beta, \gamma \in k$ appearing in (3) and (4) are uniquely determined by F (cf. [10, Proposition 3 (1), (2) and (3)]), and hence so are g_{1} and g_{2}. There exist $\sigma^{1}, \sigma^{2} \in k \backslash\{0\}$ and $g^{1}, g^{2} \in k\left[g_{1}, g_{2}\right] \backslash k$ such that $\operatorname{deg} d g_{1} \wedge d g_{3, i}<3 l+\operatorname{deg} d g_{1} \wedge d g_{2}$ for $i=1,2, \operatorname{deg} g_{3,1}<l+\operatorname{deg} d g_{1} \wedge d g_{2}$, and $\operatorname{deg}\left(g_{2}-\mu g_{3,2}^{2}\right) \leq 2 l$ for some $\mu \in k \backslash\{0\}$, where $g_{3, i}=\sigma^{i} f_{3}+g^{i}$ for $i=1$, We claim that $\operatorname{deg} g_{3,1}<\operatorname{deg} f_{3}$. In fact, we have $\operatorname{deg} g_{3,1}<l+\operatorname{deg} d g_{1} \wedge d g_{2}$, while the first equation of (8.1) implies $\operatorname{deg} f_{3} \geq l+\operatorname{deg} d g_{1} \wedge d g_{2}$, since $\operatorname{deg} f_{1}+\operatorname{deg} f_{3} \geq \operatorname{deg} d f_{1} \wedge d f_{3}$ and $\operatorname{deg} f_{1}=$ $2 l$. Hence, $\operatorname{deg} g_{3,1}<\operatorname{deg} f_{3} \leq(3 / 2) l$. From $\operatorname{deg}\left(g_{2}-\mu g_{3,2}^{2}\right) \leq 2 l$, we get deg $g_{3,2}=(3 / 2) l$. It follows that $\phi:=\sigma^{2} g^{1}-\sigma^{1} g^{2}=\sigma^{2} g_{3,1}-\sigma^{1} g_{3,2}$ is an element of $k\left[g_{1}, g_{2}\right]$ such that $\operatorname{deg} d g_{1} \wedge d \phi<3 l+\operatorname{deg} d g_{1} \wedge d g_{2}$ and $\operatorname{deg} \phi=(3 / 2) l$. Since $\operatorname{deg} \phi<\operatorname{deg} g_{i}$ for $i=1,2$, and since ϕ is not an element of k, we have $\operatorname{deg} \phi<\operatorname{deg}^{U} \phi$, where $U=\left\{g_{1}, g_{2}\right\}$. As $\operatorname{deg} g_{1}=2 l$ and $\operatorname{deg} g_{2}=3 l$, it follows from Lemma 3.3(ii) that $\operatorname{deg} d \phi \wedge d g_{1} \geq 3 l+\operatorname{deg} d g_{1} \wedge d g_{2}$, a contradiction. Therefore, F does not admit reductions of types III and IV simultaneously. This completes the proof of (A).

Next, assume that F satisfies (4). From the proof of [10, Lemma 12], we know that each $a \in k\left[S_{i}\right]$ with $\operatorname{deg} a \leq \operatorname{deg} f_{i}$ can be written as follows: If $i=1$, then $a=\delta_{1} f_{3}$ (up to a constant term) for some $\delta_{1} \in k$. If $i=2$, then $a=\delta_{1} f_{3}^{2}+\sigma_{1} f_{3}+\mu_{1} f_{1}$ (up to a constant term) for some $\delta_{1}, \sigma_{1}, \mu_{1} \in k$. If $i=3$ and $(\alpha, \beta, \gamma) \neq(0,0,0)$, then a is an element of k. It is also mentioned in the proof of [10, Lemma 12] that ($f_{1}, f_{2}+a, f_{3}$) satisfies (4) for each $a \in k\left[S_{2}\right]$ with $\operatorname{deg} a \leq \operatorname{deg} f_{2}$. In fact, it is claimed that $\left(g_{1}, g_{2}+\mu_{1} g_{1}, g_{3}\right)$ is a "predreduction" of type IV of $\left(f_{1}, f_{2}+a, f_{3}\right)$.

We deduce (B) from the facts above. The assertion is clear if F does not admit an elementary reduction. So, assume that $\operatorname{deg} F \circ E<\operatorname{deg} F$ for some $E \in \mathcal{E}_{i}$, where $i \in$ $\{1,2,3\}$. Then, $(F \circ E)\left(x_{i}\right)=f_{i}+a$ and $\operatorname{deg}\left(f_{i}+a\right)<\operatorname{deg} f_{i}$ for some $a \in k\left[S_{i}\right]$. Since $\operatorname{deg} a=\operatorname{deg} f_{i}$, we can write a as stated in the preceding paragraph. Hence, if $i=1$, then $\operatorname{deg} a=\operatorname{deg} \delta_{1} f_{3} \leq(3 / 2) l$. Since $\operatorname{deg} a=\operatorname{deg} f_{1}=2 l$, this is impossible. Thus, $i \neq 1$. If $i=2$, then $\operatorname{deg} a=\operatorname{deg} f_{2}>(5 / 2) l$. Since $\operatorname{deg} f_{3} \leq(3 / 2) l$, we have $\delta_{1} \neq 0$ and $\operatorname{deg} f_{2}=\operatorname{deg} a=2 \operatorname{deg} f_{3}$. This implies that $\operatorname{deg} f_{2}=3 l$ and $\operatorname{deg} f_{3}=(3 / 2) l$, since $\operatorname{deg} f_{2}=3 l$ if $\operatorname{deg} f_{3}<(3 / 2) l$, and $\operatorname{deg} f_{3}=(3 / 2) l$ if $\operatorname{deg} f_{2}<3 l$. If $i=3$, then $\alpha=\beta=\gamma=0$. and so $g_{1}=f_{1}$ and $g_{2}=f_{2}$. We show that $F \circ E$ admits a reduction of type IV, but does not admit an elementary reduction in the cases $i=2$ and $i=3$.

Assume that $i=2$. Then, $\operatorname{deg}\left(f_{2}+a\right)<\operatorname{deg} f_{2}=3 l$. Moreover, $F \circ E=\left(f_{1}, f_{2}+a, f_{3}\right)$ satisfies (4) as mentioned, in which $\alpha \in k$ involved in the condition cannot be zero, since
$\operatorname{deg}\left(f_{2}+a\right)<3 l$. By applying to $F \circ E$ the argument in the preceding paragraph, we know that there does not exist $E^{\prime} \in \mathcal{E}_{j}$ with $\operatorname{deg} F \circ E \circ E^{\prime}<\operatorname{deg} F \circ E$ for $j=1$, for $j=2$, since $\operatorname{deg}\left(f_{2}+a\right) \neq 3 l$, and for $j=3$, since the constant α is not zero. Thus, $F \circ E$ does not admit an elementary reduction.

Assume that $i=3$. Without loss of generality, we may assume that $(F \circ E)\left(x_{3}\right)^{\mathbf{w}}$ does not belong to $k\left[f_{1}, f_{2}\right]^{\mathrm{w}}$ by replacing E if necessary. We show that $F \circ E=\left(f_{1}, f_{2}, f_{3}+a\right)$ satisfies (4) by using the assumption that F satisfies (4) for $\alpha=\beta=\gamma=0$. We claim that $\operatorname{deg}\left(f_{3}+a\right) \geq l+\operatorname{deg} d g_{1} \wedge d g_{2}$. In fact, if not, we can check that ($f_{1}, f_{2}+f_{3}, f_{3}$) satisfies (3) and (4) by the assumption that F satisfies (4) for $\alpha=\beta=\gamma=0$. This contradicts (A). Hence, $l<\operatorname{deg}\left(f_{3}+a\right) \leq(3 / 2) l$, as required in the assumption of (4). Let $g^{\prime}:=$ $g_{3}-\sigma\left(f_{3}+a\right)=\sigma f_{3}-g-\sigma\left(f_{3}+a\right)$. Then, g^{\prime} belongs to $k\left[g_{1}, g_{2}\right]=k\left[f_{1}, f_{2}\right]$, since so do g and a. It follows that $\operatorname{deg} g^{\prime}=(3 / 2) l$, since $\operatorname{deg}\left(f_{3}+a\right)<\operatorname{deg} f_{3} \leq(3 / 2) l$ and $\operatorname{deg} g_{3}=$ $(3 / 2) l$. Hence, g is not an element of k. Moreover, we can express $g_{3}=\sigma\left(f_{3}+a\right)+g^{\prime}$. This shows that $F \circ E$ satisfies (4). Consequently, there does not exist $E^{\prime} \in \mathcal{E}_{j}$ such that $\operatorname{deg} F \circ E \circ E^{\prime}<\operatorname{deg} F \circ E$ for $j=1$, and for $j=2$, since $\operatorname{deg}\left(f_{3}+a\right) \neq(3 / 2) l$. This also holds for $j=3$ as we choose E so that $(F \circ E)\left(x_{3}\right)^{\mathbf{w}}$ does not belong to $k\left[f_{1}, f_{2}\right]^{\mathbf{w}}$. Therefore, $F \circ E$ does not admit an elementary reduction. This completes the proof of (B).

References

[1] A. van den Essen, L. Makar-Limanov and R. Willems, Remarks on Shestakov-Umirbaev, Report 0414, Radboud University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands, 2004.
[2] A. VAN DEN ESSEN, The solution of the tame generators conjecture according to Shestakov and Umirbaev, Colloq. Math. 100 (2004), 181-194.
[3] A. VAN DEN ESSEN, Polynomial automorphisms and the Jacobian conjecture, Progr. Math. 190, Birkhäuser, Basel, 2000.
[4] H. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161-174.
[5] W. VAN DER KULK, On polynomial rings in two variables, Nieuw Arch. Wiskunde (3) 1 (1953), 33-41.
[6] S. Kuroda, A generalization of the Shestakov-Umirbaev inequality, J. Math. Soc. Japan 60 (2008), 495-510.
[7] S. KURODA, Automorphisms of a polynomial ring which admit reductions of type I, Publ. Res. Inst. Math. Sci. 45 (2009), 907-917.
[8] M. NaGATA, On automorphism group of $k[x, y]$, Department of Mathematics, Kyoto University, Lectures in Mathematics, No. 5, Kinokuniya Book-Store Co., Ltd., Tokyo, 1972.
[9] I. Shestakov and U. Umirbaev, Poisson brackets and two-generated subalgebras of rings of polynomials, J. Amer. Math. Soc. 17 (2004), 181-196.
[10] I. Shestakov and U. Umirbaev, The tame and the wild automorphisms of polynomial rings in three variables, J. Amer. Math. Soc. 17 (2004), 197-227.

Department of Mathematics
and Information Sciences
Tokyo Metropolitan University
1-1 Minami-Osawa, Hachioji
TOKYO 192-0397
JAPAN
E-mail address: kuroda@tmu.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 14R10; Secondary 13F20.
 Key words and phrases. Polynomial automorphisms, tame generators problem.
 Partly supported by the Grant-in-Aid for Young Scientists (Start-up) 19840041, The Ministry of Education, Culture, Sports, Science and Technology, Japan.

